core-device.c 33.0 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/ctype.h>
23
#include <linux/delay.h>
24 25
#include <linux/device.h>
#include <linux/errno.h>
26 27
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
28
#include <linux/idr.h>
29
#include <linux/jiffies.h>
30 31
#include <linux/kobject.h>
#include <linux/list.h>
32
#include <linux/mod_devicetable.h>
S
Stefan Richter 已提交
33
#include <linux/module.h>
34
#include <linux/mutex.h>
35
#include <linux/rwsem.h>
36
#include <linux/slab.h>
J
Jay Fenlason 已提交
37
#include <linux/spinlock.h>
38 39 40
#include <linux/string.h>
#include <linux/workqueue.h>

A
Arun Sharma 已提交
41
#include <linux/atomic.h>
S
Stefan Richter 已提交
42
#include <asm/byteorder.h>
43

44
#include "core.h"
45

46
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

62
static const u32 *search_leaf(const u32 *directory, int search_key)
63 64 65 66 67 68 69 70 71
{
	struct fw_csr_iterator ci;
	int last_key = 0, key, value;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (last_key == search_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			return ci.p - 1 + value;
72

73 74
		last_key = key;
	}
75

76 77 78
	return NULL;
}

79
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80
{
81 82
	unsigned int quadlets, i;
	char c;
83 84 85 86

	if (!size || !buf)
		return -EINVAL;

87
	quadlets = min(block[0] >> 16, 256U);
88 89 90 91 92 93 94 95 96
	if (quadlets < 2)
		return -ENODATA;

	if (block[1] != 0 || block[2] != 0)
		/* unknown language/character set */
		return -ENODATA;

	block += 3;
	quadlets -= 2;
97 98
	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
		c = block[i / 4] >> (24 - 8 * (i % 4));
99 100
		if (c == '\0')
			break;
101
		buf[i] = c;
102
	}
103 104 105
	buf[i] = '\0';

	return i;
106 107 108
}

/**
109 110 111 112 113
 * fw_csr_string() - reads a string from the configuration ROM
 * @directory:	e.g. root directory or unit directory
 * @key:	the key of the preceding directory entry
 * @buf:	where to put the string
 * @size:	size of @buf, in bytes
114
 *
115 116 117
 * The string is taken from a minimal ASCII text descriptor leaf after
 * the immediate entry with @key.  The string is zero-terminated.
 * Returns strlen(buf) or a negative error code.
118
 */
119
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120
{
121
	const u32 *leaf = search_leaf(directory, key);
122 123
	if (!leaf)
		return -ENOENT;
124

125 126 127 128
	return textual_leaf_to_string(leaf, buf, size);
}
EXPORT_SYMBOL(fw_csr_string);

129
static void get_ids(const u32 *directory, int *id)
130 131
{
	struct fw_csr_iterator ci;
132
	int key, value;
133 134 135

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
136 137 138 139 140 141
		switch (key) {
		case CSR_VENDOR:	id[0] = value; break;
		case CSR_MODEL:		id[1] = value; break;
		case CSR_SPECIFIER_ID:	id[2] = value; break;
		case CSR_VERSION:	id[3] = value; break;
		}
142
	}
143
}
144

145 146 147 148 149
static void get_modalias_ids(struct fw_unit *unit, int *id)
{
	get_ids(&fw_parent_device(unit)->config_rom[5], id);
	get_ids(unit->directory, id);
}
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164
static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
{
	int match = 0;

	if (id[0] == id_table->vendor_id)
		match |= IEEE1394_MATCH_VENDOR_ID;
	if (id[1] == id_table->model_id)
		match |= IEEE1394_MATCH_MODEL_ID;
	if (id[2] == id_table->specifier_id)
		match |= IEEE1394_MATCH_SPECIFIER_ID;
	if (id[3] == id_table->version)
		match |= IEEE1394_MATCH_VERSION;

	return (match & id_table->match_flags) == id_table->match_flags;
165 166
}

167 168
static bool is_fw_unit(struct device *dev);

169 170
static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
171 172 173
	const struct ieee1394_device_id *id_table =
			container_of(drv, struct fw_driver, driver)->id_table;
	int id[] = {0, 0, 0, 0};
174 175 176 177 178

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

179
	get_modalias_ids(fw_unit(dev), id);
180

181 182
	for (; id_table->match_flags != 0; id_table++)
		if (match_ids(id_table, id))
183 184 185 186 187 188 189
			return 1;

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
190
	int id[] = {0, 0, 0, 0};
191

192
	get_modalias_ids(unit, id);
193 194 195

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196
			id[0], id[1], id[2], id[3]);
197 198
}

199
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 201 202 203
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

204
	get_modalias(unit, modalias, sizeof(modalias));
205

206
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 208 209 210 211 212
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
213
	.name = "firewire",
214 215 216 217 218 219
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

int fw_device_enable_phys_dma(struct fw_device *device)
{
220 221 222 223 224
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

225 226
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
227
						     generation);
228 229 230
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

231 232 233 234 235
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

236 237
static ssize_t show_immediate(struct device *dev,
			      struct device_attribute *dattr, char *buf)
238 239 240 241
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
242
	const u32 *dir;
243 244 245
	int key, value, ret = -ENOENT;

	down_read(&fw_device_rwsem);
246 247 248 249 250 251 252 253

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
254 255 256 257 258 259 260
		if (attr->key == key) {
			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
				       "0x%06x\n", value);
			break;
		}

	up_read(&fw_device_rwsem);
261

262
	return ret;
263 264 265 266 267
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

268 269
static ssize_t show_text_leaf(struct device *dev,
			      struct device_attribute *dattr, char *buf)
270 271 272
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
273
	const u32 *dir;
274 275 276
	size_t bufsize;
	char dummy_buf[2];
	int ret;
277

278 279
	down_read(&fw_device_rwsem);

280 281 282 283 284
	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

285 286 287 288 289
	if (buf) {
		bufsize = PAGE_SIZE - 1;
	} else {
		buf = dummy_buf;
		bufsize = 1;
290 291
	}

292
	ret = fw_csr_string(dir, attr->key, buf, bufsize);
293

294 295 296 297 298 299
	if (ret >= 0) {
		/* Strip trailing whitespace and add newline. */
		while (ret > 0 && isspace(buf[ret - 1]))
			ret--;
		strcpy(buf + ret, "\n");
		ret++;
300
	}
301

302
	up_read(&fw_device_rwsem);
303

304
	return ret;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

321 322 323
static void init_fw_attribute_group(struct device *dev,
				    struct device_attribute *attrs,
				    struct fw_attribute_group *group)
324 325
{
	struct device_attribute *attr;
326 327 328 329
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
330 331 332 333 334

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
335
		group->attrs[j++] = &attr->attr;
336 337
	}

338
	group->attrs[j] = NULL;
339 340 341
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
342
	dev->groups = (const struct attribute_group **) group->groups;
343 344
}

345 346
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
347 348 349 350 351 352 353 354 355 356
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

357 358
static ssize_t rom_index_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
359
{
360 361
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
362

363 364
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
365 366
}

367 368 369 370
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
371 372
};

373 374
static ssize_t config_rom_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
375
{
376
	struct fw_device *device = fw_device(dev);
377
	size_t length;
378

379 380 381 382
	down_read(&fw_device_rwsem);
	length = device->config_rom_length * 4;
	memcpy(buf, device->config_rom, length);
	up_read(&fw_device_rwsem);
383

384
	return length;
385 386
}

387 388
static ssize_t guid_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
389 390
{
	struct fw_device *device = fw_device(dev);
391 392 393 394 395 396
	int ret;

	down_read(&fw_device_rwsem);
	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
		       device->config_rom[3], device->config_rom[4]);
	up_read(&fw_device_rwsem);
397

398
	return ret;
399 400
}

401
static int units_sprintf(char *buf, const u32 *directory)
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
{
	struct fw_csr_iterator ci;
	int key, value;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
}

static ssize_t units_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
	struct fw_csr_iterator ci;
	int key, value, i = 0;

	down_read(&fw_device_rwsem);
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;
		i += units_sprintf(&buf[i], ci.p + value - 1);
		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
			break;
	}
	up_read(&fw_device_rwsem);

	if (i)
		buf[i - 1] = '\n';

	return i;
}

447 448
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
449
	__ATTR_RO(guid),
450
	__ATTR_RO(units),
451
	__ATTR_NULL,
452 453
};

454 455
static int read_rom(struct fw_device *device,
		    int generation, int index, u32 *data)
456
{
457 458
	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
	int i, rcode;
459 460 461

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
462

463 464 465 466 467 468 469 470
	for (i = 10; i < 100; i += 10) {
		rcode = fw_run_transaction(device->card,
				TCODE_READ_QUADLET_REQUEST, device->node_id,
				generation, device->max_speed, offset, data, 4);
		if (rcode != RCODE_BUSY)
			break;
		msleep(i);
	}
J
Jay Fenlason 已提交
471
	be32_to_cpus(data);
472

J
Jay Fenlason 已提交
473
	return rcode;
474 475
}

476
#define MAX_CONFIG_ROM_SIZE 256
477

478 479 480
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
481
 * generation changes under us, read_config_rom will fail and get retried.
482 483 484
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
 */
485
static int read_config_rom(struct fw_device *device, int generation)
486
{
487
	struct fw_card *card = device->card;
488 489
	const u32 *old_rom, *new_rom;
	u32 *rom, *stack;
490 491 492
	u32 sp, key;
	int i, end, length, ret = -1;

493 494
	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
495 496 497
	if (rom == NULL)
		return -ENOMEM;

498 499
	stack = &rom[MAX_CONFIG_ROM_SIZE];
	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
500

501 502
	device->max_speed = SCODE_100;

503 504
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
505
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
506
			goto out;
507 508
		/*
		 * As per IEEE1212 7.2, during power-up, devices can
509 510 511 512
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
513 514
		 * retry mechanism will try again later.
		 */
515
		if (i == 0 && rom[i] == 0)
516
			goto out;
517 518
	}

519 520 521 522 523 524 525 526 527 528 529 530 531
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
532
	    card->beta_repeaters_present) {
533 534 535 536
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
537
			device->max_speed = card->link_speed;
538 539

		while (device->max_speed > SCODE_100) {
540 541
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
542 543 544 545 546
				break;
			device->max_speed--;
		}
	}

547 548
	/*
	 * Now parse the config rom.  The config rom is a recursive
549 550 551
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
552 553
	 * start things off.
	 */
554 555 556 557
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
558 559
		/*
		 * Pop the next block reference of the stack.  The
560 561
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
562 563
		 * block.
		 */
564 565
		key = stack[--sp];
		i = key & 0xffffff;
566
		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
567
			goto out;
568 569

		/* Read header quadlet for the block to get the length. */
570
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
571
			goto out;
572
		end = i + (rom[i] >> 16) + 1;
573
		if (end > MAX_CONFIG_ROM_SIZE) {
574
			/*
575 576 577
			 * This block extends outside the config ROM which is
			 * a firmware bug.  Ignore this whole block, i.e.
			 * simply set a fake block length of 0.
578
			 */
579 580 581
			fw_err(card, "skipped invalid ROM block %x at %llx\n",
			       rom[i],
			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
582 583 584 585
			rom[i] = 0;
			end = i;
		}
		i++;
586

587 588
		/*
		 * Now read in the block.  If this is a directory
589
		 * block, check the entries as we read them to see if
590 591
		 * it references another block, and push it in that case.
		 */
592
		for (; i < end; i++) {
593 594
			if (read_rom(device, generation, i, &rom[i]) !=
			    RCODE_COMPLETE)
595
				goto out;
596

597
			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
598 599 600 601 602 603 604 605
				continue;
			/*
			 * Offset points outside the ROM.  May be a firmware
			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
			 * 7.7.18).  Simply overwrite this pointer here by a
			 * fake immediate entry so that later iterators over
			 * the ROM don't have to check offsets all the time.
			 */
606
			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
607 608 609 610
				fw_err(card,
				       "skipped unsupported ROM entry %x at %llx\n",
				       rom[i],
				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
611 612 613 614
				rom[i] = 0;
				continue;
			}
			stack[sp++] = i + rom[i];
615 616 617 618 619
		}
		if (length < i)
			length = i;
	}

620 621 622
	old_rom = device->config_rom;
	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
	if (new_rom == NULL)
623
		goto out;
624 625 626

	down_write(&fw_device_rwsem);
	device->config_rom = new_rom;
627
	device->config_rom_length = length;
628 629 630
	up_write(&fw_device_rwsem);

	kfree(old_rom);
631
	ret = 0;
632 633 634
	device->max_rec	= rom[2] >> 12 & 0xf;
	device->cmc	= rom[2] >> 30 & 1;
	device->irmc	= rom[2] >> 31 & 1;
635 636
 out:
	kfree(rom);
637

638
	return ret;
639 640 641 642 643 644
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

645
	fw_device_put(fw_parent_device(unit));
646 647 648
	kfree(unit);
}

649 650 651 652 653
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

654
static bool is_fw_unit(struct device *dev)
655
{
656
	return dev->type == &fw_unit_type;
657 658 659 660 661 662 663 664 665 666 667 668 669 670
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

671 672 673 674
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
675
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
676
		if (unit == NULL) {
677
			fw_err(device->card, "out of memory for unit\n");
678 679 680 681 682
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
683
		unit->device.type = &fw_unit_type;
684
		unit->device.parent = &device->device;
685
		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
686

687 688 689
		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
				ARRAY_SIZE(fw_unit_attributes) +
				ARRAY_SIZE(config_rom_attributes));
690 691 692
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
693

694 695 696
		if (device_register(&unit->device) < 0)
			goto skip_unit;

697
		fw_device_get(device);
698 699 700 701
		continue;

	skip_unit:
		kfree(unit);
702 703 704 705 706
	}
}

static int shutdown_unit(struct device *device, void *data)
{
707
	device_unregister(device);
708 709 710 711

	return 0;
}

712 713 714 715 716 717 718 719
/*
 * fw_device_rwsem acts as dual purpose mutex:
 *   - serializes accesses to fw_device_idr,
 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 *     fw_unit.directory, unless those accesses happen at safe occasions
 */
DECLARE_RWSEM(fw_device_rwsem);

720
DEFINE_IDR(fw_device_idr);
721 722
int fw_cdev_major;

723
struct fw_device *fw_device_get_by_devt(dev_t devt)
724 725 726
{
	struct fw_device *device;

727
	down_read(&fw_device_rwsem);
728
	device = idr_find(&fw_device_idr, MINOR(devt));
729 730
	if (device)
		fw_device_get(device);
731
	up_read(&fw_device_rwsem);
732 733 734 735

	return device;
}

736 737
struct workqueue_struct *fw_workqueue;
EXPORT_SYMBOL(fw_workqueue);
738 739 740 741

static void fw_schedule_device_work(struct fw_device *device,
				    unsigned long delay)
{
742
	queue_delayed_work(fw_workqueue, &device->work, delay);
743 744
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/*
 * These defines control the retry behavior for reading the config
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
 * are plugged in, they're all getting read within one second.
 */

#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
#define INITIAL_DELAY	(HZ / 2)
#define SHUTDOWN_DELAY	(2 * HZ)

761 762 763 764
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
765 766
	int minor = MINOR(device->device.devt);

767 768
	if (time_before64(get_jiffies_64(),
			  device->card->reset_jiffies + SHUTDOWN_DELAY)
769
	    && !list_empty(&device->card->link)) {
770
		fw_schedule_device_work(device, SHUTDOWN_DELAY);
771 772 773 774 775 776 777 778
		return;
	}

	if (atomic_cmpxchg(&device->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
		return;

779
	fw_device_cdev_remove(device);
780 781
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
782

783
	down_write(&fw_device_rwsem);
784
	idr_remove(&fw_device_idr, minor);
785
	up_write(&fw_device_rwsem);
786

787
	fw_device_put(device);
788 789
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
	struct fw_card *card = device->card;
	unsigned long flags;

	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled or while the
	 * bus manager work looks at this node.
	 */
	spin_lock_irqsave(&card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&card->lock, flags);

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
	fw_card_put(card);
}

811
static struct device_type fw_device_type = {
812
	.release = fw_device_release,
813 814
};

815 816 817 818 819
static bool is_fw_device(struct device *dev)
{
	return dev->type == &fw_device_type;
}

820 821 822 823 824 825
static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
826
		device_lock(dev);
827
		driver->update(unit);
828
		device_unlock(dev);
829 830 831 832 833 834 835 836 837 838 839 840 841
	}

	return 0;
}

static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

	fw_device_cdev_update(device);
	device_for_each_child(&device->device, NULL, update_unit);
}
842

843
/*
844 845 846 847
 * If a device was pending for deletion because its node went away but its
 * bus info block and root directory header matches that of a newly discovered
 * device, revive the existing fw_device.
 * The newly allocated fw_device becomes obsolete instead.
848
 */
849 850 851 852 853 854 855
static int lookup_existing_device(struct device *dev, void *data)
{
	struct fw_device *old = fw_device(dev);
	struct fw_device *new = data;
	struct fw_card *card = new->card;
	int match = 0;

856 857 858
	if (!is_fw_device(dev))
		return 0;

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	down_read(&fw_device_rwsem); /* serialize config_rom access */
	spin_lock_irq(&card->lock);  /* serialize node access */

	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
	    atomic_cmpxchg(&old->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		struct fw_node *current_node = new->node;
		struct fw_node *obsolete_node = old->node;

		new->node = obsolete_node;
		new->node->data = new;
		old->node = current_node;
		old->node->data = old;

		old->max_speed = new->max_speed;
		old->node_id = current_node->node_id;
		smp_wmb();  /* update node_id before generation */
		old->generation = card->generation;
		old->config_rom_retries = 0;
879
		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
880

881
		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
882
		fw_schedule_device_work(old, 0);
883 884 885 886 887 888 889 890 891 892 893 894

		if (current_node == card->root_node)
			fw_schedule_bm_work(card, 0);

		match = 1;
	}

	spin_unlock_irq(&card->lock);
	up_read(&fw_device_rwsem);

	return match;
}
895

896 897
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };

898
static void set_broadcast_channel(struct fw_device *device, int generation)
899 900 901 902 903 904 905 906
{
	struct fw_card *card = device->card;
	__be32 data;
	int rcode;

	if (!card->broadcast_channel_allocated)
		return;

907 908 909 910 911 912 913 914 915 916 917 918 919 920
	/*
	 * The Broadcast_Channel Valid bit is required by nodes which want to
	 * transmit on this channel.  Such transmissions are practically
	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
	 * to narrow down to which nodes we send Broadcast_Channel updates.
	 */
	if (!device->irmc || device->max_rec < 8)
		return;

	/*
	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
	 * Perform a read test first.
	 */
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	if (device->bc_implemented == BC_UNKNOWN) {
		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
		switch (rcode) {
		case RCODE_COMPLETE:
			if (data & cpu_to_be32(1 << 31)) {
				device->bc_implemented = BC_IMPLEMENTED;
				break;
			}
			/* else fall through to case address error */
		case RCODE_ADDRESS_ERROR:
			device->bc_implemented = BC_UNIMPLEMENTED;
		}
	}

	if (device->bc_implemented == BC_IMPLEMENTED) {
		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
				   BROADCAST_CHANNEL_VALID);
		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
	}
}

948 949 950 951 952 953 954 955
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
{
	if (is_fw_device(dev))
		set_broadcast_channel(fw_device(dev), (long)gen);

	return 0;
}

956 957 958 959
static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
960
	struct fw_card *card = device->card;
961
	struct device *revived_dev;
962
	int minor, ret;
963

964 965
	/*
	 * All failure paths here set node->data to NULL, so that we
966
	 * don't try to do device_for_each_child() on a kfree()'d
967 968
	 * device.
	 */
969

970
	if (read_config_rom(device, device->generation) < 0) {
971 972
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
973
			device->config_rom_retries++;
974
			fw_schedule_device_work(device, RETRY_DELAY);
975
		} else {
976
			if (device->node->link_on)
977
				fw_notice(card, "giving up on Config ROM for node id %x\n",
978
					  device->node_id);
979 980
			if (device->node == card->root_node)
				fw_schedule_bm_work(card, 0);
981 982 983 984 985
			fw_device_release(&device->device);
		}
		return;
	}

986
	revived_dev = device_find_child(card->device,
987 988 989 990 991 992 993 994
					device, lookup_existing_device);
	if (revived_dev) {
		put_device(revived_dev);
		fw_device_release(&device->device);

		return;
	}

995
	device_initialize(&device->device);
996 997

	fw_device_get(device);
998
	down_write(&fw_device_rwsem);
999
	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1000 1001
	      idr_get_new(&fw_device_idr, device, &minor) :
	      -ENOMEM;
1002
	up_write(&fw_device_rwsem);
1003

1004
	if (ret < 0)
1005 1006
		goto error;

1007
	device->device.bus = &fw_bus_type;
1008
	device->device.type = &fw_device_type;
1009
	device->device.parent = card->device;
1010
	device->device.devt = MKDEV(fw_cdev_major, minor);
1011
	dev_set_name(&device->device, "fw%d", minor);
1012

1013 1014 1015
	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
			ARRAY_SIZE(fw_device_attributes) +
			ARRAY_SIZE(config_rom_attributes));
1016 1017 1018
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
1019

1020
	if (device_add(&device->device)) {
1021
		fw_err(card, "failed to add device\n");
1022
		goto error_with_cdev;
1023 1024 1025 1026
	}

	create_units(device);

1027 1028
	/*
	 * Transition the device to running state.  If it got pulled
1029 1030 1031 1032 1033
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
1034 1035
	 * fw_node_event().
	 */
1036
	if (atomic_cmpxchg(&device->state,
1037 1038 1039
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1040
		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1041
	} else {
1042 1043 1044 1045
		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
			  dev_name(&device->device),
			  device->config_rom[3], device->config_rom[4],
			  1 << device->max_speed);
1046
		device->config_rom_retries = 0;
1047

1048
		set_broadcast_channel(device, device->generation);
1049
	}
1050

1051 1052
	/*
	 * Reschedule the IRM work if we just finished reading the
1053 1054
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
1055 1056
	 * pretty harmless.
	 */
1057 1058
	if (device->node == card->root_node)
		fw_schedule_bm_work(card, 0);
1059 1060 1061

	return;

1062
 error_with_cdev:
1063
	down_write(&fw_device_rwsem);
1064
	idr_remove(&fw_device_idr, minor);
1065
	up_write(&fw_device_rwsem);
S
Stefan Richter 已提交
1066
 error:
1067 1068 1069
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
1070 1071
}

1072 1073 1074 1075 1076 1077 1078 1079
enum {
	REREAD_BIB_ERROR,
	REREAD_BIB_GONE,
	REREAD_BIB_UNCHANGED,
	REREAD_BIB_CHANGED,
};

/* Reread and compare bus info block and header of root directory */
1080
static int reread_config_rom(struct fw_device *device, int generation)
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
{
	u32 q;
	int i;

	for (i = 0; i < 6; i++) {
		if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
			return REREAD_BIB_ERROR;

		if (i == 0 && q == 0)
			return REREAD_BIB_GONE;

1092
		if (q != device->config_rom[i])
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
			return REREAD_BIB_CHANGED;
	}

	return REREAD_BIB_UNCHANGED;
}

static void fw_device_refresh(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
	struct fw_card *card = device->card;
	int node_id = device->node_id;

1106
	switch (reread_config_rom(device, device->generation)) {
1107 1108 1109 1110
	case REREAD_BIB_ERROR:
		if (device->config_rom_retries < MAX_RETRIES / 2 &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
1111
			fw_schedule_device_work(device, RETRY_DELAY / 2);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

			return;
		}
		goto give_up;

	case REREAD_BIB_GONE:
		goto gone;

	case REREAD_BIB_UNCHANGED:
		if (atomic_cmpxchg(&device->state,
1122 1123
				   FW_DEVICE_INITIALIZING,
				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
			goto gone;

		fw_device_update(work);
		device->config_rom_retries = 0;
		goto out;

	case REREAD_BIB_CHANGED:
		break;
	}

	/*
	 * Something changed.  We keep things simple and don't investigate
	 * further.  We just destroy all previous units and create new ones.
	 */
	device_for_each_child(&device->device, NULL, shutdown_unit);

1140
	if (read_config_rom(device, device->generation) < 0) {
1141 1142 1143
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
1144
			fw_schedule_device_work(device, RETRY_DELAY);
1145 1146 1147 1148 1149 1150

			return;
		}
		goto give_up;
	}

1151
	fw_device_cdev_update(device);
1152 1153
	create_units(device);

1154 1155 1156
	/* Userspace may want to re-read attributes. */
	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);

1157
	if (atomic_cmpxchg(&device->state,
1158 1159
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1160 1161
		goto gone;

1162
	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1163 1164 1165 1166
	device->config_rom_retries = 0;
	goto out;

 give_up:
1167 1168
	fw_notice(card, "giving up on refresh of device %s\n",
		  dev_name(&device->device));
1169
 gone:
1170 1171
	atomic_set(&device->state, FW_DEVICE_GONE);
	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1172
	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1173 1174
 out:
	if (node_id == card->root_node->node_id)
1175
		fw_schedule_bm_work(card, 0);
1176 1177
}

1178 1179 1180 1181 1182 1183
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
1184 1185 1186 1187 1188 1189
		/*
		 * Attempt to scan the node, regardless whether its self ID has
		 * the L (link active) flag set or not.  Some broken devices
		 * send L=0 but have an up-and-running link; others send L=1
		 * without actually having a link.
		 */
1190
 create:
1191 1192 1193 1194
		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

1195 1196
		/*
		 * Do minimal intialization of the device here, the
1197 1198 1199 1200 1201 1202 1203
		 * rest will happen in fw_device_init().
		 *
		 * Attention:  A lot of things, even fw_device_get(),
		 * cannot be done before fw_device_init() finished!
		 * You can basically just check device->state and
		 * schedule work until then, but only while holding
		 * card->lock.
1204
		 */
1205
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1206
		device->card = fw_card_get(card);
1207 1208 1209
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
1210
		device->is_local = node == card->local_node;
1211
		mutex_init(&device->client_list_mutex);
1212
		INIT_LIST_HEAD(&device->client_list);
1213

1214 1215
		/*
		 * Set the node data to point back to this device so
1216
		 * FW_NODE_UPDATED callbacks can update the node_id
1217 1218
		 * and generation for the device.
		 */
1219 1220
		node->data = device;

1221 1222
		/*
		 * Many devices are slow to respond after bus resets,
1223 1224
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
1225 1226
		 * first config rom scan half a second after bus reset.
		 */
1227
		INIT_DELAYED_WORK(&device->work, fw_device_init);
1228
		fw_schedule_device_work(device, INITIAL_DELAY);
1229 1230
		break;

1231
	case FW_NODE_INITIATED_RESET:
1232
	case FW_NODE_LINK_ON:
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		device = node->data;
		if (device == NULL)
			goto create;

		device->node_id = node->node_id;
		smp_wmb();  /* update node_id before generation */
		device->generation = card->generation;
		if (atomic_cmpxchg(&device->state,
			    FW_DEVICE_RUNNING,
			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1244
			fw_schedule_device_work(device,
1245
				device->is_local ? 0 : INITIAL_DELAY);
1246 1247 1248
		}
		break;

1249
	case FW_NODE_UPDATED:
1250 1251
		device = node->data;
		if (device == NULL)
1252 1253 1254
			break;

		device->node_id = node->node_id;
1255
		smp_wmb();  /* update node_id before generation */
1256
		device->generation = card->generation;
1257 1258
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1259
			fw_schedule_device_work(device, 0);
1260
		}
1261 1262 1263 1264 1265 1266 1267
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

1268 1269
		/*
		 * Destroy the device associated with the node.  There
1270 1271 1272 1273 1274 1275 1276 1277
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
1278 1279
		 * to create the device.
		 */
1280
		device = node->data;
1281
		if (atomic_xchg(&device->state,
1282
				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1283
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1284
			fw_schedule_device_work(device,
1285
				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1286 1287 1288 1289
		}
		break;
	}
}