spi-pxa2xx.c 47.0 KB
Newer Older
1 2
/*
 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3
 * Copyright (C) 2013, Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

16
#include <linux/bitops.h>
17 18 19 20 21
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
22
#include <linux/err.h>
23
#include <linux/interrupt.h>
24
#include <linux/kernel.h>
25
#include <linux/pci.h>
26
#include <linux/platform_device.h>
27
#include <linux/spi/pxa2xx_spi.h>
28 29
#include <linux/spi/spi.h>
#include <linux/delay.h>
30
#include <linux/gpio.h>
31
#include <linux/gpio/consumer.h>
32
#include <linux/slab.h>
33
#include <linux/clk.h>
34
#include <linux/pm_runtime.h>
35
#include <linux/acpi.h>
36

37
#include "spi-pxa2xx.h"
38 39

MODULE_AUTHOR("Stephen Street");
W
Will Newton 已提交
40
MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41
MODULE_LICENSE("GPL");
42
MODULE_ALIAS("platform:pxa2xx-spi");
43

44 45
#define TIMOUT_DFLT		1000

46 47 48 49 50 51 52 53
/*
 * for testing SSCR1 changes that require SSP restart, basically
 * everything except the service and interrupt enables, the pxa270 developer
 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
 * list, but the PXA255 dev man says all bits without really meaning the
 * service and interrupt enables
 */
#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54
				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 56 57 58
				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59

60 61 62 63 64 65
#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
				| QUARK_X1000_SSCR1_EFWR	\
				| QUARK_X1000_SSCR1_RFT		\
				| QUARK_X1000_SSCR1_TFT		\
				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)

66 67 68 69 70 71 72
#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)

73 74 75
#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
76 77
#define LPSS_CAPS_CS_EN_SHIFT			9
#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
78

79 80 81 82 83 84 85
struct lpss_config {
	/* LPSS offset from drv_data->ioaddr */
	unsigned offset;
	/* Register offsets from drv_data->lpss_base or -1 */
	int reg_general;
	int reg_ssp;
	int reg_cs_ctrl;
86
	int reg_capabilities;
87 88 89 90
	/* FIFO thresholds */
	u32 rx_threshold;
	u32 tx_threshold_lo;
	u32 tx_threshold_hi;
91 92 93
	/* Chip select control */
	unsigned cs_sel_shift;
	unsigned cs_sel_mask;
94
	unsigned cs_num;
95 96 97 98 99 100 101 102 103
};

/* Keep these sorted with enum pxa_ssp_type */
static const struct lpss_config lpss_platforms[] = {
	{	/* LPSS_LPT_SSP */
		.offset = 0x800,
		.reg_general = 0x08,
		.reg_ssp = 0x0c,
		.reg_cs_ctrl = 0x18,
104
		.reg_capabilities = -1,
105 106 107 108 109 110 111 112 113
		.rx_threshold = 64,
		.tx_threshold_lo = 160,
		.tx_threshold_hi = 224,
	},
	{	/* LPSS_BYT_SSP */
		.offset = 0x400,
		.reg_general = 0x08,
		.reg_ssp = 0x0c,
		.reg_cs_ctrl = 0x18,
114
		.reg_capabilities = -1,
115 116 117 118
		.rx_threshold = 64,
		.tx_threshold_lo = 160,
		.tx_threshold_hi = 224,
	},
119 120 121 122 123 124 125 126 127 128 129 130 131
	{	/* LPSS_BSW_SSP */
		.offset = 0x400,
		.reg_general = 0x08,
		.reg_ssp = 0x0c,
		.reg_cs_ctrl = 0x18,
		.reg_capabilities = -1,
		.rx_threshold = 64,
		.tx_threshold_lo = 160,
		.tx_threshold_hi = 224,
		.cs_sel_shift = 2,
		.cs_sel_mask = 1 << 2,
		.cs_num = 2,
	},
132 133 134 135 136
	{	/* LPSS_SPT_SSP */
		.offset = 0x200,
		.reg_general = -1,
		.reg_ssp = 0x20,
		.reg_cs_ctrl = 0x24,
137
		.reg_capabilities = -1,
138 139 140 141
		.rx_threshold = 1,
		.tx_threshold_lo = 32,
		.tx_threshold_hi = 56,
	},
142 143 144 145 146 147 148 149 150
	{	/* LPSS_BXT_SSP */
		.offset = 0x200,
		.reg_general = -1,
		.reg_ssp = 0x20,
		.reg_cs_ctrl = 0x24,
		.reg_capabilities = 0xfc,
		.rx_threshold = 1,
		.tx_threshold_lo = 16,
		.tx_threshold_hi = 48,
151 152
		.cs_sel_shift = 8,
		.cs_sel_mask = 3 << 8,
153
	},
154 155 156 157 158 159 160 161 162 163 164 165
	{	/* LPSS_CNL_SSP */
		.offset = 0x200,
		.reg_general = -1,
		.reg_ssp = 0x20,
		.reg_cs_ctrl = 0x24,
		.reg_capabilities = 0xfc,
		.rx_threshold = 1,
		.tx_threshold_lo = 32,
		.tx_threshold_hi = 56,
		.cs_sel_shift = 8,
		.cs_sel_mask = 3 << 8,
	},
166 167 168 169 170 171 172 173
};

static inline const struct lpss_config
*lpss_get_config(const struct driver_data *drv_data)
{
	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
}

174 175
static bool is_lpss_ssp(const struct driver_data *drv_data)
{
176 177 178
	switch (drv_data->ssp_type) {
	case LPSS_LPT_SSP:
	case LPSS_BYT_SSP:
179
	case LPSS_BSW_SSP:
180
	case LPSS_SPT_SSP:
181
	case LPSS_BXT_SSP:
182
	case LPSS_CNL_SSP:
183 184 185 186
		return true;
	default:
		return false;
	}
187 188
}

189 190 191 192 193
static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
{
	return drv_data->ssp_type == QUARK_X1000_SSP;
}

194 195 196
static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
{
	switch (drv_data->ssp_type) {
197 198
	case QUARK_X1000_SSP:
		return QUARK_X1000_SSCR1_CHANGE_MASK;
199 200
	case CE4100_SSP:
		return CE4100_SSCR1_CHANGE_MASK;
201 202 203 204 205 206 207 208 209
	default:
		return SSCR1_CHANGE_MASK;
	}
}

static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
{
	switch (drv_data->ssp_type) {
210 211
	case QUARK_X1000_SSP:
		return RX_THRESH_QUARK_X1000_DFLT;
212 213
	case CE4100_SSP:
		return RX_THRESH_CE4100_DFLT;
214 215 216 217 218 219 220 221 222 223
	default:
		return RX_THRESH_DFLT;
	}
}

static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
{
	u32 mask;

	switch (drv_data->ssp_type) {
224 225 226
	case QUARK_X1000_SSP:
		mask = QUARK_X1000_SSSR_TFL_MASK;
		break;
227 228 229
	case CE4100_SSP:
		mask = CE4100_SSSR_TFL_MASK;
		break;
230 231 232 233 234
	default:
		mask = SSSR_TFL_MASK;
		break;
	}

235
	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
236 237 238 239 240 241 242 243
}

static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
				     u32 *sccr1_reg)
{
	u32 mask;

	switch (drv_data->ssp_type) {
244 245 246
	case QUARK_X1000_SSP:
		mask = QUARK_X1000_SSCR1_RFT;
		break;
247 248 249
	case CE4100_SSP:
		mask = CE4100_SSCR1_RFT;
		break;
250 251 252 253 254 255 256 257 258 259 260
	default:
		mask = SSCR1_RFT;
		break;
	}
	*sccr1_reg &= ~mask;
}

static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
				   u32 *sccr1_reg, u32 threshold)
{
	switch (drv_data->ssp_type) {
261 262 263
	case QUARK_X1000_SSP:
		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
		break;
264 265 266
	case CE4100_SSP:
		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
		break;
267 268 269 270 271 272 273 274 275 276
	default:
		*sccr1_reg |= SSCR1_RxTresh(threshold);
		break;
	}
}

static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
				  u32 clk_div, u8 bits)
{
	switch (drv_data->ssp_type) {
277 278 279 280 281
	case QUARK_X1000_SSP:
		return clk_div
			| QUARK_X1000_SSCR0_Motorola
			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
			| SSCR0_SSE;
282 283 284 285 286 287 288 289 290
	default:
		return clk_div
			| SSCR0_Motorola
			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
			| SSCR0_SSE
			| (bits > 16 ? SSCR0_EDSS : 0);
	}
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * Read and write LPSS SSP private registers. Caller must first check that
 * is_lpss_ssp() returns true before these can be called.
 */
static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
{
	WARN_ON(!drv_data->lpss_base);
	return readl(drv_data->lpss_base + offset);
}

static void __lpss_ssp_write_priv(struct driver_data *drv_data,
				  unsigned offset, u32 value)
{
	WARN_ON(!drv_data->lpss_base);
	writel(value, drv_data->lpss_base + offset);
}

/*
 * lpss_ssp_setup - perform LPSS SSP specific setup
 * @drv_data: pointer to the driver private data
 *
 * Perform LPSS SSP specific setup. This function must be called first if
 * one is going to use LPSS SSP private registers.
 */
static void lpss_ssp_setup(struct driver_data *drv_data)
{
317 318
	const struct lpss_config *config;
	u32 value;
319

320 321
	config = lpss_get_config(drv_data);
	drv_data->lpss_base = drv_data->ioaddr + config->offset;
322 323

	/* Enable software chip select control */
324
	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
325 326
	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
327
	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
328 329

	/* Enable multiblock DMA transfers */
330
	if (drv_data->master_info->enable_dma) {
331
		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
332

333 334 335
		if (config->reg_general >= 0) {
			value = __lpss_ssp_read_priv(drv_data,
						     config->reg_general);
336
			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
337 338 339
			__lpss_ssp_write_priv(drv_data,
					      config->reg_general, value);
		}
340
	}
341 342
}

343
static void lpss_ssp_select_cs(struct spi_device *spi,
344 345
			       const struct lpss_config *config)
{
346 347
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
348 349 350 351 352 353 354
	u32 value, cs;

	if (!config->cs_sel_mask)
		return;

	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);

355
	cs = spi->chip_select;
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	cs <<= config->cs_sel_shift;
	if (cs != (value & config->cs_sel_mask)) {
		/*
		 * When switching another chip select output active the
		 * output must be selected first and wait 2 ssp_clk cycles
		 * before changing state to active. Otherwise a short
		 * glitch will occur on the previous chip select since
		 * output select is latched but state control is not.
		 */
		value &= ~config->cs_sel_mask;
		value |= cs;
		__lpss_ssp_write_priv(drv_data,
				      config->reg_cs_ctrl, value);
		ndelay(1000000000 /
		       (drv_data->master->max_speed_hz / 2));
	}
}

374
static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
375
{
376 377
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
378
	const struct lpss_config *config;
379
	u32 value;
380

381 382
	config = lpss_get_config(drv_data);

383
	if (enable)
384
		lpss_ssp_select_cs(spi, config);
385

386
	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
387
	if (enable)
388
		value &= ~LPSS_CS_CONTROL_CS_HIGH;
389
	else
390
		value |= LPSS_CS_CONTROL_CS_HIGH;
391
	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
392 393
}

394
static void cs_assert(struct spi_device *spi)
395
{
396 397 398
	struct chip_data *chip = spi_get_ctldata(spi);
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
399

400
	if (drv_data->ssp_type == CE4100_SSP) {
401
		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
402 403 404
		return;
	}

405 406 407 408 409
	if (chip->cs_control) {
		chip->cs_control(PXA2XX_CS_ASSERT);
		return;
	}

410 411
	if (chip->gpiod_cs) {
		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
412 413 414
		return;
	}

415
	if (is_lpss_ssp(drv_data))
416
		lpss_ssp_cs_control(spi, true);
417 418
}

419
static void cs_deassert(struct spi_device *spi)
420
{
421 422 423
	struct chip_data *chip = spi_get_ctldata(spi);
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
424
	unsigned long timeout;
425

426 427 428
	if (drv_data->ssp_type == CE4100_SSP)
		return;

429 430 431 432 433 434
	/* Wait until SSP becomes idle before deasserting the CS */
	timeout = jiffies + msecs_to_jiffies(10);
	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
	       !time_after(jiffies, timeout))
		cpu_relax();

435
	if (chip->cs_control) {
436
		chip->cs_control(PXA2XX_CS_DEASSERT);
437 438 439
		return;
	}

440 441
	if (chip->gpiod_cs) {
		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
442 443 444
		return;
	}

445
	if (is_lpss_ssp(drv_data))
446 447 448 449 450 451 452 453 454
		lpss_ssp_cs_control(spi, false);
}

static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
{
	if (level)
		cs_deassert(spi);
	else
		cs_assert(spi);
455 456
}

457
int pxa2xx_spi_flush(struct driver_data *drv_data)
458 459 460 461
{
	unsigned long limit = loops_per_jiffy << 1;

	do {
462 463 464
		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
			pxa2xx_spi_read(drv_data, SSDR);
	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
465
	write_SSSR_CS(drv_data, SSSR_ROR);
466 467 468 469

	return limit;
}

470
static int null_writer(struct driver_data *drv_data)
471
{
472
	u8 n_bytes = drv_data->n_bytes;
473

474
	if (pxa2xx_spi_txfifo_full(drv_data)
475 476 477
		|| (drv_data->tx == drv_data->tx_end))
		return 0;

478
	pxa2xx_spi_write(drv_data, SSDR, 0);
479 480 481
	drv_data->tx += n_bytes;

	return 1;
482 483
}

484
static int null_reader(struct driver_data *drv_data)
485
{
486
	u8 n_bytes = drv_data->n_bytes;
487

488 489 490
	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
	       && (drv_data->rx < drv_data->rx_end)) {
		pxa2xx_spi_read(drv_data, SSDR);
491 492
		drv_data->rx += n_bytes;
	}
493 494

	return drv_data->rx == drv_data->rx_end;
495 496
}

497
static int u8_writer(struct driver_data *drv_data)
498
{
499
	if (pxa2xx_spi_txfifo_full(drv_data)
500 501 502
		|| (drv_data->tx == drv_data->tx_end))
		return 0;

503
	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
504 505 506
	++drv_data->tx;

	return 1;
507 508
}

509
static int u8_reader(struct driver_data *drv_data)
510
{
511 512 513
	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
	       && (drv_data->rx < drv_data->rx_end)) {
		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
514 515
		++drv_data->rx;
	}
516 517

	return drv_data->rx == drv_data->rx_end;
518 519
}

520
static int u16_writer(struct driver_data *drv_data)
521
{
522
	if (pxa2xx_spi_txfifo_full(drv_data)
523 524 525
		|| (drv_data->tx == drv_data->tx_end))
		return 0;

526
	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
527 528 529
	drv_data->tx += 2;

	return 1;
530 531
}

532
static int u16_reader(struct driver_data *drv_data)
533
{
534 535 536
	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
	       && (drv_data->rx < drv_data->rx_end)) {
		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
537 538
		drv_data->rx += 2;
	}
539 540

	return drv_data->rx == drv_data->rx_end;
541
}
542 543

static int u32_writer(struct driver_data *drv_data)
544
{
545
	if (pxa2xx_spi_txfifo_full(drv_data)
546 547 548
		|| (drv_data->tx == drv_data->tx_end))
		return 0;

549
	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
550 551 552
	drv_data->tx += 4;

	return 1;
553 554
}

555
static int u32_reader(struct driver_data *drv_data)
556
{
557 558 559
	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
	       && (drv_data->rx < drv_data->rx_end)) {
		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
560 561
		drv_data->rx += 4;
	}
562 563

	return drv_data->rx == drv_data->rx_end;
564 565
}

566 567
static void reset_sccr1(struct driver_data *drv_data)
{
568 569
	struct chip_data *chip =
		spi_get_ctldata(drv_data->master->cur_msg->spi);
570 571
	u32 sccr1_reg;

572
	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
573 574 575 576
	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
		break;
577 578 579
	case CE4100_SSP:
		sccr1_reg &= ~CE4100_SSCR1_RFT;
		break;
580 581 582 583
	default:
		sccr1_reg &= ~SSCR1_RFT;
		break;
	}
584
	sccr1_reg |= chip->threshold;
585
	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
586 587
}

588
static void int_error_stop(struct driver_data *drv_data, const char* msg)
589
{
590
	/* Stop and reset SSP */
591
	write_SSSR_CS(drv_data, drv_data->clear_sr);
592
	reset_sccr1(drv_data);
593
	if (!pxa25x_ssp_comp(drv_data))
594
		pxa2xx_spi_write(drv_data, SSTO, 0);
595
	pxa2xx_spi_flush(drv_data);
596 597
	pxa2xx_spi_write(drv_data, SSCR0,
			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
598

599
	dev_err(&drv_data->pdev->dev, "%s\n", msg);
600

601 602
	drv_data->master->cur_msg->status = -EIO;
	spi_finalize_current_transfer(drv_data->master);
603
}
S
Stephen Street 已提交
604

605 606
static void int_transfer_complete(struct driver_data *drv_data)
{
607
	/* Clear and disable interrupts */
608
	write_SSSR_CS(drv_data, drv_data->clear_sr);
609
	reset_sccr1(drv_data);
610
	if (!pxa25x_ssp_comp(drv_data))
611
		pxa2xx_spi_write(drv_data, SSTO, 0);
612

613
	spi_finalize_current_transfer(drv_data->master);
614
}
615

616 617
static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
{
618 619
	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
620

621
	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
622

623 624 625 626
	if (irq_status & SSSR_ROR) {
		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
		return IRQ_HANDLED;
	}
627

628
	if (irq_status & SSSR_TINT) {
629
		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
630 631 632 633 634
		if (drv_data->read(drv_data)) {
			int_transfer_complete(drv_data);
			return IRQ_HANDLED;
		}
	}
635

636 637 638 639 640 641 642
	/* Drain rx fifo, Fill tx fifo and prevent overruns */
	do {
		if (drv_data->read(drv_data)) {
			int_transfer_complete(drv_data);
			return IRQ_HANDLED;
		}
	} while (drv_data->write(drv_data));
643

644 645 646 647
	if (drv_data->read(drv_data)) {
		int_transfer_complete(drv_data);
		return IRQ_HANDLED;
	}
648

649
	if (drv_data->tx == drv_data->tx_end) {
650 651 652
		u32 bytes_left;
		u32 sccr1_reg;

653
		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
654 655 656 657
		sccr1_reg &= ~SSCR1_TIE;

		/*
		 * PXA25x_SSP has no timeout, set up rx threshould for the
L
Lucas De Marchi 已提交
658
		 * remaining RX bytes.
659
		 */
660
		if (pxa25x_ssp_comp(drv_data)) {
661
			u32 rx_thre;
662

663
			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
664 665 666 667 668 669 670

			bytes_left = drv_data->rx_end - drv_data->rx;
			switch (drv_data->n_bytes) {
			case 4:
				bytes_left >>= 1;
			case 2:
				bytes_left >>= 1;
671
			}
672

673 674 675
			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
			if (rx_thre > bytes_left)
				rx_thre = bytes_left;
676

677
			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
678
		}
679
		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
680 681
	}

S
Stephen Street 已提交
682 683
	/* We did something */
	return IRQ_HANDLED;
684 685
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699
static void handle_bad_msg(struct driver_data *drv_data)
{
	pxa2xx_spi_write(drv_data, SSCR0,
			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
	pxa2xx_spi_write(drv_data, SSCR1,
			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
	if (!pxa25x_ssp_comp(drv_data))
		pxa2xx_spi_write(drv_data, SSTO, 0);
	write_SSSR_CS(drv_data, drv_data->clear_sr);

	dev_err(&drv_data->pdev->dev,
		"bad message state in interrupt handler\n");
}

700
static irqreturn_t ssp_int(int irq, void *dev_id)
701
{
702
	struct driver_data *drv_data = dev_id;
703
	u32 sccr1_reg;
704 705 706
	u32 mask = drv_data->mask_sr;
	u32 status;

707 708 709 710 711 712 713 714 715
	/*
	 * The IRQ might be shared with other peripherals so we must first
	 * check that are we RPM suspended or not. If we are we assume that
	 * the IRQ was not for us (we shouldn't be RPM suspended when the
	 * interrupt is enabled).
	 */
	if (pm_runtime_suspended(&drv_data->pdev->dev))
		return IRQ_NONE;

716 717 718 719 720 721
	/*
	 * If the device is not yet in RPM suspended state and we get an
	 * interrupt that is meant for another device, check if status bits
	 * are all set to one. That means that the device is already
	 * powered off.
	 */
722
	status = pxa2xx_spi_read(drv_data, SSSR);
723 724 725
	if (status == ~0)
		return IRQ_NONE;

726
	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
727 728 729 730 731

	/* Ignore possible writes if we don't need to write */
	if (!(sccr1_reg & SSCR1_TIE))
		mask &= ~SSSR_TFS;

732 733 734 735
	/* Ignore RX timeout interrupt if it is disabled */
	if (!(sccr1_reg & SSCR1_TINTE))
		mask &= ~SSSR_TINT;

736 737
	if (!(status & mask))
		return IRQ_NONE;
738

739 740
	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
S
Stephen Street 已提交
741

742
	if (!drv_data->master->cur_msg) {
743
		handle_bad_msg(drv_data);
744 745 746 747 748 749 750
		/* Never fail */
		return IRQ_HANDLED;
	}

	return drv_data->transfer_handler(drv_data);
}

751
/*
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 * input frequency by fractions of 2^24. It also has a divider by 5.
 *
 * There are formulas to get baud rate value for given input frequency and
 * divider parameters, such as DDS_CLK_RATE and SCR:
 *
 * Fsys = 200MHz
 *
 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 *
 * DDS_CLK_RATE either 2^n or 2^n / 5.
 * SCR is in range 0 .. 255
 *
 * Divisor = 5^i * 2^j * 2 * k
 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 *       j = [0, 23]     j = 0 iff i = 1
 *       k = [1, 256]
 * Special case: j = 0, i = 1: Divisor = 2 / 5
 *
 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 * are:
 *	Case 1:		2^n, n = [0, 23]
 *	Case 2:		2^24 * 2 / 5 (0x666666)
 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 *
 * In all cases the lowest possible value is better.
 *
 * The function calculates parameters for all cases and chooses the one closest
 * to the asked baud rate.
782
 */
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
{
	unsigned long xtal = 200000000;
	unsigned long fref = xtal / 2;		/* mandatory division by 2,
						   see (2) */
						/* case 3 */
	unsigned long fref1 = fref / 2;		/* case 1 */
	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
	unsigned long scale;
	unsigned long q, q1, q2;
	long r, r1, r2;
	u32 mul;

	/* Case 1 */

	/* Set initial value for DDS_CLK_RATE */
	mul = (1 << 24) >> 1;

	/* Calculate initial quot */
802
	q1 = DIV_ROUND_UP(fref1, rate);
803 804 805 806 807 808 809 810

	/* Scale q1 if it's too big */
	if (q1 > 256) {
		/* Scale q1 to range [1, 512] */
		scale = fls_long(q1 - 1);
		if (scale > 9) {
			q1 >>= scale - 9;
			mul >>= scale - 9;
811
		}
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

		/* Round the result if we have a remainder */
		q1 += q1 & 1;
	}

	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
	scale = __ffs(q1);
	q1 >>= scale;
	mul >>= scale;

	/* Get the remainder */
	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);

	/* Case 2 */

827
	q2 = DIV_ROUND_UP(fref2, rate);
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	r2 = abs(fref2 / q2 - rate);

	/*
	 * Choose the best between two: less remainder we have the better. We
	 * can't go case 2 if q2 is greater than 256 since SCR register can
	 * hold only values 0 .. 255.
	 */
	if (r2 >= r1 || q2 > 256) {
		/* case 1 is better */
		r = r1;
		q = q1;
	} else {
		/* case 2 is better */
		r = r2;
		q = q2;
		mul = (1 << 24) * 2 / 5;
844 845
	}

846
	/* Check case 3 only if the divisor is big enough */
847 848 849 850 851
	if (fref / rate >= 80) {
		u64 fssp;
		u32 m;

		/* Calculate initial quot */
852
		q1 = DIV_ROUND_UP(fref, rate);
853 854 855 856 857 858 859 860 861 862 863 864 865 866
		m = (1 << 24) / q1;

		/* Get the remainder */
		fssp = (u64)fref * m;
		do_div(fssp, 1 << 24);
		r1 = abs(fssp - rate);

		/* Choose this one if it suits better */
		if (r1 < r) {
			/* case 3 is better */
			q = 1;
			mul = m;
		}
	}
867

868 869
	*dds = mul;
	return q - 1;
870 871
}

872
static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
873
{
874
	unsigned long ssp_clk = drv_data->master->max_speed_hz;
875 876 877
	const struct ssp_device *ssp = drv_data->ssp;

	rate = min_t(int, ssp_clk, rate);
878

879
	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
880
		return (ssp_clk / (2 * rate) - 1) & 0xff;
881
	else
882
		return (ssp_clk / rate - 1) & 0xfff;
883 884
}

885
static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
886
					   int rate)
887
{
888 889
	struct chip_data *chip =
		spi_get_ctldata(drv_data->master->cur_msg->spi);
890
	unsigned int clk_div;
891 892 893

	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
894
		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
895
		break;
896
	default:
897
		clk_div = ssp_get_clk_div(drv_data, rate);
898
		break;
899
	}
900
	return clk_div << 8;
901 902
}

903
static bool pxa2xx_spi_can_dma(struct spi_controller *master,
904 905 906 907 908 909 910 911 912 913
			       struct spi_device *spi,
			       struct spi_transfer *xfer)
{
	struct chip_data *chip = spi_get_ctldata(spi);

	return chip->enable_dma &&
	       xfer->len <= MAX_DMA_LEN &&
	       xfer->len >= chip->dma_burst_size;
}

914 915 916
int pxa2xx_spi_transfer_one(struct spi_controller *master,
			    struct spi_device *spi,
			    struct spi_transfer *transfer)
917
{
918
	struct driver_data *drv_data = spi_controller_get_devdata(master);
919
	struct spi_message *message = master->cur_msg;
920 921 922 923
	struct chip_data *chip = spi_get_ctldata(message->spi);
	u32 dma_thresh = chip->dma_threshold;
	u32 dma_burst = chip->dma_burst_size;
	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
924 925 926
	u32 clk_div;
	u8 bits;
	u32 speed;
927
	u32 cr0;
928
	u32 cr1;
929
	int err;
930
	int dma_mapped;
931

932
	/* Check if we can DMA this transfer */
933
	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
N
Ned Forrester 已提交
934 935 936 937 938

		/* reject already-mapped transfers; PIO won't always work */
		if (message->is_dma_mapped
				|| transfer->rx_dma || transfer->tx_dma) {
			dev_err(&drv_data->pdev->dev,
939
				"Mapped transfer length of %u is greater than %d\n",
N
Ned Forrester 已提交
940
				transfer->len, MAX_DMA_LEN);
941
			return -EINVAL;
N
Ned Forrester 已提交
942 943 944
		}

		/* warn ... we force this to PIO mode */
945
		dev_warn_ratelimited(&message->spi->dev,
946
				     "DMA disabled for transfer length %ld greater than %d\n",
947
				     (long)transfer->len, MAX_DMA_LEN);
948 949
	}

950
	/* Setup the transfer state based on the type of transfer */
951
	if (pxa2xx_spi_flush(drv_data) == 0) {
952
		dev_err(&drv_data->pdev->dev, "Flush failed\n");
953
		return -EIO;
954
	}
955
	drv_data->n_bytes = chip->n_bytes;
956 957 958 959 960 961
	drv_data->tx = (void *)transfer->tx_buf;
	drv_data->tx_end = drv_data->tx + transfer->len;
	drv_data->rx = transfer->rx_buf;
	drv_data->rx_end = drv_data->rx + transfer->len;
	drv_data->write = drv_data->tx ? chip->write : null_writer;
	drv_data->read = drv_data->rx ? chip->read : null_reader;
962 963

	/* Change speed and bit per word on a per transfer */
964 965 966
	bits = transfer->bits_per_word;
	speed = transfer->speed_hz;

967
	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

	if (bits <= 8) {
		drv_data->n_bytes = 1;
		drv_data->read = drv_data->read != null_reader ?
					u8_reader : null_reader;
		drv_data->write = drv_data->write != null_writer ?
					u8_writer : null_writer;
	} else if (bits <= 16) {
		drv_data->n_bytes = 2;
		drv_data->read = drv_data->read != null_reader ?
					u16_reader : null_reader;
		drv_data->write = drv_data->write != null_writer ?
					u16_writer : null_writer;
	} else if (bits <= 32) {
		drv_data->n_bytes = 4;
		drv_data->read = drv_data->read != null_reader ?
					u32_reader : null_reader;
		drv_data->write = drv_data->write != null_writer ?
					u32_writer : null_writer;
987
	}
988 989 990 991 992 993 994 995 996 997
	/*
	 * if bits/word is changed in dma mode, then must check the
	 * thresholds and burst also
	 */
	if (chip->enable_dma) {
		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
						message->spi,
						bits, &dma_burst,
						&dma_thresh))
			dev_warn_ratelimited(&message->spi->dev,
998
					     "DMA burst size reduced to match bits_per_word\n");
999 1000
	}

1001 1002 1003 1004
	dma_mapped = master->can_dma &&
		     master->can_dma(master, message->spi, transfer) &&
		     master->cur_msg_mapped;
	if (dma_mapped) {
1005 1006

		/* Ensure we have the correct interrupt handler */
1007 1008
		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;

1009 1010 1011
		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
		if (err)
			return err;
1012

1013 1014
		/* Clear status and start DMA engine */
		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1015
		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1016 1017

		pxa2xx_spi_dma_start(drv_data);
1018 1019 1020 1021
	} else {
		/* Ensure we have the correct interrupt handler	*/
		drv_data->transfer_handler = interrupt_transfer;

1022 1023
		/* Clear status  */
		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1024
		write_SSSR_CS(drv_data, drv_data->clear_sr);
1025 1026
	}

1027 1028 1029 1030
	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
	if (!pxa25x_ssp_comp(drv_data))
		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1031
			master->max_speed_hz
1032
				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1033
			dma_mapped ? "DMA" : "PIO");
1034 1035
	else
		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1036
			master->max_speed_hz / 2
1037
				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1038
			dma_mapped ? "DMA" : "PIO");
1039

1040
	if (is_lpss_ssp(drv_data)) {
1041 1042 1043 1044 1045 1046 1047 1048
		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
		    != chip->lpss_rx_threshold)
			pxa2xx_spi_write(drv_data, SSIRF,
					 chip->lpss_rx_threshold);
		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
		    != chip->lpss_tx_threshold)
			pxa2xx_spi_write(drv_data, SSITF,
					 chip->lpss_tx_threshold);
1049 1050
	}

1051
	if (is_quark_x1000_ssp(drv_data) &&
1052 1053
	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1054

1055
	/* see if we need to reload the config registers */
1056 1057 1058
	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
	    != (cr1 & change_mask)) {
1059
		/* stop the SSP, and update the other bits */
1060
		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1061
		if (!pxa25x_ssp_comp(drv_data))
1062
			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1063
		/* first set CR1 without interrupt and service enables */
1064
		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1065
		/* restart the SSP */
1066
		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1067

1068
	} else {
1069
		if (!pxa25x_ssp_comp(drv_data))
1070
			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1071
	}
1072

1073 1074 1075 1076
	/*
	 * Release the data by enabling service requests and interrupts,
	 * without changing any mode bits
	 */
1077
	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1078 1079

	return 1;
1080 1081
}

1082 1083
static void pxa2xx_spi_handle_err(struct spi_controller *master,
				 struct spi_message *msg)
1084
{
1085
	struct driver_data *drv_data = spi_controller_get_devdata(master);
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	/* Disable the SSP */
	pxa2xx_spi_write(drv_data, SSCR0,
			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
	/* Clear and disable interrupts and service requests */
	write_SSSR_CS(drv_data, drv_data->clear_sr);
	pxa2xx_spi_write(drv_data, SSCR1,
			 pxa2xx_spi_read(drv_data, SSCR1)
			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
	if (!pxa25x_ssp_comp(drv_data))
		pxa2xx_spi_write(drv_data, SSTO, 0);
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106
	/*
	 * Stop the DMA if running. Note DMA callback handler may have unset
	 * the dma_running already, which is fine as stopping is not needed
	 * then but we shouldn't rely this flag for anything else than
	 * stopping. For instance to differentiate between PIO and DMA
	 * transfers.
	 */
	if (atomic_read(&drv_data->dma_running))
		pxa2xx_spi_dma_stop(drv_data);
1107 1108
}

1109
static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1110
{
1111
	struct driver_data *drv_data = spi_controller_get_devdata(master);
1112 1113

	/* Disable the SSP now */
1114 1115
	pxa2xx_spi_write(drv_data, SSCR0,
			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1116 1117 1118 1119

	return 0;
}

1120 1121 1122
static int setup_cs(struct spi_device *spi, struct chip_data *chip,
		    struct pxa2xx_spi_chip *chip_info)
{
1123 1124
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
1125
	struct gpio_desc *gpiod;
1126 1127
	int err = 0;

1128 1129 1130
	if (chip == NULL)
		return 0;

1131 1132 1133
	if (drv_data->cs_gpiods) {
		gpiod = drv_data->cs_gpiods[spi->chip_select];
		if (gpiod) {
1134
			chip->gpiod_cs = gpiod;
1135 1136
			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1137 1138 1139 1140 1141 1142
		}

		return 0;
	}

	if (chip_info == NULL)
1143 1144 1145 1146 1147
		return 0;

	/* NOTE: setup() can be called multiple times, possibly with
	 * different chip_info, release previously requested GPIO
	 */
1148
	if (chip->gpiod_cs) {
1149
		gpiod_put(chip->gpiod_cs);
1150 1151
		chip->gpiod_cs = NULL;
	}
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	/* If (*cs_control) is provided, ignore GPIO chip select */
	if (chip_info->cs_control) {
		chip->cs_control = chip_info->cs_control;
		return 0;
	}

	if (gpio_is_valid(chip_info->gpio_cs)) {
		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
		if (err) {
1162 1163
			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
				chip_info->gpio_cs);
1164 1165 1166
			return err;
		}

1167 1168
		gpiod = gpio_to_desc(chip_info->gpio_cs);
		chip->gpiod_cs = gpiod;
1169 1170
		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;

1171
		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1172 1173 1174 1175 1176
	}

	return err;
}

1177 1178
static int setup(struct spi_device *spi)
{
1179
	struct pxa2xx_spi_chip *chip_info;
1180
	struct chip_data *chip;
1181
	const struct lpss_config *config;
1182 1183
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
1184 1185
	uint tx_thres, tx_hi_thres, rx_thres;

1186 1187 1188 1189 1190 1191
	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
		tx_hi_thres = 0;
		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
		break;
1192 1193 1194 1195 1196
	case CE4100_SSP:
		tx_thres = TX_THRESH_CE4100_DFLT;
		tx_hi_thres = 0;
		rx_thres = RX_THRESH_CE4100_DFLT;
		break;
1197 1198
	case LPSS_LPT_SSP:
	case LPSS_BYT_SSP:
1199
	case LPSS_BSW_SSP:
1200
	case LPSS_SPT_SSP:
1201
	case LPSS_BXT_SSP:
1202
	case LPSS_CNL_SSP:
1203 1204 1205 1206
		config = lpss_get_config(drv_data);
		tx_thres = config->tx_threshold_lo;
		tx_hi_thres = config->tx_threshold_hi;
		rx_thres = config->rx_threshold;
1207 1208
		break;
	default:
1209 1210 1211
		tx_thres = TX_THRESH_DFLT;
		tx_hi_thres = 0;
		rx_thres = RX_THRESH_DFLT;
1212
		break;
1213
	}
1214

1215
	/* Only alloc on first setup */
1216
	chip = spi_get_ctldata(spi);
1217
	if (!chip) {
1218
		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1219
		if (!chip)
1220 1221
			return -ENOMEM;

1222 1223
		if (drv_data->ssp_type == CE4100_SSP) {
			if (spi->chip_select > 4) {
1224 1225
				dev_err(&spi->dev,
					"failed setup: cs number must not be > 4.\n");
1226 1227 1228 1229 1230
				kfree(chip);
				return -EINVAL;
			}

			chip->frm = spi->chip_select;
1231
		}
1232
		chip->enable_dma = drv_data->master_info->enable_dma;
1233
		chip->timeout = TIMOUT_DFLT;
1234 1235
	}

1236 1237 1238 1239
	/* protocol drivers may change the chip settings, so...
	 * if chip_info exists, use it */
	chip_info = spi->controller_data;

1240
	/* chip_info isn't always needed */
1241
	chip->cr1 = 0;
1242
	if (chip_info) {
1243 1244 1245 1246
		if (chip_info->timeout)
			chip->timeout = chip_info->timeout;
		if (chip_info->tx_threshold)
			tx_thres = chip_info->tx_threshold;
1247 1248
		if (chip_info->tx_hi_threshold)
			tx_hi_thres = chip_info->tx_hi_threshold;
1249 1250
		if (chip_info->rx_threshold)
			rx_thres = chip_info->rx_threshold;
1251 1252 1253 1254 1255
		chip->dma_threshold = 0;
		if (chip_info->enable_loopback)
			chip->cr1 = SSCR1_LBM;
	}

1256 1257 1258 1259
	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
				| SSITF_TxHiThresh(tx_hi_thres);

1260 1261 1262 1263 1264
	/* set dma burst and threshold outside of chip_info path so that if
	 * chip_info goes away after setting chip->enable_dma, the
	 * burst and threshold can still respond to changes in bits_per_word */
	if (chip->enable_dma) {
		/* set up legal burst and threshold for dma */
1265 1266
		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
						spi->bits_per_word,
1267 1268
						&chip->dma_burst_size,
						&chip->dma_threshold)) {
1269 1270
			dev_warn(&spi->dev,
				 "in setup: DMA burst size reduced to match bits_per_word\n");
1271 1272 1273
		}
	}

1274 1275 1276 1277 1278 1279 1280
	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
				   & QUARK_X1000_SSCR1_RFT)
				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
				   & QUARK_X1000_SSCR1_TFT);
		break;
1281 1282 1283 1284
	case CE4100_SSP:
		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
		break;
1285 1286 1287 1288 1289 1290
	default:
		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
		break;
	}

1291 1292 1293
	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1294

1295 1296 1297
	if (spi->mode & SPI_LOOP)
		chip->cr1 |= SSCR1_LBM;

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	if (spi->bits_per_word <= 8) {
		chip->n_bytes = 1;
		chip->read = u8_reader;
		chip->write = u8_writer;
	} else if (spi->bits_per_word <= 16) {
		chip->n_bytes = 2;
		chip->read = u16_reader;
		chip->write = u16_writer;
	} else if (spi->bits_per_word <= 32) {
		chip->n_bytes = 4;
		chip->read = u32_reader;
		chip->write = u32_writer;
	}

	spi_set_ctldata(spi, chip);

1314 1315 1316
	if (drv_data->ssp_type == CE4100_SSP)
		return 0;

1317
	return setup_cs(spi, chip, chip_info);
1318 1319
}

1320
static void cleanup(struct spi_device *spi)
1321
{
1322
	struct chip_data *chip = spi_get_ctldata(spi);
1323 1324
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
1325

1326 1327 1328
	if (!chip)
		return;

1329
	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1330
	    chip->gpiod_cs)
1331
		gpiod_put(chip->gpiod_cs);
1332

1333 1334 1335
	kfree(chip);
}

1336
#ifdef CONFIG_PCI
1337
#ifdef CONFIG_ACPI
1338

1339
static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1340 1341 1342 1343 1344
	{ "INT33C0", LPSS_LPT_SSP },
	{ "INT33C1", LPSS_LPT_SSP },
	{ "INT3430", LPSS_LPT_SSP },
	{ "INT3431", LPSS_LPT_SSP },
	{ "80860F0E", LPSS_BYT_SSP },
1345
	{ "8086228E", LPSS_BSW_SSP },
1346 1347 1348 1349
	{ },
};
MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
{
	unsigned int devid;
	int port_id = -1;

	if (adev && adev->pnp.unique_id &&
	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
		port_id = devid;
	return port_id;
}
#else /* !CONFIG_ACPI */
static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
{
	return -1;
}
#endif

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * PCI IDs of compound devices that integrate both host controller and private
 * integrated DMA engine. Please note these are not used in module
 * autoloading and probing in this module but matching the LPSS SSP type.
 */
static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
	/* SPT-LP */
	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
	/* SPT-H */
	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1379 1380 1381
	/* KBL-H */
	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1382
	/* BXT A-Step */
1383 1384 1385
	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1386 1387 1388 1389
	/* BXT B-Step */
	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1390 1391 1392 1393
	/* GLK */
	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1394 1395 1396 1397
	/* APL */
	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1398 1399 1400 1401 1402 1403 1404 1405
	/* CNL-LP */
	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
	/* CNL-H */
	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1406
	{ },
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
};

static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
{
	struct device *dev = param;

	if (dev != chan->device->dev->parent)
		return false;

	return true;
}

1419
static struct pxa2xx_spi_master *
1420
pxa2xx_spi_init_pdata(struct platform_device *pdev)
1421 1422 1423 1424 1425
{
	struct pxa2xx_spi_master *pdata;
	struct acpi_device *adev;
	struct ssp_device *ssp;
	struct resource *res;
1426 1427
	const struct acpi_device_id *adev_id = NULL;
	const struct pci_device_id *pcidev_id = NULL;
1428
	int type;
1429

1430
	adev = ACPI_COMPANION(&pdev->dev);
1431

1432 1433 1434
	if (dev_is_pci(pdev->dev.parent))
		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
					 to_pci_dev(pdev->dev.parent));
1435
	else if (adev)
1436 1437
		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
					    &pdev->dev);
1438 1439
	else
		return NULL;
1440 1441 1442 1443 1444

	if (adev_id)
		type = (int)adev_id->driver_data;
	else if (pcidev_id)
		type = (int)pcidev_id->driver_data;
1445 1446 1447
	else
		return NULL;

1448
	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1449
	if (!pdata)
1450 1451 1452 1453 1454 1455 1456 1457 1458
		return NULL;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return NULL;

	ssp = &pdata->ssp;

	ssp->phys_base = res->start;
1459 1460
	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(ssp->mmio_base))
1461
		return NULL;
1462

1463 1464 1465 1466 1467 1468
	if (pcidev_id) {
		pdata->tx_param = pdev->dev.parent;
		pdata->rx_param = pdev->dev.parent;
		pdata->dma_filter = pxa2xx_spi_idma_filter;
	}

1469 1470
	ssp->clk = devm_clk_get(&pdev->dev, NULL);
	ssp->irq = platform_get_irq(pdev, 0);
1471
	ssp->type = type;
1472
	ssp->pdev = pdev;
1473
	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1474 1475

	pdata->num_chipselect = 1;
1476
	pdata->enable_dma = true;
1477 1478 1479 1480

	return pdata;
}

1481
#else /* !CONFIG_PCI */
1482
static inline struct pxa2xx_spi_master *
1483
pxa2xx_spi_init_pdata(struct platform_device *pdev)
1484 1485 1486 1487 1488
{
	return NULL;
}
#endif

1489 1490
static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
				      unsigned int cs)
1491
{
1492
	struct driver_data *drv_data = spi_controller_get_devdata(master);
1493 1494 1495 1496 1497 1498 1499 1500 1501

	if (has_acpi_companion(&drv_data->pdev->dev)) {
		switch (drv_data->ssp_type) {
		/*
		 * For Atoms the ACPI DeviceSelection used by the Windows
		 * driver starts from 1 instead of 0 so translate it here
		 * to match what Linux expects.
		 */
		case LPSS_BYT_SSP:
1502
		case LPSS_BSW_SSP:
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
			return cs - 1;

		default:
			break;
		}
	}

	return cs;
}

1513
static int pxa2xx_spi_probe(struct platform_device *pdev)
1514 1515 1516
{
	struct device *dev = &pdev->dev;
	struct pxa2xx_spi_master *platform_info;
1517
	struct spi_controller *master;
G
Guennadi Liakhovetski 已提交
1518
	struct driver_data *drv_data;
1519
	struct ssp_device *ssp;
1520
	const struct lpss_config *config;
1521
	int status, count;
1522
	u32 tmp;
1523

1524 1525
	platform_info = dev_get_platdata(dev);
	if (!platform_info) {
1526
		platform_info = pxa2xx_spi_init_pdata(pdev);
1527 1528 1529 1530
		if (!platform_info) {
			dev_err(&pdev->dev, "missing platform data\n");
			return -ENODEV;
		}
1531
	}
1532

H
Haojian Zhuang 已提交
1533
	ssp = pxa_ssp_request(pdev->id, pdev->name);
1534 1535 1536 1537 1538
	if (!ssp)
		ssp = &platform_info->ssp;

	if (!ssp->mmio_base) {
		dev_err(&pdev->dev, "failed to get ssp\n");
1539 1540 1541
		return -ENODEV;
	}

1542
	master = spi_alloc_master(dev, sizeof(struct driver_data));
1543
	if (!master) {
G
Guennadi Liakhovetski 已提交
1544
		dev_err(&pdev->dev, "cannot alloc spi_master\n");
H
Haojian Zhuang 已提交
1545
		pxa_ssp_free(ssp);
1546 1547
		return -ENOMEM;
	}
1548
	drv_data = spi_controller_get_devdata(master);
1549 1550 1551
	drv_data->master = master;
	drv_data->master_info = platform_info;
	drv_data->pdev = pdev;
1552
	drv_data->ssp = ssp;
1553

1554
	master->dev.of_node = pdev->dev.of_node;
1555
	/* the spi->mode bits understood by this driver: */
1556
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1557

1558
	master->bus_num = ssp->port_id;
1559
	master->dma_alignment = DMA_ALIGNMENT;
1560 1561
	master->cleanup = cleanup;
	master->setup = setup;
1562 1563 1564
	master->set_cs = pxa2xx_spi_set_cs;
	master->transfer_one = pxa2xx_spi_transfer_one;
	master->handle_err = pxa2xx_spi_handle_err;
1565
	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1566
	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1567
	master->auto_runtime_pm = true;
1568
	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1569

1570
	drv_data->ssp_type = ssp->type;
1571

1572 1573
	drv_data->ioaddr = ssp->mmio_base;
	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1574
	if (pxa25x_ssp_comp(drv_data)) {
1575 1576 1577 1578 1579 1580 1581 1582 1583
		switch (drv_data->ssp_type) {
		case QUARK_X1000_SSP:
			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
			break;
		default:
			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
			break;
		}

1584 1585 1586 1587 1588
		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
		drv_data->dma_cr1 = 0;
		drv_data->clear_sr = SSSR_ROR;
		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
	} else {
1589
		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1590
		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1591
		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1592 1593 1594 1595
		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
	}

1596 1597
	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
			drv_data);
1598
	if (status < 0) {
G
Guennadi Liakhovetski 已提交
1599
		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1600 1601 1602 1603 1604
		goto out_error_master_alloc;
	}

	/* Setup DMA if requested */
	if (platform_info->enable_dma) {
1605 1606
		status = pxa2xx_spi_dma_setup(drv_data);
		if (status) {
1607
			dev_dbg(dev, "no DMA channels available, using PIO\n");
1608
			platform_info->enable_dma = false;
1609 1610
		} else {
			master->can_dma = pxa2xx_spi_can_dma;
1611 1612 1613 1614
		}
	}

	/* Enable SOC clock */
1615 1616
	clk_prepare_enable(ssp->clk);

1617
	master->max_speed_hz = clk_get_rate(ssp->clk);
1618 1619

	/* Load default SSP configuration */
1620
	pxa2xx_spi_write(drv_data, SSCR0, 0);
1621 1622
	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
1623 1624
		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1625
		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1626 1627

		/* using the Motorola SPI protocol and use 8 bit frame */
1628 1629
		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1630
		break;
1631 1632 1633 1634 1635 1636
	case CE4100_SSP:
		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
		pxa2xx_spi_write(drv_data, SSCR1, tmp);
		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
		pxa2xx_spi_write(drv_data, SSCR0, tmp);
A
Andy Shevchenko 已提交
1637
		break;
1638
	default:
1639 1640 1641 1642 1643
		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
		      SSCR1_TxTresh(TX_THRESH_DFLT);
		pxa2xx_spi_write(drv_data, SSCR1, tmp);
		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1644 1645 1646
		break;
	}

1647
	if (!pxa25x_ssp_comp(drv_data))
1648
		pxa2xx_spi_write(drv_data, SSTO, 0);
1649 1650

	if (!is_quark_x1000_ssp(drv_data))
1651
		pxa2xx_spi_write(drv_data, SSPSP, 0);
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661
	if (is_lpss_ssp(drv_data)) {
		lpss_ssp_setup(drv_data);
		config = lpss_get_config(drv_data);
		if (config->reg_capabilities >= 0) {
			tmp = __lpss_ssp_read_priv(drv_data,
						   config->reg_capabilities);
			tmp &= LPSS_CAPS_CS_EN_MASK;
			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
			platform_info->num_chipselect = ffz(tmp);
1662 1663
		} else if (config->cs_num) {
			platform_info->num_chipselect = config->cs_num;
1664 1665 1666 1667
		}
	}
	master->num_chipselect = platform_info->num_chipselect;

1668
	count = gpiod_count(&pdev->dev, "cs");
1669 1670 1671
	if (count > 0) {
		int i;

1672 1673 1674
		master->num_chipselect = max_t(int, count,
			master->num_chipselect);

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
			master->num_chipselect, sizeof(struct gpio_desc *),
			GFP_KERNEL);
		if (!drv_data->cs_gpiods) {
			status = -ENOMEM;
			goto out_error_clock_enabled;
		}

		for (i = 0; i < master->num_chipselect; i++) {
			struct gpio_desc *gpiod;

1686
			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
			if (IS_ERR(gpiod)) {
				/* Means use native chip select */
				if (PTR_ERR(gpiod) == -ENOENT)
					continue;

				status = (int)PTR_ERR(gpiod);
				goto out_error_clock_enabled;
			} else {
				drv_data->cs_gpiods[i] = gpiod;
			}
		}
	}

1700 1701 1702 1703 1704
	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

1705 1706
	/* Register with the SPI framework */
	platform_set_drvdata(pdev, drv_data);
1707
	status = devm_spi_register_controller(&pdev->dev, master);
1708 1709
	if (status != 0) {
		dev_err(&pdev->dev, "problem registering spi master\n");
1710
		goto out_error_clock_enabled;
1711 1712 1713 1714 1715
	}

	return status;

out_error_clock_enabled:
1716 1717
	pm_runtime_put_noidle(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
1718
	clk_disable_unprepare(ssp->clk);
1719
	pxa2xx_spi_dma_release(drv_data);
1720
	free_irq(ssp->irq, drv_data);
1721 1722

out_error_master_alloc:
1723
	spi_controller_put(master);
H
Haojian Zhuang 已提交
1724
	pxa_ssp_free(ssp);
1725 1726 1727 1728 1729 1730
	return status;
}

static int pxa2xx_spi_remove(struct platform_device *pdev)
{
	struct driver_data *drv_data = platform_get_drvdata(pdev);
1731
	struct ssp_device *ssp;
1732 1733 1734

	if (!drv_data)
		return 0;
1735
	ssp = drv_data->ssp;
1736

1737 1738
	pm_runtime_get_sync(&pdev->dev);

1739
	/* Disable the SSP at the peripheral and SOC level */
1740
	pxa2xx_spi_write(drv_data, SSCR0, 0);
1741
	clk_disable_unprepare(ssp->clk);
1742 1743

	/* Release DMA */
1744 1745
	if (drv_data->master_info->enable_dma)
		pxa2xx_spi_dma_release(drv_data);
1746

1747 1748 1749
	pm_runtime_put_noidle(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

1750
	/* Release IRQ */
1751 1752 1753
	free_irq(ssp->irq, drv_data);

	/* Release SSP */
H
Haojian Zhuang 已提交
1754
	pxa_ssp_free(ssp);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

	return 0;
}

static void pxa2xx_spi_shutdown(struct platform_device *pdev)
{
	int status = 0;

	if ((status = pxa2xx_spi_remove(pdev)) != 0)
		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
}

1767
#ifdef CONFIG_PM_SLEEP
1768
static int pxa2xx_spi_suspend(struct device *dev)
1769
{
1770
	struct driver_data *drv_data = dev_get_drvdata(dev);
1771
	struct ssp_device *ssp = drv_data->ssp;
1772
	int status;
1773

1774
	status = spi_controller_suspend(drv_data->master);
1775 1776
	if (status != 0)
		return status;
1777
	pxa2xx_spi_write(drv_data, SSCR0, 0);
1778 1779 1780

	if (!pm_runtime_suspended(dev))
		clk_disable_unprepare(ssp->clk);
1781 1782 1783 1784

	return 0;
}

1785
static int pxa2xx_spi_resume(struct device *dev)
1786
{
1787
	struct driver_data *drv_data = dev_get_drvdata(dev);
1788
	struct ssp_device *ssp = drv_data->ssp;
1789
	int status;
1790 1791

	/* Enable the SSP clock */
1792 1793
	if (!pm_runtime_suspended(dev))
		clk_prepare_enable(ssp->clk);
1794

1795
	/* Restore LPSS private register bits */
1796 1797
	if (is_lpss_ssp(drv_data))
		lpss_ssp_setup(drv_data);
1798

1799
	/* Start the queue running */
1800
	status = spi_controller_resume(drv_data->master);
1801
	if (status != 0) {
1802
		dev_err(dev, "problem starting queue (%d)\n", status);
1803 1804 1805 1806 1807
		return status;
	}

	return 0;
}
1808 1809
#endif

1810
#ifdef CONFIG_PM
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static int pxa2xx_spi_runtime_suspend(struct device *dev)
{
	struct driver_data *drv_data = dev_get_drvdata(dev);

	clk_disable_unprepare(drv_data->ssp->clk);
	return 0;
}

static int pxa2xx_spi_runtime_resume(struct device *dev)
{
	struct driver_data *drv_data = dev_get_drvdata(dev);

	clk_prepare_enable(drv_data->ssp->clk);
	return 0;
}
#endif
1827

1828
static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1829 1830 1831
	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
			   pxa2xx_spi_runtime_resume, NULL)
1832
};
1833 1834 1835

static struct platform_driver driver = {
	.driver = {
1836 1837
		.name	= "pxa2xx-spi",
		.pm	= &pxa2xx_spi_pm_ops,
1838
		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1839
	},
1840
	.probe = pxa2xx_spi_probe,
1841
	.remove = pxa2xx_spi_remove,
1842 1843 1844 1845 1846
	.shutdown = pxa2xx_spi_shutdown,
};

static int __init pxa2xx_spi_init(void)
{
1847
	return platform_driver_register(&driver);
1848
}
A
Antonio Ospite 已提交
1849
subsys_initcall(pxa2xx_spi_init);
1850 1851 1852 1853 1854 1855

static void __exit pxa2xx_spi_exit(void)
{
	platform_driver_unregister(&driver);
}
module_exit(pxa2xx_spi_exit);