edma.c 58.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28
#include <linux/of_dma.h>
29 30 31 32
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
33

34
#include <linux/platform_data/edma.h>
35 36 37 38

#include "dmaengine.h"
#include "virt-dma.h"

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT		0x00
#define PARM_SRC		0x04
#define PARM_A_B_CNT		0x08
#define PARM_DST		0x0c
#define PARM_SRC_DST_BIDX	0x10
#define PARM_LINK_BCNTRLD	0x14
#define PARM_SRC_DST_CIDX	0x18
#define PARM_CCNT		0x1c

#define PARM_SIZE		0x20

/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER			0x00	/* 64 bits */
#define SH_ECR			0x08	/* 64 bits */
#define SH_ESR			0x10	/* 64 bits */
#define SH_CER			0x18	/* 64 bits */
#define SH_EER			0x20	/* 64 bits */
#define SH_EECR			0x28	/* 64 bits */
#define SH_EESR			0x30	/* 64 bits */
#define SH_SER			0x38	/* 64 bits */
#define SH_SECR			0x40	/* 64 bits */
#define SH_IER			0x50	/* 64 bits */
#define SH_IECR			0x58	/* 64 bits */
#define SH_IESR			0x60	/* 64 bits */
#define SH_IPR			0x68	/* 64 bits */
#define SH_ICR			0x70	/* 64 bits */
#define SH_IEVAL		0x78
#define SH_QER			0x80
#define SH_QEER			0x84
#define SH_QEECR		0x88
#define SH_QEESR		0x8c
#define SH_QSER			0x90
#define SH_QSECR		0x94
#define SH_SIZE			0x200

/* Offsets for EDMA CC global registers */
#define EDMA_REV		0x0000
#define EDMA_CCCFG		0x0004
#define EDMA_QCHMAP		0x0200	/* 8 registers */
#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM		0x0260
#define EDMA_QUETCMAP		0x0280
#define EDMA_QUEPRI		0x0284
#define EDMA_EMR		0x0300	/* 64 bits */
#define EDMA_EMCR		0x0308	/* 64 bits */
#define EDMA_QEMR		0x0310
#define EDMA_QEMCR		0x0314
#define EDMA_CCERR		0x0318
#define EDMA_CCERRCLR		0x031c
#define EDMA_EEVAL		0x0320
#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
#define EDMA_QRAE		0x0380	/* 4 registers */
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
#define EDMA_QSTAT		0x0600	/* 2 registers */
#define EDMA_QWMTHRA		0x0620
#define EDMA_QWMTHRB		0x0624
#define EDMA_CCSTAT		0x0640

#define EDMA_M			0x1000	/* global channel registers */
#define EDMA_ECR		0x1008
#define EDMA_ECRH		0x100C
#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
#define EDMA_PARM		0x4000	/* PaRAM entries */

#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))

#define EDMA_DCHMAP		0x0100  /* 64 registers */

/* CCCFG register */
#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST		BIT(24)

115 116 117 118 119 120 121 122
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
123 124 125
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY		 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003

/* PaRAM slots are laid out like this */
struct edmacc_param {
	u32 opt;
	u32 src;
	u32 a_b_cnt;
	u32 dst;
	u32 src_dst_bidx;
	u32 link_bcntrld;
	u32 src_dst_cidx;
	u32 ccnt;
} __packed;

/* fields in edmacc_param.opt */
#define SAM		BIT(0)
#define DAM		BIT(1)
#define SYNCDIM		BIT(2)
#define STATIC		BIT(3)
#define EDMA_FWID	(0x07 << 8)
#define TCCMODE		BIT(11)
#define EDMA_TCC(t)	((t) << 12)
#define TCINTEN		BIT(20)
#define ITCINTEN	BIT(21)
#define TCCHEN		BIT(22)
#define ITCCHEN		BIT(23)

157
struct edma_pset {
158 159
	u32				len;
	dma_addr_t			addr;
160 161 162
	struct edmacc_param		param;
};

163 164 165
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
166
	enum dma_transfer_direction	direction;
167
	int				cyclic;
168 169
	int				absync;
	int				pset_nr;
170
	struct edma_chan		*echan;
171
	int				processed;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
193 194
	int				processed_stat;
	u32				sg_len;
195
	u32				residue;
196
	u32				residue_stat;
197

198
	struct edma_pset		pset[0];
199 200 201 202 203 204 205 206 207 208 209 210
};

struct edma_cc;

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	int				ch_num;
	bool				alloced;
	int				slot[EDMA_MAX_SLOTS];
211
	int				missed;
212
	struct dma_slave_config		cfg;
213 214 215
};

struct edma_cc {
216 217 218 219 220 221 222 223 224 225
	struct device			*dev;
	struct edma_soc_info		*info;
	void __iomem			*base;
	int				id;

	/* eDMA3 resource information */
	unsigned			num_channels;
	unsigned			num_region;
	unsigned			num_slots;
	unsigned			num_tc;
226
	bool				chmap_exist;
227 228 229
	enum dma_event_q		default_queue;

	bool				unused_chan_list_done;
230
	/* The slot_inuse bit for each PaRAM slot is clear unless the
231 232
	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
	 */
233
	unsigned long *slot_inuse;
234

235
	/* The channel_unused bit for each channel is clear unless
236 237 238
	 * it is not being used on this platform. It uses a bit
	 * of SOC-specific initialization code.
	 */
239
	unsigned long *channel_unused;
240

241
	struct dma_device		dma_slave;
242
	struct edma_chan		*slave_chans;
243 244 245
	int				dummy_slot;
};

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
	.link_bcntrld = 0xffff,
	.ccnt = 1,
};

static const struct of_device_id edma_of_ids[] = {
	{ .compatible = "ti,edma3", },
	{}
};

static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
	return (unsigned int)__raw_readl(ecc->base + offset);
}

static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
	__raw_writel(val, ecc->base + offset);
}

static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
			       unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	val |= or;
	edma_write(ecc, offset, val);
}

static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	edma_write(ecc, offset, val);
}

static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val |= or;
	edma_write(ecc, offset, val);
}

static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
					   int i)
{
	return edma_read(ecc, offset + (i << 2));
}

static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
				    unsigned val)
{
	edma_write(ecc, offset + (i << 2), val);
}

static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
				     unsigned and, unsigned or)
{
	edma_modify(ecc, offset + (i << 2), and, or);
}

static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
				 unsigned or)
{
	edma_or(ecc, offset + (i << 2), or);
}

static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
				  unsigned or)
{
	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}

static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
				     int j, unsigned val)
{
	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}

static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset);
}

static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
						   int offset, int i)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}

static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
				      unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset, val);
}

static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
					    int i, unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}

static inline unsigned int edma_parm_read(struct edma_cc *ecc, int offset,
					  int param_no)
{
	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}

static inline void edma_parm_write(struct edma_cc *ecc, int offset,
				   int param_no, unsigned val)
{
	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}

static inline void edma_parm_modify(struct edma_cc *ecc, int offset,
				    int param_no, unsigned and, unsigned or)
{
	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}

static inline void edma_parm_and(struct edma_cc *ecc, int offset, int param_no,
				 unsigned and)
{
	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}

static inline void edma_parm_or(struct edma_cc *ecc, int offset, int param_no,
				unsigned or)
{
	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}

static inline void set_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		set_bit(offset + (len - 1), p);
}

static inline void clear_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		clear_bit(offset + (len - 1), p);
}

394
static void edma_map_dmach_to_queue(struct edma_chan *echan,
395 396
				    enum dma_event_q queue_no)
{
397 398 399
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int bit = (channel & 0x7) * 4;
400 401 402 403 404 405

	/* default to low priority queue */
	if (queue_no == EVENTQ_DEFAULT)
		queue_no = ecc->default_queue;

	queue_no &= 7;
406
	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
407 408 409 410 411 412 413 414 415 416 417
			  queue_no << bit);
}

static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
					  int priority)
{
	int bit = queue_no * 4;

	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}

418
static void edma_set_chmap(struct edma_chan *echan, int slot)
419
{
420 421 422
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

423 424 425 426
	if (ecc->chmap_exist) {
		slot = EDMA_CHAN_SLOT(slot);
		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
	}
427 428 429 430 431 432
}

static int prepare_unused_channel_list(struct device *dev, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct edma_cc *ecc = data;
433 434
	int dma_req_min = EDMA_CTLR_CHAN(ecc->id, 0);
	int dma_req_max = dma_req_min + ecc->num_channels;
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	int i, count;
	struct of_phandle_args  dma_spec;

	if (dev->of_node) {
		struct platform_device *dma_pdev;

		count = of_property_count_strings(dev->of_node, "dma-names");
		if (count < 0)
			return 0;
		for (i = 0; i < count; i++) {
			if (of_parse_phandle_with_args(dev->of_node, "dmas",
						       "#dma-cells", i,
						       &dma_spec))
				continue;

			if (!of_match_node(edma_of_ids, dma_spec.np)) {
				of_node_put(dma_spec.np);
				continue;
			}

			dma_pdev = of_find_device_by_node(dma_spec.np);
			if (&dma_pdev->dev != ecc->dev)
				continue;

			clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
460
				  ecc->channel_unused);
461 462 463 464 465 466 467 468
			of_node_put(dma_spec.np);
		}
		return 0;
	}

	/* For non-OF case */
	for (i = 0; i < pdev->num_resources; i++) {
		struct resource	*res = &pdev->resource[i];
469
		int dma_req;
470

471 472 473 474 475
		if (!(res->flags & IORESOURCE_DMA))
			continue;

		dma_req = (int)res->start;
		if (dma_req >= dma_req_min && dma_req < dma_req_max)
476
			clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
477
				  ecc->channel_unused);
478 479 480 481 482
	}

	return 0;
}

483
static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
484
{
485 486
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
487

488
	if (enable) {
489 490 491 492
		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
					 BIT(channel & 0x1f));
		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
					 BIT(channel & 0x1f));
493
	} else {
494 495
		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
					 BIT(channel & 0x1f));
496 497 498 499
	}
}

/*
500
 * paRAM slot management functions
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
 */
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
			    const struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}

static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
			   struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
}

/**
 * edma_alloc_slot - allocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: specific slot to allocate; negative for "any unused slot"
 *
 * This allocates a parameter RAM slot, initializing it to hold a
 * dummy transfer.  Slots allocated using this routine have not been
 * mapped to a hardware DMA channel, and will normally be used by
 * linking to them from a slot associated with a DMA channel.
 *
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 * slots may be allocated on behalf of DSP firmware.
 *
 * Returns the number of the slot, else negative errno.
 */
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
537
	if (slot > 0) {
538
		slot = EDMA_CHAN_SLOT(slot);
539 540 541 542 543
		/* Requesting entry paRAM slot for a HW triggered channel. */
		if (ecc->chmap_exist && slot < ecc->num_channels)
			slot = EDMA_SLOT_ANY;
	}

544
	if (slot < 0) {
545 546 547 548
		if (ecc->chmap_exist)
			slot = 0;
		else
			slot = ecc->num_channels;
549
		for (;;) {
550
			slot = find_next_zero_bit(ecc->slot_inuse,
551 552 553 554
						  ecc->num_slots,
						  slot);
			if (slot == ecc->num_slots)
				return -ENOMEM;
555
			if (!test_and_set_bit(slot, ecc->slot_inuse))
556 557
				break;
		}
558
	} else if (slot >= ecc->num_slots) {
559
		return -EINVAL;
560
	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
561 562 563 564 565 566 567 568 569 570 571
		return -EBUSY;
	}

	edma_write_slot(ecc, slot, &dummy_paramset);

	return EDMA_CTLR_CHAN(ecc->id, slot);
}

static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
	slot = EDMA_CHAN_SLOT(slot);
572
	if (slot >= ecc->num_slots)
573 574 575
		return;

	edma_write_slot(ecc, slot, &dummy_paramset);
576
	clear_bit(slot, ecc->slot_inuse);
577 578 579 580 581 582 583 584 585 586 587 588
}

/**
 * edma_link - link one parameter RAM slot to another
 * @ecc: pointer to edma_cc struct
 * @from: parameter RAM slot originating the link
 * @to: parameter RAM slot which is the link target
 *
 * The originating slot should not be part of any active DMA transfer.
 */
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
589 590 591
	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	from = EDMA_CHAN_SLOT(from);
	to = EDMA_CHAN_SLOT(to);
	if (from >= ecc->num_slots || to >= ecc->num_slots)
		return;

	edma_parm_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
			 PARM_OFFSET(to));
}

/**
 * edma_get_position - returns the current transfer point
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot being examined
 * @dst:  true selects the dest position, false the source
 *
 * Returns the position of the current active slot
 */
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
				    bool dst)
{
	u32 offs;

	slot = EDMA_CHAN_SLOT(slot);
	offs = PARM_OFFSET(slot);
	offs += dst ? PARM_DST : PARM_SRC;

	return edma_read(ecc, offs);
}

621
/*
622 623 624 625 626
 * Channels with event associations will be triggered by their hardware
 * events, and channels without such associations will be triggered by
 * software.  (At this writing there is no interface for using software
 * triggers except with channels that don't support hardware triggers.)
 */
627
static void edma_start(struct edma_chan *echan)
628
{
629 630 631 632
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
633

634
	if (test_bit(channel, ecc->channel_unused)) {
635
		/* EDMA channels without event association */
636 637 638 639
		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ESR, j));
		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
	} else {
640
		/* EDMA channel with event association */
641 642
		dev_dbg(ecc->dev, "ER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ER, j));
643 644 645 646 647 648
		/* Clear any pending event or error */
		edma_write_array(ecc, EDMA_ECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
649 650
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
651 652 653
	}
}

654
static void edma_stop(struct edma_chan *echan)
655
{
656 657 658 659
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
660

661 662 663 664
	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write_array(ecc, EDMA_EMCR, j, mask);
665

666 667
	/* clear possibly pending completion interrupt */
	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
668

669 670
	dev_dbg(ecc->dev, "EER%d %08x\n", j,
		edma_shadow0_read_array(ecc, SH_EER, j));
671

672 673 674
	/* REVISIT:  consider guarding against inappropriate event
	 * chaining by overwriting with dummy_paramset.
	 */
675 676
}

677 678 679
/*
 * Temporarily disable EDMA hardware events on the specified channel,
 * preventing them from triggering new transfers
680
 */
681
static void edma_pause(struct edma_chan *echan)
682
{
683 684
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
685

686
	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
687 688
}

689
/* Re-enable EDMA hardware events on the specified channel.  */
690
static void edma_resume(struct edma_chan *echan)
691
{
692 693
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
694

695
	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
696 697
}

698
static void edma_trigger_channel(struct edma_chan *echan)
699
{
700 701 702
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
703 704 705

	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);

706 707
	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
708 709
}

710
static void edma_clean_channel(struct edma_chan *echan)
711
{
712 713 714 715
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
716

717 718 719 720 721 722 723
	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	/* Clear the corresponding EMR bits */
	edma_write_array(ecc, EDMA_EMCR, j, mask);
	/* Clear any SER */
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
724 725
}

726
static int edma_alloc_channel(struct edma_chan *echan,
727
			      enum dma_event_q eventq_no)
728
{
729 730
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
731 732 733 734 735 736 737

	if (!ecc->unused_chan_list_done) {
		/*
		 * Scan all the platform devices to find out the EDMA channels
		 * used and clear them in the unused list, making the rest
		 * available for ARM usage.
		 */
738 739
		int ret = bus_for_each_dev(&platform_bus_type, NULL, ecc,
					   prepare_unused_channel_list);
740 741 742 743 744 745 746 747 748 749
		if (ret < 0)
			return ret;

		ecc->unused_chan_list_done = true;
	}

	/* ensure access through shadow region 0 */
	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));

	/* ensure no events are pending */
750
	edma_stop(echan);
751

752
	edma_setup_interrupt(echan, true);
753

754
	edma_map_dmach_to_queue(echan, eventq_no);
755

756
	return 0;
757 758
}

759
static void edma_free_channel(struct edma_chan *echan)
760
{
761 762
	/* ensure no events are pending */
	edma_stop(echan);
763
	/* REVISIT should probably take out of shadow region 0 */
764
	edma_setup_interrupt(echan, false);
765 766
}

767
/* Move channel to a specific event queue */
768
static void edma_assign_channel_eventq(struct edma_chan *echan,
769 770
				       enum dma_event_q eventq_no)
{
771
	struct edma_cc *ecc = echan->ecc;
772 773 774 775 776 777 778

	/* default to low priority queue */
	if (eventq_no == EVENTQ_DEFAULT)
		eventq_no = ecc->default_queue;
	if (eventq_no >= ecc->num_tc)
		return;

779
	edma_map_dmach_to_queue(echan, eventq_no);
780 781
}

782 783 784 785 786 787 788 789 790 791
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

792
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
793 794 795 796 797 798 799 800 801 802 803 804
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
805
	struct edma_cc *ecc = echan->ecc;
806
	struct virt_dma_desc *vdesc;
807
	struct edma_desc *edesc;
808 809 810
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

811 812
	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
813
		vdesc = vchan_next_desc(&echan->vchan);
814
		if (!vdesc)
815 816 817
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
818 819
	}

820
	edesc = echan->edesc;
821

822 823 824
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
825
	edesc->sg_len = 0;
826 827

	/* Write descriptor PaRAM set(s) */
828 829
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
830
		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
831
		edesc->sg_len += edesc->pset[j].len;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
		dev_vdbg(dev,
			 "\n pset[%d]:\n"
			 "  chnum\t%d\n"
			 "  slot\t%d\n"
			 "  opt\t%08x\n"
			 "  src\t%08x\n"
			 "  dst\t%08x\n"
			 "  abcnt\t%08x\n"
			 "  ccnt\t%08x\n"
			 "  bidx\t%08x\n"
			 "  cidx\t%08x\n"
			 "  lkrld\t%08x\n",
			 j, echan->ch_num, echan->slot[i],
			 edesc->pset[j].param.opt,
			 edesc->pset[j].param.src,
			 edesc->pset[j].param.dst,
			 edesc->pset[j].param.a_b_cnt,
			 edesc->pset[j].param.ccnt,
			 edesc->pset[j].param.src_dst_bidx,
			 edesc->pset[j].param.src_dst_cidx,
			 edesc->pset[j].param.link_bcntrld);
853
		/* Link to the previous slot if not the last set */
854
		if (i != (nslots - 1))
855
			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
856 857
	}

858 859
	edesc->processed += nslots;

860 861 862 863 864
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
865 866
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
867
			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
868
		else
869
			edma_link(ecc, echan->slot[nslots - 1],
870 871
				  echan->ecc->dummy_slot);
	}
872

873
	if (echan->missed) {
874 875 876 877 878
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
879
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
880 881 882 883
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
884
		echan->missed = 0;
885 886 887
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
888
		edma_start(echan);
889 890 891
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
892
		edma_resume(echan);
893
	}
894 895
}

896
static int edma_terminate_all(struct dma_chan *chan)
897
{
898
	struct edma_chan *echan = to_edma_chan(chan);
899 900 901 902 903 904 905 906 907 908 909
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
910
		edma_stop(echan);
911 912
		/* Move the cyclic channel back to default queue */
		if (echan->edesc->cyclic)
913
			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
914 915 916 917 918
		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);
919 920 921 922 923 924 925 926 927 928
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

929
static int edma_slave_config(struct dma_chan *chan,
930
	struct dma_slave_config *cfg)
931
{
932 933
	struct edma_chan *echan = to_edma_chan(chan);

934 935
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
936 937
		return -EINVAL;

938
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
939 940 941 942

	return 0;
}

943
static int edma_dma_pause(struct dma_chan *chan)
944
{
945 946
	struct edma_chan *echan = to_edma_chan(chan);

947
	if (!echan->edesc)
948 949
		return -EINVAL;

950
	edma_pause(echan);
951 952 953
	return 0;
}

954
static int edma_dma_resume(struct dma_chan *chan)
955
{
956 957
	struct edma_chan *echan = to_edma_chan(chan);

958
	edma_resume(echan);
959 960 961
	return 0;
}

962 963 964 965 966 967 968 969 970 971 972
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
973
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
974
			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
975
			    unsigned int acnt, unsigned int dma_length,
976
			    enum dma_transfer_direction direction)
977 978 979
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
980
	struct edmacc_param *param = &epset->param;
981
	int bcnt, ccnt, cidx;
982 983 984
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

985 986 987
	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

1038 1039
	epset->len = dma_length;

1040 1041 1042 1043 1044
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
1045
		epset->addr = src_addr;
1046 1047 1048 1049 1050
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
1051
		epset->addr = dst_addr;
1052 1053 1054 1055 1056
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
1057 1058 1059 1060 1061
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

1062
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1063 1064
	/* Configure A or AB synchronized transfers */
	if (absync)
1065
		param->opt |= SYNCDIM;
1066

1067 1068
	param->src = src_addr;
	param->dst = dst_addr;
1069

1070 1071
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1072

1073 1074
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
1075 1076 1077 1078 1079 1080
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
1081
	param->link_bcntrld = 0xffffffff;
1082 1083 1084
	return absync;
}

1085 1086 1087 1088 1089 1090 1091 1092
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
1093
	dma_addr_t src_addr = 0, dst_addr = 0;
1094 1095
	enum dma_slave_buswidth dev_width;
	u32 burst;
1096
	struct scatterlist *sg;
1097
	int i, nslots, ret;
1098 1099 1100 1101

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

1102
	if (direction == DMA_DEV_TO_MEM) {
1103
		src_addr = echan->cfg.src_addr;
1104 1105 1106
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
1107
		dst_addr = echan->cfg.dst_addr;
1108 1109 1110
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1111
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1112 1113 1114 1115
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1116
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1117 1118 1119
		return NULL;
	}

1120 1121
	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1122
	if (!edesc) {
1123
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1124 1125 1126 1127
		return NULL;
	}

	edesc->pset_nr = sg_len;
1128
	edesc->residue = 0;
1129
	edesc->direction = direction;
1130
	edesc->echan = echan;
1131

1132 1133 1134 1135
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
1136 1137
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1138
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1139
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
1140
				kfree(edesc);
1141 1142
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1143 1144 1145
				return NULL;
			}
		}
1146 1147 1148 1149
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
1150 1151 1152 1153 1154
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
1155

1156 1157 1158
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
1159 1160
		if (ret < 0) {
			kfree(edesc);
1161
			return NULL;
1162 1163
		}

1164
		edesc->absync = ret;
1165
		edesc->residue += sg_dma_len(sg);
1166 1167 1168 1169

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
1170
			edesc->pset[i].param.opt |= TCINTEN;
1171

1172 1173
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
1174
			edesc->pset[i].param.opt |= TCINTEN;
1175
	}
1176
	edesc->residue_stat = edesc->residue;
1177 1178 1179 1180

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1181
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1182 1183 1184
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
1185
	int ret, nslots;
1186 1187 1188
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);
1189
	unsigned int width, pset_len;
1190 1191 1192 1193

	if (unlikely(!echan || !len))
		return NULL;

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	if (len < SZ_64K) {
		/*
		 * Transfer size less than 64K can be handled with one paRAM
		 * slot and with one burst.
		 * ACNT = length
		 */
		width = len;
		pset_len = len;
		nslots = 1;
	} else {
		/*
		 * Transfer size bigger than 64K will be handled with maximum of
		 * two paRAM slots.
		 * slot1: (full_length / 32767) times 32767 bytes bursts.
		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
		 * slot2: the remaining amount of data after slot1.
		 *	  ACNT = full_length - length1, length2 = ACNT
		 *
		 * When the full_length is multibple of 32767 one slot can be
		 * used to complete the transfer.
		 */
		width = SZ_32K - 1;
		pset_len = rounddown(len, width);
		/* One slot is enough for lengths multiple of (SZ_32K -1) */
		if (unlikely(pset_len == len))
			nslots = 1;
		else
			nslots = 2;
	}

	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1226 1227 1228 1229 1230
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

1231 1232 1233 1234
	edesc->pset_nr = nslots;
	edesc->residue = edesc->residue_stat = len;
	edesc->direction = DMA_MEM_TO_MEM;
	edesc->echan = echan;
1235

1236
	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1237 1238 1239
			       width, pset_len, DMA_MEM_TO_MEM);
	if (ret < 0) {
		kfree(edesc);
1240
		return NULL;
1241
	}
1242 1243 1244

	edesc->absync = ret;

1245
	edesc->pset[0].param.opt |= ITCCHEN;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (nslots == 1) {
		/* Enable transfer complete interrupt */
		edesc->pset[0].param.opt |= TCINTEN;
	} else {
		/* Enable transfer complete chaining for the first slot */
		edesc->pset[0].param.opt |= TCCHEN;

		if (echan->slot[1] < 0) {
			echan->slot[1] = edma_alloc_slot(echan->ecc,
							 EDMA_SLOT_ANY);
			if (echan->slot[1] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}
		dest += pset_len;
		src += pset_len;
		pset_len = width = len % (SZ_32K - 1);

		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
				       width, pset_len, DMA_MEM_TO_MEM);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		edesc->pset[1].param.opt |= ITCCHEN;
		edesc->pset[1].param.opt |= TCINTEN;
	}
1277 1278 1279 1280

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1281 1282 1283
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
1284
	unsigned long tx_flags)
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1308
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1309 1310 1311 1312
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1313
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

1335 1336
	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1337
	if (!edesc) {
1338
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1339 1340 1341 1342 1343
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
1344
	edesc->residue = edesc->residue_stat = buf_len;
1345
	edesc->direction = direction;
1346
	edesc->echan = echan;
1347

1348 1349
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
1350 1351 1352 1353 1354

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1355
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1356
			if (echan->slot[i] < 0) {
1357
				kfree(edesc);
1358 1359
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
1373 1374
		if (ret < 0) {
			kfree(edesc);
1375
			return NULL;
1376
		}
1377

1378 1379 1380 1381
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
1382

1383 1384
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
1397 1398 1399 1400 1401 1402 1403 1404
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
1405 1406 1407 1408

		edesc->absync = ret;

		/*
1409
		 * Enable period interrupt only if it is requested
1410
		 */
1411 1412
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
1413 1414
	}

1415
	/* Place the cyclic channel to highest priority queue */
1416
	edma_assign_channel_eventq(echan, EVENTQ_0);
1417

1418 1419 1420
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1421
static void edma_completion_handler(struct edma_chan *echan)
1422 1423
{
	struct device *dev = echan->vchan.chan.device->dev;
1424
	struct edma_desc *edesc = echan->edesc;
1425

1426 1427
	if (!edesc)
		return;
1428

1429
	spin_lock(&echan->vchan.lock);
1430 1431 1432 1433 1434 1435
	if (edesc->cyclic) {
		vchan_cyclic_callback(&edesc->vdesc);
		spin_unlock(&echan->vchan.lock);
		return;
	} else if (edesc->processed == edesc->pset_nr) {
		edesc->residue = 0;
1436
		edma_stop(echan);
1437 1438 1439 1440 1441 1442 1443 1444 1445
		vchan_cookie_complete(&edesc->vdesc);
		echan->edesc = NULL;

		dev_dbg(dev, "Transfer completed on channel %d\n",
			echan->ch_num);
	} else {
		dev_dbg(dev, "Sub transfer completed on channel %d\n",
			echan->ch_num);

1446
		edma_pause(echan);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

		/* Update statistics for tx_status */
		edesc->residue -= edesc->sg_len;
		edesc->residue_stat = edesc->residue;
		edesc->processed_stat = edesc->processed;
	}
	edma_execute(echan);

	spin_unlock(&echan->vchan.lock);
}

/* eDMA interrupt handler */
static irqreturn_t dma_irq_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int ctlr;
	u32 sh_ier;
	u32 sh_ipr;
	u32 bank;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_irq_handler\n");

	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
	if (!sh_ipr) {
		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
		if (!sh_ipr)
			return IRQ_NONE;
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
		bank = 1;
	} else {
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
		bank = 0;
	}

	do {
		u32 slot;
		u32 channel;

		slot = __ffs(sh_ipr);
		sh_ipr &= ~(BIT(slot));

		if (sh_ier & BIT(slot)) {
			channel = (bank << 5) | slot;
			/* Clear the corresponding IPR bits */
			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
			edma_completion_handler(&ecc->slave_chans[channel]);
1497
		}
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	} while (sh_ipr);

	edma_shadow0_write(ecc, SH_IEVAL, 1);
	return IRQ_HANDLED;
}

static void edma_error_handler(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edmacc_param p;

	if (!echan->edesc)
		return;

	spin_lock(&echan->vchan.lock);
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	edma_read_slot(ecc, echan->slot[0], &p);
	/*
	 * Issue later based on missed flag which will be sure
	 * to happen as:
	 * (1) we finished transmitting an intermediate slot and
	 *     edma_execute is coming up.
	 * (2) or we finished current transfer and issue will
	 *     call edma_execute.
	 *
	 * Important note: issuing can be dangerous here and
	 * lead to some nasty recursion when we are in a NULL
	 * slot. So we avoid doing so and set the missed flag.
	 */
	if (p.a_b_cnt == 0 && p.ccnt == 0) {
		dev_dbg(dev, "Error on null slot, setting miss\n");
		echan->missed = 1;
	} else {
1532
		/*
1533 1534
		 * The slot is already programmed but the event got
		 * missed, so its safe to issue it here.
1535
		 */
1536
		dev_dbg(dev, "Missed event, TRIGGERING\n");
1537 1538 1539 1540
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
1541 1542 1543 1544
	}
	spin_unlock(&echan->vchan.lock);
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static inline bool edma_error_pending(struct edma_cc *ecc)
{
	if (edma_read_array(ecc, EDMA_EMR, 0) ||
	    edma_read_array(ecc, EDMA_EMR, 1) ||
	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
		return true;

	return false;
}

1555 1556 1557 1558
/* eDMA error interrupt handler */
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
1559
	int i, j;
1560 1561
	int ctlr;
	unsigned int cnt = 0;
1562
	unsigned int val;
1563 1564 1565 1566 1567 1568 1569

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");

1570
	if (!edma_error_pending(ecc))
1571 1572 1573
		return IRQ_NONE;

	while (1) {
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		/* Event missed register(s) */
		for (j = 0; j < 2; j++) {
			unsigned long emr;

			val = edma_read_array(ecc, EDMA_EMR, j);
			if (!val)
				continue;

			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
			emr = val;
			for (i = find_next_bit(&emr, 32, 0); i < 32;
			     i = find_next_bit(&emr, 32, i + 1)) {
1586 1587
				int k = (j << 5) + i;

1588 1589 1590 1591
				/* Clear the corresponding EMR bits */
				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
				/* Clear any SER */
				edma_shadow0_write_array(ecc, SH_SECR, j,
1592
							 BIT(i));
1593
				edma_error_handler(&ecc->slave_chans[k]);
1594
			}
1595
		}
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

		val = edma_read(ecc, EDMA_QEMR);
		if (val) {
			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_QEMCR, val);
			edma_shadow0_write(ecc, SH_QSECR, val);
		}

		val = edma_read(ecc, EDMA_CCERR);
		if (val) {
			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_CCERRCLR, val);
		}

1612
		if (!edma_error_pending(ecc))
1613 1614 1615 1616
			break;
		cnt++;
		if (cnt > 10)
			break;
1617
	}
1618 1619
	edma_write(ecc, EDMA_EEVAL, 1);
	return IRQ_HANDLED;
1620 1621 1622 1623 1624 1625 1626 1627 1628
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int ret;

1629 1630 1631
	ret = edma_alloc_channel(echan, EVENTQ_DEFAULT);
	if (ret)
		return ret;
1632

1633 1634 1635 1636
	echan->slot[0] = edma_alloc_slot(echan->ecc, echan->ch_num);
	if (echan->slot[0] < 0) {
		dev_err(dev, "Entry slot allocation failed for channel %u\n",
			EDMA_CHAN_SLOT(echan->ch_num));
1637
		goto err_slot;
1638 1639 1640
	}

	/* Set up channel -> slot mapping for the entry slot */
1641 1642
	edma_set_chmap(echan, echan->slot[0]);
	echan->alloced = true;
1643

1644
	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
1645
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
1646 1647 1648

	return 0;

1649 1650
err_slot:
	edma_free_channel(echan);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	int i;

	/* Terminate transfers */
1661
	edma_stop(echan);
1662 1663 1664 1665

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
1666
	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1667
		if (echan->slot[i] >= 0) {
1668
			edma_free_slot(echan->ecc, echan->slot[i]);
1669 1670 1671 1672
			echan->slot[i] = -1;
		}
	}

1673
	/* Set entry slot to the dummy slot */
1674
	edma_set_chmap(echan, echan->ecc->dummy_slot);
1675

1676 1677
	/* Free EDMA channel */
	if (echan->alloced) {
1678
		edma_free_channel(echan);
1679 1680 1681
		echan->alloced = false;
	}

1682
	dev_dbg(chan->device->dev, "freeing channel for %u\n", echan->ch_num);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
1708
	pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
1756
	if (ret == DMA_COMPLETE || !txstate)
1757 1758 1759
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
1760
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1761
		txstate->residue = edma_residue(echan->edesc);
1762 1763
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1764 1765 1766 1767 1768
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

1769
static void __init edma_chan_init(struct edma_cc *ecc, struct dma_device *dma,
1770 1771 1772 1773
				  struct edma_chan *echans)
{
	int i, j;

1774
	for (i = 0; i < ecc->num_channels; i++) {
1775
		struct edma_chan *echan = &echans[i];
1776
		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		vchan_init(&echan->vchan, dma);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

1788 1789
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1790
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1791 1792
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1793 1794 1795 1796
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
			  struct device *dev)
{
	dma->device_prep_slave_sg = edma_prep_slave_sg;
1797
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1798
	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1799 1800 1801 1802
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
	dma->device_free_chan_resources = edma_free_chan_resources;
	dma->device_issue_pending = edma_issue_pending;
	dma->device_tx_status = edma_tx_status;
1803 1804 1805 1806
	dma->device_config = edma_slave_config;
	dma->device_pause = edma_dma_pause;
	dma->device_resume = edma_dma_resume;
	dma->device_terminate_all = edma_terminate_all;
1807 1808 1809 1810 1811 1812

	dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

1813 1814 1815 1816 1817
	dma->dev = dev;

	INIT_LIST_HEAD(&dma->channels);
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
			      struct edma_cc *ecc)
{
	int i;
	u32 value, cccfg;
	s8 (*queue_priority_map)[2];

	/* Decode the eDMA3 configuration from CCCFG register */
	cccfg = edma_read(ecc, EDMA_CCCFG);

	value = GET_NUM_REGN(cccfg);
	ecc->num_region = BIT(value);

	value = GET_NUM_DMACH(cccfg);
	ecc->num_channels = BIT(value + 1);

	value = GET_NUM_PAENTRY(cccfg);
	ecc->num_slots = BIT(value + 4);

	value = GET_NUM_EVQUE(cccfg);
	ecc->num_tc = value + 1;

1840 1841
	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;

1842 1843 1844 1845 1846
	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1847
	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

	/* Nothing need to be done if queue priority is provided */
	if (pdata->queue_priority_mapping)
		return 0;

	/*
	 * Configure TC/queue priority as follows:
	 * Q0 - priority 0
	 * Q1 - priority 1
	 * Q2 - priority 2
	 * ...
	 * The meaning of priority numbers: 0 highest priority, 7 lowest
	 * priority. So Q0 is the highest priority queue and the last queue has
	 * the lowest priority.
	 */
1863
	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
					  GFP_KERNEL);
	if (!queue_priority_map)
		return -ENOMEM;

	for (i = 0; i < ecc->num_tc; i++) {
		queue_priority_map[i][0] = i;
		queue_priority_map[i][1] = i;
	}
	queue_priority_map[i][0] = -1;
	queue_priority_map[i][1] = -1;

	pdata->queue_priority_mapping = queue_priority_map;
	/* Default queue has the lowest priority */
	pdata->default_queue = i - 1;

	return 0;
}

#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
			       size_t sz)
{
	const char pname[] = "ti,edma-xbar-event-map";
	struct resource res;
	void __iomem *xbar;
	s16 (*xbar_chans)[2];
	size_t nelm = sz / sizeof(s16);
	u32 shift, offset, mux;
	int ret, i;

1894
	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	if (!xbar_chans)
		return -ENOMEM;

	ret = of_address_to_resource(dev->of_node, 1, &res);
	if (ret)
		return -ENOMEM;

	xbar = devm_ioremap(dev, res.start, resource_size(&res));
	if (!xbar)
		return -ENOMEM;

	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
					 nelm);
	if (ret)
		return -EIO;

	/* Invalidate last entry for the other user of this mess */
	nelm >>= 1;
	xbar_chans[nelm][0] = -1;
	xbar_chans[nelm][1] = -1;

	for (i = 0; i < nelm; i++) {
		shift = (xbar_chans[i][1] & 0x03) << 3;
		offset = xbar_chans[i][1] & 0xfffffffc;
		mux = readl(xbar + offset);
		mux &= ~(0xff << shift);
		mux |= xbar_chans[i][0] << shift;
		writel(mux, (xbar + offset));
	}

	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
	return 0;
}

static int edma_of_parse_dt(struct device *dev, struct edma_soc_info *pdata)
{
	int ret = 0;
	struct property *prop;
	size_t sz;
	struct edma_rsv_info *rsv_info;

	rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
	if (!rsv_info)
		return -ENOMEM;
	pdata->rsv = rsv_info;

	prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", &sz);
	if (prop)
		ret = edma_xbar_event_map(dev, pdata, sz);

	return ret;
}

static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
{
	struct edma_soc_info *info;
	int ret;

	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

	ret = edma_of_parse_dt(dev, info);
	if (ret)
		return ERR_PTR(ret);

	return info;
}
#else
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
{
	return ERR_PTR(-EINVAL);
}
#endif

B
Bill Pemberton 已提交
1970
static int edma_probe(struct platform_device *pdev)
1971
{
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	struct edma_soc_info	*info = pdev->dev.platform_data;
	s8			(*queue_priority_mapping)[2];
	int			i, off, ln;
	const s16		(*rsv_chans)[2];
	const s16		(*rsv_slots)[2];
	const s16		(*xbar_chans)[2];
	int			irq;
	char			*irq_name;
	struct resource		*mem;
	struct device_node	*node = pdev->dev.of_node;
	struct device		*dev = &pdev->dev;
	struct edma_cc		*ecc;
1984 1985
	int ret;

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	if (node) {
		info = edma_setup_info_from_dt(dev);
		if (IS_ERR(info)) {
			dev_err(dev, "failed to get DT data\n");
			return PTR_ERR(info);
		}
	}

	if (!info)
		return -ENODEV;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		return ret;
	}

2004
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2005 2006 2007
	if (ret)
		return ret;

2008
	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2009
	if (!ecc) {
2010
		dev_err(dev, "Can't allocate controller\n");
2011 2012 2013
		return -ENOMEM;
	}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	ecc->dev = dev;
	ecc->id = pdev->id;
	/* When booting with DT the pdev->id is -1 */
	if (ecc->id < 0)
		ecc->id = 0;

	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
	if (!mem) {
		dev_dbg(dev, "mem resource not found, using index 0\n");
		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		if (!mem) {
			dev_err(dev, "no mem resource?\n");
			return -ENODEV;
		}
	}
	ecc->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ecc->base))
		return PTR_ERR(ecc->base);

	platform_set_drvdata(pdev, ecc);

	/* Get eDMA3 configuration from IP */
	ret = edma_setup_from_hw(dev, info, ecc);
	if (ret)
		return ret;

2040 2041 2042 2043 2044 2045
	/* Allocate memory based on the information we got from the IP */
	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
					sizeof(*ecc->slave_chans), GFP_KERNEL);
	if (!ecc->slave_chans)
		return -ENOMEM;

2046 2047 2048 2049
	ecc->channel_unused = devm_kcalloc(dev,
					   BITS_TO_LONGS(ecc->num_channels),
					   sizeof(unsigned long), GFP_KERNEL);
	if (!ecc->channel_unused)
2050 2051
		return -ENOMEM;

2052
	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2053
				       sizeof(unsigned long), GFP_KERNEL);
2054
	if (!ecc->slot_inuse)
2055 2056
		return -ENOMEM;

2057 2058 2059 2060 2061 2062
	ecc->default_queue = info->default_queue;

	for (i = 0; i < ecc->num_slots; i++)
		edma_write_slot(ecc, i, &dummy_paramset);

	/* Mark all channels as unused */
2063
	memset(ecc->channel_unused, 0xff, sizeof(ecc->channel_unused));
2064 2065 2066 2067 2068 2069 2070 2071

	if (info->rsv) {
		/* Clear the reserved channels in unused list */
		rsv_chans = info->rsv->rsv_chans;
		if (rsv_chans) {
			for (i = 0; rsv_chans[i][0] != -1; i++) {
				off = rsv_chans[i][0];
				ln = rsv_chans[i][1];
2072
				clear_bits(off, ln, ecc->channel_unused);
2073 2074 2075 2076 2077 2078 2079 2080 2081
			}
		}

		/* Set the reserved slots in inuse list */
		rsv_slots = info->rsv->rsv_slots;
		if (rsv_slots) {
			for (i = 0; rsv_slots[i][0] != -1; i++) {
				off = rsv_slots[i][0];
				ln = rsv_slots[i][1];
2082
				set_bits(off, ln, ecc->slot_inuse);
2083 2084 2085 2086 2087 2088 2089 2090 2091
			}
		}
	}

	/* Clear the xbar mapped channels in unused list */
	xbar_chans = info->xbar_chans;
	if (xbar_chans) {
		for (i = 0; xbar_chans[i][1] != -1; i++) {
			off = xbar_chans[i][1];
2092
			clear_bits(off, 1, ecc->channel_unused);
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 0);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 2);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

2126 2127 2128 2129 2130 2131
	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
		return ecc->dummy_slot;
	}

2132 2133 2134 2135 2136 2137
	queue_priority_mapping = info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);
2138

2139 2140 2141 2142 2143 2144 2145
	for (i = 0; i < ecc->num_region; i++) {
		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
	}
	ecc->info = info;

2146 2147
	dma_cap_zero(ecc->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
2148
	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
2149
	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
2150

2151
	edma_dma_init(ecc, &ecc->dma_slave, dev);
2152 2153 2154

	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);

2155 2156 2157 2158 2159 2160 2161 2162
	for (i = 0; i < ecc->num_channels; i++) {
		/* Assign all channels to the default queue */
		edma_map_dmach_to_queue(&ecc->slave_chans[i],
					info->default_queue);
		/* Set entry slot to the dummy slot */
		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
	}

2163 2164 2165 2166
	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret)
		goto err_reg1;

2167 2168
	if (node)
		of_dma_controller_register(node, of_dma_xlate_by_chan_id,
2169
					   &ecc->dma_slave);
2170

2171
	dev_info(dev, "TI EDMA DMA engine driver\n");
2172 2173 2174 2175

	return 0;

err_reg1:
2176
	edma_free_slot(ecc, ecc->dummy_slot);
2177 2178 2179
	return ret;
}

2180
static int edma_remove(struct platform_device *pdev)
2181 2182 2183 2184
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

2185 2186
	if (dev->of_node)
		of_dma_controller_free(dev->of_node);
2187
	dma_async_device_unregister(&ecc->dma_slave);
2188
	edma_free_slot(ecc, ecc->dummy_slot);
2189 2190 2191 2192

	return 0;
}

2193 2194 2195 2196
#ifdef CONFIG_PM_SLEEP
static int edma_pm_resume(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
2197
	struct edma_chan *echan = ecc->slave_chans;
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	int i;
	s8 (*queue_priority_mapping)[2];

	queue_priority_mapping = ecc->info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	for (i = 0; i < ecc->num_channels; i++) {
2209
		if (echan[i].alloced) {
2210 2211 2212 2213
			/* ensure access through shadow region 0 */
			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
				       BIT(i & 0x1f));

2214
			edma_setup_interrupt(&echan[i], true);
2215 2216

			/* Set up channel -> slot mapping for the entry slot */
2217
			edma_set_chmap(&echan[i], echan[i].slot[0]);
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
		}
	}

	return 0;
}
#endif

static const struct dev_pm_ops edma_pm_ops = {
	SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume)
};

2229 2230
static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
2231
	.remove		= edma_remove,
2232
	.driver = {
2233 2234 2235
		.name	= "edma",
		.pm	= &edma_pm_ops,
		.of_match_table = edma_of_ids,
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		return ch_req == echan->ch_num;
	}
	return false;
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
2252
	return platform_driver_register(&edma_driver);
2253 2254 2255 2256 2257 2258 2259 2260 2261
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
2262
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2263 2264
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");