edma.c 65.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28
#include <linux/of_dma.h>
29 30 31 32
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
33

34
#include <linux/platform_data/edma.h>
35 36 37 38

#include "dmaengine.h"
#include "virt-dma.h"

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT		0x00
#define PARM_SRC		0x04
#define PARM_A_B_CNT		0x08
#define PARM_DST		0x0c
#define PARM_SRC_DST_BIDX	0x10
#define PARM_LINK_BCNTRLD	0x14
#define PARM_SRC_DST_CIDX	0x18
#define PARM_CCNT		0x1c

#define PARM_SIZE		0x20

/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER			0x00	/* 64 bits */
#define SH_ECR			0x08	/* 64 bits */
#define SH_ESR			0x10	/* 64 bits */
#define SH_CER			0x18	/* 64 bits */
#define SH_EER			0x20	/* 64 bits */
#define SH_EECR			0x28	/* 64 bits */
#define SH_EESR			0x30	/* 64 bits */
#define SH_SER			0x38	/* 64 bits */
#define SH_SECR			0x40	/* 64 bits */
#define SH_IER			0x50	/* 64 bits */
#define SH_IECR			0x58	/* 64 bits */
#define SH_IESR			0x60	/* 64 bits */
#define SH_IPR			0x68	/* 64 bits */
#define SH_ICR			0x70	/* 64 bits */
#define SH_IEVAL		0x78
#define SH_QER			0x80
#define SH_QEER			0x84
#define SH_QEECR		0x88
#define SH_QEESR		0x8c
#define SH_QSER			0x90
#define SH_QSECR		0x94
#define SH_SIZE			0x200

/* Offsets for EDMA CC global registers */
#define EDMA_REV		0x0000
#define EDMA_CCCFG		0x0004
#define EDMA_QCHMAP		0x0200	/* 8 registers */
#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM		0x0260
#define EDMA_QUETCMAP		0x0280
#define EDMA_QUEPRI		0x0284
#define EDMA_EMR		0x0300	/* 64 bits */
#define EDMA_EMCR		0x0308	/* 64 bits */
#define EDMA_QEMR		0x0310
#define EDMA_QEMCR		0x0314
#define EDMA_CCERR		0x0318
#define EDMA_CCERRCLR		0x031c
#define EDMA_EEVAL		0x0320
#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
#define EDMA_QRAE		0x0380	/* 4 registers */
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
#define EDMA_QSTAT		0x0600	/* 2 registers */
#define EDMA_QWMTHRA		0x0620
#define EDMA_QWMTHRB		0x0624
#define EDMA_CCSTAT		0x0640

#define EDMA_M			0x1000	/* global channel registers */
#define EDMA_ECR		0x1008
#define EDMA_ECRH		0x100C
#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
#define EDMA_PARM		0x4000	/* PaRAM entries */

#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))

#define EDMA_DCHMAP		0x0100  /* 64 registers */

/* CCCFG register */
#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST		BIT(24)

115 116 117 118 119 120 121 122
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
123 124 125
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY		 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003

/* PaRAM slots are laid out like this */
struct edmacc_param {
	u32 opt;
	u32 src;
	u32 a_b_cnt;
	u32 dst;
	u32 src_dst_bidx;
	u32 link_bcntrld;
	u32 src_dst_cidx;
	u32 ccnt;
} __packed;

/* fields in edmacc_param.opt */
#define SAM		BIT(0)
#define DAM		BIT(1)
#define SYNCDIM		BIT(2)
#define STATIC		BIT(3)
#define EDMA_FWID	(0x07 << 8)
#define TCCMODE		BIT(11)
#define EDMA_TCC(t)	((t) << 12)
#define TCINTEN		BIT(20)
#define ITCINTEN	BIT(21)
#define TCCHEN		BIT(22)
#define ITCCHEN		BIT(23)

/*ch_status parameter of callback function possible values*/
#define EDMA_DMA_COMPLETE 1
#define EDMA_DMA_CC_ERROR 2
#define EDMA_DMA_TC1_ERROR 3
#define EDMA_DMA_TC2_ERROR 4

163
struct edma_pset {
164 165
	u32				len;
	dma_addr_t			addr;
166 167 168
	struct edmacc_param		param;
};

169 170 171
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
172
	enum dma_transfer_direction	direction;
173
	int				cyclic;
174 175
	int				absync;
	int				pset_nr;
176
	struct edma_chan		*echan;
177
	int				processed;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
199 200
	int				processed_stat;
	u32				sg_len;
201
	u32				residue;
202
	u32				residue_stat;
203

204
	struct edma_pset		pset[0];
205 206 207 208 209 210 211 212 213 214 215 216
};

struct edma_cc;

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	int				ch_num;
	bool				alloced;
	int				slot[EDMA_MAX_SLOTS];
217
	int				missed;
218
	struct dma_slave_config		cfg;
219 220 221
};

struct edma_cc {
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	struct device			*dev;
	struct edma_soc_info		*info;
	void __iomem			*base;
	int				id;

	/* eDMA3 resource information */
	unsigned			num_channels;
	unsigned			num_region;
	unsigned			num_slots;
	unsigned			num_tc;
	enum dma_event_q		default_queue;

	bool				unused_chan_list_done;
	/* The edma_inuse bit for each PaRAM slot is clear unless the
	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
	 */
238
	unsigned long *edma_inuse;
239 240 241 242 243

	/* The edma_unused bit for each channel is clear unless
	 * it is not being used on this platform. It uses a bit
	 * of SOC-specific initialization code.
	 */
244
	unsigned long *edma_unused;
245 246 247 248 249

	struct dma_interrupt_data {
		void (*callback)(unsigned channel, unsigned short ch_status,
				 void *data);
		void *data;
250
	} *intr_data;
251

252
	struct dma_device		dma_slave;
253
	struct edma_chan		*slave_chans;
254 255 256
	int				dummy_slot;
};

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
	.link_bcntrld = 0xffff,
	.ccnt = 1,
};

static const struct of_device_id edma_of_ids[] = {
	{ .compatible = "ti,edma3", },
	{}
};

static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
	return (unsigned int)__raw_readl(ecc->base + offset);
}

static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
	__raw_writel(val, ecc->base + offset);
}

static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
			       unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	val |= or;
	edma_write(ecc, offset, val);
}

static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	edma_write(ecc, offset, val);
}

static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val |= or;
	edma_write(ecc, offset, val);
}

static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
					   int i)
{
	return edma_read(ecc, offset + (i << 2));
}

static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
				    unsigned val)
{
	edma_write(ecc, offset + (i << 2), val);
}

static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
				     unsigned and, unsigned or)
{
	edma_modify(ecc, offset + (i << 2), and, or);
}

static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
				 unsigned or)
{
	edma_or(ecc, offset + (i << 2), or);
}

static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
				  unsigned or)
{
	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}

static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
				     int j, unsigned val)
{
	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}

static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset);
}

static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
						   int offset, int i)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}

static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
				      unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset, val);
}

static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
					    int i, unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}

static inline unsigned int edma_parm_read(struct edma_cc *ecc, int offset,
					  int param_no)
{
	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}

static inline void edma_parm_write(struct edma_cc *ecc, int offset,
				   int param_no, unsigned val)
{
	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}

static inline void edma_parm_modify(struct edma_cc *ecc, int offset,
				    int param_no, unsigned and, unsigned or)
{
	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}

static inline void edma_parm_and(struct edma_cc *ecc, int offset, int param_no,
				 unsigned and)
{
	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}

static inline void edma_parm_or(struct edma_cc *ecc, int offset, int param_no,
				unsigned or)
{
	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}

static inline void set_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		set_bit(offset + (len - 1), p);
}

static inline void clear_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		clear_bit(offset + (len - 1), p);
}

static void edma_map_dmach_to_queue(struct edma_cc *ecc, unsigned ch_no,
				    enum dma_event_q queue_no)
{
	int bit = (ch_no & 0x7) * 4;

	/* default to low priority queue */
	if (queue_no == EVENTQ_DEFAULT)
		queue_no = ecc->default_queue;

	queue_no &= 7;
	edma_modify_array(ecc, EDMA_DMAQNUM, (ch_no >> 3), ~(0x7 << bit),
			  queue_no << bit);
}

static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
					  int priority)
{
	int bit = queue_no * 4;

	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}

static void edma_direct_dmach_to_param_mapping(struct edma_cc *ecc)
{
	int i;

	for (i = 0; i < ecc->num_channels; i++)
		edma_write_array(ecc, EDMA_DCHMAP, i, (i << 5));
}

static int prepare_unused_channel_list(struct device *dev, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct edma_cc *ecc = data;
439 440
	int dma_req_min = EDMA_CTLR_CHAN(ecc->id, 0);
	int dma_req_max = dma_req_min + ecc->num_channels;
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	int i, count;
	struct of_phandle_args  dma_spec;

	if (dev->of_node) {
		struct platform_device *dma_pdev;

		count = of_property_count_strings(dev->of_node, "dma-names");
		if (count < 0)
			return 0;
		for (i = 0; i < count; i++) {
			if (of_parse_phandle_with_args(dev->of_node, "dmas",
						       "#dma-cells", i,
						       &dma_spec))
				continue;

			if (!of_match_node(edma_of_ids, dma_spec.np)) {
				of_node_put(dma_spec.np);
				continue;
			}

			dma_pdev = of_find_device_by_node(dma_spec.np);
			if (&dma_pdev->dev != ecc->dev)
				continue;

			clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
				  ecc->edma_unused);
			of_node_put(dma_spec.np);
		}
		return 0;
	}

	/* For non-OF case */
	for (i = 0; i < pdev->num_resources; i++) {
		struct resource	*res = &pdev->resource[i];
475
		int dma_req;
476

477 478 479 480 481
		if (!(res->flags & IORESOURCE_DMA))
			continue;

		dma_req = (int)res->start;
		if (dma_req >= dma_req_min && dma_req < dma_req_max)
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
			clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
				  ecc->edma_unused);
	}

	return 0;
}

static void edma_setup_interrupt(struct edma_cc *ecc, unsigned lch,
	void (*callback)(unsigned channel, u16 ch_status, void *data),
	void *data)
{
	lch = EDMA_CHAN_SLOT(lch);

	if (!callback)
		edma_shadow0_write_array(ecc, SH_IECR, lch >> 5,
					 BIT(lch & 0x1f));

	ecc->intr_data[lch].callback = callback;
	ecc->intr_data[lch].data = data;

	if (callback) {
		edma_shadow0_write_array(ecc, SH_ICR, lch >> 5,
					 BIT(lch & 0x1f));
		edma_shadow0_write_array(ecc, SH_IESR, lch >> 5,
					 BIT(lch & 0x1f));
	}
}

/*
 * paRAM management functions
 */

/**
 * edma_write_slot - write parameter RAM data for slot
 * @ecc: pointer to edma_cc struct
 * @slot: number of parameter RAM slot being modified
 * @param: data to be written into parameter RAM slot
 *
 * Use this to assign all parameters of a transfer at once.  This
 * allows more efficient setup of transfers than issuing multiple
 * calls to set up those parameters in small pieces, and provides
 * complete control over all transfer options.
 */
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
			    const struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}

/**
 * edma_read_slot - read parameter RAM data from slot
 * @ecc: pointer to edma_cc struct
 * @slot: number of parameter RAM slot being copied
 * @param: where to store copy of parameter RAM data
 *
 * Use this to read data from a parameter RAM slot, perhaps to
 * save them as a template for later reuse.
 */
static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
			   struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
}

/**
 * edma_alloc_slot - allocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: specific slot to allocate; negative for "any unused slot"
 *
 * This allocates a parameter RAM slot, initializing it to hold a
 * dummy transfer.  Slots allocated using this routine have not been
 * mapped to a hardware DMA channel, and will normally be used by
 * linking to them from a slot associated with a DMA channel.
 *
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 * slots may be allocated on behalf of DSP firmware.
 *
 * Returns the number of the slot, else negative errno.
 */
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
	if (slot > 0)
		slot = EDMA_CHAN_SLOT(slot);
	if (slot < 0) {
		slot = ecc->num_channels;
		for (;;) {
			slot = find_next_zero_bit(ecc->edma_inuse,
						  ecc->num_slots,
						  slot);
			if (slot == ecc->num_slots)
				return -ENOMEM;
			if (!test_and_set_bit(slot, ecc->edma_inuse))
				break;
		}
	} else if (slot < ecc->num_channels || slot >= ecc->num_slots) {
		return -EINVAL;
	} else if (test_and_set_bit(slot, ecc->edma_inuse)) {
		return -EBUSY;
	}

	edma_write_slot(ecc, slot, &dummy_paramset);

	return EDMA_CTLR_CHAN(ecc->id, slot);
}

/**
 * edma_free_slot - deallocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot returned from edma_alloc_slot()
 *
 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
 * Callers are responsible for ensuring the slot is inactive, and will
 * not be activated.
 */
static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot < ecc->num_channels || slot >= ecc->num_slots)
		return;

	edma_write_slot(ecc, slot, &dummy_paramset);
	clear_bit(slot, ecc->edma_inuse);
}

/**
 * edma_link - link one parameter RAM slot to another
 * @ecc: pointer to edma_cc struct
 * @from: parameter RAM slot originating the link
 * @to: parameter RAM slot which is the link target
 *
 * The originating slot should not be part of any active DMA transfer.
 */
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
	from = EDMA_CHAN_SLOT(from);
	to = EDMA_CHAN_SLOT(to);
	if (from >= ecc->num_slots || to >= ecc->num_slots)
		return;

	edma_parm_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
			 PARM_OFFSET(to));
}

/**
 * edma_get_position - returns the current transfer point
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot being examined
 * @dst:  true selects the dest position, false the source
 *
 * Returns the position of the current active slot
 */
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
				    bool dst)
{
	u32 offs;

	slot = EDMA_CHAN_SLOT(slot);
	offs = PARM_OFFSET(slot);
	offs += dst ? PARM_DST : PARM_SRC;

	return edma_read(ecc, offs);
}

/*-----------------------------------------------------------------------*/
/**
 * edma_start - start dma on a channel
 * @ecc: pointer to edma_cc struct
 * @channel: channel being activated
 *
 * Channels with event associations will be triggered by their hardware
 * events, and channels without such associations will be triggered by
 * software.  (At this writing there is no interface for using software
 * triggers except with channels that don't support hardware triggers.)
 *
 * Returns zero on success, else negative errno.
 */
static int edma_start(struct edma_cc *ecc, unsigned channel)
{
	if (ecc->id != EDMA_CTLR(channel)) {
		dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
			ecc->id, EDMA_CTLR(channel));
		return -EINVAL;
	}
	channel = EDMA_CHAN_SLOT(channel);

	if (channel < ecc->num_channels) {
		int j = channel >> 5;
		unsigned int mask = BIT(channel & 0x1f);

		/* EDMA channels without event association */
		if (test_bit(channel, ecc->edma_unused)) {
679 680
			dev_dbg(ecc->dev, "ESR%d %08x\n", j,
				edma_shadow0_read_array(ecc, SH_ESR, j));
681 682 683 684 685
			edma_shadow0_write_array(ecc, SH_ESR, j, mask);
			return 0;
		}

		/* EDMA channel with event association */
686 687
		dev_dbg(ecc->dev, "ER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ER, j));
688 689 690 691 692 693
		/* Clear any pending event or error */
		edma_write_array(ecc, EDMA_ECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
694 695
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		return 0;
	}

	return -EINVAL;
}

/**
 * edma_stop - stops dma on the channel passed
 * @ecc: pointer to edma_cc struct
 * @channel: channel being deactivated
 *
 * When @lch is a channel, any active transfer is paused and
 * all pending hardware events are cleared.  The current transfer
 * may not be resumed, and the channel's Parameter RAM should be
 * reinitialized before being reused.
 */
static void edma_stop(struct edma_cc *ecc, unsigned channel)
{
	if (ecc->id != EDMA_CTLR(channel)) {
		dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
			ecc->id, EDMA_CTLR(channel));
		return;
	}
	channel = EDMA_CHAN_SLOT(channel);

	if (channel < ecc->num_channels) {
		int j = channel >> 5;
		unsigned int mask = BIT(channel & 0x1f);

		edma_shadow0_write_array(ecc, SH_EECR, j, mask);
		edma_shadow0_write_array(ecc, SH_ECR, j, mask);
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);

		/* clear possibly pending completion interrupt */
		edma_shadow0_write_array(ecc, SH_ICR, j, mask);

733 734
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

		/* REVISIT:  consider guarding against inappropriate event
		 * chaining by overwriting with dummy_paramset.
		 */
	}
}

/**
 * edma_pause - pause dma on a channel
 * @ecc: pointer to edma_cc struct
 * @channel: on which edma_start() has been called
 *
 * This temporarily disables EDMA hardware events on the specified channel,
 * preventing them from triggering new transfers on its behalf
 */
static void edma_pause(struct edma_cc *ecc, unsigned channel)
{
	if (ecc->id != EDMA_CTLR(channel)) {
		dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
			ecc->id, EDMA_CTLR(channel));
		return;
	}
	channel = EDMA_CHAN_SLOT(channel);

	if (channel < ecc->num_channels) {
		unsigned int mask = BIT(channel & 0x1f);

		edma_shadow0_write_array(ecc, SH_EECR, channel >> 5, mask);
	}
}

/**
 * edma_resume - resumes dma on a paused channel
 * @ecc: pointer to edma_cc struct
 * @channel: on which edma_pause() has been called
 *
 * This re-enables EDMA hardware events on the specified channel.
 */
static void edma_resume(struct edma_cc *ecc, unsigned channel)
{
	if (ecc->id != EDMA_CTLR(channel)) {
		dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
			ecc->id, EDMA_CTLR(channel));
		return;
	}
	channel = EDMA_CHAN_SLOT(channel);

	if (channel < ecc->num_channels) {
		unsigned int mask = BIT(channel & 0x1f);

		edma_shadow0_write_array(ecc, SH_EESR, channel >> 5, mask);
	}
}

static int edma_trigger_channel(struct edma_cc *ecc, unsigned channel)
{
	unsigned int mask;

	if (ecc->id != EDMA_CTLR(channel)) {
		dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
			ecc->id, EDMA_CTLR(channel));
		return -EINVAL;
	}
	channel = EDMA_CHAN_SLOT(channel);
	mask = BIT(channel & 0x1f);

	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);

803 804
	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	return 0;
}

/******************************************************************************
 *
 * It cleans ParamEntry qand bring back EDMA to initial state if media has
 * been removed before EDMA has finished.It is usedful for removable media.
 * Arguments:
 *      ch_no     - channel no
 *
 * Return: zero on success, or corresponding error no on failure
 *
 * FIXME this should not be needed ... edma_stop() should suffice.
 *
 *****************************************************************************/

static void edma_clean_channel(struct edma_cc *ecc, unsigned channel)
{
	if (ecc->id != EDMA_CTLR(channel)) {
		dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
			ecc->id, EDMA_CTLR(channel));
		return;
	}
	channel = EDMA_CHAN_SLOT(channel);

	if (channel < ecc->num_channels) {
		int j = (channel >> 5);
		unsigned int mask = BIT(channel & 0x1f);

834 835
		dev_dbg(ecc->dev, "EMR%d %08x\n", j,
			edma_read_array(ecc, EDMA_EMR, j));
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
		edma_shadow0_write_array(ecc, SH_ECR, j, mask);
		/* Clear the corresponding EMR bits */
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
	}
}

/**
 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
 * @ecc: pointer to edma_cc struct
 * @channel: specific channel to allocate; negative for "any unmapped channel"
 * @callback: optional; to be issued on DMA completion or errors
 * @data: passed to callback
 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
 *	Controller (TC) executes requests using this channel.  Use
 *	EVENTQ_DEFAULT unless you really need a high priority queue.
 *
 * This allocates a DMA channel and its associated parameter RAM slot.
 * The parameter RAM is initialized to hold a dummy transfer.
 *
 * Normal use is to pass a specific channel number as @channel, to make
 * use of hardware events mapped to that channel.  When the channel will
 * be used only for software triggering or event chaining, channels not
 * mapped to hardware events (or mapped to unused events) are preferable.
 *
 * DMA transfers start from a channel using edma_start(), or by
 * chaining.  When the transfer described in that channel's parameter RAM
 * slot completes, that slot's data may be reloaded through a link.
 *
 * DMA errors are only reported to the @callback associated with the
 * channel driving that transfer, but transfer completion callbacks can
 * be sent to another channel under control of the TCC field in
 * the option word of the transfer's parameter RAM set.  Drivers must not
 * use DMA transfer completion callbacks for channels they did not allocate.
 * (The same applies to TCC codes used in transfer chaining.)
 *
 * Returns the number of the channel, else negative errno.
 */
static int edma_alloc_channel(struct edma_cc *ecc, int channel,
		void (*callback)(unsigned channel, u16 ch_status, void *data),
		void *data,
		enum dma_event_q eventq_no)
{
	unsigned done = 0;
	int ret = 0;

	if (!ecc->unused_chan_list_done) {
		/*
		 * Scan all the platform devices to find out the EDMA channels
		 * used and clear them in the unused list, making the rest
		 * available for ARM usage.
		 */
		ret = bus_for_each_dev(&platform_bus_type, NULL, ecc,
				       prepare_unused_channel_list);
		if (ret < 0)
			return ret;

		ecc->unused_chan_list_done = true;
	}

	if (channel >= 0) {
		if (ecc->id != EDMA_CTLR(channel)) {
			dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n",
				__func__, ecc->id, EDMA_CTLR(channel));
			return -EINVAL;
		}
		channel = EDMA_CHAN_SLOT(channel);
	}

	if (channel < 0) {
		channel = 0;
		for (;;) {
			channel = find_next_bit(ecc->edma_unused,
						ecc->num_channels, channel);
			if (channel == ecc->num_channels)
				break;
			if (!test_and_set_bit(channel, ecc->edma_inuse)) {
				done = 1;
				break;
			}
			channel++;
		}
		if (!done)
			return -ENOMEM;
	} else if (channel >= ecc->num_channels) {
		return -EINVAL;
	} else if (test_and_set_bit(channel, ecc->edma_inuse)) {
		return -EBUSY;
	}

	/* ensure access through shadow region 0 */
	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));

	/* ensure no events are pending */
	edma_stop(ecc, EDMA_CTLR_CHAN(ecc->id, channel));
	edma_write_slot(ecc, channel, &dummy_paramset);

	if (callback)
		edma_setup_interrupt(ecc, EDMA_CTLR_CHAN(ecc->id, channel),
				     callback, data);

	edma_map_dmach_to_queue(ecc, channel, eventq_no);

	return EDMA_CTLR_CHAN(ecc->id, channel);
}

/**
 * edma_free_channel - deallocate DMA channel
 * @ecc: pointer to edma_cc struct
 * @channel: dma channel returned from edma_alloc_channel()
 *
 * This deallocates the DMA channel and associated parameter RAM slot
 * allocated by edma_alloc_channel().
 *
 * Callers are responsible for ensuring the channel is inactive, and
 * will not be reactivated by linking, chaining, or software calls to
 * edma_start().
 */
static void edma_free_channel(struct edma_cc *ecc, unsigned channel)
{
	if (ecc->id != EDMA_CTLR(channel)) {
		dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
			ecc->id, EDMA_CTLR(channel));
		return;
	}
	channel = EDMA_CHAN_SLOT(channel);

	if (channel >= ecc->num_channels)
		return;

	edma_setup_interrupt(ecc, channel, NULL, NULL);
	/* REVISIT should probably take out of shadow region 0 */

971
	edma_write_slot(ecc, channel, &dummy_paramset);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	clear_bit(channel, ecc->edma_inuse);
}

/*
 * edma_assign_channel_eventq - move given channel to desired eventq
 * Arguments:
 *	channel - channel number
 *	eventq_no - queue to move the channel
 *
 * Can be used to move a channel to a selected event queue.
 */
static void edma_assign_channel_eventq(struct edma_cc *ecc, unsigned channel,
				       enum dma_event_q eventq_no)
{
	if (ecc->id != EDMA_CTLR(channel)) {
		dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
			ecc->id, EDMA_CTLR(channel));
		return;
	}
	channel = EDMA_CHAN_SLOT(channel);

	if (channel >= ecc->num_channels)
		return;

	/* default to low priority queue */
	if (eventq_no == EVENTQ_DEFAULT)
		eventq_no = ecc->default_queue;
	if (eventq_no >= ecc->num_tc)
		return;

	edma_map_dmach_to_queue(ecc, channel, eventq_no);
}

static irqreturn_t dma_irq_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int ctlr;
	u32 sh_ier;
	u32 sh_ipr;
	u32 bank;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_dbg(ecc->dev, "dma_irq_handler\n");

	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
	if (!sh_ipr) {
		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
		if (!sh_ipr)
			return IRQ_NONE;
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
		bank = 1;
	} else {
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
		bank = 0;
	}

	do {
		u32 slot;
		u32 channel;

		dev_dbg(ecc->dev, "IPR%d %08x\n", bank, sh_ipr);

		slot = __ffs(sh_ipr);
		sh_ipr &= ~(BIT(slot));

		if (sh_ier & BIT(slot)) {
			channel = (bank << 5) | slot;
			/* Clear the corresponding IPR bits */
			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
			if (ecc->intr_data[channel].callback)
				ecc->intr_data[channel].callback(
						EDMA_CTLR_CHAN(ctlr, channel),
						EDMA_DMA_COMPLETE,
						ecc->intr_data[channel].data);
		}
	} while (sh_ipr);

	edma_shadow0_write(ecc, SH_IEVAL, 1);
	return IRQ_HANDLED;
}

/******************************************************************************
 *
 * DMA error interrupt handler
 *
 *****************************************************************************/
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int i;
	int ctlr;
	unsigned int cnt = 0;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_dbg(ecc->dev, "dma_ccerr_handler\n");

	if ((edma_read_array(ecc, EDMA_EMR, 0) == 0) &&
	    (edma_read_array(ecc, EDMA_EMR, 1) == 0) &&
	    (edma_read(ecc, EDMA_QEMR) == 0) &&
	    (edma_read(ecc, EDMA_CCERR) == 0))
		return IRQ_NONE;

	while (1) {
		int j = -1;

		if (edma_read_array(ecc, EDMA_EMR, 0))
			j = 0;
		else if (edma_read_array(ecc, EDMA_EMR, 1))
			j = 1;
		if (j >= 0) {
			dev_dbg(ecc->dev, "EMR%d %08x\n", j,
				edma_read_array(ecc, EDMA_EMR, j));
			for (i = 0; i < 32; i++) {
				int k = (j << 5) + i;

				if (edma_read_array(ecc, EDMA_EMR, j) &
							BIT(i)) {
					/* Clear the corresponding EMR bits */
					edma_write_array(ecc, EDMA_EMCR, j,
							 BIT(i));
					/* Clear any SER */
					edma_shadow0_write_array(ecc, SH_SECR,
								 j, BIT(i));
					if (ecc->intr_data[k].callback) {
						ecc->intr_data[k].callback(
							EDMA_CTLR_CHAN(ctlr, k),
							EDMA_DMA_CC_ERROR,
							ecc->intr_data[k].data);
					}
				}
			}
		} else if (edma_read(ecc, EDMA_QEMR)) {
			dev_dbg(ecc->dev, "QEMR %02x\n",
				edma_read(ecc, EDMA_QEMR));
			for (i = 0; i < 8; i++) {
				if (edma_read(ecc, EDMA_QEMR) & BIT(i)) {
					/* Clear the corresponding IPR bits */
					edma_write(ecc, EDMA_QEMCR, BIT(i));
					edma_shadow0_write(ecc, SH_QSECR,
							   BIT(i));

					/* NOTE:  not reported!! */
				}
			}
		} else if (edma_read(ecc, EDMA_CCERR)) {
			dev_dbg(ecc->dev, "CCERR %08x\n",
				edma_read(ecc, EDMA_CCERR));
			/* FIXME:  CCERR.BIT(16) ignored!  much better
			 * to just write CCERRCLR with CCERR value...
			 */
			for (i = 0; i < 8; i++) {
				if (edma_read(ecc, EDMA_CCERR) & BIT(i)) {
					/* Clear the corresponding IPR bits */
					edma_write(ecc, EDMA_CCERRCLR, BIT(i));

					/* NOTE:  not reported!! */
				}
			}
		}
		if ((edma_read_array(ecc, EDMA_EMR, 0) == 0) &&
		    (edma_read_array(ecc, EDMA_EMR, 1) == 0) &&
		    (edma_read(ecc, EDMA_QEMR) == 0) &&
		    (edma_read(ecc, EDMA_CCERR) == 0))
			break;
		cnt++;
		if (cnt > 10)
			break;
	}
	edma_write(ecc, EDMA_EEVAL, 1);
	return IRQ_HANDLED;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

1160
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
1173
	struct edma_cc *ecc = echan->ecc;
1174
	struct virt_dma_desc *vdesc;
1175
	struct edma_desc *edesc;
1176 1177 1178
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

1179 1180
	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
1181
		vdesc = vchan_next_desc(&echan->vchan);
1182
		if (!vdesc)
1183 1184 1185
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
1186 1187
	}

1188
	edesc = echan->edesc;
1189

1190 1191 1192
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
1193
	edesc->sg_len = 0;
1194 1195

	/* Write descriptor PaRAM set(s) */
1196 1197
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
1198
		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
1199
		edesc->sg_len += edesc->pset[j].len;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		dev_vdbg(dev,
			 "\n pset[%d]:\n"
			 "  chnum\t%d\n"
			 "  slot\t%d\n"
			 "  opt\t%08x\n"
			 "  src\t%08x\n"
			 "  dst\t%08x\n"
			 "  abcnt\t%08x\n"
			 "  ccnt\t%08x\n"
			 "  bidx\t%08x\n"
			 "  cidx\t%08x\n"
			 "  lkrld\t%08x\n",
			 j, echan->ch_num, echan->slot[i],
			 edesc->pset[j].param.opt,
			 edesc->pset[j].param.src,
			 edesc->pset[j].param.dst,
			 edesc->pset[j].param.a_b_cnt,
			 edesc->pset[j].param.ccnt,
			 edesc->pset[j].param.src_dst_bidx,
			 edesc->pset[j].param.src_dst_cidx,
			 edesc->pset[j].param.link_bcntrld);
1221
		/* Link to the previous slot if not the last set */
1222
		if (i != (nslots - 1))
1223
			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
1224 1225
	}

1226 1227
	edesc->processed += nslots;

1228 1229 1230 1231 1232
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
1233 1234
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
1235
			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
1236
		else
1237
			edma_link(ecc, echan->slot[nslots - 1],
1238 1239
				  echan->ecc->dummy_slot);
	}
1240

1241
	if (echan->missed) {
1242 1243 1244 1245 1246
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
1247
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
1248 1249 1250 1251
		edma_clean_channel(ecc, echan->ch_num);
		edma_stop(ecc, echan->ch_num);
		edma_start(ecc, echan->ch_num);
		edma_trigger_channel(ecc, echan->ch_num);
1252
		echan->missed = 0;
1253 1254 1255
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
1256
		edma_start(ecc, echan->ch_num);
1257 1258 1259
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
1260
		edma_resume(ecc, echan->ch_num);
1261
	}
1262 1263
}

1264
static int edma_terminate_all(struct dma_chan *chan)
1265
{
1266
	struct edma_chan *echan = to_edma_chan(chan);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
1278
		edma_stop(echan->ecc, echan->ch_num);
1279 1280
		/* Move the cyclic channel back to default queue */
		if (echan->edesc->cyclic)
1281
			edma_assign_channel_eventq(echan->ecc, echan->ch_num,
1282
						   EVENTQ_DEFAULT);
1283 1284 1285 1286 1287
		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

1298
static int edma_slave_config(struct dma_chan *chan,
1299
	struct dma_slave_config *cfg)
1300
{
1301 1302
	struct edma_chan *echan = to_edma_chan(chan);

1303 1304
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1305 1306
		return -EINVAL;

1307
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
1308 1309 1310 1311

	return 0;
}

1312
static int edma_dma_pause(struct dma_chan *chan)
1313
{
1314 1315
	struct edma_chan *echan = to_edma_chan(chan);

1316
	if (!echan->edesc)
1317 1318
		return -EINVAL;

1319
	edma_pause(echan->ecc, echan->ch_num);
1320 1321 1322
	return 0;
}

1323
static int edma_dma_resume(struct dma_chan *chan)
1324
{
1325 1326
	struct edma_chan *echan = to_edma_chan(chan);

1327
	edma_resume(echan->ecc, echan->ch_num);
1328 1329 1330
	return 0;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
1342
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
1343 1344 1345 1346
			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
			    enum dma_slave_buswidth dev_width,
			    unsigned int dma_length,
			    enum dma_transfer_direction direction)
1347 1348 1349
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
1350
	struct edmacc_param *param = &epset->param;
1351 1352 1353 1354 1355
	int acnt, bcnt, ccnt, cidx;
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

	acnt = dev_width;
1356 1357 1358 1359

	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

1410 1411
	epset->len = dma_length;

1412 1413 1414 1415 1416
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
1417
		epset->addr = src_addr;
1418 1419 1420 1421 1422
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
1423
		epset->addr = dst_addr;
1424 1425 1426 1427 1428
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
1429 1430 1431 1432 1433
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

1434
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1435 1436
	/* Configure A or AB synchronized transfers */
	if (absync)
1437
		param->opt |= SYNCDIM;
1438

1439 1440
	param->src = src_addr;
	param->dst = dst_addr;
1441

1442 1443
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1444

1445 1446
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
1447 1448 1449 1450 1451 1452
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
1453
	param->link_bcntrld = 0xffffffff;
1454 1455 1456
	return absync;
}

1457 1458 1459 1460 1461 1462 1463 1464
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
1465
	dma_addr_t src_addr = 0, dst_addr = 0;
1466 1467
	enum dma_slave_buswidth dev_width;
	u32 burst;
1468
	struct scatterlist *sg;
1469
	int i, nslots, ret;
1470 1471 1472 1473

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

1474
	if (direction == DMA_DEV_TO_MEM) {
1475
		src_addr = echan->cfg.src_addr;
1476 1477 1478
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
1479
		dst_addr = echan->cfg.dst_addr;
1480 1481 1482
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1483
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1484 1485 1486 1487
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1488
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1489 1490 1491
		return NULL;
	}

1492 1493
	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1494
	if (!edesc) {
1495
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1496 1497 1498 1499
		return NULL;
	}

	edesc->pset_nr = sg_len;
1500
	edesc->residue = 0;
1501
	edesc->direction = direction;
1502
	edesc->echan = echan;
1503

1504 1505 1506 1507
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
1508 1509
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1510
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1511
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
1512
				kfree(edesc);
1513 1514
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1515 1516 1517
				return NULL;
			}
		}
1518 1519 1520 1521
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
1522 1523 1524 1525 1526
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
1527

1528 1529 1530
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
1531 1532
		if (ret < 0) {
			kfree(edesc);
1533
			return NULL;
1534 1535
		}

1536
		edesc->absync = ret;
1537
		edesc->residue += sg_dma_len(sg);
1538 1539 1540 1541

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
1542
			edesc->pset[i].param.opt |= TCINTEN;
1543

1544 1545
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
1546
			edesc->pset[i].param.opt |= TCINTEN;
1547
	}
1548
	edesc->residue_stat = edesc->residue;
1549 1550 1551 1552

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1553
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	int ret;
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);

	if (unlikely(!echan || !len))
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

	edesc->pset_nr = 1;

	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
	if (ret < 0)
		return NULL;

	edesc->absync = ret;

	/*
	 * Enable intermediate transfer chaining to re-trigger channel
	 * on completion of every TR, and enable transfer-completion
	 * interrupt on completion of the whole transfer.
	 */
1585 1586
	edesc->pset[0].param.opt |= ITCCHEN;
	edesc->pset[0].param.opt |= TCINTEN;
1587 1588 1589 1590

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1591 1592 1593
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
1594
	unsigned long tx_flags)
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1618
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1619 1620 1621 1622
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1623
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

1645 1646
	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1647
	if (!edesc) {
1648
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1649 1650 1651 1652 1653
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
1654
	edesc->residue = edesc->residue_stat = buf_len;
1655
	edesc->direction = direction;
1656
	edesc->echan = echan;
1657

1658 1659
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
1660 1661 1662 1663 1664

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1665
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1666
			if (echan->slot[i] < 0) {
1667
				kfree(edesc);
1668 1669
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
1683 1684
		if (ret < 0) {
			kfree(edesc);
1685
			return NULL;
1686
		}
1687

1688 1689 1690 1691
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
1692

1693 1694
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
1707 1708 1709 1710 1711 1712 1713 1714
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
1715 1716 1717 1718

		edesc->absync = ret;

		/*
1719
		 * Enable period interrupt only if it is requested
1720
		 */
1721 1722
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
1723 1724
	}

1725
	/* Place the cyclic channel to highest priority queue */
1726
	edma_assign_channel_eventq(echan->ecc, echan->ch_num, EVENTQ_0);
1727

1728 1729 1730 1731 1732 1733
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
{
	struct edma_chan *echan = data;
1734
	struct edma_cc *ecc = echan->ecc;
1735 1736
	struct device *dev = echan->vchan.chan.device->dev;
	struct edma_desc *edesc;
1737
	struct edmacc_param p;
1738

1739 1740
	edesc = echan->edesc;

1741
	spin_lock(&echan->vchan.lock);
1742
	switch (ch_status) {
1743
	case EDMA_DMA_COMPLETE:
1744
		if (edesc) {
1745 1746
			if (edesc->cyclic) {
				vchan_cyclic_callback(&edesc->vdesc);
1747
				goto out;
1748
			} else if (edesc->processed == edesc->pset_nr) {
1749 1750 1751
				dev_dbg(dev,
					"Transfer completed on channel %d\n",
					ch_num);
1752
				edesc->residue = 0;
1753
				edma_stop(ecc, echan->ch_num);
1754
				vchan_cookie_complete(&edesc->vdesc);
1755
				echan->edesc = NULL;
1756
			} else {
1757 1758 1759
				dev_dbg(dev,
					"Sub transfer completed on channel %d\n",
					ch_num);
1760

1761
				edma_pause(ecc, echan->ch_num);
1762

1763 1764 1765 1766
				/* Update statistics for tx_status */
				edesc->residue -= edesc->sg_len;
				edesc->residue_stat = edesc->residue;
				edesc->processed_stat = edesc->processed;
1767
			}
1768
			edma_execute(echan);
1769 1770
		}
		break;
1771
	case EDMA_DMA_CC_ERROR:
1772
		edma_read_slot(ecc, echan->slot[0], &p);
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

		/*
		 * Issue later based on missed flag which will be sure
		 * to happen as:
		 * (1) we finished transmitting an intermediate slot and
		 *     edma_execute is coming up.
		 * (2) or we finished current transfer and issue will
		 *     call edma_execute.
		 *
		 * Important note: issuing can be dangerous here and
		 * lead to some nasty recursion when we are in a NULL
		 * slot. So we avoid doing so and set the missed flag.
		 */
		if (p.a_b_cnt == 0 && p.ccnt == 0) {
1787
			dev_dbg(dev, "Error on null slot, setting miss\n");
1788 1789 1790 1791 1792 1793
			echan->missed = 1;
		} else {
			/*
			 * The slot is already programmed but the event got
			 * missed, so its safe to issue it here.
			 */
1794 1795 1796 1797 1798
			dev_dbg(dev, "Missed event, TRIGGERING\n");
			edma_clean_channel(ecc, echan->ch_num);
			edma_stop(ecc, echan->ch_num);
			edma_start(ecc, echan->ch_num);
			edma_trigger_channel(ecc, echan->ch_num);
1799
		}
1800 1801 1802 1803
		break;
	default:
		break;
	}
1804 1805
out:
	spin_unlock(&echan->vchan.lock);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int ret;
	int a_ch_num;
	LIST_HEAD(descs);

1817
	a_ch_num = edma_alloc_channel(echan->ecc, echan->ch_num,
1818
				      edma_callback, echan, EVENTQ_DEFAULT);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

	if (a_ch_num < 0) {
		ret = -ENODEV;
		goto err_no_chan;
	}

	if (a_ch_num != echan->ch_num) {
		dev_err(dev, "failed to allocate requested channel %u:%u\n",
			EDMA_CTLR(echan->ch_num),
			EDMA_CHAN_SLOT(echan->ch_num));
		ret = -ENODEV;
		goto err_wrong_chan;
	}

	echan->alloced = true;
	echan->slot[0] = echan->ch_num;

1836
	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
1837
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
1838 1839 1840 1841

	return 0;

err_wrong_chan:
1842
	edma_free_channel(echan->ecc, a_ch_num);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
err_no_chan:
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	int i;

	/* Terminate transfers */
1854
	edma_stop(echan->ecc, echan->ch_num);
1855 1856 1857 1858 1859 1860

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
		if (echan->slot[i] >= 0) {
1861
			edma_free_slot(echan->ecc, echan->slot[i]);
1862 1863 1864 1865 1866 1867
			echan->slot[i] = -1;
		}
	}

	/* Free EDMA channel */
	if (echan->alloced) {
1868
		edma_free_channel(echan->ecc, echan->ch_num);
1869 1870 1871
		echan->alloced = false;
	}

1872
	dev_dbg(chan->device->dev, "freeing channel for %u\n", echan->ch_num);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
1898
	pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
1946
	if (ret == DMA_COMPLETE || !txstate)
1947 1948 1949
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
1950
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1951
		txstate->residue = edma_residue(echan->edesc);
1952 1953
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1954 1955 1956 1957 1958
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

1959
static void __init edma_chan_init(struct edma_cc *ecc, struct dma_device *dma,
1960 1961 1962 1963
				  struct edma_chan *echans)
{
	int i, j;

1964
	for (i = 0; i < ecc->num_channels; i++) {
1965
		struct edma_chan *echan = &echans[i];
1966
		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		vchan_init(&echan->vchan, dma);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

1978 1979
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1980
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1981 1982
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1983 1984 1985 1986
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
			  struct device *dev)
{
	dma->device_prep_slave_sg = edma_prep_slave_sg;
1987
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1988
	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1989 1990 1991 1992
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
	dma->device_free_chan_resources = edma_free_chan_resources;
	dma->device_issue_pending = edma_issue_pending;
	dma->device_tx_status = edma_tx_status;
1993 1994 1995 1996
	dma->device_config = edma_slave_config;
	dma->device_pause = edma_dma_pause;
	dma->device_resume = edma_dma_resume;
	dma->device_terminate_all = edma_terminate_all;
1997 1998 1999 2000 2001 2002

	dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

2003 2004
	dma->dev = dev;

2005 2006 2007 2008
	/*
	 * code using dma memcpy must make sure alignment of
	 * length is at dma->copy_align boundary.
	 */
2009
	dma->copy_align = DMAENGINE_ALIGN_4_BYTES;
2010

2011 2012 2013
	INIT_LIST_HEAD(&dma->channels);
}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
			      struct edma_cc *ecc)
{
	int i;
	u32 value, cccfg;
	s8 (*queue_priority_map)[2];

	/* Decode the eDMA3 configuration from CCCFG register */
	cccfg = edma_read(ecc, EDMA_CCCFG);

	value = GET_NUM_REGN(cccfg);
	ecc->num_region = BIT(value);

	value = GET_NUM_DMACH(cccfg);
	ecc->num_channels = BIT(value + 1);

	value = GET_NUM_PAENTRY(cccfg);
	ecc->num_slots = BIT(value + 4);

	value = GET_NUM_EVQUE(cccfg);
	ecc->num_tc = value + 1;

	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);

	/* Nothing need to be done if queue priority is provided */
	if (pdata->queue_priority_mapping)
		return 0;

	/*
	 * Configure TC/queue priority as follows:
	 * Q0 - priority 0
	 * Q1 - priority 1
	 * Q2 - priority 2
	 * ...
	 * The meaning of priority numbers: 0 highest priority, 7 lowest
	 * priority. So Q0 is the highest priority queue and the last queue has
	 * the lowest priority.
	 */
2056
	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
					  GFP_KERNEL);
	if (!queue_priority_map)
		return -ENOMEM;

	for (i = 0; i < ecc->num_tc; i++) {
		queue_priority_map[i][0] = i;
		queue_priority_map[i][1] = i;
	}
	queue_priority_map[i][0] = -1;
	queue_priority_map[i][1] = -1;

	pdata->queue_priority_mapping = queue_priority_map;
	/* Default queue has the lowest priority */
	pdata->default_queue = i - 1;

	return 0;
}

#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
			       size_t sz)
{
	const char pname[] = "ti,edma-xbar-event-map";
	struct resource res;
	void __iomem *xbar;
	s16 (*xbar_chans)[2];
	size_t nelm = sz / sizeof(s16);
	u32 shift, offset, mux;
	int ret, i;

2087
	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	if (!xbar_chans)
		return -ENOMEM;

	ret = of_address_to_resource(dev->of_node, 1, &res);
	if (ret)
		return -ENOMEM;

	xbar = devm_ioremap(dev, res.start, resource_size(&res));
	if (!xbar)
		return -ENOMEM;

	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
					 nelm);
	if (ret)
		return -EIO;

	/* Invalidate last entry for the other user of this mess */
	nelm >>= 1;
	xbar_chans[nelm][0] = -1;
	xbar_chans[nelm][1] = -1;

	for (i = 0; i < nelm; i++) {
		shift = (xbar_chans[i][1] & 0x03) << 3;
		offset = xbar_chans[i][1] & 0xfffffffc;
		mux = readl(xbar + offset);
		mux &= ~(0xff << shift);
		mux |= xbar_chans[i][0] << shift;
		writel(mux, (xbar + offset));
	}

	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
	return 0;
}

static int edma_of_parse_dt(struct device *dev, struct edma_soc_info *pdata)
{
	int ret = 0;
	struct property *prop;
	size_t sz;
	struct edma_rsv_info *rsv_info;

	rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
	if (!rsv_info)
		return -ENOMEM;
	pdata->rsv = rsv_info;

	prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", &sz);
	if (prop)
		ret = edma_xbar_event_map(dev, pdata, sz);

	return ret;
}

static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
{
	struct edma_soc_info *info;
	int ret;

	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

	ret = edma_of_parse_dt(dev, info);
	if (ret)
		return ERR_PTR(ret);

	return info;
}
#else
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
{
	return ERR_PTR(-EINVAL);
}
#endif

B
Bill Pemberton 已提交
2163
static int edma_probe(struct platform_device *pdev)
2164
{
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	struct edma_soc_info	*info = pdev->dev.platform_data;
	s8			(*queue_priority_mapping)[2];
	int			i, off, ln;
	const s16		(*rsv_chans)[2];
	const s16		(*rsv_slots)[2];
	const s16		(*xbar_chans)[2];
	int			irq;
	char			*irq_name;
	struct resource		*mem;
	struct device_node	*node = pdev->dev.of_node;
	struct device		*dev = &pdev->dev;
	struct edma_cc		*ecc;
2177 2178
	int ret;

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	if (node) {
		info = edma_setup_info_from_dt(dev);
		if (IS_ERR(info)) {
			dev_err(dev, "failed to get DT data\n");
			return PTR_ERR(info);
		}
	}

	if (!info)
		return -ENODEV;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		return ret;
	}

2197
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2198 2199 2200
	if (ret)
		return ret;

2201
	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2202
	if (!ecc) {
2203
		dev_err(dev, "Can't allocate controller\n");
2204 2205 2206
		return -ENOMEM;
	}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	ecc->dev = dev;
	ecc->id = pdev->id;
	/* When booting with DT the pdev->id is -1 */
	if (ecc->id < 0)
		ecc->id = 0;

	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
	if (!mem) {
		dev_dbg(dev, "mem resource not found, using index 0\n");
		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		if (!mem) {
			dev_err(dev, "no mem resource?\n");
			return -ENODEV;
		}
	}
	ecc->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ecc->base))
		return PTR_ERR(ecc->base);

	platform_set_drvdata(pdev, ecc);

	/* Get eDMA3 configuration from IP */
	ret = edma_setup_from_hw(dev, info, ecc);
	if (ret)
		return ret;

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	/* Allocate memory based on the information we got from the IP */
	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
					sizeof(*ecc->slave_chans), GFP_KERNEL);
	if (!ecc->slave_chans)
		return -ENOMEM;

	ecc->intr_data = devm_kcalloc(dev, ecc->num_channels,
				      sizeof(*ecc->intr_data), GFP_KERNEL);
	if (!ecc->intr_data)
		return -ENOMEM;

	ecc->edma_unused = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_channels),
					sizeof(unsigned long), GFP_KERNEL);
	if (!ecc->edma_unused)
		return -ENOMEM;

	ecc->edma_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
				       sizeof(unsigned long), GFP_KERNEL);
	if (!ecc->edma_inuse)
		return -ENOMEM;

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	ecc->default_queue = info->default_queue;

	for (i = 0; i < ecc->num_slots; i++)
		edma_write_slot(ecc, i, &dummy_paramset);

	/* Mark all channels as unused */
	memset(ecc->edma_unused, 0xff, sizeof(ecc->edma_unused));

	if (info->rsv) {
		/* Clear the reserved channels in unused list */
		rsv_chans = info->rsv->rsv_chans;
		if (rsv_chans) {
			for (i = 0; rsv_chans[i][0] != -1; i++) {
				off = rsv_chans[i][0];
				ln = rsv_chans[i][1];
				clear_bits(off, ln, ecc->edma_unused);
			}
		}

		/* Set the reserved slots in inuse list */
		rsv_slots = info->rsv->rsv_slots;
		if (rsv_slots) {
			for (i = 0; rsv_slots[i][0] != -1; i++) {
				off = rsv_slots[i][0];
				ln = rsv_slots[i][1];
				set_bits(off, ln, ecc->edma_inuse);
			}
		}
	}

	/* Clear the xbar mapped channels in unused list */
	xbar_chans = info->xbar_chans;
	if (xbar_chans) {
		for (i = 0; xbar_chans[i][1] != -1; i++) {
			off = xbar_chans[i][1];
			clear_bits(off, 1, ecc->edma_unused);
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 0);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 2);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

	for (i = 0; i < ecc->num_channels; i++)
		edma_map_dmach_to_queue(ecc, i, info->default_queue);

	queue_priority_mapping = info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);
2332

2333 2334 2335
	/* Map the channel to param entry if channel mapping logic exist */
	if (edma_read(ecc, EDMA_CCCFG) & CHMAP_EXIST)
		edma_direct_dmach_to_param_mapping(ecc);
2336

2337 2338 2339 2340 2341 2342 2343 2344
	for (i = 0; i < ecc->num_region; i++) {
		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
	}
	ecc->info = info;

	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2345
	if (ecc->dummy_slot < 0) {
2346
		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2347
		return ecc->dummy_slot;
2348 2349 2350 2351
	}

	dma_cap_zero(ecc->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
2352
	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
2353
	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
2354

2355
	edma_dma_init(ecc, &ecc->dma_slave, dev);
2356 2357 2358 2359 2360 2361 2362

	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);

	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret)
		goto err_reg1;

2363 2364
	if (node)
		of_dma_controller_register(node, of_dma_xlate_by_chan_id,
2365
					   &ecc->dma_slave);
2366

2367
	dev_info(dev, "TI EDMA DMA engine driver\n");
2368 2369 2370 2371

	return 0;

err_reg1:
2372
	edma_free_slot(ecc, ecc->dummy_slot);
2373 2374 2375
	return ret;
}

2376
static int edma_remove(struct platform_device *pdev)
2377 2378 2379 2380
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

2381 2382
	if (dev->of_node)
		of_dma_controller_free(dev->of_node);
2383
	dma_async_device_unregister(&ecc->dma_slave);
2384
	edma_free_slot(ecc, ecc->dummy_slot);
2385 2386 2387 2388

	return 0;
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
#ifdef CONFIG_PM_SLEEP
static int edma_pm_resume(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
	int i;
	s8 (*queue_priority_mapping)[2];

	queue_priority_mapping = ecc->info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	/* Map the channel to param entry if channel mapping logic */
	if (edma_read(ecc, EDMA_CCCFG) & CHMAP_EXIST)
		edma_direct_dmach_to_param_mapping(ecc);

	for (i = 0; i < ecc->num_channels; i++) {
		if (test_bit(i, ecc->edma_inuse)) {
			/* ensure access through shadow region 0 */
			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
				       BIT(i & 0x1f));

			edma_setup_interrupt(ecc, EDMA_CTLR_CHAN(ecc->id, i),
					     ecc->intr_data[i].callback,
					     ecc->intr_data[i].data);
		}
	}

	return 0;
}
#endif

static const struct dev_pm_ops edma_pm_ops = {
	SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume)
};

2427 2428
static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
2429
	.remove		= edma_remove,
2430
	.driver = {
2431 2432 2433
		.name	= "edma",
		.pm	= &edma_pm_ops,
		.of_match_table = edma_of_ids,
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		return ch_req == echan->ch_num;
	}
	return false;
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
2450
	return platform_driver_register(&edma_driver);
2451 2452 2453 2454 2455 2456 2457 2458 2459
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
2460
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2461 2462
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");