edma.c 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

27
#include <linux/platform_data/edma.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

#include "dmaengine.h"
#include "virt-dma.h"

/*
 * This will go away when the private EDMA API is folded
 * into this driver and the platform device(s) are
 * instantiated in the arch code. We can only get away
 * with this simplification because DA8XX may not be built
 * in the same kernel image with other DaVinci parts. This
 * avoids having to sprinkle dmaengine driver platform devices
 * and data throughout all the existing board files.
 */
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
#define EDMA_CTLRS	2
#define EDMA_CHANS	32
#else
#define EDMA_CTLRS	1
#define EDMA_CHANS	64
#endif /* CONFIG_ARCH_DAVINCI_DA8XX */

49 50 51 52 53 54 55 56
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
57 58 59
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

60
struct edma_pset {
61 62
	u32				len;
	dma_addr_t			addr;
63 64 65
	struct edmacc_param		param;
};

66 67 68
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
69
	enum dma_transfer_direction	direction;
70
	int				cyclic;
71 72
	int				absync;
	int				pset_nr;
73
	struct edma_chan		*echan;
74
	int				processed;
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
96 97
	int				processed_stat;
	u32				sg_len;
98
	u32				residue;
99
	u32				residue_stat;
100

101
	struct edma_pset		pset[0];
102 103 104 105 106 107 108 109 110 111 112 113
};

struct edma_cc;

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	int				ch_num;
	bool				alloced;
	int				slot[EDMA_MAX_SLOTS];
114
	int				missed;
115
	struct dma_slave_config		cfg;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
};

struct edma_cc {
	int				ctlr;
	struct dma_device		dma_slave;
	struct edma_chan		slave_chans[EDMA_CHANS];
	int				num_slave_chans;
	int				dummy_slot;
};

static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
150
	struct virt_dma_desc *vdesc;
151
	struct edma_desc *edesc;
152 153 154 155 156 157 158 159 160 161 162 163 164 165
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

	/* If either we processed all psets or we're still not started */
	if (!echan->edesc ||
	    echan->edesc->pset_nr == echan->edesc->processed) {
		/* Get next vdesc */
		vdesc = vchan_next_desc(&echan->vchan);
		if (!vdesc) {
			echan->edesc = NULL;
			return;
		}
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
166 167
	}

168
	edesc = echan->edesc;
169

170 171 172
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
173
	edesc->sg_len = 0;
174 175

	/* Write descriptor PaRAM set(s) */
176 177
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
178
		edma_write_slot(echan->slot[i], &edesc->pset[j].param);
179
		edesc->sg_len += edesc->pset[j].len;
180
		dev_vdbg(echan->vchan.chan.device->dev,
181 182 183 184 185 186 187 188 189 190 191
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
192
			j, echan->ch_num, echan->slot[i],
193 194 195 196 197 198 199 200
			edesc->pset[j].param.opt,
			edesc->pset[j].param.src,
			edesc->pset[j].param.dst,
			edesc->pset[j].param.a_b_cnt,
			edesc->pset[j].param.ccnt,
			edesc->pset[j].param.src_dst_bidx,
			edesc->pset[j].param.src_dst_cidx,
			edesc->pset[j].param.link_bcntrld);
201
		/* Link to the previous slot if not the last set */
202
		if (i != (nslots - 1))
203 204 205
			edma_link(echan->slot[i], echan->slot[i+1]);
	}

206 207
	edesc->processed += nslots;

208 209 210 211 212
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
213 214 215 216 217 218 219
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
			edma_link(echan->slot[nslots-1], echan->slot[1]);
		else
			edma_link(echan->slot[nslots-1],
				  echan->ecc->dummy_slot);
	}
220

221
	if (edesc->processed <= MAX_NR_SG) {
222 223
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
224
		edma_start(echan->ch_num);
225 226 227 228
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
		edma_resume(echan->ch_num);
229
	}
230 231 232 233 234 235 236

	/*
	 * This happens due to setup times between intermediate transfers
	 * in long SG lists which have to be broken up into transfers of
	 * MAX_NR_SG
	 */
	if (echan->missed) {
237
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
238 239 240 241 242 243
		edma_clean_channel(echan->ch_num);
		edma_stop(echan->ch_num);
		edma_start(echan->ch_num);
		edma_trigger_channel(echan->ch_num);
		echan->missed = 0;
	}
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
}

static int edma_terminate_all(struct edma_chan *echan)
{
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
259
		int cyclic = echan->edesc->cyclic;
260 261
		echan->edesc = NULL;
		edma_stop(echan->ch_num);
262 263 264 265
		/* Move the cyclic channel back to default queue */
		if (cyclic)
			edma_assign_channel_eventq(echan->ch_num,
						   EVENTQ_DEFAULT);
266 267 268 269 270 271 272 273 274 275
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

static int edma_slave_config(struct edma_chan *echan,
276
	struct dma_slave_config *cfg)
277
{
278 279
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
280 281
		return -EINVAL;

282
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
283 284 285 286

	return 0;
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static int edma_dma_pause(struct edma_chan *echan)
{
	/* Pause/Resume only allowed with cyclic mode */
	if (!echan->edesc->cyclic)
		return -EINVAL;

	edma_pause(echan->ch_num);
	return 0;
}

static int edma_dma_resume(struct edma_chan *echan)
{
	/* Pause/Resume only allowed with cyclic mode */
	if (!echan->edesc->cyclic)
		return -EINVAL;

	edma_resume(echan->ch_num);
	return 0;
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			unsigned long arg)
{
	int ret = 0;
	struct dma_slave_config *config;
	struct edma_chan *echan = to_edma_chan(chan);

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		edma_terminate_all(echan);
		break;
	case DMA_SLAVE_CONFIG:
		config = (struct dma_slave_config *)arg;
		ret = edma_slave_config(echan, config);
		break;
322 323 324 325 326 327 328 329
	case DMA_PAUSE:
		ret = edma_dma_pause(echan);
		break;

	case DMA_RESUME:
		ret = edma_dma_resume(echan);
		break;

330 331 332 333 334 335 336
	default:
		ret = -ENOSYS;
	}

	return ret;
}

337 338 339 340 341 342 343 344 345 346 347
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
348
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
349 350 351 352 353 354
	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
	enum dma_slave_buswidth dev_width, unsigned int dma_length,
	enum dma_transfer_direction direction)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
355
	struct edmacc_param *param = &epset->param;
356 357 358 359 360
	int acnt, bcnt, ccnt, cidx;
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

	acnt = dev_width;
361 362 363 364

	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

415 416
	epset->len = dma_length;

417 418 419 420 421
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
422
		epset->addr = src_addr;
423 424 425 426 427
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
428
		epset->addr = dst_addr;
429 430 431 432 433
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
434 435 436 437 438
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

439
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
440 441
	/* Configure A or AB synchronized transfers */
	if (absync)
442
		param->opt |= SYNCDIM;
443

444 445
	param->src = src_addr;
	param->dst = dst_addr;
446

447 448
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
449

450 451
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
452 453 454 455 456 457
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
458
	param->link_bcntrld = 0xffffffff;
459 460 461
	return absync;
}

462 463 464 465 466 467 468 469
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
470
	dma_addr_t src_addr = 0, dst_addr = 0;
471 472
	enum dma_slave_buswidth dev_width;
	u32 burst;
473
	struct scatterlist *sg;
474
	int i, nslots, ret;
475 476 477 478

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

479
	if (direction == DMA_DEV_TO_MEM) {
480
		src_addr = echan->cfg.src_addr;
481 482 483
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
484
		dst_addr = echan->cfg.dst_addr;
485 486 487
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
488
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
489 490 491 492
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
493
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
494 495 496 497 498 499
		return NULL;
	}

	edesc = kzalloc(sizeof(*edesc) + sg_len *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
500
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
501 502 503 504
		return NULL;
	}

	edesc->pset_nr = sg_len;
505
	edesc->residue = 0;
506
	edesc->direction = direction;
507
	edesc->echan = echan;
508

509 510 511 512
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
513 514 515 516 517
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
518
				kfree(edesc);
519 520
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
521 522 523
				return NULL;
			}
		}
524 525 526 527
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
528 529 530 531 532
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
533

534 535 536
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
537 538
		if (ret < 0) {
			kfree(edesc);
539
			return NULL;
540 541
		}

542
		edesc->absync = ret;
543
		edesc->residue += sg_dma_len(sg);
544 545 546 547

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
548
			edesc->pset[i].param.opt |= TCINTEN;
549

550 551
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
552
			edesc->pset[i].param.opt |= TCINTEN;
553
	}
554
	edesc->residue_stat = edesc->residue;
555 556 557 558

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	int ret;
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);

	if (unlikely(!echan || !len))
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

	edesc->pset_nr = 1;

	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
	if (ret < 0)
		return NULL;

	edesc->absync = ret;

	/*
	 * Enable intermediate transfer chaining to re-trigger channel
	 * on completion of every TR, and enable transfer-completion
	 * interrupt on completion of the whole transfer.
	 */
591 592
	edesc->pset[0].param.opt |= ITCCHEN;
	edesc->pset[0].param.opt |= TCINTEN;
593 594 595 596

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
624
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
625 626 627 628
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
629
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + nslots *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
654
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
655 656 657 658 659
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
660
	edesc->residue = edesc->residue_stat = buf_len;
661
	edesc->direction = direction;
662
	edesc->echan = echan;
663

664 665
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
666 667 668 669 670 671 672 673

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
674
				kfree(edesc);
675 676
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
677 678 679 680 681 682 683 684 685 686 687 688 689
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
690 691
		if (ret < 0) {
			kfree(edesc);
692
			return NULL;
693
		}
694

695 696 697 698
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
699

700 701
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
702 703 704 705 706 707 708 709 710 711 712 713
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
714 715 716 717 718 719 720 721
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
722 723 724 725

		edesc->absync = ret;

		/*
726
		 * Enable period interrupt only if it is requested
727
		 */
728 729
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
730 731
	}

732 733 734
	/* Place the cyclic channel to highest priority queue */
	edma_assign_channel_eventq(echan->ch_num, EVENTQ_0);

735 736 737 738 739 740 741 742
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
{
	struct edma_chan *echan = data;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edma_desc *edesc;
743
	struct edmacc_param p;
744

745 746 747 748 749
	edesc = echan->edesc;

	/* Pause the channel for non-cyclic */
	if (!edesc || (edesc && !edesc->cyclic))
		edma_pause(echan->ch_num);
750 751

	switch (ch_status) {
752
	case EDMA_DMA_COMPLETE:
753
		spin_lock(&echan->vchan.lock);
754 755

		if (edesc) {
756 757 758
			if (edesc->cyclic) {
				vchan_cyclic_callback(&edesc->vdesc);
			} else if (edesc->processed == edesc->pset_nr) {
759
				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
760
				edesc->residue = 0;
761 762
				edma_stop(echan->ch_num);
				vchan_cookie_complete(&edesc->vdesc);
763
				edma_execute(echan);
764 765
			} else {
				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
766 767 768 769 770 771

				/* Update statistics for tx_status */
				edesc->residue -= edesc->sg_len;
				edesc->residue_stat = edesc->residue;
				edesc->processed_stat = edesc->processed;

772
				edma_execute(echan);
773
			}
774 775
		}

776
		spin_unlock(&echan->vchan.lock);
777 778

		break;
779
	case EDMA_DMA_CC_ERROR:
780
		spin_lock(&echan->vchan.lock);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);

		/*
		 * Issue later based on missed flag which will be sure
		 * to happen as:
		 * (1) we finished transmitting an intermediate slot and
		 *     edma_execute is coming up.
		 * (2) or we finished current transfer and issue will
		 *     call edma_execute.
		 *
		 * Important note: issuing can be dangerous here and
		 * lead to some nasty recursion when we are in a NULL
		 * slot. So we avoid doing so and set the missed flag.
		 */
		if (p.a_b_cnt == 0 && p.ccnt == 0) {
			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
			echan->missed = 1;
		} else {
			/*
			 * The slot is already programmed but the event got
			 * missed, so its safe to issue it here.
			 */
			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
			edma_clean_channel(echan->ch_num);
			edma_stop(echan->ch_num);
			edma_start(echan->ch_num);
			edma_trigger_channel(echan->ch_num);
		}

811
		spin_unlock(&echan->vchan.lock);
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		break;
	default:
		break;
	}
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int ret;
	int a_ch_num;
	LIST_HEAD(descs);

	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
					chan, EVENTQ_DEFAULT);

	if (a_ch_num < 0) {
		ret = -ENODEV;
		goto err_no_chan;
	}

	if (a_ch_num != echan->ch_num) {
		dev_err(dev, "failed to allocate requested channel %u:%u\n",
			EDMA_CTLR(echan->ch_num),
			EDMA_CHAN_SLOT(echan->ch_num));
		ret = -ENODEV;
		goto err_wrong_chan;
	}

	echan->alloced = true;
	echan->slot[0] = echan->ch_num;

847
	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
848
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

	return 0;

err_wrong_chan:
	edma_free_channel(a_ch_num);
err_no_chan:
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int i;

	/* Terminate transfers */
	edma_stop(echan->ch_num);

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
		if (echan->slot[i] >= 0) {
			edma_free_slot(echan->slot[i]);
			echan->slot[i] = -1;
		}
	}

	/* Free EDMA channel */
	if (echan->alloced) {
		edma_free_channel(echan->ch_num);
		echan->alloced = false;
	}

884
	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
885 886 887 888 889 890 891 892 893 894 895 896 897 898
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
	pos = edma_get_position(edesc->echan->slot[0], dst);

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

947 948 949 950 951 952 953 954 955 956 957
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
958
	if (ret == DMA_COMPLETE || !txstate)
959 960 961
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
962
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
963
		txstate->residue = edma_residue(echan->edesc);
964 965
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

static void __init edma_chan_init(struct edma_cc *ecc,
				  struct dma_device *dma,
				  struct edma_chan *echans)
{
	int i, j;

	for (i = 0; i < EDMA_CHANS; i++) {
		struct edma_chan *echan = &echans[i];
		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		vchan_init(&echan->vchan, dma);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

991 992 993 994 995 996 997 998 999 1000 1001 1002
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

static int edma_dma_device_slave_caps(struct dma_chan *dchan,
				      struct dma_slave_caps *caps)
{
	caps->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	caps->dstn_addr_widths = EDMA_DMA_BUSWIDTHS;
	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	caps->cmd_pause = true;
	caps->cmd_terminate = true;
1003
	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1004 1005 1006 1007

	return 0;
}

1008 1009 1010 1011
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
			  struct device *dev)
{
	dma->device_prep_slave_sg = edma_prep_slave_sg;
1012
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1013
	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1014 1015 1016 1017 1018
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
	dma->device_free_chan_resources = edma_free_chan_resources;
	dma->device_issue_pending = edma_issue_pending;
	dma->device_tx_status = edma_tx_status;
	dma->device_control = edma_control;
1019
	dma->device_slave_caps = edma_dma_device_slave_caps;
1020 1021
	dma->dev = dev;

1022 1023 1024 1025 1026 1027
	/*
	 * code using dma memcpy must make sure alignment of
	 * length is at dma->copy_align boundary.
	 */
	dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;

1028 1029 1030
	INIT_LIST_HEAD(&dma->channels);
}

B
Bill Pemberton 已提交
1031
static int edma_probe(struct platform_device *pdev)
1032 1033 1034 1035
{
	struct edma_cc *ecc;
	int ret;

1036 1037 1038 1039
	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
	if (!ecc) {
		dev_err(&pdev->dev, "Can't allocate controller\n");
		return -ENOMEM;
	}

	ecc->ctlr = pdev->id;
	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
1050
		return ecc->dummy_slot;
1051 1052 1053 1054
	}

	dma_cap_zero(ecc->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
1055
	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
1056
	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);

	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);

	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret)
		goto err_reg1;

	platform_set_drvdata(pdev, ecc);

	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");

	return 0;

err_reg1:
	edma_free_slot(ecc->dummy_slot);
	return ret;
}

1077
static int edma_remove(struct platform_device *pdev)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

	dma_async_device_unregister(&ecc->dma_slave);
	edma_free_slot(ecc->dummy_slot);

	return 0;
}

static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
1090
	.remove		= edma_remove,
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	.driver = {
		.name = "edma-dma-engine",
		.owner = THIS_MODULE,
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		return ch_req == echan->ch_num;
	}
	return false;
}
EXPORT_SYMBOL(edma_filter_fn);

static struct platform_device *pdev0, *pdev1;

static const struct platform_device_info edma_dev_info0 = {
	.name = "edma-dma-engine",
	.id = 0,
1113
	.dma_mask = DMA_BIT_MASK(32),
1114 1115 1116 1117 1118
};

static const struct platform_device_info edma_dev_info1 = {
	.name = "edma-dma-engine",
	.id = 1,
1119
	.dma_mask = DMA_BIT_MASK(32),
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
};

static int edma_init(void)
{
	int ret = platform_driver_register(&edma_driver);

	if (ret == 0) {
		pdev0 = platform_device_register_full(&edma_dev_info0);
		if (IS_ERR(pdev0)) {
			platform_driver_unregister(&edma_driver);
			ret = PTR_ERR(pdev0);
			goto out;
		}
	}

	if (EDMA_CTLRS == 2) {
		pdev1 = platform_device_register_full(&edma_dev_info1);
		if (IS_ERR(pdev1)) {
			platform_driver_unregister(&edma_driver);
			platform_device_unregister(pdev0);
			ret = PTR_ERR(pdev1);
		}
	}

out:
	return ret;
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_device_unregister(pdev0);
	if (pdev1)
		platform_device_unregister(pdev1);
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
1158
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1159 1160
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");