pgtable.c 20.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/mm.h>
3
#include <linux/gfp.h>
4
#include <linux/hugetlb.h>
5
#include <asm/pgalloc.h>
6
#include <asm/pgtable.h>
7
#include <asm/tlb.h>
I
Ingo Molnar 已提交
8
#include <asm/fixmap.h>
9
#include <asm/mtrr.h>
10

11 12 13 14 15
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
EXPORT_SYMBOL(physical_mask);
#endif

16
#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
17

18 19 20 21 22 23 24 25
#ifdef CONFIG_HIGHPTE
#define PGALLOC_USER_GFP __GFP_HIGHMEM
#else
#define PGALLOC_USER_GFP 0
#endif

gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;

26 27
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
28
	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
29 30 31 32 33 34
}

pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
	struct page *pte;

35
	pte = alloc_pages(__userpte_alloc_gfp, 0);
36 37 38 39 40 41
	if (!pte)
		return NULL;
	if (!pgtable_page_ctor(pte)) {
		__free_page(pte);
		return NULL;
	}
42 43 44
	return pte;
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
static int __init setup_userpte(char *arg)
{
	if (!arg)
		return -EINVAL;

	/*
	 * "userpte=nohigh" disables allocation of user pagetables in
	 * high memory.
	 */
	if (strcmp(arg, "nohigh") == 0)
		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
	else
		return -EINVAL;
	return 0;
}
early_param("userpte", setup_userpte);

62
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
63 64
{
	pgtable_page_dtor(pte);
65
	paravirt_release_pte(page_to_pfn(pte));
66
	paravirt_tlb_remove_table(tlb, pte);
67 68
}

69
#if CONFIG_PGTABLE_LEVELS > 2
70
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
71
{
72
	struct page *page = virt_to_page(pmd);
73
	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
74 75 76 77 78 79 80
	/*
	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
	 * entries need a full cr3 reload to flush.
	 */
#ifdef CONFIG_X86_PAE
	tlb->need_flush_all = 1;
#endif
81
	pgtable_pmd_page_dtor(page);
82
	paravirt_tlb_remove_table(tlb, page);
83
}
84

85
#if CONFIG_PGTABLE_LEVELS > 3
86
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
87
{
88
	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
89
	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
90
}
91 92 93 94 95

#if CONFIG_PGTABLE_LEVELS > 4
void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
{
	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
96
	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
97 98
}
#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
99 100
#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static inline void pgd_list_add(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_add(&page->lru, &pgd_list);
}

static inline void pgd_list_del(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_del(&page->lru);
}

#define UNSHARED_PTRS_PER_PGD				\
J
Jeremy Fitzhardinge 已提交
117
	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
118

119 120 121

static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
{
M
Matthew Wilcox 已提交
122
	virt_to_page(pgd)->pt_mm = mm;
123 124 125 126
}

struct mm_struct *pgd_page_get_mm(struct page *page)
{
M
Matthew Wilcox 已提交
127
	return page->pt_mm;
128 129 130
}

static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
131 132 133 134
{
	/* If the pgd points to a shared pagetable level (either the
	   ptes in non-PAE, or shared PMD in PAE), then just copy the
	   references from swapper_pg_dir. */
135 136
	if (CONFIG_PGTABLE_LEVELS == 2 ||
	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
137
	    CONFIG_PGTABLE_LEVELS >= 4) {
J
Jeremy Fitzhardinge 已提交
138 139
		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
140 141 142 143
				KERNEL_PGD_PTRS);
	}

	/* list required to sync kernel mapping updates */
144 145
	if (!SHARED_KERNEL_PMD) {
		pgd_set_mm(pgd, mm);
146
		pgd_list_add(pgd);
147
	}
148 149
}

J
Jan Beulich 已提交
150
static void pgd_dtor(pgd_t *pgd)
151 152 153 154
{
	if (SHARED_KERNEL_PMD)
		return;

A
Andrea Arcangeli 已提交
155
	spin_lock(&pgd_lock);
156
	pgd_list_del(pgd);
A
Andrea Arcangeli 已提交
157
	spin_unlock(&pgd_lock);
158 159
}

J
Jeremy Fitzhardinge 已提交
160 161 162 163 164 165 166 167
/*
 * List of all pgd's needed for non-PAE so it can invalidate entries
 * in both cached and uncached pgd's; not needed for PAE since the
 * kernel pmd is shared. If PAE were not to share the pmd a similar
 * tactic would be needed. This is essentially codepath-based locking
 * against pageattr.c; it is the unique case in which a valid change
 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 * vmalloc faults work because attached pagetables are never freed.
168
 * -- nyc
J
Jeremy Fitzhardinge 已提交
169 170
 */

171
#ifdef CONFIG_X86_PAE
172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
 * updating the top-level pagetable entries to guarantee the
 * processor notices the update.  Since this is expensive, and
 * all 4 top-level entries are used almost immediately in a
 * new process's life, we just pre-populate them here.
 *
 * Also, if we're in a paravirt environment where the kernel pmd is
 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
 * and initialize the kernel pmds here.
 */
#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD

185 186 187 188 189 190 191 192
/*
 * We allocate separate PMDs for the kernel part of the user page-table
 * when PTI is enabled. We need them to map the per-process LDT into the
 * user-space page-table.
 */
#define PREALLOCATED_USER_PMDS	 (static_cpu_has(X86_FEATURE_PTI) ? \
					KERNEL_PGD_PTRS : 0)

193 194 195 196 197 198 199 200 201 202 203 204 205 206
void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
{
	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);

	/* Note: almost everything apart from _PAGE_PRESENT is
	   reserved at the pmd (PDPT) level. */
	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));

	/*
	 * According to Intel App note "TLBs, Paging-Structure Caches,
	 * and Their Invalidation", April 2007, document 317080-001,
	 * section 8.1: in PAE mode we explicitly have to flush the
	 * TLB via cr3 if the top-level pgd is changed...
	 */
207
	flush_tlb_mm(mm);
208 209 210 211 212
}
#else  /* !CONFIG_X86_PAE */

/* No need to prepopulate any pagetable entries in non-PAE modes. */
#define PREALLOCATED_PMDS	0
213
#define PREALLOCATED_USER_PMDS	 0
214 215
#endif	/* CONFIG_X86_PAE */

216
static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
217 218 219
{
	int i;

220
	for (i = 0; i < count; i++)
221 222
		if (pmds[i]) {
			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
223
			free_page((unsigned long)pmds[i]);
224
			mm_dec_nr_pmds(mm);
225
		}
226 227
}

228
static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
229 230 231
{
	int i;
	bool failed = false;
232 233 234 235
	gfp_t gfp = PGALLOC_GFP;

	if (mm == &init_mm)
		gfp &= ~__GFP_ACCOUNT;
236

237
	for (i = 0; i < count; i++) {
238
		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
239
		if (!pmd)
240
			failed = true;
241
		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
242
			free_page((unsigned long)pmd);
243 244 245
			pmd = NULL;
			failed = true;
		}
246 247
		if (pmd)
			mm_inc_nr_pmds(mm);
248 249 250 251
		pmds[i] = pmd;
	}

	if (failed) {
252
		free_pmds(mm, pmds, count);
253 254 255 256 257 258
		return -ENOMEM;
	}

	return 0;
}

259 260 261 262 263 264
/*
 * Mop up any pmd pages which may still be attached to the pgd.
 * Normally they will be freed by munmap/exit_mmap, but any pmd we
 * preallocate which never got a corresponding vma will need to be
 * freed manually.
 */
265 266 267 268 269 270 271
static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
{
	pgd_t pgd = *pgdp;

	if (pgd_val(pgd) != 0) {
		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);

272
		pgd_clear(pgdp);
273 274 275 276 277 278 279

		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
		pmd_free(mm, pmd);
		mm_dec_nr_pmds(mm);
	}
}

280 281 282 283
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
{
	int i;

284 285
	for (i = 0; i < PREALLOCATED_PMDS; i++)
		mop_up_one_pmd(mm, &pgdp[i]);
286

287
#ifdef CONFIG_PAGE_TABLE_ISOLATION
288

289 290
	if (!static_cpu_has(X86_FEATURE_PTI))
		return;
291

292 293 294 295 296
	pgdp = kernel_to_user_pgdp(pgdp);

	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
#endif
297 298
}

299
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
300
{
301
	p4d_t *p4d;
302 303 304
	pud_t *pud;
	int i;

305 306 307
	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
		return;

308 309
	p4d = p4d_offset(pgd, 0);
	pud = pud_offset(p4d, 0);
310

311
	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
312
		pmd_t *pmd = pmds[i];
313

J
Jeremy Fitzhardinge 已提交
314
		if (i >= KERNEL_PGD_BOUNDARY)
315 316 317 318 319 320
			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
			       sizeof(pmd_t) * PTRS_PER_PMD);

		pud_populate(mm, pud, pmd);
	}
}
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
#ifdef CONFIG_PAGE_TABLE_ISOLATION
static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
				     pgd_t *k_pgd, pmd_t *pmds[])
{
	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
	p4d_t *u_p4d;
	pud_t *u_pud;
	int i;

	u_p4d = p4d_offset(u_pgd, 0);
	u_pud = pud_offset(u_p4d, 0);

	s_pgd += KERNEL_PGD_BOUNDARY;
	u_pud += KERNEL_PGD_BOUNDARY;

	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
		pmd_t *pmd = pmds[i];

		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
		       sizeof(pmd_t) * PTRS_PER_PMD);

		pud_populate(mm, u_pud, pmd);
	}

}
#else
static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
				     pgd_t *k_pgd, pmd_t *pmds[])
{
}
#endif
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/*
 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
 * assumes that pgd should be in one page.
 *
 * But kernel with PAE paging that is not running as a Xen domain
 * only needs to allocate 32 bytes for pgd instead of one page.
 */
#ifdef CONFIG_X86_PAE

#include <linux/slab.h>

#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
#define PGD_ALIGN	32

static struct kmem_cache *pgd_cache;

static int __init pgd_cache_init(void)
{
	/*
	 * When PAE kernel is running as a Xen domain, it does not use
	 * shared kernel pmd. And this requires a whole page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return 0;

	/*
	 * when PAE kernel is not running as a Xen domain, it uses
	 * shared kernel pmd. Shared kernel pmd does not require a whole
	 * page for pgd. We are able to just allocate a 32-byte for pgd.
	 * During boot time, we create a 32-byte slab for pgd table allocation.
	 */
	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
				      SLAB_PANIC, NULL);
	return 0;
}
core_initcall(pgd_cache_init);

static inline pgd_t *_pgd_alloc(void)
{
	/*
	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
	 * We allocate one page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
398 399
		return (pgd_t *)__get_free_pages(PGALLOC_GFP,
						 PGD_ALLOCATION_ORDER);
400 401 402 403 404 405 406 407 408 409 410

	/*
	 * Now PAE kernel is not running as a Xen domain. We can allocate
	 * a 32-byte slab for pgd to save memory space.
	 */
	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
}

static inline void _pgd_free(pgd_t *pgd)
{
	if (!SHARED_KERNEL_PMD)
411
		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
412 413 414 415
	else
		kmem_cache_free(pgd_cache, pgd);
}
#else
416

417 418
static inline pgd_t *_pgd_alloc(void)
{
419
	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
420 421 422 423
}

static inline void _pgd_free(pgd_t *pgd)
{
424
	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
425 426 427
}
#endif /* CONFIG_X86_PAE */

428
pgd_t *pgd_alloc(struct mm_struct *mm)
429
{
430
	pgd_t *pgd;
431
	pmd_t *u_pmds[PREALLOCATED_USER_PMDS];
432
	pmd_t *pmds[PREALLOCATED_PMDS];
433

434
	pgd = _pgd_alloc();
435 436 437 438 439 440

	if (pgd == NULL)
		goto out;

	mm->pgd = pgd;

441
	if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
442 443
		goto out_free_pgd;

444
	if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
445
		goto out_free_pmds;
446

447 448 449
	if (paravirt_pgd_alloc(mm) != 0)
		goto out_free_user_pmds;

450
	/*
451 452 453
	 * Make sure that pre-populating the pmds is atomic with
	 * respect to anything walking the pgd_list, so that they
	 * never see a partially populated pgd.
454
	 */
A
Andrea Arcangeli 已提交
455
	spin_lock(&pgd_lock);
456

457
	pgd_ctor(mm, pgd);
458
	pgd_prepopulate_pmd(mm, pgd, pmds);
459
	pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
460

A
Andrea Arcangeli 已提交
461
	spin_unlock(&pgd_lock);
462 463

	return pgd;
464

465 466
out_free_user_pmds:
	free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
467
out_free_pmds:
468
	free_pmds(mm, pmds, PREALLOCATED_PMDS);
469
out_free_pgd:
470
	_pgd_free(pgd);
471 472
out:
	return NULL;
473 474 475 476 477 478
}

void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
	pgd_mop_up_pmds(mm, pgd);
	pgd_dtor(pgd);
479
	paravirt_pgd_free(mm, pgd);
480
	_pgd_free(pgd);
481
}
482

483 484 485 486 487 488 489
/*
 * Used to set accessed or dirty bits in the page table entries
 * on other architectures. On x86, the accessed and dirty bits
 * are tracked by hardware. However, do_wp_page calls this function
 * to also make the pte writeable at the same time the dirty bit is
 * set. In that case we do actually need to write the PTE.
 */
490 491 492 493 494 495
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
	int changed = !pte_same(*ptep, entry);

496
	if (changed && dirty)
497
		set_pte(ptep, entry);
498 499 500

	return changed;
}
501

502 503 504 505 506 507 508 509 510 511
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp,
			  pmd_t entry, int dirty)
{
	int changed = !pmd_same(*pmdp, entry);

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	if (changed && dirty) {
512
		set_pmd(pmdp, entry);
513 514 515 516 517 518
		/*
		 * We had a write-protection fault here and changed the pmd
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
519 520 521 522
	}

	return changed;
}
523 524 525 526 527 528 529 530 531

int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
			  pud_t *pudp, pud_t entry, int dirty)
{
	int changed = !pud_same(*pudp, entry);

	VM_BUG_ON(address & ~HPAGE_PUD_MASK);

	if (changed && dirty) {
532
		set_pud(pudp, entry);
533 534 535 536 537 538 539 540 541 542
		/*
		 * We had a write-protection fault here and changed the pud
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
	}

	return changed;
}
543 544
#endif

545 546 547 548 549 550 551
int ptep_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pte_t *ptep)
{
	int ret = 0;

	if (pte_young(*ptep))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
552
					 (unsigned long *) &ptep->pte);
553 554 555

	return ret;
}
556

557 558 559 560 561 562 563 564
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pmd_t *pmdp)
{
	int ret = 0;

	if (pmd_young(*pmdp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
J
Johannes Weiner 已提交
565
					 (unsigned long *)pmdp);
566 567 568

	return ret;
}
569 570 571 572 573 574 575 576 577 578 579
int pudp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pud_t *pudp)
{
	int ret = 0;

	if (pud_young(*pudp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
					 (unsigned long *)pudp);

	return ret;
}
580 581
#endif

582 583 584
int ptep_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pte_t *ptep)
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598
	/*
	 * On x86 CPUs, clearing the accessed bit without a TLB flush
	 * doesn't cause data corruption. [ It could cause incorrect
	 * page aging and the (mistaken) reclaim of hot pages, but the
	 * chance of that should be relatively low. ]
	 *
	 * So as a performance optimization don't flush the TLB when
	 * clearing the accessed bit, it will eventually be flushed by
	 * a context switch or a VM operation anyway. [ In the rare
	 * event of it not getting flushed for a long time the delay
	 * shouldn't really matter because there's no real memory
	 * pressure for swapout to react to. ]
	 */
	return ptep_test_and_clear_young(vma, address, ptep);
599
}
J
Jeremy Fitzhardinge 已提交
600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pmd_t *pmdp)
{
	int young;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	young = pmdp_test_and_clear_young(vma, address, pmdp);
	if (young)
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);

	return young;
}
#endif

617 618 619 620 621 622 623 624 625 626 627
/**
 * reserve_top_address - reserves a hole in the top of kernel address space
 * @reserve - size of hole to reserve
 *
 * Can be used to relocate the fixmap area and poke a hole in the top
 * of kernel address space to make room for a hypervisor.
 */
void __init reserve_top_address(unsigned long reserve)
{
#ifdef CONFIG_X86_32
	BUG_ON(fixmaps_set > 0);
628 629 630
	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
631 632 633
#endif
}

J
Jeremy Fitzhardinge 已提交
634 635
int fixmaps_set;

636
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
J
Jeremy Fitzhardinge 已提交
637 638 639
{
	unsigned long address = __fix_to_virt(idx);

640 641 642 643 644 645 646 647 648
#ifdef CONFIG_X86_64
       /*
	* Ensure that the static initial page tables are covering the
	* fixmap completely.
	*/
	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
#endif

J
Jeremy Fitzhardinge 已提交
649 650 651 652
	if (idx >= __end_of_fixed_addresses) {
		BUG();
		return;
	}
653
	set_pte_vaddr(address, pte);
J
Jeremy Fitzhardinge 已提交
654 655
	fixmaps_set++;
}
656

657 658
void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
		       pgprot_t flags)
659
{
660 661 662
	/* Sanitize 'prot' against any unsupported bits: */
	pgprot_val(flags) &= __default_kernel_pte_mask;

663 664
	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
}
665 666

#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
#ifdef CONFIG_X86_5LEVEL
/**
 * p4d_set_huge - setup kernel P4D mapping
 *
 * No 512GB pages yet -- always return 0
 */
int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}

/**
 * p4d_clear_huge - clear kernel P4D mapping when it is set
 *
 * No 512GB pages yet -- always return 0
 */
int p4d_clear_huge(p4d_t *p4d)
{
	return 0;
}
#endif

689 690 691
/**
 * pud_set_huge - setup kernel PUD mapping
 *
692 693 694 695 696 697 698 699 700 701 702 703
 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
 * function sets up a huge page only if any of the following conditions are met:
 *
 * - MTRRs are disabled, or
 *
 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
 *
 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
 *   has no effect on the requested PAT memory type.
 *
 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
 * page mapping attempt fails.
704 705 706
 *
 * Returns 1 on success and 0 on failure.
 */
707 708
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
709
	u8 mtrr, uniform;
710

711 712 713
	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK))
714 715
		return 0;

716 717 718 719
	/* Bail out if we are we on a populated non-leaf entry: */
	if (pud_present(*pud) && !pud_huge(*pud))
		return 0;

720 721 722 723 724 725 726 727 728
	prot = pgprot_4k_2_large(prot);

	set_pte((pte_t *)pud, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(pgprot_val(prot) | _PAGE_PSE)));

	return 1;
}

729 730 731
/**
 * pmd_set_huge - setup kernel PMD mapping
 *
732
 * See text over pud_set_huge() above.
733 734 735
 *
 * Returns 1 on success and 0 on failure.
 */
736 737
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
{
738
	u8 mtrr, uniform;
739

740 741 742 743 744
	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK)) {
		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
			     __func__, addr, addr + PMD_SIZE);
745
		return 0;
746
	}
747

748 749 750 751
	/* Bail out if we are we on a populated non-leaf entry: */
	if (pmd_present(*pmd) && !pmd_huge(*pmd))
		return 0;

752 753 754 755 756 757 758 759 760
	prot = pgprot_4k_2_large(prot);

	set_pte((pte_t *)pmd, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(pgprot_val(prot) | _PAGE_PSE)));

	return 1;
}

761 762 763 764 765
/**
 * pud_clear_huge - clear kernel PUD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PUD map is found).
 */
766 767 768 769 770 771 772 773 774 775
int pud_clear_huge(pud_t *pud)
{
	if (pud_large(*pud)) {
		pud_clear(pud);
		return 1;
	}

	return 0;
}

776 777 778 779 780
/**
 * pmd_clear_huge - clear kernel PMD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PMD map is found).
 */
781 782 783 784 785 786 787 788 789
int pmd_clear_huge(pmd_t *pmd)
{
	if (pmd_large(*pmd)) {
		pmd_clear(pmd);
		return 1;
	}

	return 0;
}
790

791
#ifdef CONFIG_X86_64
792 793 794
/**
 * pud_free_pmd_page - Clear pud entry and free pmd page.
 * @pud: Pointer to a PUD.
795
 * @addr: Virtual address associated with pud.
796
 *
797
 * Context: The pud range has been unmapped and TLB purged.
798
 * Return: 1 if clearing the entry succeeded. 0 otherwise.
799 800
 *
 * NOTE: Callers must allow a single page allocation.
801
 */
802
int pud_free_pmd_page(pud_t *pud, unsigned long addr)
803
{
804 805
	pmd_t *pmd, *pmd_sv;
	pte_t *pte;
806 807 808 809 810 811
	int i;

	if (pud_none(*pud))
		return 1;

	pmd = (pmd_t *)pud_page_vaddr(*pud);
812 813 814
	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
	if (!pmd_sv)
		return 0;
815

816 817 818 819 820
	for (i = 0; i < PTRS_PER_PMD; i++) {
		pmd_sv[i] = pmd[i];
		if (!pmd_none(pmd[i]))
			pmd_clear(&pmd[i]);
	}
821 822

	pud_clear(pud);
823 824 825 826 827 828 829 830 831 832 833 834

	/* INVLPG to clear all paging-structure caches */
	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);

	for (i = 0; i < PTRS_PER_PMD; i++) {
		if (!pmd_none(pmd_sv[i])) {
			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
			free_page((unsigned long)pte);
		}
	}

	free_page((unsigned long)pmd_sv);
835 836 837
	free_page((unsigned long)pmd);

	return 1;
838 839 840 841 842
}

/**
 * pmd_free_pte_page - Clear pmd entry and free pte page.
 * @pmd: Pointer to a PMD.
843
 * @addr: Virtual address associated with pmd.
844
 *
845
 * Context: The pmd range has been unmapped and TLB purged.
846 847
 * Return: 1 if clearing the entry succeeded. 0 otherwise.
 */
848
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
849
{
850 851 852 853 854 855 856
	pte_t *pte;

	if (pmd_none(*pmd))
		return 1;

	pte = (pte_t *)pmd_page_vaddr(*pmd);
	pmd_clear(pmd);
857 858 859 860

	/* INVLPG to clear all paging-structure caches */
	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);

861 862 863
	free_page((unsigned long)pte);

	return 1;
864
}
865 866 867

#else /* !CONFIG_X86_64 */

868
int pud_free_pmd_page(pud_t *pud, unsigned long addr)
869 870 871 872 873 874 875 876
{
	return pud_none(*pud);
}

/*
 * Disable free page handling on x86-PAE. This assures that ioremap()
 * does not update sync'd pmd entries. See vmalloc_sync_one().
 */
877
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
878 879 880 881 882
{
	return pmd_none(*pmd);
}

#endif /* CONFIG_X86_64 */
883
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */