slab.h 22.1 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2
/*
3 4
 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 *
C
Christoph Lameter 已提交
5
 * (C) SGI 2006, Christoph Lameter
6 7
 * 	Cleaned up and restructured to ease the addition of alternative
 * 	implementations of SLAB allocators.
8 9
 * (C) Linux Foundation 2008-2013
 *      Unified interface for all slab allocators
L
Linus Torvalds 已提交
10 11 12 13 14
 */

#ifndef _LINUX_SLAB_H
#define	_LINUX_SLAB_H

15
#include <linux/gfp.h>
16
#include <linux/overflow.h>
17
#include <linux/types.h>
G
Glauber Costa 已提交
18 19
#include <linux/workqueue.h>

L
Linus Torvalds 已提交
20

21 22
/*
 * Flags to pass to kmem_cache_create().
23
 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
L
Linus Torvalds 已提交
24
 */
25
/* DEBUG: Perform (expensive) checks on alloc/free */
26
#define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
27
/* DEBUG: Red zone objs in a cache */
28
#define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
29
/* DEBUG: Poison objects */
30
#define SLAB_POISON		((slab_flags_t __force)0x00000800U)
31
/* Align objs on cache lines */
32
#define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
33
/* Use GFP_DMA memory */
34
#define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
35
/* DEBUG: Store the last owner for bug hunting */
36
#define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
37
/* Panic if kmem_cache_create() fails */
38
#define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
39
/*
40
 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *
 * This delays freeing the SLAB page by a grace period, it does _NOT_
 * delay object freeing. This means that if you do kmem_cache_free()
 * that memory location is free to be reused at any time. Thus it may
 * be possible to see another object there in the same RCU grace period.
 *
 * This feature only ensures the memory location backing the object
 * stays valid, the trick to using this is relying on an independent
 * object validation pass. Something like:
 *
 *  rcu_read_lock()
 * again:
 *  obj = lockless_lookup(key);
 *  if (obj) {
 *    if (!try_get_ref(obj)) // might fail for free objects
 *      goto again;
 *
 *    if (obj->key != key) { // not the object we expected
 *      put_ref(obj);
 *      goto again;
 *    }
 *  }
 *  rcu_read_unlock();
 *
65 66 67 68 69 70 71 72
 * This is useful if we need to approach a kernel structure obliquely,
 * from its address obtained without the usual locking. We can lock
 * the structure to stabilize it and check it's still at the given address,
 * only if we can be sure that the memory has not been meanwhile reused
 * for some other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
73 74
 *
 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
75
 */
76
/* Defer freeing slabs to RCU */
77
#define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
78
/* Spread some memory over cpuset */
79
#define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
80
/* Trace allocations and frees */
81
#define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
L
Linus Torvalds 已提交
82

83 84
/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS
85
# define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
86
#else
87
# define SLAB_DEBUG_OBJECTS	0
88 89
#endif

90
/* Avoid kmemleak tracing */
91
#define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
92

93
/* Fault injection mark */
94
#ifdef CONFIG_FAILSLAB
95
# define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
96
#else
97
# define SLAB_FAILSLAB		0
98
#endif
99
/* Account to memcg */
100
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
101
# define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
V
Vladimir Davydov 已提交
102
#else
103
# define SLAB_ACCOUNT		0
V
Vladimir Davydov 已提交
104
#endif
V
Vegard Nossum 已提交
105

A
Alexander Potapenko 已提交
106
#ifdef CONFIG_KASAN
107
#define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
A
Alexander Potapenko 已提交
108
#else
109
#define SLAB_KASAN		0
A
Alexander Potapenko 已提交
110 111
#endif

112
/* The following flags affect the page allocator grouping pages by mobility */
113
/* Objects are reclaimable */
114
#define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
115
#define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
116 117 118 119 120 121 122 123 124 125
/*
 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 *
 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 *
 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 * Both make kfree a no-op.
 */
#define ZERO_SIZE_PTR ((void *)16)

126
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
127 128
				(unsigned long)ZERO_SIZE_PTR)

129
#include <linux/kasan.h>
130

131
struct mem_cgroup;
132 133 134 135
/*
 * struct kmem_cache related prototypes
 */
void __init kmem_cache_init(void);
136
bool slab_is_available(void);
L
Linus Torvalds 已提交
137

138 139
extern bool usercopy_fallback;

140 141
struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
			unsigned int align, slab_flags_t flags,
142 143
			void (*ctor)(void *));
struct kmem_cache *kmem_cache_create_usercopy(const char *name,
144 145
			unsigned int size, unsigned int align,
			slab_flags_t flags,
146
			unsigned int useroffset, unsigned int usersize,
147
			void (*ctor)(void *));
148 149
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
150 151 152 153

void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
void memcg_deactivate_kmem_caches(struct mem_cgroup *);
void memcg_destroy_kmem_caches(struct mem_cgroup *);
154

155 156 157 158 159 160 161 162
/*
 * Please use this macro to create slab caches. Simply specify the
 * name of the structure and maybe some flags that are listed above.
 *
 * The alignment of the struct determines object alignment. If you
 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 * then the objects will be properly aligned in SMP configurations.
 */
163 164 165 166 167 168 169 170 171 172 173 174 175 176
#define KMEM_CACHE(__struct, __flags)					\
		kmem_cache_create(#__struct, sizeof(struct __struct),	\
			__alignof__(struct __struct), (__flags), NULL)

/*
 * To whitelist a single field for copying to/from usercopy, use this
 * macro instead for KMEM_CACHE() above.
 */
#define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
		kmem_cache_create_usercopy(#__struct,			\
			sizeof(struct __struct),			\
			__alignof__(struct __struct), (__flags),	\
			offsetof(struct __struct, __field),		\
			sizeof_field(struct __struct, __field), NULL)
177

178 179 180 181 182 183 184 185 186
/*
 * Common kmalloc functions provided by all allocators
 */
void * __must_check __krealloc(const void *, size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
void kzfree(const void *);
size_t ksize(const void *);

K
Kees Cook 已提交
187
#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
188 189
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			bool to_user);
K
Kees Cook 已提交
190
#else
191 192
static inline void __check_heap_object(const void *ptr, unsigned long n,
				       struct page *page, bool to_user) { }
K
Kees Cook 已提交
193 194
#endif

195 196 197 198 199 200 201 202 203 204 205 206 207
/*
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than the alignment of a 64-bit integer.
 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 */
#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
#else
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
/*
 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 * Intended for arches that get misalignment faults even for 64 bit integer
 * aligned buffers.
 */
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif

/*
 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
 * aligned pointers.
 */
#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
#define __assume_page_alignment __assume_aligned(PAGE_SIZE)

226
/*
227 228 229 230 231 232
 * Kmalloc array related definitions
 */

#ifdef CONFIG_SLAB
/*
 * The largest kmalloc size supported by the SLAB allocators is
233 234 235 236 237 238 239
 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 * less than 32 MB.
 *
 * WARNING: Its not easy to increase this value since the allocators have
 * to do various tricks to work around compiler limitations in order to
 * ensure proper constant folding.
 */
240 241
#define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
242
#define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
243
#ifndef KMALLOC_SHIFT_LOW
244
#define KMALLOC_SHIFT_LOW	5
245
#endif
246 247 248
#endif

#ifdef CONFIG_SLUB
249
/*
250 251
 * SLUB directly allocates requests fitting in to an order-1 page
 * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
252 253
 */
#define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
254
#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
255
#ifndef KMALLOC_SHIFT_LOW
256 257
#define KMALLOC_SHIFT_LOW	3
#endif
258
#endif
259

260 261
#ifdef CONFIG_SLOB
/*
262
 * SLOB passes all requests larger than one page to the page allocator.
263 264 265 266
 * No kmalloc array is necessary since objects of different sizes can
 * be allocated from the same page.
 */
#define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
267
#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
268 269 270 271 272
#ifndef KMALLOC_SHIFT_LOW
#define KMALLOC_SHIFT_LOW	3
#endif
#endif

273 274 275 276 277 278
/* Maximum allocatable size */
#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
/* Maximum size for which we actually use a slab cache */
#define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
/* Maximum order allocatable via the slab allocagtor */
#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
279

280 281 282
/*
 * Kmalloc subsystem.
 */
283
#ifndef KMALLOC_MIN_SIZE
284
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
285 286
#endif

J
Joonsoo Kim 已提交
287 288 289 290 291 292 293 294 295 296 297
/*
 * This restriction comes from byte sized index implementation.
 * Page size is normally 2^12 bytes and, in this case, if we want to use
 * byte sized index which can represent 2^8 entries, the size of the object
 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 * If minimum size of kmalloc is less than 16, we use it as minimum object
 * size and give up to use byte sized index.
 */
#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
                               (KMALLOC_MIN_SIZE) : 16)

298
#ifndef CONFIG_SLOB
299 300 301 302 303
extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
#ifdef CONFIG_ZONE_DMA
extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
#endif

304 305 306 307 308
/*
 * Figure out which kmalloc slab an allocation of a certain size
 * belongs to.
 * 0 = zero alloc
 * 1 =  65 .. 96 bytes
309 310
 * 2 = 129 .. 192 bytes
 * n = 2^(n-1)+1 .. 2^n
311
 */
312
static __always_inline unsigned int kmalloc_index(size_t size)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
{
	if (!size)
		return 0;

	if (size <= KMALLOC_MIN_SIZE)
		return KMALLOC_SHIFT_LOW;

	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
		return 1;
	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
		return 2;
	if (size <=          8) return 3;
	if (size <=         16) return 4;
	if (size <=         32) return 5;
	if (size <=         64) return 6;
	if (size <=        128) return 7;
	if (size <=        256) return 8;
	if (size <=        512) return 9;
	if (size <=       1024) return 10;
	if (size <=   2 * 1024) return 11;
	if (size <=   4 * 1024) return 12;
	if (size <=   8 * 1024) return 13;
	if (size <=  16 * 1024) return 14;
	if (size <=  32 * 1024) return 15;
	if (size <=  64 * 1024) return 16;
	if (size <= 128 * 1024) return 17;
	if (size <= 256 * 1024) return 18;
	if (size <= 512 * 1024) return 19;
	if (size <= 1024 * 1024) return 20;
	if (size <=  2 * 1024 * 1024) return 21;
	if (size <=  4 * 1024 * 1024) return 22;
	if (size <=  8 * 1024 * 1024) return 23;
	if (size <=  16 * 1024 * 1024) return 24;
	if (size <=  32 * 1024 * 1024) return 25;
	if (size <=  64 * 1024 * 1024) return 26;
	BUG();

	/* Will never be reached. Needed because the compiler may complain */
	return -1;
}
353
#endif /* !CONFIG_SLOB */
354

355 356
void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
357
void kmem_cache_free(struct kmem_cache *, void *);
358

359
/*
J
Jesper Dangaard Brouer 已提交
360
 * Bulk allocation and freeing operations. These are accelerated in an
361 362 363 364 365 366
 * allocator specific way to avoid taking locks repeatedly or building
 * metadata structures unnecessarily.
 *
 * Note that interrupts must be enabled when calling these functions.
 */
void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
367
int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
368

369 370 371 372 373 374 375 376 377
/*
 * Caller must not use kfree_bulk() on memory not originally allocated
 * by kmalloc(), because the SLOB allocator cannot handle this.
 */
static __always_inline void kfree_bulk(size_t size, void **p)
{
	kmem_cache_free_bulk(NULL, size, p);
}

378
#ifdef CONFIG_NUMA
379 380
void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
381 382 383 384 385 386 387 388 389 390 391 392 393
#else
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __kmalloc(size, flags);
}

static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
{
	return kmem_cache_alloc(s, flags);
}
#endif

#ifdef CONFIG_TRACING
394
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
395 396 397 398

#ifdef CONFIG_NUMA
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
					   gfp_t gfpflags,
399
					   int node, size_t size) __assume_slab_alignment __malloc;
400 401 402 403 404 405 406 407 408 409 410 411 412 413
#else
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
			      gfp_t gfpflags,
			      int node, size_t size)
{
	return kmem_cache_alloc_trace(s, gfpflags, size);
}
#endif /* CONFIG_NUMA */

#else /* CONFIG_TRACING */
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
		gfp_t flags, size_t size)
{
414 415
	void *ret = kmem_cache_alloc(s, flags);

416
	kasan_kmalloc(s, ret, size, flags);
417
	return ret;
418 419 420 421 422 423 424
}

static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
			      gfp_t gfpflags,
			      int node, size_t size)
{
425 426
	void *ret = kmem_cache_alloc_node(s, gfpflags, node);

427
	kasan_kmalloc(s, ret, size, gfpflags);
428
	return ret;
429 430 431
}
#endif /* CONFIG_TRACING */

432
extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
433 434

#ifdef CONFIG_TRACING
435
extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
436 437 438 439 440 441
#else
static __always_inline void *
kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	return kmalloc_order(size, flags, order);
}
442 443
#endif

444 445 446 447 448 449 450 451 452
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
{
	unsigned int order = get_order(size);
	return kmalloc_order_trace(size, flags, order);
}

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
453
 * @flags: the type of memory to allocate.
454 455 456
 *
 * kmalloc is the normal method of allocating memory
 * for objects smaller than page size in the kernel.
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 *   For example, use this inside interrupt handlers.
 *
 * %GFP_HIGHUSER - Allocate pages from high memory.
 *
 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 *
 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 *
 * %GFP_NOWAIT - Allocation will not sleep.
 *
475
 * %__GFP_THISNODE - Allocate node-local memory only.
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
 *
 * %GFP_DMA - Allocation suitable for DMA.
 *   Should only be used for kmalloc() caches. Otherwise, use a
 *   slab created with SLAB_DMA.
 *
 * Also it is possible to set different flags by OR'ing
 * in one or more of the following additional @flags:
 *
 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 *
 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 *   (think twice before using).
 *
 * %__GFP_NORETRY - If memory is not immediately available,
 *   then give up at once.
 *
 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 *
494 495
 * %__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail
 *   eventually.
496 497 498 499
 *
 * There are other flags available as well, but these are not intended
 * for general use, and so are not documented here. For a full list of
 * potential flags, always refer to linux/gfp.h.
500 501 502 503 504 505 506 507
 */
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
	if (__builtin_constant_p(size)) {
		if (size > KMALLOC_MAX_CACHE_SIZE)
			return kmalloc_large(size, flags);
#ifndef CONFIG_SLOB
		if (!(flags & GFP_DMA)) {
508
			unsigned int index = kmalloc_index(size);
509 510 511 512 513 514 515 516 517 518 519 520

			if (!index)
				return ZERO_SIZE_PTR;

			return kmem_cache_alloc_trace(kmalloc_caches[index],
					flags, size);
		}
#endif
	}
	return __kmalloc(size, flags);
}

521 522 523 524 525
/*
 * Determine size used for the nth kmalloc cache.
 * return size or 0 if a kmalloc cache for that
 * size does not exist
 */
526
static __always_inline unsigned int kmalloc_size(unsigned int n)
527
{
528
#ifndef CONFIG_SLOB
529
	if (n > 2)
530
		return 1U << n;
531 532 533 534 535 536

	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
		return 96;

	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
		return 192;
537
#endif
538 539 540
	return 0;
}

541 542 543 544
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
#ifndef CONFIG_SLOB
	if (__builtin_constant_p(size) &&
545
		size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
546
		unsigned int i = kmalloc_index(size);
547 548 549 550 551 552 553 554 555 556 557

		if (!i)
			return ZERO_SIZE_PTR;

		return kmem_cache_alloc_node_trace(kmalloc_caches[i],
						flags, node, size);
	}
#endif
	return __kmalloc_node(size, flags, node);
}

558 559 560 561 562
struct memcg_cache_array {
	struct rcu_head rcu;
	struct kmem_cache *entries[0];
};

G
Glauber Costa 已提交
563 564 565 566
/*
 * This is the main placeholder for memcg-related information in kmem caches.
 * Both the root cache and the child caches will have it. For the root cache,
 * this will hold a dynamically allocated array large enough to hold
567 568 569
 * information about the currently limited memcgs in the system. To allow the
 * array to be accessed without taking any locks, on relocation we free the old
 * version only after a grace period.
G
Glauber Costa 已提交
570
 *
T
Tejun Heo 已提交
571
 * Root and child caches hold different metadata.
G
Glauber Costa 已提交
572
 *
T
Tejun Heo 已提交
573 574
 * @root_cache:	Common to root and child caches.  NULL for root, pointer to
 *		the root cache for children.
575
 *
T
Tejun Heo 已提交
576 577 578 579 580 581
 * The following fields are specific to root caches.
 *
 * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
 *		used to index child cachces during allocation and cleared
 *		early during shutdown.
 *
582 583
 * @root_caches_node: List node for slab_root_caches list.
 *
T
Tejun Heo 已提交
584 585 586 587 588 589 590 591 592
 * @children:	List of all child caches.  While the child caches are also
 *		reachable through @memcg_caches, a child cache remains on
 *		this list until it is actually destroyed.
 *
 * The following fields are specific to child caches.
 *
 * @memcg:	Pointer to the memcg this cache belongs to.
 *
 * @children_node: List node for @root_cache->children list.
593 594
 *
 * @kmem_caches_node: List node for @memcg->kmem_caches list.
G
Glauber Costa 已提交
595 596
 */
struct memcg_cache_params {
T
Tejun Heo 已提交
597
	struct kmem_cache *root_cache;
G
Glauber Costa 已提交
598
	union {
T
Tejun Heo 已提交
599 600
		struct {
			struct memcg_cache_array __rcu *memcg_caches;
601
			struct list_head __root_caches_node;
T
Tejun Heo 已提交
602 603
			struct list_head children;
		};
604 605
		struct {
			struct mem_cgroup *memcg;
T
Tejun Heo 已提交
606
			struct list_head children_node;
607
			struct list_head kmem_caches_node;
608 609 610 611 612 613

			void (*deact_fn)(struct kmem_cache *);
			union {
				struct rcu_head deact_rcu_head;
				struct work_struct deact_work;
			};
614
		};
G
Glauber Costa 已提交
615 616 617
	};
};

618 619
int memcg_update_all_caches(int num_memcgs);

620 621 622 623 624
/**
 * kmalloc_array - allocate memory for an array.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate (see kmalloc).
625
 */
X
Xi Wang 已提交
626
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
L
Linus Torvalds 已提交
627
{
628 629 630
	size_t bytes;

	if (unlikely(check_mul_overflow(n, size, &bytes)))
P
Paul Mundt 已提交
631
		return NULL;
632
	if (__builtin_constant_p(n) && __builtin_constant_p(size))
633 634
		return kmalloc(bytes, flags);
	return __kmalloc(bytes, flags);
X
Xi Wang 已提交
635 636 637 638 639 640 641 642 643 644 645
}

/**
 * kcalloc - allocate memory for an array. The memory is set to zero.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
{
	return kmalloc_array(n, size, flags | __GFP_ZERO);
L
Linus Torvalds 已提交
646 647
}

648 649 650 651 652 653 654 655
/*
 * kmalloc_track_caller is a special version of kmalloc that records the
 * calling function of the routine calling it for slab leak tracking instead
 * of just the calling function (confusing, eh?).
 * It's useful when the call to kmalloc comes from a widely-used standard
 * allocator where we care about the real place the memory allocation
 * request comes from.
 */
656
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
657
#define kmalloc_track_caller(size, flags) \
658
	__kmalloc_track_caller(size, flags, _RET_IP_)
L
Linus Torvalds 已提交
659

660 661 662
static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
				       int node)
{
663 664 665
	size_t bytes;

	if (unlikely(check_mul_overflow(n, size, &bytes)))
666 667
		return NULL;
	if (__builtin_constant_p(n) && __builtin_constant_p(size))
668 669
		return kmalloc_node(bytes, flags, node);
	return __kmalloc_node(bytes, flags, node);
670 671 672 673 674 675 676 677
}

static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
{
	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
}


678
#ifdef CONFIG_NUMA
679
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
680 681
#define kmalloc_node_track_caller(size, flags, node) \
	__kmalloc_node_track_caller(size, flags, node, \
682
			_RET_IP_)
683

684 685 686 687
#else /* CONFIG_NUMA */

#define kmalloc_node_track_caller(size, flags, node) \
	kmalloc_track_caller(size, flags)
688

P
Pascal Terjan 已提交
689
#endif /* CONFIG_NUMA */
690

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * Shortcuts
 */
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
{
	return kmem_cache_alloc(k, flags | __GFP_ZERO);
}

/**
 * kzalloc - allocate memory. The memory is set to zero.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kzalloc(size_t size, gfp_t flags)
{
	return kmalloc(size, flags | __GFP_ZERO);
}

J
Jeff Layton 已提交
709 710 711 712 713 714 715 716 717 718 719
/**
 * kzalloc_node - allocate zeroed memory from a particular memory node.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 * @node: memory node from which to allocate
 */
static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
{
	return kmalloc_node(size, flags | __GFP_ZERO, node);
}

720
unsigned int kmem_cache_size(struct kmem_cache *s);
721 722
void __init kmem_cache_init_late(void);

723 724 725 726 727 728 729 730
#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
int slab_prepare_cpu(unsigned int cpu);
int slab_dead_cpu(unsigned int cpu);
#else
#define slab_prepare_cpu	NULL
#define slab_dead_cpu		NULL
#endif

L
Linus Torvalds 已提交
731
#endif	/* _LINUX_SLAB_H */