slab.h 20.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 *
C
Christoph Lameter 已提交
4
 * (C) SGI 2006, Christoph Lameter
5 6
 * 	Cleaned up and restructured to ease the addition of alternative
 * 	implementations of SLAB allocators.
7 8
 * (C) Linux Foundation 2008-2013
 *      Unified interface for all slab allocators
L
Linus Torvalds 已提交
9 10 11 12 13
 */

#ifndef _LINUX_SLAB_H
#define	_LINUX_SLAB_H

14 15
#include <linux/gfp.h>
#include <linux/types.h>
G
Glauber Costa 已提交
16 17
#include <linux/workqueue.h>

L
Linus Torvalds 已提交
18

19 20
/*
 * Flags to pass to kmem_cache_create().
21
 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
L
Linus Torvalds 已提交
22
 */
23
#define SLAB_CONSISTENCY_CHECKS	0x00000100UL	/* DEBUG: Perform (expensive) checks on alloc/free */
C
Christoph Lameter 已提交
24 25 26
#define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
#define SLAB_POISON		0x00000800UL	/* DEBUG: Poison objects */
#define SLAB_HWCACHE_ALIGN	0x00002000UL	/* Align objs on cache lines */
27 28 29
#define SLAB_CACHE_DMA		0x00004000UL	/* Use GFP_DMA memory */
#define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
#define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
30
/*
31
 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * This delays freeing the SLAB page by a grace period, it does _NOT_
 * delay object freeing. This means that if you do kmem_cache_free()
 * that memory location is free to be reused at any time. Thus it may
 * be possible to see another object there in the same RCU grace period.
 *
 * This feature only ensures the memory location backing the object
 * stays valid, the trick to using this is relying on an independent
 * object validation pass. Something like:
 *
 *  rcu_read_lock()
 * again:
 *  obj = lockless_lookup(key);
 *  if (obj) {
 *    if (!try_get_ref(obj)) // might fail for free objects
 *      goto again;
 *
 *    if (obj->key != key) { // not the object we expected
 *      put_ref(obj);
 *      goto again;
 *    }
 *  }
 *  rcu_read_unlock();
 *
56 57 58 59 60 61 62 63
 * This is useful if we need to approach a kernel structure obliquely,
 * from its address obtained without the usual locking. We can lock
 * the structure to stabilize it and check it's still at the given address,
 * only if we can be sure that the memory has not been meanwhile reused
 * for some other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
64 65
 *
 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
66
 */
67
#define SLAB_TYPESAFE_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
68
#define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
C
Christoph Lameter 已提交
69
#define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */
L
Linus Torvalds 已提交
70

71 72 73 74 75 76 77
/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS
# define SLAB_DEBUG_OBJECTS	0x00400000UL
#else
# define SLAB_DEBUG_OBJECTS	0x00000000UL
#endif

78 79
#define SLAB_NOLEAKTRACE	0x00800000UL	/* Avoid kmemleak tracing */

V
Vegard Nossum 已提交
80 81 82 83 84 85
/* Don't track use of uninitialized memory */
#ifdef CONFIG_KMEMCHECK
# define SLAB_NOTRACK		0x01000000UL
#else
# define SLAB_NOTRACK		0x00000000UL
#endif
86 87 88 89 90
#ifdef CONFIG_FAILSLAB
# define SLAB_FAILSLAB		0x02000000UL	/* Fault injection mark */
#else
# define SLAB_FAILSLAB		0x00000000UL
#endif
91
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
V
Vladimir Davydov 已提交
92 93 94 95
# define SLAB_ACCOUNT		0x04000000UL	/* Account to memcg */
#else
# define SLAB_ACCOUNT		0x00000000UL
#endif
V
Vegard Nossum 已提交
96

A
Alexander Potapenko 已提交
97 98 99 100 101 102
#ifdef CONFIG_KASAN
#define SLAB_KASAN		0x08000000UL
#else
#define SLAB_KASAN		0x00000000UL
#endif

103 104 105
/* The following flags affect the page allocator grouping pages by mobility */
#define SLAB_RECLAIM_ACCOUNT	0x00020000UL		/* Objects are reclaimable */
#define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
106 107 108 109 110 111 112 113 114 115
/*
 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 *
 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 *
 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 * Both make kfree a no-op.
 */
#define ZERO_SIZE_PTR ((void *)16)

116
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
117 118
				(unsigned long)ZERO_SIZE_PTR)

119
#include <linux/kmemleak.h>
120
#include <linux/kasan.h>
121

122
struct mem_cgroup;
123 124 125 126
/*
 * struct kmem_cache related prototypes
 */
void __init kmem_cache_init(void);
127
bool slab_is_available(void);
L
Linus Torvalds 已提交
128

129
struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
130
			unsigned long,
131
			void (*)(void *));
132 133
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
134 135 136 137

void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
void memcg_deactivate_kmem_caches(struct mem_cgroup *);
void memcg_destroy_kmem_caches(struct mem_cgroup *);
138

139 140 141 142 143 144 145 146 147 148
/*
 * Please use this macro to create slab caches. Simply specify the
 * name of the structure and maybe some flags that are listed above.
 *
 * The alignment of the struct determines object alignment. If you
 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 * then the objects will be properly aligned in SMP configurations.
 */
#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
		sizeof(struct __struct), __alignof__(struct __struct),\
149
		(__flags), NULL)
150

151 152 153 154 155 156 157 158 159
/*
 * Common kmalloc functions provided by all allocators
 */
void * __must_check __krealloc(const void *, size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
void kzfree(const void *);
size_t ksize(const void *);

K
Kees Cook 已提交
160 161 162 163 164 165 166 167 168 169 170 171
#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page);
#else
static inline const char *__check_heap_object(const void *ptr,
					      unsigned long n,
					      struct page *page)
{
	return NULL;
}
#endif

172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than the alignment of a 64-bit integer.
 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 */
#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
#else
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 * Intended for arches that get misalignment faults even for 64 bit integer
 * aligned buffers.
 */
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif

/*
 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
 * aligned pointers.
 */
#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
#define __assume_page_alignment __assume_aligned(PAGE_SIZE)

203
/*
204 205 206 207 208 209
 * Kmalloc array related definitions
 */

#ifdef CONFIG_SLAB
/*
 * The largest kmalloc size supported by the SLAB allocators is
210 211 212 213 214 215 216
 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 * less than 32 MB.
 *
 * WARNING: Its not easy to increase this value since the allocators have
 * to do various tricks to work around compiler limitations in order to
 * ensure proper constant folding.
 */
217 218
#define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
219
#define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
220
#ifndef KMALLOC_SHIFT_LOW
221
#define KMALLOC_SHIFT_LOW	5
222
#endif
223 224 225
#endif

#ifdef CONFIG_SLUB
226
/*
227 228
 * SLUB directly allocates requests fitting in to an order-1 page
 * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
229 230
 */
#define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
231
#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
232
#ifndef KMALLOC_SHIFT_LOW
233 234
#define KMALLOC_SHIFT_LOW	3
#endif
235
#endif
236

237 238
#ifdef CONFIG_SLOB
/*
239
 * SLOB passes all requests larger than one page to the page allocator.
240 241 242 243
 * No kmalloc array is necessary since objects of different sizes can
 * be allocated from the same page.
 */
#define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
244
#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
245 246 247 248 249
#ifndef KMALLOC_SHIFT_LOW
#define KMALLOC_SHIFT_LOW	3
#endif
#endif

250 251 252 253 254 255
/* Maximum allocatable size */
#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
/* Maximum size for which we actually use a slab cache */
#define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
/* Maximum order allocatable via the slab allocagtor */
#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
256

257 258 259
/*
 * Kmalloc subsystem.
 */
260
#ifndef KMALLOC_MIN_SIZE
261
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
262 263
#endif

J
Joonsoo Kim 已提交
264 265 266 267 268 269 270 271 272 273 274
/*
 * This restriction comes from byte sized index implementation.
 * Page size is normally 2^12 bytes and, in this case, if we want to use
 * byte sized index which can represent 2^8 entries, the size of the object
 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 * If minimum size of kmalloc is less than 16, we use it as minimum object
 * size and give up to use byte sized index.
 */
#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
                               (KMALLOC_MIN_SIZE) : 16)

275
#ifndef CONFIG_SLOB
276 277 278 279 280
extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
#ifdef CONFIG_ZONE_DMA
extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
#endif

281 282 283 284 285
/*
 * Figure out which kmalloc slab an allocation of a certain size
 * belongs to.
 * 0 = zero alloc
 * 1 =  65 .. 96 bytes
286 287
 * 2 = 129 .. 192 bytes
 * n = 2^(n-1)+1 .. 2^n
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
 */
static __always_inline int kmalloc_index(size_t size)
{
	if (!size)
		return 0;

	if (size <= KMALLOC_MIN_SIZE)
		return KMALLOC_SHIFT_LOW;

	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
		return 1;
	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
		return 2;
	if (size <=          8) return 3;
	if (size <=         16) return 4;
	if (size <=         32) return 5;
	if (size <=         64) return 6;
	if (size <=        128) return 7;
	if (size <=        256) return 8;
	if (size <=        512) return 9;
	if (size <=       1024) return 10;
	if (size <=   2 * 1024) return 11;
	if (size <=   4 * 1024) return 12;
	if (size <=   8 * 1024) return 13;
	if (size <=  16 * 1024) return 14;
	if (size <=  32 * 1024) return 15;
	if (size <=  64 * 1024) return 16;
	if (size <= 128 * 1024) return 17;
	if (size <= 256 * 1024) return 18;
	if (size <= 512 * 1024) return 19;
	if (size <= 1024 * 1024) return 20;
	if (size <=  2 * 1024 * 1024) return 21;
	if (size <=  4 * 1024 * 1024) return 22;
	if (size <=  8 * 1024 * 1024) return 23;
	if (size <=  16 * 1024 * 1024) return 24;
	if (size <=  32 * 1024 * 1024) return 25;
	if (size <=  64 * 1024 * 1024) return 26;
	BUG();

	/* Will never be reached. Needed because the compiler may complain */
	return -1;
}
330
#endif /* !CONFIG_SLOB */
331

332 333
void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
334
void kmem_cache_free(struct kmem_cache *, void *);
335

336
/*
J
Jesper Dangaard Brouer 已提交
337
 * Bulk allocation and freeing operations. These are accelerated in an
338 339 340 341 342 343
 * allocator specific way to avoid taking locks repeatedly or building
 * metadata structures unnecessarily.
 *
 * Note that interrupts must be enabled when calling these functions.
 */
void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
344
int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
345

346 347 348 349 350 351 352 353 354
/*
 * Caller must not use kfree_bulk() on memory not originally allocated
 * by kmalloc(), because the SLOB allocator cannot handle this.
 */
static __always_inline void kfree_bulk(size_t size, void **p)
{
	kmem_cache_free_bulk(NULL, size, p);
}

355
#ifdef CONFIG_NUMA
356 357
void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
358 359 360 361 362 363 364 365 366 367 368 369 370
#else
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __kmalloc(size, flags);
}

static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
{
	return kmem_cache_alloc(s, flags);
}
#endif

#ifdef CONFIG_TRACING
371
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
372 373 374 375

#ifdef CONFIG_NUMA
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
					   gfp_t gfpflags,
376
					   int node, size_t size) __assume_slab_alignment __malloc;
377 378 379 380 381 382 383 384 385 386 387 388 389 390
#else
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
			      gfp_t gfpflags,
			      int node, size_t size)
{
	return kmem_cache_alloc_trace(s, gfpflags, size);
}
#endif /* CONFIG_NUMA */

#else /* CONFIG_TRACING */
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
		gfp_t flags, size_t size)
{
391 392
	void *ret = kmem_cache_alloc(s, flags);

393
	kasan_kmalloc(s, ret, size, flags);
394
	return ret;
395 396 397 398 399 400 401
}

static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
			      gfp_t gfpflags,
			      int node, size_t size)
{
402 403
	void *ret = kmem_cache_alloc_node(s, gfpflags, node);

404
	kasan_kmalloc(s, ret, size, gfpflags);
405
	return ret;
406 407 408
}
#endif /* CONFIG_TRACING */

409
extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
410 411

#ifdef CONFIG_TRACING
412
extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
413 414 415 416 417 418
#else
static __always_inline void *
kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	return kmalloc_order(size, flags, order);
}
419 420
#endif

421 422 423 424 425 426 427 428 429
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
{
	unsigned int order = get_order(size);
	return kmalloc_order_trace(size, flags, order);
}

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
430
 * @flags: the type of memory to allocate.
431 432 433
 *
 * kmalloc is the normal method of allocating memory
 * for objects smaller than page size in the kernel.
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 *   For example, use this inside interrupt handlers.
 *
 * %GFP_HIGHUSER - Allocate pages from high memory.
 *
 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 *
 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 *
 * %GFP_NOWAIT - Allocation will not sleep.
 *
452
 * %__GFP_THISNODE - Allocate node-local memory only.
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
 *
 * %GFP_DMA - Allocation suitable for DMA.
 *   Should only be used for kmalloc() caches. Otherwise, use a
 *   slab created with SLAB_DMA.
 *
 * Also it is possible to set different flags by OR'ing
 * in one or more of the following additional @flags:
 *
 * %__GFP_COLD - Request cache-cold pages instead of
 *   trying to return cache-warm pages.
 *
 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 *
 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 *   (think twice before using).
 *
 * %__GFP_NORETRY - If memory is not immediately available,
 *   then give up at once.
 *
 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 *
 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
 *
 * There are other flags available as well, but these are not intended
 * for general use, and so are not documented here. For a full list of
 * potential flags, always refer to linux/gfp.h.
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
 */
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
	if (__builtin_constant_p(size)) {
		if (size > KMALLOC_MAX_CACHE_SIZE)
			return kmalloc_large(size, flags);
#ifndef CONFIG_SLOB
		if (!(flags & GFP_DMA)) {
			int index = kmalloc_index(size);

			if (!index)
				return ZERO_SIZE_PTR;

			return kmem_cache_alloc_trace(kmalloc_caches[index],
					flags, size);
		}
#endif
	}
	return __kmalloc(size, flags);
}

500 501 502 503 504 505 506
/*
 * Determine size used for the nth kmalloc cache.
 * return size or 0 if a kmalloc cache for that
 * size does not exist
 */
static __always_inline int kmalloc_size(int n)
{
507
#ifndef CONFIG_SLOB
508 509 510 511 512 513 514 515
	if (n > 2)
		return 1 << n;

	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
		return 96;

	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
		return 192;
516
#endif
517 518 519
	return 0;
}

520 521 522 523
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
#ifndef CONFIG_SLOB
	if (__builtin_constant_p(size) &&
524
		size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
525 526 527 528 529 530 531 532 533 534 535 536
		int i = kmalloc_index(size);

		if (!i)
			return ZERO_SIZE_PTR;

		return kmem_cache_alloc_node_trace(kmalloc_caches[i],
						flags, node, size);
	}
#endif
	return __kmalloc_node(size, flags, node);
}

537 538 539 540 541
struct memcg_cache_array {
	struct rcu_head rcu;
	struct kmem_cache *entries[0];
};

G
Glauber Costa 已提交
542 543 544 545
/*
 * This is the main placeholder for memcg-related information in kmem caches.
 * Both the root cache and the child caches will have it. For the root cache,
 * this will hold a dynamically allocated array large enough to hold
546 547 548
 * information about the currently limited memcgs in the system. To allow the
 * array to be accessed without taking any locks, on relocation we free the old
 * version only after a grace period.
G
Glauber Costa 已提交
549
 *
T
Tejun Heo 已提交
550
 * Root and child caches hold different metadata.
G
Glauber Costa 已提交
551
 *
T
Tejun Heo 已提交
552 553
 * @root_cache:	Common to root and child caches.  NULL for root, pointer to
 *		the root cache for children.
554
 *
T
Tejun Heo 已提交
555 556 557 558 559 560
 * The following fields are specific to root caches.
 *
 * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
 *		used to index child cachces during allocation and cleared
 *		early during shutdown.
 *
561 562
 * @root_caches_node: List node for slab_root_caches list.
 *
T
Tejun Heo 已提交
563 564 565 566 567 568 569 570 571
 * @children:	List of all child caches.  While the child caches are also
 *		reachable through @memcg_caches, a child cache remains on
 *		this list until it is actually destroyed.
 *
 * The following fields are specific to child caches.
 *
 * @memcg:	Pointer to the memcg this cache belongs to.
 *
 * @children_node: List node for @root_cache->children list.
572 573
 *
 * @kmem_caches_node: List node for @memcg->kmem_caches list.
G
Glauber Costa 已提交
574 575
 */
struct memcg_cache_params {
T
Tejun Heo 已提交
576
	struct kmem_cache *root_cache;
G
Glauber Costa 已提交
577
	union {
T
Tejun Heo 已提交
578 579
		struct {
			struct memcg_cache_array __rcu *memcg_caches;
580
			struct list_head __root_caches_node;
T
Tejun Heo 已提交
581 582
			struct list_head children;
		};
583 584
		struct {
			struct mem_cgroup *memcg;
T
Tejun Heo 已提交
585
			struct list_head children_node;
586
			struct list_head kmem_caches_node;
587 588 589 590 591 592

			void (*deact_fn)(struct kmem_cache *);
			union {
				struct rcu_head deact_rcu_head;
				struct work_struct deact_work;
			};
593
		};
G
Glauber Costa 已提交
594 595 596
	};
};

597 598
int memcg_update_all_caches(int num_memcgs);

599 600 601 602 603
/**
 * kmalloc_array - allocate memory for an array.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate (see kmalloc).
604
 */
X
Xi Wang 已提交
605
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
L
Linus Torvalds 已提交
606
{
X
Xi Wang 已提交
607
	if (size != 0 && n > SIZE_MAX / size)
P
Paul Mundt 已提交
608
		return NULL;
609 610
	if (__builtin_constant_p(n) && __builtin_constant_p(size))
		return kmalloc(n * size, flags);
X
Xi Wang 已提交
611 612 613 614 615 616 617 618 619 620 621 622
	return __kmalloc(n * size, flags);
}

/**
 * kcalloc - allocate memory for an array. The memory is set to zero.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
{
	return kmalloc_array(n, size, flags | __GFP_ZERO);
L
Linus Torvalds 已提交
623 624
}

625 626 627 628 629 630 631 632
/*
 * kmalloc_track_caller is a special version of kmalloc that records the
 * calling function of the routine calling it for slab leak tracking instead
 * of just the calling function (confusing, eh?).
 * It's useful when the call to kmalloc comes from a widely-used standard
 * allocator where we care about the real place the memory allocation
 * request comes from.
 */
633
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
634
#define kmalloc_track_caller(size, flags) \
635
	__kmalloc_track_caller(size, flags, _RET_IP_)
L
Linus Torvalds 已提交
636

637
#ifdef CONFIG_NUMA
638
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
639 640
#define kmalloc_node_track_caller(size, flags, node) \
	__kmalloc_node_track_caller(size, flags, node, \
641
			_RET_IP_)
642

643 644 645 646
#else /* CONFIG_NUMA */

#define kmalloc_node_track_caller(size, flags, node) \
	kmalloc_track_caller(size, flags)
647

P
Pascal Terjan 已提交
648
#endif /* CONFIG_NUMA */
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Shortcuts
 */
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
{
	return kmem_cache_alloc(k, flags | __GFP_ZERO);
}

/**
 * kzalloc - allocate memory. The memory is set to zero.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kzalloc(size_t size, gfp_t flags)
{
	return kmalloc(size, flags | __GFP_ZERO);
}

J
Jeff Layton 已提交
668 669 670 671 672 673 674 675 676 677 678
/**
 * kzalloc_node - allocate zeroed memory from a particular memory node.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 * @node: memory node from which to allocate
 */
static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
{
	return kmalloc_node(size, flags | __GFP_ZERO, node);
}

679
unsigned int kmem_cache_size(struct kmem_cache *s);
680 681
void __init kmem_cache_init_late(void);

682 683 684 685 686 687 688 689
#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
int slab_prepare_cpu(unsigned int cpu);
int slab_dead_cpu(unsigned int cpu);
#else
#define slab_prepare_cpu	NULL
#define slab_dead_cpu		NULL
#endif

L
Linus Torvalds 已提交
690
#endif	/* _LINUX_SLAB_H */