intel_ringbuffer.c 89.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37
int __intel_ring_space(int head, int tail, int size)
38
{
39 40
	int space = head - tail;
	if (space <= 0)
41
		space += size;
42
	return space - I915_RING_FREE_SPACE;
43 44
}

45 46 47 48 49 50 51 52 53 54 55
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

56
int intel_ring_space(struct intel_ringbuffer *ringbuf)
57
{
58 59
	intel_ring_update_space(ringbuf);
	return ringbuf->space;
60 61
}

62
bool intel_engine_stopped(struct intel_engine_cs *engine)
63
{
64
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
65
	return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
66
}
67

68
static void __intel_ring_advance(struct intel_engine_cs *engine)
69
{
70
	struct intel_ringbuffer *ringbuf = engine->buffer;
71
	ringbuf->tail &= ringbuf->size - 1;
72
	if (intel_engine_stopped(engine))
73
		return;
74
	engine->write_tail(engine, ringbuf->tail);
75 76
}

77
static int
78
gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 80 81
		       u32	invalidate_domains,
		       u32	flush_domains)
{
82
	struct intel_engine_cs *engine = req->engine;
83 84 85 86
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
87
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 89 90 91 92
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

93
	ret = intel_ring_begin(req, 2);
94 95 96
	if (ret)
		return ret;

97 98 99
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
100 101 102 103 104

	return 0;
}

static int
105
gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 107
		       u32	invalidate_domains,
		       u32	flush_domains)
108
{
109
	struct intel_engine_cs *engine = req->engine;
110
	struct drm_device *dev = engine->dev;
111
	u32 cmd;
112
	int ret;
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 145 146
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
147

148 149 150
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
151

152
	ret = intel_ring_begin(req, 2);
153 154
	if (ret)
		return ret;
155

156 157 158
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
159 160

	return 0;
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
201
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202
{
203
	struct intel_engine_cs *engine = req->engine;
204
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 206
	int ret;

207
	ret = intel_ring_begin(req, 6);
208 209 210
	if (ret)
		return ret;

211 212
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
213
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 215 216 217 218
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
219

220
	ret = intel_ring_begin(req, 6);
221 222 223
	if (ret)
		return ret;

224 225 226 227 228 229 230
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
231 232 233 234 235

	return 0;
}

static int
236 237
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
238
{
239
	struct intel_engine_cs *engine = req->engine;
240
	u32 flags = 0;
241
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 243
	int ret;

244
	/* Force SNB workarounds for PIPE_CONTROL flushes */
245
	ret = intel_emit_post_sync_nonzero_flush(req);
246 247 248
	if (ret)
		return ret;

249 250 251 252
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
253 254 255 256 257 258 259
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
260
		flags |= PIPE_CONTROL_CS_STALL;
261 262 263 264 265 266 267 268 269 270 271
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
272
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273
	}
274

275
	ret = intel_ring_begin(req, 4);
276 277 278
	if (ret)
		return ret;

279 280 281 282 283
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
284 285 286 287

	return 0;
}

288
static int
289
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290
{
291
	struct intel_engine_cs *engine = req->engine;
292 293
	int ret;

294
	ret = intel_ring_begin(req, 4);
295 296 297
	if (ret)
		return ret;

298 299
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
300
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 302 303
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
304 305 306 307

	return 0;
}

308
static int
309
gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 311
		       u32 invalidate_domains, u32 flush_domains)
{
312
	struct intel_engine_cs *engine = req->engine;
313
	u32 flags = 0;
314
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 316
	int ret;

317 318 319 320 321 322 323 324 325 326
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

327 328 329 330 331 332 333
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 337 338 339 340 341 342 343
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 346 347 348
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
349
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350

351 352
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

353 354 355
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
356
		gen7_render_ring_cs_stall_wa(req);
357 358
	}

359
	ret = intel_ring_begin(req, 4);
360 361 362
	if (ret)
		return ret;

363 364 365 366 367
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
368 369 370 371

	return 0;
}

372
static int
373
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 375
		       u32 flags, u32 scratch_addr)
{
376
	struct intel_engine_cs *engine = req->engine;
377 378
	int ret;

379
	ret = intel_ring_begin(req, 6);
380 381 382
	if (ret)
		return ret;

383 384 385 386 387 388 389
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
390 391 392 393

	return 0;
}

B
Ben Widawsky 已提交
394
static int
395
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
396 397 398
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
399
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400
	int ret;
B
Ben Widawsky 已提交
401 402 403 404 405 406

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
409 410 411 412 413 414 415 416 417 418
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419 420

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421
		ret = gen8_emit_pipe_control(req,
422 423 424 425 426
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
427 428
	}

429
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
430 431
}

432
static void ring_write_tail(struct intel_engine_cs *engine,
433
			    u32 value)
434
{
435 436
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
	I915_WRITE_TAIL(engine, value);
437 438
}

439
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
440
{
441
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
442
	u64 acthd;
443

444 445 446 447 448
	if (INTEL_INFO(engine->dev)->gen >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_INFO(engine->dev)->gen >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
449 450 451 452
	else
		acthd = I915_READ(ACTHD);

	return acthd;
453 454
}

455
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
456
{
457
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
458 459 460
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
461
	if (INTEL_INFO(engine->dev)->gen >= 4)
462 463 464 465
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

466
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
467
{
468 469
	struct drm_device *dev = engine->dev;
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
470
	i915_reg_t mmio;
471 472 473 474 475

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
476
		switch (engine->id) {
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
495 496
	} else if (IS_GEN6(engine->dev)) {
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
497 498
	} else {
		/* XXX: gen8 returns to sanity */
499
		mmio = RING_HWS_PGA(engine->mmio_base);
500 501
	}

502
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
503 504 505 506 507 508 509 510 511 512
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
514 515

		/* ring should be idle before issuing a sync flush*/
516
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
517 518 519 520 521 522 523

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
			     1000))
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524
				  engine->name);
525 526 527
	}
}

528
static bool stop_ring(struct intel_engine_cs *engine)
529
{
530
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
531

532 533 534 535 536
	if (!IS_GEN2(engine->dev)) {
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
		if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
537 538 539 540
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
541
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
542
				return false;
543 544
		}
	}
545

546 547 548
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
549

550 551 552
	if (!IS_GEN2(engine->dev)) {
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
553
	}
554

555
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
556
}
557

558 559 560 561 562
void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
{
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
}

563
static int init_ring_common(struct intel_engine_cs *engine)
564
{
565
	struct drm_device *dev = engine->dev;
566
	struct drm_i915_private *dev_priv = dev->dev_private;
567
	struct intel_ringbuffer *ringbuf = engine->buffer;
568
	struct drm_i915_gem_object *obj = ringbuf->obj;
569 570
	int ret = 0;

571
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572

573
	if (!stop_ring(engine)) {
574
		/* G45 ring initialization often fails to reset head to zero */
575 576
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
577 578 579 580 581
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
582

583
		if (!stop_ring(engine)) {
584 585
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
586 587 588 589 590
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
591 592
			ret = -EIO;
			goto out;
593
		}
594 595
	}

596
	if (I915_NEED_GFX_HWS(dev))
597
		intel_ring_setup_status_page(engine);
598
	else
599
		ring_setup_phys_status_page(engine);
600

601
	/* Enforce ordering by reading HEAD register back */
602
	I915_READ_HEAD(engine);
603

604 605 606 607
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
608
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
609 610

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
611
	if (I915_READ_HEAD(engine))
612
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 614 615
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
616

617
	I915_WRITE_CTL(engine,
618
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619
			| RING_VALID);
620 621

	/* If the head is still not zero, the ring is dead */
622 623 624
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
625
		DRM_ERROR("%s initialization failed "
626
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 628 629 630 631 632
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
633 634
		ret = -EIO;
		goto out;
635 636
	}

637
	ringbuf->last_retired_head = -1;
638 639
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
640
	intel_ring_update_space(ringbuf);
641

642
	intel_engine_init_hangcheck(engine);
643

644
out:
645
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
646 647

	return ret;
648 649
}

650
void
651
intel_fini_pipe_control(struct intel_engine_cs *engine)
652
{
653
	struct drm_device *dev = engine->dev;
654

655
	if (engine->scratch.obj == NULL)
656 657 658
		return;

	if (INTEL_INFO(dev)->gen >= 5) {
659 660
		kunmap(sg_page(engine->scratch.obj->pages->sgl));
		i915_gem_object_ggtt_unpin(engine->scratch.obj);
661 662
	}

663 664
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
665 666 667
}

int
668
intel_init_pipe_control(struct intel_engine_cs *engine)
669 670 671
{
	int ret;

672
	WARN_ON(engine->scratch.obj);
673

674 675
	engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
	if (engine->scratch.obj == NULL) {
676 677 678 679
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
680

681 682
	ret = i915_gem_object_set_cache_level(engine->scratch.obj,
					      I915_CACHE_LLC);
683 684
	if (ret)
		goto err_unref;
685

686
	ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 688 689
	if (ret)
		goto err_unref;

690 691 692
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
	engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
	if (engine->scratch.cpu_page == NULL) {
693
		ret = -ENOMEM;
694
		goto err_unpin;
695
	}
696

697
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698
			 engine->name, engine->scratch.gtt_offset);
699 700 701
	return 0;

err_unpin:
702
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
703
err_unref:
704
	drm_gem_object_unreference(&engine->scratch.obj->base);
705 706 707 708
err:
	return ret;
}

709
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710
{
711
	int ret, i;
712
	struct intel_engine_cs *engine = req->engine;
713
	struct drm_device *dev = engine->dev;
714
	struct drm_i915_private *dev_priv = dev->dev_private;
715
	struct i915_workarounds *w = &dev_priv->workarounds;
716

717
	if (w->count == 0)
718
		return 0;
719

720
	engine->gpu_caches_dirty = true;
721
	ret = intel_ring_flush_all_caches(req);
722 723
	if (ret)
		return ret;
724

725
	ret = intel_ring_begin(req, (w->count * 2 + 2));
726 727 728
	if (ret)
		return ret;

729
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
730
	for (i = 0; i < w->count; i++) {
731 732
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
733
	}
734
	intel_ring_emit(engine, MI_NOOP);
735

736
	intel_ring_advance(engine);
737

738
	engine->gpu_caches_dirty = true;
739
	ret = intel_ring_flush_all_caches(req);
740 741
	if (ret)
		return ret;
742

743
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
744

745
	return 0;
746 747
}

748
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
749 750 751
{
	int ret;

752
	ret = intel_ring_workarounds_emit(req);
753 754 755
	if (ret != 0)
		return ret;

756
	ret = i915_gem_render_state_init(req);
757
	if (ret)
758
		return ret;
759

760
	return 0;
761 762
}

763
static int wa_add(struct drm_i915_private *dev_priv,
764 765
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
766 767 768 769 770 771 772 773 774 775 776 777 778
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
779 780
}

781
#define WA_REG(addr, mask, val) do { \
782
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
783 784
		if (r) \
			return r; \
785
	} while (0)
786 787

#define WA_SET_BIT_MASKED(addr, mask) \
788
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
789 790

#define WA_CLR_BIT_MASKED(addr, mask) \
791
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
792

793
#define WA_SET_FIELD_MASKED(addr, mask, value) \
794
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
795

796 797
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
798

799
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
800

801 802
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
803
{
804
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
805
	struct i915_workarounds *wa = &dev_priv->workarounds;
806
	const uint32_t index = wa->hw_whitelist_count[engine->id];
807 808 809 810

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

811
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
812
		 i915_mmio_reg_offset(reg));
813
	wa->hw_whitelist_count[engine->id]++;
814 815 816 817

	return 0;
}

818
static int gen8_init_workarounds(struct intel_engine_cs *engine)
819
{
820
	struct drm_device *dev = engine->dev;
821 822 823
	struct drm_i915_private *dev_priv = dev->dev_private;

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
824

825 826 827
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

828 829 830 831
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

832 833 834 835 836
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
837
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
838
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
839
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
840 841
			  HDC_FORCE_NON_COHERENT);

842 843 844 845 846 847 848 849 850 851
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

852 853 854
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

867 868 869
	return 0;
}

870
static int bdw_init_workarounds(struct intel_engine_cs *engine)
871
{
872
	int ret;
873
	struct drm_device *dev = engine->dev;
874
	struct drm_i915_private *dev_priv = dev->dev_private;
875

876
	ret = gen8_init_workarounds(engine);
877 878 879
	if (ret)
		return ret;

880
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
881
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882

883
	/* WaDisableDopClockGating:bdw */
884 885
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
886

887 888
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
889

890
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
891 892 893
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
894
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
895 896 897 898

	return 0;
}

899
static int chv_init_workarounds(struct intel_engine_cs *engine)
900
{
901
	int ret;
902
	struct drm_device *dev = engine->dev;
903 904
	struct drm_i915_private *dev_priv = dev->dev_private;

905
	ret = gen8_init_workarounds(engine);
906 907 908
	if (ret)
		return ret;

909
	/* WaDisableThreadStallDopClockGating:chv */
910
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
911

912 913 914
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

915 916 917
	return 0;
}

918
static int gen9_init_workarounds(struct intel_engine_cs *engine)
919
{
920
	struct drm_device *dev = engine->dev;
921
	struct drm_i915_private *dev_priv = dev->dev_private;
922
	uint32_t tmp;
923
	int ret;
924

925 926 927 928 929 930 931 932
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

	/* WaDisableKillLogic:bxt,skl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

933
	/* WaClearFlowControlGpgpuContextSave:skl,bxt */
934
	/* WaDisablePartialInstShootdown:skl,bxt */
935
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
936
			  FLOW_CONTROL_ENABLE |
937 938
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

939
	/* Syncing dependencies between camera and graphics:skl,bxt */
940 941 942
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

943 944 945
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
946 947
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
948

949 950 951
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
952 953
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
954 955 956 957 958
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
959 960
	}

961
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
962 963 964 965
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
966

967
	/* Wa4x4STCOptimizationDisable:skl,bxt */
968
	/* WaDisablePartialResolveInVc:skl,bxt */
969 970
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
971

972
	/* WaCcsTlbPrefetchDisable:skl,bxt */
973 974 975
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

976
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
977 978
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
979 980 981
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

982 983
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
984
	if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
985
	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
986 987 988
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);

989
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
990
	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
991 992 993
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

994 995 996
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

997 998 999 1000
	/* WaOCLCoherentLineFlush:skl,bxt */
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

1001
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
1002
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1003 1004 1005
	if (ret)
		return ret;

1006
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt */
1007
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1008 1009 1010
	if (ret)
		return ret;

1011 1012 1013
	return 0;
}

1014
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1015
{
1016
	struct drm_device *dev = engine->dev;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	struct drm_i915_private *dev_priv = dev->dev_private;
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1028
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1056
static int skl_init_workarounds(struct intel_engine_cs *engine)
1057
{
1058
	int ret;
1059
	struct drm_device *dev = engine->dev;
1060 1061
	struct drm_i915_private *dev_priv = dev->dev_private;

1062
	ret = gen9_init_workarounds(engine);
1063 1064
	if (ret)
		return ret;
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1076
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1077 1078 1079 1080 1081 1082 1083 1084
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1085
	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1086 1087 1088 1089 1090
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1091
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1092 1093 1094 1095
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1096
	/* WaDisablePowerCompilerClockGating:skl */
1097
	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1098 1099 1100
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1101 1102
	/* This is tied to WaForceContextSaveRestoreNonCoherent */
	if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1103 1104 1105 1106 1107 1108 1109 1110
		/*
		 *Use Force Non-Coherent whenever executing a 3D context. This
		 * is a workaround for a possible hang in the unlikely event
		 * a TLB invalidation occurs during a PSD flush.
		 */
		/* WaForceEnableNonCoherent:skl */
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FORCE_NON_COHERENT);
1111 1112 1113 1114

		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);
1115 1116
	}

1117 1118
	/* WaBarrierPerformanceFixDisable:skl */
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1119 1120 1121 1122
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1123
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1124
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1125 1126 1127 1128
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1129
	/* WaDisableLSQCROPERFforOCL:skl */
1130
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1131 1132 1133
	if (ret)
		return ret;

1134
	return skl_tune_iz_hashing(engine);
1135 1136
}

1137
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1138
{
1139
	int ret;
1140
	struct drm_device *dev = engine->dev;
1141 1142
	struct drm_i915_private *dev_priv = dev->dev_private;

1143
	ret = gen9_init_workarounds(engine);
1144 1145
	if (ret)
		return ret;
1146

1147 1148
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
T
Tim Gore 已提交
1149
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1150 1151 1152
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
T
Tim Gore 已提交
1153
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1154 1155 1156 1157
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1158 1159 1160 1161
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1162
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1163
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1164 1165 1166 1167 1168
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1169 1170 1171
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1172
	/* WaDisableLSQCROPERFforOCL:bxt */
1173
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1174
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1175 1176
		if (ret)
			return ret;
1177

1178
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1179 1180
		if (ret)
			return ret;
1181 1182
	}

1183 1184 1185
	return 0;
}

1186
int init_workarounds_ring(struct intel_engine_cs *engine)
1187
{
1188
	struct drm_device *dev = engine->dev;
1189 1190
	struct drm_i915_private *dev_priv = dev->dev_private;

1191
	WARN_ON(engine->id != RCS);
1192 1193

	dev_priv->workarounds.count = 0;
1194
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1195 1196

	if (IS_BROADWELL(dev))
1197
		return bdw_init_workarounds(engine);
1198 1199

	if (IS_CHERRYVIEW(dev))
1200
		return chv_init_workarounds(engine);
1201

1202
	if (IS_SKYLAKE(dev))
1203
		return skl_init_workarounds(engine);
1204 1205

	if (IS_BROXTON(dev))
1206
		return bxt_init_workarounds(engine);
1207

1208 1209 1210
	return 0;
}

1211
static int init_render_ring(struct intel_engine_cs *engine)
1212
{
1213
	struct drm_device *dev = engine->dev;
1214
	struct drm_i915_private *dev_priv = dev->dev_private;
1215
	int ret = init_ring_common(engine);
1216 1217
	if (ret)
		return ret;
1218

1219 1220
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1221
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1222 1223 1224 1225

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1226
	 *
1227
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1228
	 */
1229
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1230 1231
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1232
	/* Required for the hardware to program scanline values for waiting */
1233
	/* WaEnableFlushTlbInvalidationMode:snb */
1234 1235
	if (INTEL_INFO(dev)->gen == 6)
		I915_WRITE(GFX_MODE,
1236
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1237

1238
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1239 1240
	if (IS_GEN7(dev))
		I915_WRITE(GFX_MODE_GEN7,
1241
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1242
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1243

1244
	if (IS_GEN6(dev)) {
1245 1246 1247 1248 1249 1250
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1251
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1252 1253
	}

1254
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1255
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1256

1257
	if (HAS_L3_DPF(dev))
1258
		I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1259

1260
	return init_workarounds_ring(engine);
1261 1262
}

1263
static void render_ring_cleanup(struct intel_engine_cs *engine)
1264
{
1265
	struct drm_device *dev = engine->dev;
1266 1267 1268 1269 1270 1271 1272
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1273

1274
	intel_fini_pipe_control(engine);
1275 1276
}

1277
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1278 1279 1280
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1281
	struct intel_engine_cs *signaller = signaller_req->engine;
1282 1283 1284
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1285 1286
	enum intel_engine_id id;
	int ret, num_rings;
1287 1288 1289 1290 1291

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1292
	ret = intel_ring_begin(signaller_req, num_dwords);
1293 1294 1295
	if (ret)
		return ret;

1296
	for_each_engine_id(waiter, dev_priv, id) {
1297
		u32 seqno;
1298
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1299 1300 1301
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1302
		seqno = i915_gem_request_get_seqno(signaller_req);
1303 1304 1305 1306 1307 1308
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
					   PIPE_CONTROL_FLUSH_ENABLE);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1309
		intel_ring_emit(signaller, seqno);
1310 1311 1312 1313 1314 1315 1316 1317 1318
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1319
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1320 1321 1322
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1323
	struct intel_engine_cs *signaller = signaller_req->engine;
1324 1325 1326
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1327 1328
	enum intel_engine_id id;
	int ret, num_rings;
1329 1330 1331 1332 1333

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1334
	ret = intel_ring_begin(signaller_req, num_dwords);
1335 1336 1337
	if (ret)
		return ret;

1338
	for_each_engine_id(waiter, dev_priv, id) {
1339
		u32 seqno;
1340
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1341 1342 1343
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1344
		seqno = i915_gem_request_get_seqno(signaller_req);
1345 1346 1347 1348 1349
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1350
		intel_ring_emit(signaller, seqno);
1351 1352 1353 1354 1355 1356 1357 1358
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1359
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1360
		       unsigned int num_dwords)
1361
{
1362
	struct intel_engine_cs *signaller = signaller_req->engine;
1363 1364
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1365
	struct intel_engine_cs *useless;
1366 1367
	enum intel_engine_id id;
	int ret, num_rings;
1368

1369 1370 1371 1372
#define MBOX_UPDATE_DWORDS 3
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1373

1374
	ret = intel_ring_begin(signaller_req, num_dwords);
1375 1376 1377
	if (ret)
		return ret;

1378 1379
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1380 1381

		if (i915_mmio_reg_valid(mbox_reg)) {
1382
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1383

1384
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1385
			intel_ring_emit_reg(signaller, mbox_reg);
1386
			intel_ring_emit(signaller, seqno);
1387 1388
		}
	}
1389

1390 1391 1392 1393
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1394
	return 0;
1395 1396
}

1397 1398
/**
 * gen6_add_request - Update the semaphore mailbox registers
1399 1400
 *
 * @request - request to write to the ring
1401 1402 1403 1404
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1405
static int
1406
gen6_add_request(struct drm_i915_gem_request *req)
1407
{
1408
	struct intel_engine_cs *engine = req->engine;
1409
	int ret;
1410

1411 1412
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1413
	else
1414
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1415

1416 1417 1418
	if (ret)
		return ret;

1419 1420 1421 1422 1423 1424
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1425 1426 1427 1428

	return 0;
}

1429 1430 1431 1432 1433 1434 1435
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
					      u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	return dev_priv->last_seqno < seqno;
}

1436 1437 1438 1439 1440 1441 1442
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1443 1444

static int
1445
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1446 1447 1448
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1449
	struct intel_engine_cs *waiter = waiter_req->engine;
1450 1451 1452
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
	int ret;

1453
	ret = intel_ring_begin(waiter_req, 4);
1454 1455 1456 1457 1458
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
B
Ben Widawsky 已提交
1459
				MI_SEMAPHORE_POLL |
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter,
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_emit(waiter,
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_advance(waiter);
	return 0;
}

1470
static int
1471
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1472
	       struct intel_engine_cs *signaller,
1473
	       u32 seqno)
1474
{
1475
	struct intel_engine_cs *waiter = waiter_req->engine;
1476 1477 1478
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1479 1480
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1481

1482 1483 1484 1485 1486 1487
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1488
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1489

1490
	ret = intel_ring_begin(waiter_req, 4);
1491 1492 1493
	if (ret)
		return ret;

1494 1495
	/* If seqno wrap happened, omit the wait with no-ops */
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1496
		intel_ring_emit(waiter, dw1 | wait_mbox);
1497 1498 1499 1500 1501 1502 1503 1504 1505
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1506
	intel_ring_advance(waiter);
1507 1508 1509 1510

	return 0;
}

1511 1512
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
1513 1514
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
1515 1516 1517 1518 1519 1520
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
1521
pc_render_add_request(struct drm_i915_gem_request *req)
1522
{
1523
	struct intel_engine_cs *engine = req->engine;
1524
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
1535
	ret = intel_ring_begin(req, 32);
1536 1537 1538
	if (ret)
		return ret;

1539 1540
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1541 1542
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1543 1544 1545 1546 1547
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1548
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1549
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1550
	scratch_addr += 2 * CACHELINE_BYTES;
1551
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1552
	scratch_addr += 2 * CACHELINE_BYTES;
1553
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1554
	scratch_addr += 2 * CACHELINE_BYTES;
1555
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1556
	scratch_addr += 2 * CACHELINE_BYTES;
1557
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1558

1559 1560
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1561 1562
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1563
			PIPE_CONTROL_NOTIFY);
1564 1565 1566 1567 1568
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	__intel_ring_advance(engine);
1569 1570 1571 1572

	return 0;
}

1573 1574
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1575
{
1576 1577
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

1578 1579
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1580 1581 1582 1583 1584 1585 1586 1587 1588
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1589 1590 1591
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1592
	 */
1593
	spin_lock_irq(&dev_priv->uncore.lock);
1594
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1595
	spin_unlock_irq(&dev_priv->uncore.lock);
1596 1597
}

1598
static u32
1599
ring_get_seqno(struct intel_engine_cs *engine)
1600
{
1601
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1602 1603
}

M
Mika Kuoppala 已提交
1604
static void
1605
ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1606
{
1607
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
M
Mika Kuoppala 已提交
1608 1609
}

1610
static u32
1611
pc_render_get_seqno(struct intel_engine_cs *engine)
1612
{
1613
	return engine->scratch.cpu_page[0];
1614 1615
}

M
Mika Kuoppala 已提交
1616
static void
1617
pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1618
{
1619
	engine->scratch.cpu_page[0] = seqno;
M
Mika Kuoppala 已提交
1620 1621
}

1622
static bool
1623
gen5_ring_get_irq(struct intel_engine_cs *engine)
1624
{
1625
	struct drm_device *dev = engine->dev;
1626
	struct drm_i915_private *dev_priv = dev->dev_private;
1627
	unsigned long flags;
1628

1629
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1630 1631
		return false;

1632
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1633 1634
	if (engine->irq_refcount++ == 0)
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1635
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1636 1637 1638 1639 1640

	return true;
}

static void
1641
gen5_ring_put_irq(struct intel_engine_cs *engine)
1642
{
1643
	struct drm_device *dev = engine->dev;
1644
	struct drm_i915_private *dev_priv = dev->dev_private;
1645
	unsigned long flags;
1646

1647
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1648 1649
	if (--engine->irq_refcount == 0)
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1650
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1651 1652
}

1653
static bool
1654
i9xx_ring_get_irq(struct intel_engine_cs *engine)
1655
{
1656
	struct drm_device *dev = engine->dev;
1657
	struct drm_i915_private *dev_priv = dev->dev_private;
1658
	unsigned long flags;
1659

1660
	if (!intel_irqs_enabled(dev_priv))
1661 1662
		return false;

1663
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1664 1665
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1666 1667 1668
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1669
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1670 1671

	return true;
1672 1673
}

1674
static void
1675
i9xx_ring_put_irq(struct intel_engine_cs *engine)
1676
{
1677
	struct drm_device *dev = engine->dev;
1678
	struct drm_i915_private *dev_priv = dev->dev_private;
1679
	unsigned long flags;
1680

1681
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1682 1683
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
1684 1685 1686
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1687
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1688 1689
}

C
Chris Wilson 已提交
1690
static bool
1691
i8xx_ring_get_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1692
{
1693
	struct drm_device *dev = engine->dev;
1694
	struct drm_i915_private *dev_priv = dev->dev_private;
1695
	unsigned long flags;
C
Chris Wilson 已提交
1696

1697
	if (!intel_irqs_enabled(dev_priv))
C
Chris Wilson 已提交
1698 1699
		return false;

1700
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1701 1702
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
C
Chris Wilson 已提交
1703 1704 1705
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1706
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1707 1708 1709 1710 1711

	return true;
}

static void
1712
i8xx_ring_put_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1713
{
1714
	struct drm_device *dev = engine->dev;
1715
	struct drm_i915_private *dev_priv = dev->dev_private;
1716
	unsigned long flags;
C
Chris Wilson 已提交
1717

1718
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1719 1720
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
C
Chris Wilson 已提交
1721 1722 1723
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1724
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1725 1726
}

1727
static int
1728
bsd_ring_flush(struct drm_i915_gem_request *req,
1729 1730
	       u32     invalidate_domains,
	       u32     flush_domains)
1731
{
1732
	struct intel_engine_cs *engine = req->engine;
1733 1734
	int ret;

1735
	ret = intel_ring_begin(req, 2);
1736 1737 1738
	if (ret)
		return ret;

1739 1740 1741
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1742
	return 0;
1743 1744
}

1745
static int
1746
i9xx_add_request(struct drm_i915_gem_request *req)
1747
{
1748
	struct intel_engine_cs *engine = req->engine;
1749 1750
	int ret;

1751
	ret = intel_ring_begin(req, 4);
1752 1753
	if (ret)
		return ret;
1754

1755 1756 1757 1758 1759 1760
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1761

1762
	return 0;
1763 1764
}

1765
static bool
1766
gen6_ring_get_irq(struct intel_engine_cs *engine)
1767
{
1768
	struct drm_device *dev = engine->dev;
1769
	struct drm_i915_private *dev_priv = dev->dev_private;
1770
	unsigned long flags;
1771

1772 1773
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
		return false;
1774

1775
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1776 1777 1778 1779
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1780
					 GT_PARITY_ERROR(dev)));
1781
		else
1782 1783
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1784
	}
1785
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1786 1787 1788 1789 1790

	return true;
}

static void
1791
gen6_ring_put_irq(struct intel_engine_cs *engine)
1792
{
1793
	struct drm_device *dev = engine->dev;
1794
	struct drm_i915_private *dev_priv = dev->dev_private;
1795
	unsigned long flags;
1796

1797
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1798 1799 1800
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1801
		else
1802 1803
			I915_WRITE_IMR(engine, ~0);
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1804
	}
1805
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1806 1807
}

B
Ben Widawsky 已提交
1808
static bool
1809
hsw_vebox_get_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1810
{
1811
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1812 1813 1814
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1815
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
B
Ben Widawsky 已提交
1816 1817
		return false;

1818
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1819 1820 1821
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1822
	}
1823
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1824 1825 1826 1827 1828

	return true;
}

static void
1829
hsw_vebox_put_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1830
{
1831
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1832 1833 1834
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1835
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1836 1837 1838
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~0);
		gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1839
	}
1840
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1841 1842
}

1843
static bool
1844
gen8_ring_get_irq(struct intel_engine_cs *engine)
1845
{
1846
	struct drm_device *dev = engine->dev;
1847 1848 1849
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1850
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1851 1852 1853
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1854 1855 1856 1857
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1858 1859
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
		} else {
1860
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1861
		}
1862
		POSTING_READ(RING_IMR(engine->mmio_base));
1863 1864 1865 1866 1867 1868 1869
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void
1870
gen8_ring_put_irq(struct intel_engine_cs *engine)
1871
{
1872
	struct drm_device *dev = engine->dev;
1873 1874 1875 1876
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1877 1878 1879
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
1880 1881
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
		} else {
1882
			I915_WRITE_IMR(engine, ~0);
1883
		}
1884
		POSTING_READ(RING_IMR(engine->mmio_base));
1885 1886 1887 1888
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1889
static int
1890
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1891
			 u64 offset, u32 length,
1892
			 unsigned dispatch_flags)
1893
{
1894
	struct intel_engine_cs *engine = req->engine;
1895
	int ret;
1896

1897
	ret = intel_ring_begin(req, 2);
1898 1899 1900
	if (ret)
		return ret;

1901
	intel_ring_emit(engine,
1902 1903
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1904 1905
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1906 1907
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
1908

1909 1910 1911
	return 0;
}

1912 1913
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1914 1915
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1916
static int
1917
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1918 1919
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1920
{
1921
	struct intel_engine_cs *engine = req->engine;
1922
	u32 cs_offset = engine->scratch.gtt_offset;
1923
	int ret;
1924

1925
	ret = intel_ring_begin(req, 6);
1926 1927
	if (ret)
		return ret;
1928

1929
	/* Evict the invalid PTE TLBs */
1930 1931 1932 1933 1934 1935 1936
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1937

1938
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1939 1940 1941
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1942
		ret = intel_ring_begin(req, 6 + 2);
1943 1944
		if (ret)
			return ret;
1945 1946 1947 1948 1949

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
1961 1962

		/* ... and execute it. */
1963
		offset = cs_offset;
1964
	}
1965

1966
	ret = intel_ring_begin(req, 2);
1967 1968 1969
	if (ret)
		return ret;

1970 1971 1972 1973
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1974

1975 1976 1977 1978
	return 0;
}

static int
1979
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1980
			 u64 offset, u32 len,
1981
			 unsigned dispatch_flags)
1982
{
1983
	struct intel_engine_cs *engine = req->engine;
1984 1985
	int ret;

1986
	ret = intel_ring_begin(req, 2);
1987 1988 1989
	if (ret)
		return ret;

1990 1991 1992 1993
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1994 1995 1996 1997

	return 0;
}

1998
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1999
{
2000
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2001 2002 2003 2004

	if (!dev_priv->status_page_dmah)
		return;

2005 2006
	drm_pci_free(engine->dev, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
2007 2008
}

2009
static void cleanup_status_page(struct intel_engine_cs *engine)
2010
{
2011
	struct drm_i915_gem_object *obj;
2012

2013
	obj = engine->status_page.obj;
2014
	if (obj == NULL)
2015 2016
		return;

2017
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
2018
	i915_gem_object_ggtt_unpin(obj);
2019
	drm_gem_object_unreference(&obj->base);
2020
	engine->status_page.obj = NULL;
2021 2022
}

2023
static int init_status_page(struct intel_engine_cs *engine)
2024
{
2025
	struct drm_i915_gem_object *obj = engine->status_page.obj;
2026

2027
	if (obj == NULL) {
2028
		unsigned flags;
2029
		int ret;
2030

2031
		obj = i915_gem_alloc_object(engine->dev, 4096);
2032 2033 2034 2035
		if (obj == NULL) {
			DRM_ERROR("Failed to allocate status page\n");
			return -ENOMEM;
		}
2036

2037 2038 2039 2040
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

2041
		flags = 0;
2042
		if (!HAS_LLC(engine->dev))
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2055 2056 2057 2058 2059 2060
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

2061
		engine->status_page.obj = obj;
2062
	}
2063

2064 2065 2066
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2067

2068
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2069
			engine->name, engine->status_page.gfx_addr);
2070 2071 2072 2073

	return 0;
}

2074
static int init_phys_status_page(struct intel_engine_cs *engine)
2075
{
2076
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2077 2078 2079

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
2080
			drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2081 2082 2083 2084
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

2085 2086
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2087 2088 2089 2090

	return 0;
}

2091
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2092
{
2093
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2094
		i915_gem_object_unpin_map(ringbuf->obj);
2095 2096
	else
		iounmap(ringbuf->virtual_start);
2097
	ringbuf->virtual_start = NULL;
2098
	ringbuf->vma = NULL;
2099
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2100 2101 2102 2103 2104 2105
}

int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
2106
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2107
	struct drm_i915_gem_object *obj = ringbuf->obj;
2108 2109
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2110
	void *addr;
2111 2112
	int ret;

2113
	if (HAS_LLC(dev_priv) && !obj->stolen) {
2114
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2115 2116
		if (ret)
			return ret;
2117

2118
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2119 2120
		if (ret)
			goto err_unpin;
2121

2122 2123 2124
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2125
			goto err_unpin;
2126 2127
		}
	} else {
2128 2129
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
2130 2131
		if (ret)
			return ret;
2132

2133
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2134 2135
		if (ret)
			goto err_unpin;
2136

2137 2138 2139
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2140 2141 2142
		addr = ioremap_wc(ggtt->mappable_base +
				  i915_gem_obj_ggtt_offset(obj), ringbuf->size);
		if (addr == NULL) {
2143 2144
			ret = -ENOMEM;
			goto err_unpin;
2145
		}
2146 2147
	}

2148
	ringbuf->virtual_start = addr;
2149
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2150
	return 0;
2151 2152 2153 2154

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2155 2156
}

2157
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2158
{
2159 2160 2161 2162
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2163 2164
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2165
{
2166
	struct drm_i915_gem_object *obj;
2167

2168 2169
	obj = NULL;
	if (!HAS_LLC(dev))
2170
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2171
	if (obj == NULL)
2172
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2173 2174
	if (obj == NULL)
		return -ENOMEM;
2175

2176 2177 2178
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2179
	ringbuf->obj = obj;
2180

2181
	return 0;
2182 2183
}

2184 2185 2186 2187 2188 2189 2190
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2191 2192 2193
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2194
		return ERR_PTR(-ENOMEM);
2195
	}
2196

2197
	ring->engine = engine;
2198
	list_add(&ring->link, &engine->buffers);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
	if (ret) {
2214 2215 2216
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2228
	list_del(&ring->link);
2229 2230 2231
	kfree(ring);
}

2232
static int intel_init_ring_buffer(struct drm_device *dev,
2233
				  struct intel_engine_cs *engine)
2234
{
2235
	struct intel_ringbuffer *ringbuf;
2236 2237
	int ret;

2238
	WARN_ON(engine->buffer);
2239

2240 2241 2242 2243 2244 2245 2246 2247
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->buffers);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2248

2249
	init_waitqueue_head(&engine->irq_queue);
2250

2251
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2252 2253 2254 2255
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2256
	engine->buffer = ringbuf;
2257

2258
	if (I915_NEED_GFX_HWS(dev)) {
2259
		ret = init_status_page(engine);
2260
		if (ret)
2261
			goto error;
2262
	} else {
2263 2264
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2265
		if (ret)
2266
			goto error;
2267 2268
	}

2269 2270 2271
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2272
				engine->name, ret);
2273 2274
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2275
	}
2276

2277
	ret = i915_cmd_parser_init_ring(engine);
2278
	if (ret)
2279 2280 2281
		goto error;

	return 0;
2282

2283
error:
2284
	intel_cleanup_engine(engine);
2285
	return ret;
2286 2287
}

2288
void intel_cleanup_engine(struct intel_engine_cs *engine)
2289
{
2290
	struct drm_i915_private *dev_priv;
2291

2292
	if (!intel_engine_initialized(engine))
2293 2294
		return;

2295
	dev_priv = to_i915(engine->dev);
2296

2297
	if (engine->buffer) {
2298
		intel_stop_engine(engine);
2299
		WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2300

2301 2302 2303
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2304
	}
2305

2306 2307
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2308

2309 2310
	if (I915_NEED_GFX_HWS(engine->dev)) {
		cleanup_status_page(engine);
2311
	} else {
2312 2313
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2314
	}
2315

2316 2317 2318
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
	engine->dev = NULL;
2319 2320
}

2321
static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
2322
{
2323
	struct intel_ringbuffer *ringbuf = engine->buffer;
2324
	struct drm_i915_gem_request *request;
2325 2326
	unsigned space;
	int ret;
2327

2328 2329
	if (intel_ring_space(ringbuf) >= n)
		return 0;
2330

2331 2332 2333
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

2334
	list_for_each_entry(request, &engine->request_list, list) {
2335 2336 2337
		space = __intel_ring_space(request->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= n)
2338 2339 2340
			break;
	}

2341
	if (WARN_ON(&request->list == &engine->request_list))
2342 2343
		return -ENOSPC;

2344
	ret = i915_wait_request(request);
2345 2346 2347
	if (ret)
		return ret;

2348
	ringbuf->space = space;
2349 2350 2351
	return 0;
}

2352
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2353 2354
{
	uint32_t __iomem *virt;
2355
	int rem = ringbuf->size - ringbuf->tail;
2356

2357
	virt = ringbuf->virtual_start + ringbuf->tail;
2358 2359 2360 2361
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

2362
	ringbuf->tail = 0;
2363
	intel_ring_update_space(ringbuf);
2364 2365
}

2366
int intel_engine_idle(struct intel_engine_cs *engine)
2367
{
2368
	struct drm_i915_gem_request *req;
2369 2370

	/* Wait upon the last request to be completed */
2371
	if (list_empty(&engine->request_list))
2372 2373
		return 0;

2374 2375 2376
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2377 2378 2379

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2380
				   req->i915->mm.interruptible,
2381
				   NULL, NULL);
2382 2383
}

2384
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2385
{
2386
	request->ringbuf = request->engine->buffer;
2387
	return 0;
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_ring_begin(request, 0);
}

2405 2406
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
{
2407
	WARN_ON(ringbuf->reserved_size);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size = size;
}

void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_in_use = true;
	ringbuf->reserved_tail   = ringbuf->tail;
}

void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(!ringbuf->reserved_in_use);
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	if (ringbuf->tail > ringbuf->reserved_tail) {
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
		     "request reserved size too small: %d vs %d!\n",
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
	} else {
		/*
		 * The ring was wrapped while the reserved space was in use.
		 * That means that some unknown amount of the ring tail was
		 * no-op filled and skipped. Thus simply adding the ring size
		 * to the tail and doing the above space check will not work.
		 * Rather than attempt to track how much tail was skipped,
		 * it is much simpler to say that also skipping the sanity
		 * check every once in a while is not a big issue.
		 */
	}
2447 2448 2449 2450 2451

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

2452
static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
M
Mika Kuoppala 已提交
2453
{
2454
	struct intel_ringbuffer *ringbuf = engine->buffer;
2455 2456 2457 2458
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
2459

2460 2461 2462 2463
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
2464

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
2476 2477 2478
			 * falls off the end. So don't need an immediate wrap
			 * and only need to effectively wait for the reserved
			 * size space from the start of ringbuffer.
2479 2480 2481 2482 2483
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
2484
		}
M
Mika Kuoppala 已提交
2485 2486
	}

2487
	if (wait_bytes) {
2488
		ret = ring_wait_for_space(engine, wait_bytes);
M
Mika Kuoppala 已提交
2489 2490
		if (unlikely(ret))
			return ret;
2491 2492 2493

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
M
Mika Kuoppala 已提交
2494 2495 2496 2497 2498
	}

	return 0;
}

2499
int intel_ring_begin(struct drm_i915_gem_request *req,
2500
		     int num_dwords)
2501
{
2502
	struct intel_engine_cs *engine = req->engine;
2503
	int ret;
2504

2505
	ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
2506 2507 2508
	if (ret)
		return ret;

2509
	engine->buffer->space -= num_dwords * sizeof(uint32_t);
2510
	return 0;
2511
}
2512

2513
/* Align the ring tail to a cacheline boundary */
2514
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2515
{
2516
	struct intel_engine_cs *engine = req->engine;
2517
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2518 2519 2520 2521 2522
	int ret;

	if (num_dwords == 0)
		return 0;

2523
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2524
	ret = intel_ring_begin(req, num_dwords);
2525 2526 2527 2528
	if (ret)
		return ret;

	while (num_dwords--)
2529
		intel_ring_emit(engine, MI_NOOP);
2530

2531
	intel_ring_advance(engine);
2532 2533 2534 2535

	return 0;
}

2536
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2537
{
2538
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2539

2540 2541 2542 2543 2544 2545 2546 2547
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2548
	if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2549 2550
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2551
		if (HAS_VEBOX(dev_priv))
2552
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2553
	}
2554 2555 2556 2557 2558 2559 2560 2561
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2562 2563
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2564

2565
	engine->set_seqno(engine, seqno);
2566
	engine->last_submitted_seqno = seqno;
2567

2568
	engine->hangcheck.seqno = seqno;
2569
}
2570

2571
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2572
				     u32 value)
2573
{
2574
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2575 2576

       /* Every tail move must follow the sequence below */
2577 2578 2579 2580

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2581
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2582 2583 2584 2585
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	/* Clear the context id. Here be magic! */
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2586

2587
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2588
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2589 2590 2591
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
		     50))
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2592

2593
	/* Now that the ring is fully powered up, update the tail */
2594 2595
	I915_WRITE_TAIL(engine, value);
	POSTING_READ(RING_TAIL(engine->mmio_base));
2596 2597 2598 2599

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2600
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2601
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2602 2603
}

2604
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2605
			       u32 invalidate, u32 flush)
2606
{
2607
	struct intel_engine_cs *engine = req->engine;
2608
	uint32_t cmd;
2609 2610
	int ret;

2611
	ret = intel_ring_begin(req, 4);
2612 2613 2614
	if (ret)
		return ret;

2615
	cmd = MI_FLUSH_DW;
2616
	if (INTEL_INFO(engine->dev)->gen >= 8)
B
Ben Widawsky 已提交
2617
		cmd += 1;
2618 2619 2620 2621 2622 2623 2624 2625

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2626 2627 2628 2629 2630 2631
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2632
	if (invalidate & I915_GEM_GPU_DOMAINS)
2633 2634
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2635 2636 2637 2638 2639 2640
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
	if (INTEL_INFO(engine->dev)->gen >= 8) {
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2641
	} else  {
2642 2643
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2644
	}
2645
	intel_ring_advance(engine);
2646
	return 0;
2647 2648
}

2649
static int
2650
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2651
			      u64 offset, u32 len,
2652
			      unsigned dispatch_flags)
2653
{
2654
	struct intel_engine_cs *engine = req->engine;
2655
	bool ppgtt = USES_PPGTT(engine->dev) &&
2656
			!(dispatch_flags & I915_DISPATCH_SECURE);
2657 2658
	int ret;

2659
	ret = intel_ring_begin(req, 4);
2660 2661 2662 2663
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2664
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2665 2666
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2667 2668 2669 2670
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2671 2672 2673 2674

	return 0;
}

2675
static int
2676
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2677 2678
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2679
{
2680
	struct intel_engine_cs *engine = req->engine;
2681 2682
	int ret;

2683
	ret = intel_ring_begin(req, 2);
2684 2685 2686
	if (ret)
		return ret;

2687
	intel_ring_emit(engine,
2688
			MI_BATCH_BUFFER_START |
2689
			(dispatch_flags & I915_DISPATCH_SECURE ?
2690 2691 2692
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2693
	/* bit0-7 is the length on GEN6+ */
2694 2695
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2696 2697 2698 2699

	return 0;
}

2700
static int
2701
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2702
			      u64 offset, u32 len,
2703
			      unsigned dispatch_flags)
2704
{
2705
	struct intel_engine_cs *engine = req->engine;
2706
	int ret;
2707

2708
	ret = intel_ring_begin(req, 2);
2709 2710
	if (ret)
		return ret;
2711

2712
	intel_ring_emit(engine,
2713
			MI_BATCH_BUFFER_START |
2714 2715
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2716
	/* bit0-7 is the length on GEN6+ */
2717 2718
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2719

2720
	return 0;
2721 2722
}

2723 2724
/* Blitter support (SandyBridge+) */

2725
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2726
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2727
{
2728
	struct intel_engine_cs *engine = req->engine;
2729
	struct drm_device *dev = engine->dev;
2730
	uint32_t cmd;
2731 2732
	int ret;

2733
	ret = intel_ring_begin(req, 4);
2734 2735 2736
	if (ret)
		return ret;

2737
	cmd = MI_FLUSH_DW;
2738
	if (INTEL_INFO(dev)->gen >= 8)
B
Ben Widawsky 已提交
2739
		cmd += 1;
2740 2741 2742 2743 2744 2745 2746 2747

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2748 2749 2750 2751 2752 2753
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2754
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2755
		cmd |= MI_INVALIDATE_TLB;
2756 2757 2758
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2759
	if (INTEL_INFO(dev)->gen >= 8) {
2760 2761
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2762
	} else  {
2763 2764
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2765
	}
2766
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2767

2768
	return 0;
Z
Zou Nan hai 已提交
2769 2770
}

2771 2772
int intel_init_render_ring_buffer(struct drm_device *dev)
{
2773
	struct drm_i915_private *dev_priv = dev->dev_private;
2774
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2775 2776
	struct drm_i915_gem_object *obj;
	int ret;
2777

2778 2779 2780 2781
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->mmio_base = RENDER_RING_BASE;
2782

B
Ben Widawsky 已提交
2783
	if (INTEL_INFO(dev)->gen >= 8) {
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		if (i915_semaphore_is_enabled(dev)) {
			obj = i915_gem_alloc_object(dev, 4096);
			if (obj == NULL) {
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
				if (ret != 0) {
					drm_gem_object_unreference(&obj->base);
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
					i915.semaphores = 0;
				} else
					dev_priv->semaphore_obj = obj;
			}
		}
2800

2801 2802 2803 2804 2805 2806
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen8_render_ring_flush;
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2807 2808
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2809
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2810
		if (i915_semaphore_is_enabled(dev)) {
2811
			WARN_ON(!dev_priv->semaphore_obj);
2812 2813 2814
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_rcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2815 2816
		}
	} else if (INTEL_INFO(dev)->gen >= 6) {
2817 2818 2819
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen7_render_ring_flush;
2820
		if (INTEL_INFO(dev)->gen == 6)
2821 2822 2823 2824
			engine->flush = gen6_render_ring_flush;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2825 2826
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2827
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2828
		if (i915_semaphore_is_enabled(dev)) {
2829 2830
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
B
Ben Widawsky 已提交
2831 2832 2833 2834 2835 2836 2837
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between RCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between VCS2 and RCS later.
			 */
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2848
		}
2849
	} else if (IS_GEN5(dev)) {
2850 2851 2852 2853 2854 2855 2856
		engine->add_request = pc_render_add_request;
		engine->flush = gen4_render_ring_flush;
		engine->get_seqno = pc_render_get_seqno;
		engine->set_seqno = pc_render_set_seqno;
		engine->irq_get = gen5_ring_get_irq;
		engine->irq_put = gen5_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2857
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2858
	} else {
2859
		engine->add_request = i9xx_add_request;
2860
		if (INTEL_INFO(dev)->gen < 4)
2861
			engine->flush = gen2_render_ring_flush;
2862
		else
2863 2864 2865
			engine->flush = gen4_render_ring_flush;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
C
Chris Wilson 已提交
2866
		if (IS_GEN2(dev)) {
2867 2868
			engine->irq_get = i8xx_ring_get_irq;
			engine->irq_put = i8xx_ring_put_irq;
C
Chris Wilson 已提交
2869
		} else {
2870 2871
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
C
Chris Wilson 已提交
2872
		}
2873
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2874
	}
2875
	engine->write_tail = ring_write_tail;
B
Ben Widawsky 已提交
2876

2877
	if (IS_HASWELL(dev))
2878
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2879
	else if (IS_GEN8(dev))
2880
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2881
	else if (INTEL_INFO(dev)->gen >= 6)
2882
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2883
	else if (INTEL_INFO(dev)->gen >= 4)
2884
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2885
	else if (IS_I830(dev) || IS_845G(dev))
2886
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2887
	else
2888 2889 2890
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2891

2892 2893
	/* Workaround batchbuffer to combat CS tlb bug. */
	if (HAS_BROKEN_CS_TLB(dev)) {
2894
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2895 2896 2897 2898 2899
		if (obj == NULL) {
			DRM_ERROR("Failed to allocate batch bo\n");
			return -ENOMEM;
		}

2900
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2901 2902 2903 2904 2905 2906
		if (ret != 0) {
			drm_gem_object_unreference(&obj->base);
			DRM_ERROR("Failed to ping batch bo\n");
			return ret;
		}

2907 2908
		engine->scratch.obj = obj;
		engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2909 2910
	}

2911
	ret = intel_init_ring_buffer(dev, engine);
2912 2913 2914 2915
	if (ret)
		return ret;

	if (INTEL_INFO(dev)->gen >= 5) {
2916
		ret = intel_init_pipe_control(engine);
2917 2918 2919 2920 2921
		if (ret)
			return ret;
	}

	return 0;
2922 2923 2924 2925
}

int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
2926
	struct drm_i915_private *dev_priv = dev->dev_private;
2927
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2928

2929 2930 2931
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
2932

2933
	engine->write_tail = ring_write_tail;
2934
	if (INTEL_INFO(dev)->gen >= 6) {
2935
		engine->mmio_base = GEN6_BSD_RING_BASE;
2936 2937
		/* gen6 bsd needs a special wa for tail updates */
		if (IS_GEN6(dev))
2938 2939 2940
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
		engine->add_request = gen6_add_request;
2941 2942
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2943
		engine->set_seqno = ring_set_seqno;
2944
		if (INTEL_INFO(dev)->gen >= 8) {
2945
			engine->irq_enable_mask =
2946
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2947 2948 2949
			engine->irq_get = gen8_ring_get_irq;
			engine->irq_put = gen8_ring_put_irq;
			engine->dispatch_execbuffer =
2950
				gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2951
			if (i915_semaphore_is_enabled(dev)) {
2952 2953 2954
				engine->semaphore.sync_to = gen8_ring_sync;
				engine->semaphore.signal = gen8_xcs_signal;
				GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2955
			}
2956
		} else {
2957 2958 2959 2960
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
			engine->irq_get = gen6_ring_get_irq;
			engine->irq_put = gen6_ring_put_irq;
			engine->dispatch_execbuffer =
2961
				gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2962
			if (i915_semaphore_is_enabled(dev)) {
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
				engine->semaphore.sync_to = gen6_ring_sync;
				engine->semaphore.signal = gen6_signal;
				engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
				engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
				engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
				engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
				engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
				engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
				engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
				engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2975
			}
2976
		}
2977
	} else {
2978 2979 2980 2981 2982
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
		engine->add_request = i9xx_add_request;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
2983
		if (IS_GEN5(dev)) {
2984 2985 2986
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
			engine->irq_get = gen5_ring_get_irq;
			engine->irq_put = gen5_ring_put_irq;
2987
		} else {
2988 2989 2990
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
2991
		}
2992
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2993
	}
2994
	engine->init_hw = init_ring_common;
2995

2996
	return intel_init_ring_buffer(dev, engine);
2997
}
2998

2999
/**
3000
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3001 3002 3003 3004
 */
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3005
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3006 3007 3008 3009 3010 3011 3012 3013 3014

	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;

	engine->write_tail = ring_write_tail;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
	engine->flush = gen6_bsd_ring_flush;
	engine->add_request = gen6_add_request;
3015 3016
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3017 3018
	engine->set_seqno = ring_set_seqno;
	engine->irq_enable_mask =
3019
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3020 3021 3022
	engine->irq_get = gen8_ring_get_irq;
	engine->irq_put = gen8_ring_put_irq;
	engine->dispatch_execbuffer =
3023
			gen8_ring_dispatch_execbuffer;
3024
	if (i915_semaphore_is_enabled(dev)) {
3025 3026 3027
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
		GEN8_RING_SEMAPHORE_INIT(engine);
3028
	}
3029
	engine->init_hw = init_ring_common;
3030

3031
	return intel_init_ring_buffer(dev, engine);
3032 3033
}

3034 3035
int intel_init_blt_ring_buffer(struct drm_device *dev)
{
3036
	struct drm_i915_private *dev_priv = dev->dev_private;
3037
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3038 3039 3040 3041 3042 3043 3044 3045 3046

	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;

	engine->mmio_base = BLT_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
3047 3048
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3049
	engine->set_seqno = ring_set_seqno;
3050
	if (INTEL_INFO(dev)->gen >= 8) {
3051
		engine->irq_enable_mask =
3052
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3053 3054 3055
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3056
		if (i915_semaphore_is_enabled(dev)) {
3057 3058 3059
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3060
		}
3061
	} else {
3062 3063 3064 3065
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3066
		if (i915_semaphore_is_enabled(dev)) {
3067 3068
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.sync_to = gen6_ring_sync;
B
Ben Widawsky 已提交
3069 3070 3071 3072 3073 3074 3075
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between BCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between BCS and VCS2 later.
			 */
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3086
		}
3087
	}
3088
	engine->init_hw = init_ring_common;
3089

3090
	return intel_init_ring_buffer(dev, engine);
3091
}
3092

B
Ben Widawsky 已提交
3093 3094
int intel_init_vebox_ring_buffer(struct drm_device *dev)
{
3095
	struct drm_i915_private *dev_priv = dev->dev_private;
3096
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
B
Ben Widawsky 已提交
3097

3098 3099 3100
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
B
Ben Widawsky 已提交
3101

3102 3103 3104 3105
	engine->mmio_base = VEBOX_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
3106 3107
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3108
	engine->set_seqno = ring_set_seqno;
3109 3110

	if (INTEL_INFO(dev)->gen >= 8) {
3111
		engine->irq_enable_mask =
3112
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3113 3114 3115
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3116
		if (i915_semaphore_is_enabled(dev)) {
3117 3118 3119
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3120
		}
3121
	} else {
3122 3123 3124 3125
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
		engine->irq_get = hsw_vebox_get_irq;
		engine->irq_put = hsw_vebox_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3126
		if (i915_semaphore_is_enabled(dev)) {
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3139
		}
3140
	}
3141
	engine->init_hw = init_ring_common;
B
Ben Widawsky 已提交
3142

3143
	return intel_init_ring_buffer(dev, engine);
B
Ben Widawsky 已提交
3144 3145
}

3146
int
3147
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3148
{
3149
	struct intel_engine_cs *engine = req->engine;
3150 3151
	int ret;

3152
	if (!engine->gpu_caches_dirty)
3153 3154
		return 0;

3155
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3156 3157 3158
	if (ret)
		return ret;

3159
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3160

3161
	engine->gpu_caches_dirty = false;
3162 3163 3164 3165
	return 0;
}

int
3166
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3167
{
3168
	struct intel_engine_cs *engine = req->engine;
3169 3170 3171 3172
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
3173
	if (engine->gpu_caches_dirty)
3174 3175
		flush_domains = I915_GEM_GPU_DOMAINS;

3176
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3177 3178 3179
	if (ret)
		return ret;

3180
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3181

3182
	engine->gpu_caches_dirty = false;
3183 3184
	return 0;
}
3185 3186

void
3187
intel_stop_engine(struct intel_engine_cs *engine)
3188 3189 3190
{
	int ret;

3191
	if (!intel_engine_initialized(engine))
3192 3193
		return;

3194
	ret = intel_engine_idle(engine);
3195
	if (ret)
3196
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3197
			  engine->name, ret);
3198

3199
	stop_ring(engine);
3200
}