amdtp.c 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
14
#include <linux/sched.h>
15
#include <sound/pcm.h>
16
#include <sound/pcm_params.h>
17
#include <sound/rawmidi.h>
18 19 20 21 22 23
#include "amdtp.h"

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

24 25 26 27 28 29
/*
 * Nominally 3125 bytes/second, but the MIDI port's clock might be
 * 1% too slow, and the bus clock 100 ppm too fast.
 */
#define MIDI_BYTES_PER_SECOND	3093

30 31 32 33 34 35
/*
 * Several devices look only at the first eight data blocks.
 * In any case, this is more than enough for the MIDI data rate.
 */
#define MAX_MIDI_RX_BLOCKS	8

36
#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
37

38 39
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
40 41
#define TAG_CIP			1

42
/* common isochronous packet header parameters */
43
#define CIP_EOH			(1u << 31)
44
#define CIP_EOH_MASK		0x80000000
45
#define CIP_FMT_AM		(0x10 << 24)
46 47 48 49 50 51 52 53 54 55 56
#define CIP_FMT_MASK		0x3f000000
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SFC_SHIFT	16

/*
 * Audio and Music transfer protocol specific parameters
 * only "Clock-based rate control mode" is supported
 */
#define AMDTP_FDF_AM824		(0 << (CIP_FDF_SFC_SHIFT + 3))
57
#define AMDTP_FDF_NO_DATA	0xff
58 59 60
#define AMDTP_DBS_MASK		0x00ff0000
#define AMDTP_DBS_SHIFT		16
#define AMDTP_DBC_MASK		0x000000ff
61 62 63 64 65

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

66
#define IN_PACKET_HEADER_SIZE	4
67 68
#define OUT_PACKET_HEADER_SIZE	0

69 70
static void pcm_period_tasklet(unsigned long data);

71
/**
72 73
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
74
 * @unit: the target of the stream
75
 * @dir: the direction of stream
76 77
 * @flags: the packet transmission method to use
 */
78
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
79
		      enum amdtp_stream_direction dir, enum cip_flags flags)
80
{
81
	s->unit = unit;
82
	s->direction = dir;
83 84 85
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
86
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
87
	s->packet_index = 0;
88

89 90 91 92
	init_waitqueue_head(&s->callback_wait);
	s->callbacked = false;
	s->sync_slave = NULL;

93 94
	return 0;
}
95
EXPORT_SYMBOL(amdtp_stream_init);
96 97

/**
98 99
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
100
 */
101
void amdtp_stream_destroy(struct amdtp_stream *s)
102
{
103
	WARN_ON(amdtp_stream_running(s));
104 105
	mutex_destroy(&s->mutex);
}
106
EXPORT_SYMBOL(amdtp_stream_destroy);
107

108
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
109 110 111 112 113 114 115 116 117 118
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

119
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
120 121 122 123 124 125 126 127 128 129
	[CIP_SFC_32000]  =  32000,
	[CIP_SFC_44100]  =  44100,
	[CIP_SFC_48000]  =  48000,
	[CIP_SFC_88200]  =  88200,
	[CIP_SFC_96000]  =  96000,
	[CIP_SFC_176400] = 176400,
	[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/**
 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 * @s:		the AMDTP stream, which must be initialized.
 * @runtime:	the PCM substream runtime
 */
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
					struct snd_pcm_runtime *runtime)
{
	int err;

	/* AM824 in IEC 61883-6 can deliver 24bit data */
	err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
	if (err < 0)
		goto end;

	/*
	 * Currently firewire-lib processes 16 packets in one software
	 * interrupt callback. This equals to 2msec but actually the
	 * interval of the interrupts has a jitter.
	 * Additionally, even if adding a constraint to fit period size to
	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
	 * depending on sampling rate.
	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
	 * Here let us use 5msec for safe period interrupt.
	 */
	err = snd_pcm_hw_constraint_minmax(runtime,
					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
					   5000, UINT_MAX);
	if (err < 0)
		goto end;

	/* Non-Blocking stream has no more constraints */
	if (!(s->flags & CIP_BLOCKING))
		goto end;

	/*
	 * One AMDTP packet can include some frames. In blocking mode, the
	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
	 * depending on its sampling rate. For accurate period interrupt, it's
169
	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
170
	 *
171 172
	 * TODO: These constraints can be improved with proper rules.
	 * Currently apply LCM of SYT_INTERVALs.
173 174 175 176 177 178 179 180 181 182 183 184
	 */
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
	if (err < 0)
		goto end;
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
	return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);

185
/**
186 187
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
188
 * @rate: the sample rate
189 190 191
 * @pcm_channels: the number of PCM samples in each data block, to be encoded
 *                as AM824 multi-bit linear audio
 * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
192
 *
193
 * The parameters must be set before the stream is started, and must not be
194 195
 * changed while the stream is running.
 */
196 197 198 199
void amdtp_stream_set_parameters(struct amdtp_stream *s,
				 unsigned int rate,
				 unsigned int pcm_channels,
				 unsigned int midi_ports)
200
{
201
	unsigned int i, sfc, midi_channels;
202

203 204
	midi_channels = DIV_ROUND_UP(midi_ports, 8);

205 206
	if (WARN_ON(amdtp_stream_running(s)) |
	    WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
207
	    WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
208 209
		return;

210
	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
211
		if (amdtp_rate_table[sfc] == rate)
212
			goto sfc_found;
213
	WARN_ON(1);
214 215 216
	return;

sfc_found:
217
	s->pcm_channels = pcm_channels;
218
	s->sfc = sfc;
219
	s->data_block_quadlets = s->pcm_channels + midi_channels;
220 221 222
	s->midi_ports = midi_ports;

	s->syt_interval = amdtp_syt_intervals[sfc];
223 224 225 226 227 228

	/* default buffering in the device */
	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
	if (s->flags & CIP_BLOCKING)
		/* additional buffering needed to adjust for no-data packets */
		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
229 230 231 232 233

	/* init the position map for PCM and MIDI channels */
	for (i = 0; i < pcm_channels; i++)
		s->pcm_positions[i] = i;
	s->midi_position = s->pcm_channels;
234 235 236 237 238 239 240 241

	/*
	 * We do not know the actual MIDI FIFO size of most devices.  Just
	 * assume two bytes, i.e., one byte can be received over the bus while
	 * the previous one is transmitted over MIDI.
	 * (The value here is adjusted for midi_ratelimit_per_packet().)
	 */
	s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
242
}
243
EXPORT_SYMBOL(amdtp_stream_set_parameters);
244 245

/**
246 247
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
248 249
 *
 * This function must not be called before the stream has been configured
250
 * with amdtp_stream_set_parameters().
251
 */
252
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
253
{
254 255 256 257 258 259
	unsigned int multiplier = 1;

	if (s->flags & CIP_JUMBO_PAYLOAD)
		multiplier = 5;

	return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier;
260
}
261
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
262

263 264 265 266 267 268 269 270 271
static void write_pcm_s16(struct amdtp_stream *s,
			  struct snd_pcm_substream *pcm,
			  __be32 *buffer, unsigned int frames);
static void write_pcm_s32(struct amdtp_stream *s,
			  struct snd_pcm_substream *pcm,
			  __be32 *buffer, unsigned int frames);
static void read_pcm_s32(struct amdtp_stream *s,
			 struct snd_pcm_substream *pcm,
			 __be32 *buffer, unsigned int frames);
272 273

/**
274 275
 * amdtp_stream_set_pcm_format - set the PCM format
 * @s: the AMDTP stream to configure
276 277
 * @format: the format of the ALSA PCM device
 *
278
 * The sample format must be set after the other parameters (rate/PCM channels/
279 280
 * MIDI) and before the stream is started, and must not be changed while the
 * stream is running.
281
 */
282 283
void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
				 snd_pcm_format_t format)
284
{
285
	if (WARN_ON(amdtp_stream_pcm_running(s)))
286 287 288 289 290 291 292
		return;

	switch (format) {
	default:
		WARN_ON(1);
		/* fall through */
	case SNDRV_PCM_FORMAT_S16:
293
		if (s->direction == AMDTP_OUT_STREAM) {
294
			s->transfer_samples = write_pcm_s16;
295 296 297 298
			break;
		}
		WARN_ON(1);
		/* fall through */
299
	case SNDRV_PCM_FORMAT_S32:
300
		if (s->direction == AMDTP_OUT_STREAM)
301
			s->transfer_samples = write_pcm_s32;
302
		else
303
			s->transfer_samples = read_pcm_s32;
304 305 306
		break;
	}
}
307
EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
308

309
/**
310 311
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
312 313 314
 *
 * This function should be called from the PCM device's .prepare callback.
 */
315
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
316 317 318 319
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
320
	s->pointer_flush = true;
321
}
322
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
323

324 325
static unsigned int calculate_data_blocks(struct amdtp_stream *s,
					  unsigned int syt)
326 327 328
{
	unsigned int phase, data_blocks;

329 330 331 332 333 334 335 336
	/* Blocking mode. */
	if (s->flags & CIP_BLOCKING) {
		/* This module generate empty packet for 'no data'. */
		if (syt == CIP_SYT_NO_INFO)
			data_blocks = 0;
		else
			data_blocks = s->syt_interval;
	/* Non-blocking mode. */
337
	} else {
338 339 340 341 342
		if (!cip_sfc_is_base_44100(s->sfc)) {
			/* Sample_rate / 8000 is an integer, and precomputed. */
			data_blocks = s->data_block_state;
		} else {
			phase = s->data_block_state;
343 344 345 346 347 348 349 350 351

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
352 353 354 355 356 357 358 359 360 361 362
			if (s->sfc == CIP_SFC_44100)
				/* 6 6 5 6 5 6 5 ... */
				data_blocks = 5 + ((phase & 1) ^
						   (phase == 0 || phase >= 40));
			else
				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
			if (++phase >= (80 >> (s->sfc >> 1)))
				phase = 0;
			s->data_block_state = phase;
		}
363 364 365 366 367
	}

	return data_blocks;
}

368
static unsigned int calculate_syt(struct amdtp_stream *s,
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

	if (s->last_syt_offset < TICKS_PER_CYCLE) {
		if (!cip_sfc_is_base_44100(s->sfc))
			syt_offset = s->last_syt_offset + s->syt_offset_state;
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
			phase = s->syt_offset_state;
			index = phase % 13;
			syt_offset = s->last_syt_offset;
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
			s->syt_offset_state = phase;
		}
	} else
		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
	s->last_syt_offset = syt_offset;

400
	if (syt_offset < TICKS_PER_CYCLE) {
401
		syt_offset += s->transfer_delay;
402 403
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
404

405
		return syt & CIP_SYT_MASK;
406
	} else {
407
		return CIP_SYT_NO_INFO;
408
	}
409 410
}

411 412 413
static void write_pcm_s32(struct amdtp_stream *s,
			  struct snd_pcm_substream *pcm,
			  __be32 *buffer, unsigned int frames)
414 415
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
416
	unsigned int channels, remaining_frames, i, c;
417 418 419 420
	const u32 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
421
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
422 423 424 425
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
426 427
			buffer[s->pcm_positions[c]] =
					cpu_to_be32((*src >> 8) | 0x40000000);
428 429
			src++;
		}
430
		buffer += s->data_block_quadlets;
431 432 433 434 435
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

436 437 438
static void write_pcm_s16(struct amdtp_stream *s,
			  struct snd_pcm_substream *pcm,
			  __be32 *buffer, unsigned int frames)
439 440
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
441
	unsigned int channels, remaining_frames, i, c;
442 443 444 445
	const u16 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
446
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
447 448 449 450
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
451
			buffer[s->pcm_positions[c]] =
452
					cpu_to_be32((*src << 8) | 0x42000000);
453 454
			src++;
		}
455
		buffer += s->data_block_quadlets;
456 457 458 459 460
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

461 462 463
static void read_pcm_s32(struct amdtp_stream *s,
			 struct snd_pcm_substream *pcm,
			 __be32 *buffer, unsigned int frames)
464 465 466 467 468 469 470 471 472 473 474 475
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
	unsigned int channels, remaining_frames, i, c;
	u32 *dst;

	channels = s->pcm_channels;
	dst  = (void *)runtime->dma_area +
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
476
			*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
477 478 479 480 481 482 483 484
			dst++;
		}
		buffer += s->data_block_quadlets;
		if (--remaining_frames == 0)
			dst = (void *)runtime->dma_area;
	}
}

485 486
static void write_pcm_silence(struct amdtp_stream *s,
			      __be32 *buffer, unsigned int frames)
487 488 489 490 491
{
	unsigned int i, c;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < s->pcm_channels; ++c)
492
			buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
493 494 495 496
		buffer += s->data_block_quadlets;
	}
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * To avoid sending MIDI bytes at too high a rate, assume that the receiving
 * device has a FIFO, and track how much it is filled.  This values increases
 * by one whenever we send one byte in a packet, but the FIFO empties at
 * a constant rate independent of our packet rate.  One packet has syt_interval
 * samples, so the number of bytes that empty out of the FIFO, per packet(!),
 * is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate.  To avoid storing
 * fractional values, the values in midi_fifo_used[] are measured in bytes
 * multiplied by the sample rate.
 */
static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
{
	int used;

	used = s->midi_fifo_used[port];
	if (used == 0) /* common shortcut */
		return true;

	used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
	used = max(used, 0);
	s->midi_fifo_used[port] = used;

	return used < s->midi_fifo_limit;
}

static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
{
	s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
}

527 528
static void write_midi_messages(struct amdtp_stream *s,
				__be32 *buffer, unsigned int frames)
529
{
530 531 532 533
	unsigned int f, port;
	u8 *b;

	for (f = 0; f < frames; f++) {
534
		b = (u8 *)&buffer[s->midi_position];
535 536

		port = (s->data_block_counter + f) % 8;
537 538 539 540 541
		if (f < MAX_MIDI_RX_BLOCKS &&
		    midi_ratelimit_per_packet(s, port) &&
		    s->midi[port] != NULL &&
		    snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
			midi_rate_use_one_byte(s, port);
542
			b[0] = 0x81;
543 544 545 546 547 548
		} else {
			b[0] = 0x80;
			b[1] = 0;
		}
		b[2] = 0;
		b[3] = 0;
549 550 551 552 553

		buffer += s->data_block_quadlets;
	}
}

554 555
static void read_midi_messages(struct amdtp_stream *s,
			       __be32 *buffer, unsigned int frames)
556 557 558 559 560 561 562
{
	unsigned int f, port;
	int len;
	u8 *b;

	for (f = 0; f < frames; f++) {
		port = (s->data_block_counter + f) % 8;
563
		b = (u8 *)&buffer[s->midi_position];
564

565 566 567 568 569 570
		len = b[0] - 0x80;
		if ((1 <= len) &&  (len <= 3) && (s->midi[port]))
			snd_rawmidi_receive(s->midi[port], b + 1, len);

		buffer += s->data_block_quadlets;
	}
571 572
}

573 574 575
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
576 577 578 579 580 581 582 583 584 585
{
	unsigned int ptr;

	/*
	 * In IEC 61883-6, one data block represents one event. In ALSA, one
	 * event equals to one PCM frame. But Dice has a quirk to transfer
	 * two PCM frames in one data block.
	 */
	if (s->double_pcm_frames)
		frames *= 2;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		s->pointer_flush = false;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

static int queue_packet(struct amdtp_stream *s,
			unsigned int header_length,
			unsigned int payload_length, bool skip)
{
	struct fw_iso_packet p = {0};
614 615 616 617
	int err = 0;

	if (IS_ERR(s->context))
		goto end;
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
	p.tag = TAG_CIP;
	p.header_length = header_length;
	p.payload_length = (!skip) ? payload_length : 0;
	p.skip = skip;
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
				   unsigned int payload_length, bool skip)
{
	return queue_packet(s, OUT_PACKET_HEADER_SIZE,
			    payload_length, skip);
}

644 645 646 647 648 649
static inline int queue_in_packet(struct amdtp_stream *s)
{
	return queue_packet(s, IN_PACKET_HEADER_SIZE,
			    amdtp_stream_get_max_payload(s), false);
}

650 651
static int handle_out_packet(struct amdtp_stream *s, unsigned int data_blocks,
			     unsigned int syt)
652 653
{
	__be32 *buffer;
654
	unsigned int payload_length;
655 656
	struct snd_pcm_substream *pcm;

657
	buffer = s->buffer.packets[s->packet_index].buffer;
658
	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
659
				(s->data_block_quadlets << AMDTP_DBS_SHIFT) |
660 661
				s->data_block_counter);
	buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
662
				(s->sfc << CIP_FDF_SFC_SHIFT) | syt);
663 664 665 666 667 668
	buffer += 2;

	pcm = ACCESS_ONCE(s->pcm);
	if (pcm)
		s->transfer_samples(s, pcm, buffer, data_blocks);
	else
669
		write_pcm_silence(s, buffer, data_blocks);
670
	if (s->midi_ports)
671
		write_midi_messages(s, buffer, data_blocks);
672 673 674

	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

675
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
676 677
	if (queue_out_packet(s, payload_length, false) < 0)
		return -EIO;
678

679
	if (pcm)
680
		update_pcm_pointers(s, pcm, data_blocks);
681 682 683

	/* No need to return the number of handled data blocks. */
	return 0;
684 685
}

686 687
static int handle_in_packet(struct amdtp_stream *s,
			    unsigned int payload_quadlets, __be32 *buffer)
688 689
{
	u32 cip_header[2];
690 691
	unsigned int data_blocks;
	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
692
	struct snd_pcm_substream *pcm = NULL;
693
	bool lost;
694 695 696 697 698 699

	cip_header[0] = be32_to_cpu(buffer[0]);
	cip_header[1] = be32_to_cpu(buffer[1]);

	/*
	 * This module supports 'Two-quadlet CIP header with SYT field'.
700
	 * For convenience, also check FMT field is AM824 or not.
701 702 703 704 705 706 707
	 */
	if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
	    ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
	    ((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
		dev_info_ratelimited(&s->unit->device,
				"Invalid CIP header for AMDTP: %08X:%08X\n",
				cip_header[0], cip_header[1]);
708
		data_blocks = 0;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		goto end;
	}

	/* Calculate data blocks */
	if (payload_quadlets < 3 ||
	    ((cip_header[1] & CIP_FDF_MASK) ==
				(AMDTP_FDF_NO_DATA << CIP_FDF_SFC_SHIFT))) {
		data_blocks = 0;
	} else {
		data_block_quadlets =
			(cip_header[0] & AMDTP_DBS_MASK) >> AMDTP_DBS_SHIFT;
		/* avoid division by zero */
		if (data_block_quadlets == 0) {
			dev_info_ratelimited(&s->unit->device,
				"Detect invalid value in dbs field: %08X\n",
				cip_header[0]);
725
			return -EIO;
726
		}
727 728
		if (s->flags & CIP_WRONG_DBS)
			data_block_quadlets = s->data_block_quadlets;
729 730 731 732 733 734

		data_blocks = (payload_quadlets - 2) / data_block_quadlets;
	}

	/* Check data block counter continuity */
	data_block_counter = cip_header[0] & AMDTP_DBC_MASK;
735 736 737 738
	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
	    s->data_block_counter != UINT_MAX)
		data_block_counter = s->data_block_counter;

739 740
	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && data_block_counter == 0) ||
	    (s->data_block_counter == UINT_MAX)) {
741 742
		lost = false;
	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
743
		lost = data_block_counter != s->data_block_counter;
744 745 746 747 748 749
	} else {
		if ((data_blocks > 0) && (s->tx_dbc_interval > 0))
			dbc_interval = s->tx_dbc_interval;
		else
			dbc_interval = data_blocks;

750
		lost = data_block_counter !=
751 752
		       ((s->data_block_counter + dbc_interval) & 0xff);
	}
753 754

	if (lost) {
755 756 757
		dev_info(&s->unit->device,
			 "Detect discontinuity of CIP: %02X %02X\n",
			 s->data_block_counter, data_block_counter);
758
		return -EIO;
759 760 761 762 763 764 765 766
	}

	if (data_blocks > 0) {
		buffer += 2;

		pcm = ACCESS_ONCE(s->pcm);
		if (pcm)
			s->transfer_samples(s, pcm, buffer, data_blocks);
767 768

		if (s->midi_ports)
769
			read_midi_messages(s, buffer, data_blocks);
770 771
	}

772 773 774 775 776
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter = data_block_counter;
	else
		s->data_block_counter =
				(data_block_counter + data_blocks) & 0xff;
777 778
end:
	if (queue_in_packet(s) < 0)
779
		return -EIO;
780 781 782 783

	if (pcm)
		update_pcm_pointers(s, pcm, data_blocks);

784
	return data_blocks;
785 786
}

787 788 789
static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
				size_t header_length, void *header,
				void *private_data)
790
{
791
	struct amdtp_stream *s = private_data;
792
	unsigned int i, syt, packets = header_length / 4;
793
	unsigned int data_blocks;
794

795 796 797
	if (s->packet_index < 0)
		return;

798 799 800 801 802 803 804
	/*
	 * Compute the cycle of the last queued packet.
	 * (We need only the four lowest bits for the SYT, so we can ignore
	 * that bits 0-11 must wrap around at 3072.)
	 */
	cycle += QUEUE_LENGTH - packets;

805 806
	for (i = 0; i < packets; ++i) {
		syt = calculate_syt(s, ++cycle);
807 808
		data_blocks = calculate_data_blocks(s, syt);

809 810 811 812 813
		if (handle_out_packet(s, data_blocks, syt) < 0) {
			s->packet_index = -1;
			amdtp_stream_pcm_abort(s);
			return;
		}
814
	}
815

816
	fw_iso_context_queue_flush(s->context);
817 818
}

819 820 821 822 823
static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
			       size_t header_length, void *header,
			       void *private_data)
{
	struct amdtp_stream *s = private_data;
824 825
	unsigned int p, syt, packets;
	unsigned int payload_quadlets, max_payload_quadlets;
826
	unsigned int data_blocks;
827 828
	__be32 *buffer, *headers = header;

829 830 831
	if (s->packet_index < 0)
		return;

832 833 834
	/* The number of packets in buffer */
	packets = header_length / IN_PACKET_HEADER_SIZE;

835 836 837
	/* For buffer-over-run prevention. */
	max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4;

838 839 840 841 842 843
	for (p = 0; p < packets; p++) {
		buffer = s->buffer.packets[s->packet_index].buffer;

		/* The number of quadlets in this packet */
		payload_quadlets =
			(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
844 845 846 847 848 849 850 851
		if (payload_quadlets > max_payload_quadlets) {
			dev_err(&s->unit->device,
				"Detect jumbo payload: %02x %02x\n",
				payload_quadlets, max_payload_quadlets);
			s->packet_index = -1;
			break;
		}

852 853 854 855 856 857 858 859 860
		data_blocks = handle_in_packet(s, payload_quadlets, buffer);
		if (data_blocks < 0) {
			s->packet_index = -1;
			break;
		}

		/* Process sync slave stream */
		if (s->sync_slave && s->sync_slave->callbacked) {
			syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
861 862 863 864 865
			if (handle_out_packet(s->sync_slave,
					      data_blocks, syt) < 0) {
				s->packet_index = -1;
				break;
			}
866
		}
867 868
	}

869 870
	/* Queueing error or detecting discontinuity */
	if (s->packet_index < 0) {
871 872
		amdtp_stream_pcm_abort(s);

873 874 875 876 877 878 879 880 881 882 883 884
		/* Abort sync slave. */
		if (s->sync_slave) {
			s->sync_slave->packet_index = -1;
			amdtp_stream_pcm_abort(s->sync_slave);
		}
		return;
	}

	/* when sync to device, flush the packets for slave stream */
	if (s->sync_slave && s->sync_slave->callbacked)
		fw_iso_context_queue_flush(s->sync_slave->context);

885 886 887
	fw_iso_context_queue_flush(s->context);
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
/* processing is done by master callback */
static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
				  size_t header_length, void *header,
				  void *private_data)
{
	return;
}

/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
					u32 cycle, size_t header_length,
					void *header, void *private_data)
{
	struct amdtp_stream *s = private_data;

	/*
	 * For in-stream, first packet has come.
	 * For out-stream, prepared to transmit first packet
	 */
	s->callbacked = true;
	wake_up(&s->callback_wait);

	if (s->direction == AMDTP_IN_STREAM)
		context->callback.sc = in_stream_callback;
912
	else if (s->flags & CIP_SYNC_TO_DEVICE)
913 914 915 916 917 918 919
		context->callback.sc = slave_stream_callback;
	else
		context->callback.sc = out_stream_callback;

	context->callback.sc(context, cycle, header_length, header, s);
}

920
/**
921 922
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
923 924 925 926
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
927 928
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
929
 */
930
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
931 932 933 934 935 936 937 938 939 940 941 942 943
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
	} initial_state[] = {
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
944 945
	unsigned int header_size;
	enum dma_data_direction dir;
946
	int type, tag, err;
947 948 949

	mutex_lock(&s->mutex);

950
	if (WARN_ON(amdtp_stream_running(s) ||
951
		    (s->data_block_quadlets < 1))) {
952 953 954 955
		err = -EBADFD;
		goto err_unlock;
	}

956 957 958 959 960
	if (s->direction == AMDTP_IN_STREAM &&
	    s->flags & CIP_SKIP_INIT_DBC_CHECK)
		s->data_block_counter = UINT_MAX;
	else
		s->data_block_counter = 0;
961 962 963 964
	s->data_block_state = initial_state[s->sfc].data_block;
	s->syt_offset_state = initial_state[s->sfc].syt_offset;
	s->last_syt_offset = TICKS_PER_CYCLE;

965 966 967 968 969 970 971 972 973 974
	/* initialize packet buffer */
	if (s->direction == AMDTP_IN_STREAM) {
		dir = DMA_FROM_DEVICE;
		type = FW_ISO_CONTEXT_RECEIVE;
		header_size = IN_PACKET_HEADER_SIZE;
	} else {
		dir = DMA_TO_DEVICE;
		type = FW_ISO_CONTEXT_TRANSMIT;
		header_size = OUT_PACKET_HEADER_SIZE;
	}
975
	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
976
				      amdtp_stream_get_max_payload(s), dir);
977 978 979 980
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
981
					   type, channel, speed, header_size,
982
					   amdtp_stream_first_callback, s);
983 984 985 986
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
987
				"no free stream on this controller\n");
988 989 990
		goto err_buffer;
	}

991
	amdtp_stream_update(s);
992

993
	s->packet_index = 0;
994
	do {
995 996 997 998
		if (s->direction == AMDTP_IN_STREAM)
			err = queue_in_packet(s);
		else
			err = queue_out_packet(s, 0, true);
999 1000 1001
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
1002

1003
	/* NOTE: TAG1 matches CIP. This just affects in stream. */
1004 1005 1006 1007
	tag = FW_ISO_CONTEXT_MATCH_TAG1;
	if (s->flags & CIP_EMPTY_WITH_TAG0)
		tag |= FW_ISO_CONTEXT_MATCH_TAG0;

1008
	s->callbacked = false;
1009
	err = fw_iso_context_start(s->context, -1, 0, tag);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
1027
EXPORT_SYMBOL(amdtp_stream_start);
1028

1029
/**
1030 1031
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
1032 1033 1034
 *
 * Returns the current buffer position, in frames.
 */
1035
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
1036
{
1037
	/* this optimization is allowed to be racy */
1038
	if (s->pointer_flush && amdtp_stream_running(s))
1039 1040 1041
		fw_iso_context_flush_completions(s->context);
	else
		s->pointer_flush = true;
1042 1043 1044

	return ACCESS_ONCE(s->pcm_buffer_pointer);
}
1045
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1046

1047
/**
1048 1049
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
1050
 */
1051
void amdtp_stream_update(struct amdtp_stream *s)
1052 1053 1054 1055
{
	ACCESS_ONCE(s->source_node_id_field) =
		(fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
}
1056
EXPORT_SYMBOL(amdtp_stream_update);
1057 1058

/**
1059 1060
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
1061 1062 1063 1064
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
1065
void amdtp_stream_stop(struct amdtp_stream *s)
1066 1067 1068
{
	mutex_lock(&s->mutex);

1069
	if (!amdtp_stream_running(s)) {
1070 1071 1072 1073
		mutex_unlock(&s->mutex);
		return;
	}

1074
	tasklet_kill(&s->period_tasklet);
1075 1076 1077 1078 1079
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

1080 1081
	s->callbacked = false;

1082 1083
	mutex_unlock(&s->mutex);
}
1084
EXPORT_SYMBOL(amdtp_stream_stop);
1085 1086

/**
1087
 * amdtp_stream_pcm_abort - abort the running PCM device
1088 1089 1090 1091 1092
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
1093
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1094 1095 1096 1097
{
	struct snd_pcm_substream *pcm;

	pcm = ACCESS_ONCE(s->pcm);
1098 1099
	if (pcm)
		snd_pcm_stop_xrun(pcm);
1100
}
1101
EXPORT_SYMBOL(amdtp_stream_pcm_abort);