amdtp.c 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
14
#include <linux/sched.h>
15
#include <sound/pcm.h>
16
#include <sound/pcm_params.h>
17
#include <sound/rawmidi.h>
18 19 20 21 22 23
#include "amdtp.h"

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

24 25 26 27 28 29
/*
 * Nominally 3125 bytes/second, but the MIDI port's clock might be
 * 1% too slow, and the bus clock 100 ppm too fast.
 */
#define MIDI_BYTES_PER_SECOND	3093

30 31 32 33 34 35
/*
 * Several devices look only at the first eight data blocks.
 * In any case, this is more than enough for the MIDI data rate.
 */
#define MAX_MIDI_RX_BLOCKS	8

36
#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
37

38 39
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
40 41
#define TAG_CIP			1

42
/* common isochronous packet header parameters */
43
#define CIP_EOH			(1u << 31)
44
#define CIP_EOH_MASK		0x80000000
45
#define CIP_FMT_AM		(0x10 << 24)
46 47 48 49 50 51 52 53 54 55 56
#define CIP_FMT_MASK		0x3f000000
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SFC_SHIFT	16

/*
 * Audio and Music transfer protocol specific parameters
 * only "Clock-based rate control mode" is supported
 */
#define AMDTP_FDF_AM824		(0 << (CIP_FDF_SFC_SHIFT + 3))
57
#define AMDTP_FDF_NO_DATA	0xff
58 59 60
#define AMDTP_DBS_MASK		0x00ff0000
#define AMDTP_DBS_SHIFT		16
#define AMDTP_DBC_MASK		0x000000ff
61 62 63 64 65

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

66
#define IN_PACKET_HEADER_SIZE	4
67 68
#define OUT_PACKET_HEADER_SIZE	0

69 70
static void pcm_period_tasklet(unsigned long data);

71
/**
72 73
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
74
 * @unit: the target of the stream
75
 * @dir: the direction of stream
76 77
 * @flags: the packet transmission method to use
 */
78
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
79
		      enum amdtp_stream_direction dir, enum cip_flags flags)
80
{
81
	s->unit = unit;
82
	s->direction = dir;
83 84 85
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
86
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
87
	s->packet_index = 0;
88

89 90 91 92
	init_waitqueue_head(&s->callback_wait);
	s->callbacked = false;
	s->sync_slave = NULL;

93 94
	return 0;
}
95
EXPORT_SYMBOL(amdtp_stream_init);
96 97

/**
98 99
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
100
 */
101
void amdtp_stream_destroy(struct amdtp_stream *s)
102
{
103
	WARN_ON(amdtp_stream_running(s));
104 105
	mutex_destroy(&s->mutex);
}
106
EXPORT_SYMBOL(amdtp_stream_destroy);
107

108
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
109 110 111 112 113 114 115 116 117 118
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

119
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
120 121 122 123 124 125 126 127 128 129
	[CIP_SFC_32000]  =  32000,
	[CIP_SFC_44100]  =  44100,
	[CIP_SFC_48000]  =  48000,
	[CIP_SFC_88200]  =  88200,
	[CIP_SFC_96000]  =  96000,
	[CIP_SFC_176400] = 176400,
	[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/**
 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 * @s:		the AMDTP stream, which must be initialized.
 * @runtime:	the PCM substream runtime
 */
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
					struct snd_pcm_runtime *runtime)
{
	int err;

	/* AM824 in IEC 61883-6 can deliver 24bit data */
	err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
	if (err < 0)
		goto end;

	/*
	 * Currently firewire-lib processes 16 packets in one software
	 * interrupt callback. This equals to 2msec but actually the
	 * interval of the interrupts has a jitter.
	 * Additionally, even if adding a constraint to fit period size to
	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
	 * depending on sampling rate.
	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
	 * Here let us use 5msec for safe period interrupt.
	 */
	err = snd_pcm_hw_constraint_minmax(runtime,
					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
					   5000, UINT_MAX);
	if (err < 0)
		goto end;

	/* Non-Blocking stream has no more constraints */
	if (!(s->flags & CIP_BLOCKING))
		goto end;

	/*
	 * One AMDTP packet can include some frames. In blocking mode, the
	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
	 * depending on its sampling rate. For accurate period interrupt, it's
169
	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
170
	 *
171 172
	 * TODO: These constraints can be improved with proper rules.
	 * Currently apply LCM of SYT_INTERVALs.
173 174 175 176 177 178 179 180 181 182 183 184
	 */
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
	if (err < 0)
		goto end;
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
	return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);

185
/**
186 187
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
188
 * @rate: the sample rate
189 190 191
 * @pcm_channels: the number of PCM samples in each data block, to be encoded
 *                as AM824 multi-bit linear audio
 * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
192
 *
193
 * The parameters must be set before the stream is started, and must not be
194 195
 * changed while the stream is running.
 */
196 197 198 199
void amdtp_stream_set_parameters(struct amdtp_stream *s,
				 unsigned int rate,
				 unsigned int pcm_channels,
				 unsigned int midi_ports)
200
{
201
	unsigned int i, sfc, midi_channels;
202

203 204
	midi_channels = DIV_ROUND_UP(midi_ports, 8);

205 206
	if (WARN_ON(amdtp_stream_running(s)) |
	    WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
207
	    WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
208 209
		return;

210
	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
211
		if (amdtp_rate_table[sfc] == rate)
212
			goto sfc_found;
213
	WARN_ON(1);
214 215 216
	return;

sfc_found:
217
	s->pcm_channels = pcm_channels;
218
	s->sfc = sfc;
219
	s->data_block_quadlets = s->pcm_channels + midi_channels;
220 221 222
	s->midi_ports = midi_ports;

	s->syt_interval = amdtp_syt_intervals[sfc];
223 224 225 226 227 228

	/* default buffering in the device */
	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
	if (s->flags & CIP_BLOCKING)
		/* additional buffering needed to adjust for no-data packets */
		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
229 230 231 232 233

	/* init the position map for PCM and MIDI channels */
	for (i = 0; i < pcm_channels; i++)
		s->pcm_positions[i] = i;
	s->midi_position = s->pcm_channels;
234 235 236 237 238 239 240 241

	/*
	 * We do not know the actual MIDI FIFO size of most devices.  Just
	 * assume two bytes, i.e., one byte can be received over the bus while
	 * the previous one is transmitted over MIDI.
	 * (The value here is adjusted for midi_ratelimit_per_packet().)
	 */
	s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
242
}
243
EXPORT_SYMBOL(amdtp_stream_set_parameters);
244 245

/**
246 247
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
248 249
 *
 * This function must not be called before the stream has been configured
250
 * with amdtp_stream_set_parameters().
251
 */
252
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
253
{
254 255 256 257 258 259
	unsigned int multiplier = 1;

	if (s->flags & CIP_JUMBO_PAYLOAD)
		multiplier = 5;

	return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier;
260
}
261
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
262

263
static void amdtp_write_s16(struct amdtp_stream *s,
264 265
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames);
266
static void amdtp_write_s32(struct amdtp_stream *s,
267 268
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames);
269 270 271
static void amdtp_read_s32(struct amdtp_stream *s,
			   struct snd_pcm_substream *pcm,
			   __be32 *buffer, unsigned int frames);
272 273

/**
274 275
 * amdtp_stream_set_pcm_format - set the PCM format
 * @s: the AMDTP stream to configure
276 277
 * @format: the format of the ALSA PCM device
 *
278
 * The sample format must be set after the other parameters (rate/PCM channels/
279 280
 * MIDI) and before the stream is started, and must not be changed while the
 * stream is running.
281
 */
282 283
void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
				 snd_pcm_format_t format)
284
{
285
	if (WARN_ON(amdtp_stream_pcm_running(s)))
286 287 288 289 290 291 292
		return;

	switch (format) {
	default:
		WARN_ON(1);
		/* fall through */
	case SNDRV_PCM_FORMAT_S16:
293
		if (s->direction == AMDTP_OUT_STREAM) {
294
			s->transfer_samples = amdtp_write_s16;
295 296 297 298
			break;
		}
		WARN_ON(1);
		/* fall through */
299
	case SNDRV_PCM_FORMAT_S32:
300 301 302 303
		if (s->direction == AMDTP_OUT_STREAM)
			s->transfer_samples = amdtp_write_s32;
		else
			s->transfer_samples = amdtp_read_s32;
304 305 306
		break;
	}
}
307
EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
308

309
/**
310 311
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
312 313 314
 *
 * This function should be called from the PCM device's .prepare callback.
 */
315
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
316 317 318 319
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
320
	s->pointer_flush = true;
321
}
322
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
323

324 325
static unsigned int calculate_data_blocks(struct amdtp_stream *s,
					  unsigned int syt)
326 327 328
{
	unsigned int phase, data_blocks;

329 330 331 332 333 334 335 336
	/* Blocking mode. */
	if (s->flags & CIP_BLOCKING) {
		/* This module generate empty packet for 'no data'. */
		if (syt == CIP_SYT_NO_INFO)
			data_blocks = 0;
		else
			data_blocks = s->syt_interval;
	/* Non-blocking mode. */
337
	} else {
338 339 340 341 342
		if (!cip_sfc_is_base_44100(s->sfc)) {
			/* Sample_rate / 8000 is an integer, and precomputed. */
			data_blocks = s->data_block_state;
		} else {
			phase = s->data_block_state;
343 344 345 346 347 348 349 350 351

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
352 353 354 355 356 357 358 359 360 361 362
			if (s->sfc == CIP_SFC_44100)
				/* 6 6 5 6 5 6 5 ... */
				data_blocks = 5 + ((phase & 1) ^
						   (phase == 0 || phase >= 40));
			else
				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
			if (++phase >= (80 >> (s->sfc >> 1)))
				phase = 0;
			s->data_block_state = phase;
		}
363 364 365 366 367
	}

	return data_blocks;
}

368
static unsigned int calculate_syt(struct amdtp_stream *s,
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

	if (s->last_syt_offset < TICKS_PER_CYCLE) {
		if (!cip_sfc_is_base_44100(s->sfc))
			syt_offset = s->last_syt_offset + s->syt_offset_state;
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
			phase = s->syt_offset_state;
			index = phase % 13;
			syt_offset = s->last_syt_offset;
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
			s->syt_offset_state = phase;
		}
	} else
		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
	s->last_syt_offset = syt_offset;

400
	if (syt_offset < TICKS_PER_CYCLE) {
401
		syt_offset += s->transfer_delay;
402 403
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
404

405
		return syt & CIP_SYT_MASK;
406
	} else {
407
		return CIP_SYT_NO_INFO;
408
	}
409 410
}

411
static void amdtp_write_s32(struct amdtp_stream *s,
412 413 414 415
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
416
	unsigned int channels, remaining_frames, i, c;
417 418 419 420
	const u32 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
421
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
422 423 424 425
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
426 427
			buffer[s->pcm_positions[c]] =
					cpu_to_be32((*src >> 8) | 0x40000000);
428 429
			src++;
		}
430
		buffer += s->data_block_quadlets;
431 432 433 434 435
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

436
static void amdtp_write_s16(struct amdtp_stream *s,
437 438 439 440
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
441
	unsigned int channels, remaining_frames, i, c;
442 443 444 445
	const u16 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
446
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
447 448 449 450
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
451
			buffer[s->pcm_positions[c]] =
452
					cpu_to_be32((*src << 8) | 0x42000000);
453 454
			src++;
		}
455
		buffer += s->data_block_quadlets;
456 457 458 459 460
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
static void amdtp_read_s32(struct amdtp_stream *s,
			   struct snd_pcm_substream *pcm,
			   __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
	unsigned int channels, remaining_frames, i, c;
	u32 *dst;

	channels = s->pcm_channels;
	dst  = (void *)runtime->dma_area +
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
476
			*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
477 478 479 480 481 482 483 484
			dst++;
		}
		buffer += s->data_block_quadlets;
		if (--remaining_frames == 0)
			dst = (void *)runtime->dma_area;
	}
}

485
static void amdtp_fill_pcm_silence(struct amdtp_stream *s,
486 487 488 489 490 491
				   __be32 *buffer, unsigned int frames)
{
	unsigned int i, c;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < s->pcm_channels; ++c)
492
			buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
493 494 495 496
		buffer += s->data_block_quadlets;
	}
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * To avoid sending MIDI bytes at too high a rate, assume that the receiving
 * device has a FIFO, and track how much it is filled.  This values increases
 * by one whenever we send one byte in a packet, but the FIFO empties at
 * a constant rate independent of our packet rate.  One packet has syt_interval
 * samples, so the number of bytes that empty out of the FIFO, per packet(!),
 * is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate.  To avoid storing
 * fractional values, the values in midi_fifo_used[] are measured in bytes
 * multiplied by the sample rate.
 */
static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
{
	int used;

	used = s->midi_fifo_used[port];
	if (used == 0) /* common shortcut */
		return true;

	used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
	used = max(used, 0);
	s->midi_fifo_used[port] = used;

	return used < s->midi_fifo_limit;
}

static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
{
	s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
}

527
static void amdtp_fill_midi(struct amdtp_stream *s,
528 529
			    __be32 *buffer, unsigned int frames)
{
530 531 532 533
	unsigned int f, port;
	u8 *b;

	for (f = 0; f < frames; f++) {
534
		b = (u8 *)&buffer[s->midi_position];
535 536

		port = (s->data_block_counter + f) % 8;
537 538 539 540 541
		if (f < MAX_MIDI_RX_BLOCKS &&
		    midi_ratelimit_per_packet(s, port) &&
		    s->midi[port] != NULL &&
		    snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
			midi_rate_use_one_byte(s, port);
542
			b[0] = 0x81;
543 544 545 546 547 548
		} else {
			b[0] = 0x80;
			b[1] = 0;
		}
		b[2] = 0;
		b[3] = 0;
549 550 551 552 553 554 555 556 557 558 559 560 561 562

		buffer += s->data_block_quadlets;
	}
}

static void amdtp_pull_midi(struct amdtp_stream *s,
			    __be32 *buffer, unsigned int frames)
{
	unsigned int f, port;
	int len;
	u8 *b;

	for (f = 0; f < frames; f++) {
		port = (s->data_block_counter + f) % 8;
563
		b = (u8 *)&buffer[s->midi_position];
564

565 566 567 568 569 570
		len = b[0] - 0x80;
		if ((1 <= len) &&  (len <= 3) && (s->midi[port]))
			snd_rawmidi_receive(s->midi[port], b + 1, len);

		buffer += s->data_block_quadlets;
	}
571 572
}

573 574 575
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
576 577 578 579 580 581 582 583 584 585
{
	unsigned int ptr;

	/*
	 * In IEC 61883-6, one data block represents one event. In ALSA, one
	 * event equals to one PCM frame. But Dice has a quirk to transfer
	 * two PCM frames in one data block.
	 */
	if (s->double_pcm_frames)
		frames *= 2;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		s->pointer_flush = false;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

static int queue_packet(struct amdtp_stream *s,
			unsigned int header_length,
			unsigned int payload_length, bool skip)
{
	struct fw_iso_packet p = {0};
614 615 616 617
	int err = 0;

	if (IS_ERR(s->context))
		goto end;
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
	p.tag = TAG_CIP;
	p.header_length = header_length;
	p.payload_length = (!skip) ? payload_length : 0;
	p.skip = skip;
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
				   unsigned int payload_length, bool skip)
{
	return queue_packet(s, OUT_PACKET_HEADER_SIZE,
			    payload_length, skip);
}

644 645 646 647 648 649
static inline int queue_in_packet(struct amdtp_stream *s)
{
	return queue_packet(s, IN_PACKET_HEADER_SIZE,
			    amdtp_stream_get_max_payload(s), false);
}

650 651
static void handle_out_packet(struct amdtp_stream *s, unsigned int data_blocks,
			      unsigned int syt)
652 653
{
	__be32 *buffer;
654
	unsigned int payload_length;
655 656
	struct snd_pcm_substream *pcm;

657 658 659
	if (s->packet_index < 0)
		return;

660
	buffer = s->buffer.packets[s->packet_index].buffer;
661
	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
662
				(s->data_block_quadlets << AMDTP_DBS_SHIFT) |
663 664
				s->data_block_counter);
	buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
665
				(s->sfc << CIP_FDF_SFC_SHIFT) | syt);
666 667 668 669 670 671 672 673 674 675 676 677
	buffer += 2;

	pcm = ACCESS_ONCE(s->pcm);
	if (pcm)
		s->transfer_samples(s, pcm, buffer, data_blocks);
	else
		amdtp_fill_pcm_silence(s, buffer, data_blocks);
	if (s->midi_ports)
		amdtp_fill_midi(s, buffer, data_blocks);

	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

678 679
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
	if (queue_out_packet(s, payload_length, false) < 0) {
680
		s->packet_index = -1;
681
		amdtp_stream_pcm_abort(s);
682 683
		return;
	}
684

685
	if (pcm)
686
		update_pcm_pointers(s, pcm, data_blocks);
687 688
}

689 690
static int handle_in_packet(struct amdtp_stream *s,
			    unsigned int payload_quadlets, __be32 *buffer)
691 692
{
	u32 cip_header[2];
693 694
	unsigned int data_blocks;
	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
695
	struct snd_pcm_substream *pcm = NULL;
696
	bool lost;
697 698 699 700 701 702

	cip_header[0] = be32_to_cpu(buffer[0]);
	cip_header[1] = be32_to_cpu(buffer[1]);

	/*
	 * This module supports 'Two-quadlet CIP header with SYT field'.
703
	 * For convenience, also check FMT field is AM824 or not.
704 705 706 707 708 709 710
	 */
	if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
	    ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
	    ((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
		dev_info_ratelimited(&s->unit->device,
				"Invalid CIP header for AMDTP: %08X:%08X\n",
				cip_header[0], cip_header[1]);
711
		data_blocks = 0;
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		goto end;
	}

	/* Calculate data blocks */
	if (payload_quadlets < 3 ||
	    ((cip_header[1] & CIP_FDF_MASK) ==
				(AMDTP_FDF_NO_DATA << CIP_FDF_SFC_SHIFT))) {
		data_blocks = 0;
	} else {
		data_block_quadlets =
			(cip_header[0] & AMDTP_DBS_MASK) >> AMDTP_DBS_SHIFT;
		/* avoid division by zero */
		if (data_block_quadlets == 0) {
			dev_info_ratelimited(&s->unit->device,
				"Detect invalid value in dbs field: %08X\n",
				cip_header[0]);
728
			return -EIO;
729
		}
730 731
		if (s->flags & CIP_WRONG_DBS)
			data_block_quadlets = s->data_block_quadlets;
732 733 734 735 736 737

		data_blocks = (payload_quadlets - 2) / data_block_quadlets;
	}

	/* Check data block counter continuity */
	data_block_counter = cip_header[0] & AMDTP_DBC_MASK;
738 739 740 741
	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
	    s->data_block_counter != UINT_MAX)
		data_block_counter = s->data_block_counter;

742 743
	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && data_block_counter == 0) ||
	    (s->data_block_counter == UINT_MAX)) {
744 745
		lost = false;
	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
746
		lost = data_block_counter != s->data_block_counter;
747 748 749 750 751 752
	} else {
		if ((data_blocks > 0) && (s->tx_dbc_interval > 0))
			dbc_interval = s->tx_dbc_interval;
		else
			dbc_interval = data_blocks;

753
		lost = data_block_counter !=
754 755
		       ((s->data_block_counter + dbc_interval) & 0xff);
	}
756 757

	if (lost) {
758 759 760
		dev_info(&s->unit->device,
			 "Detect discontinuity of CIP: %02X %02X\n",
			 s->data_block_counter, data_block_counter);
761
		return -EIO;
762 763 764 765 766 767 768 769
	}

	if (data_blocks > 0) {
		buffer += 2;

		pcm = ACCESS_ONCE(s->pcm);
		if (pcm)
			s->transfer_samples(s, pcm, buffer, data_blocks);
770 771 772

		if (s->midi_ports)
			amdtp_pull_midi(s, buffer, data_blocks);
773 774
	}

775 776 777 778 779
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter = data_block_counter;
	else
		s->data_block_counter =
				(data_block_counter + data_blocks) & 0xff;
780 781
end:
	if (queue_in_packet(s) < 0)
782
		return -EIO;
783 784 785 786

	if (pcm)
		update_pcm_pointers(s, pcm, data_blocks);

787
	return data_blocks;
788 789
}

790 791 792
static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
				size_t header_length, void *header,
				void *private_data)
793
{
794
	struct amdtp_stream *s = private_data;
795
	unsigned int i, syt, packets = header_length / 4;
796
	unsigned int data_blocks;
797 798 799 800 801 802 803 804

	/*
	 * Compute the cycle of the last queued packet.
	 * (We need only the four lowest bits for the SYT, so we can ignore
	 * that bits 0-11 must wrap around at 3072.)
	 */
	cycle += QUEUE_LENGTH - packets;

805 806
	for (i = 0; i < packets; ++i) {
		syt = calculate_syt(s, ++cycle);
807 808 809
		data_blocks = calculate_data_blocks(s, syt);

		handle_out_packet(s, data_blocks, syt);
810
	}
811
	fw_iso_context_queue_flush(s->context);
812 813
}

814 815 816 817 818
static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
			       size_t header_length, void *header,
			       void *private_data)
{
	struct amdtp_stream *s = private_data;
819 820
	unsigned int p, syt, packets;
	unsigned int payload_quadlets, max_payload_quadlets;
821
	unsigned int data_blocks;
822 823 824 825 826
	__be32 *buffer, *headers = header;

	/* The number of packets in buffer */
	packets = header_length / IN_PACKET_HEADER_SIZE;

827 828 829
	/* For buffer-over-run prevention. */
	max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4;

830 831
	for (p = 0; p < packets; p++) {
		if (s->packet_index < 0)
832 833
			break;

834 835 836 837 838
		buffer = s->buffer.packets[s->packet_index].buffer;

		/* The number of quadlets in this packet */
		payload_quadlets =
			(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
839 840 841 842 843 844 845 846
		if (payload_quadlets > max_payload_quadlets) {
			dev_err(&s->unit->device,
				"Detect jumbo payload: %02x %02x\n",
				payload_quadlets, max_payload_quadlets);
			s->packet_index = -1;
			break;
		}

847 848 849 850 851 852 853 854 855 856 857
		data_blocks = handle_in_packet(s, payload_quadlets, buffer);
		if (data_blocks < 0) {
			s->packet_index = -1;
			break;
		}

		/* Process sync slave stream */
		if (s->sync_slave && s->sync_slave->callbacked) {
			syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
			handle_out_packet(s->sync_slave, data_blocks, syt);
		}
858 859
	}

860 861
	/* Queueing error or detecting discontinuity */
	if (s->packet_index < 0) {
862 863
		amdtp_stream_pcm_abort(s);

864 865 866 867 868 869 870 871 872 873 874 875
		/* Abort sync slave. */
		if (s->sync_slave) {
			s->sync_slave->packet_index = -1;
			amdtp_stream_pcm_abort(s->sync_slave);
		}
		return;
	}

	/* when sync to device, flush the packets for slave stream */
	if (s->sync_slave && s->sync_slave->callbacked)
		fw_iso_context_queue_flush(s->sync_slave->context);

876 877 878
	fw_iso_context_queue_flush(s->context);
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
/* processing is done by master callback */
static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
				  size_t header_length, void *header,
				  void *private_data)
{
	return;
}

/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
					u32 cycle, size_t header_length,
					void *header, void *private_data)
{
	struct amdtp_stream *s = private_data;

	/*
	 * For in-stream, first packet has come.
	 * For out-stream, prepared to transmit first packet
	 */
	s->callbacked = true;
	wake_up(&s->callback_wait);

	if (s->direction == AMDTP_IN_STREAM)
		context->callback.sc = in_stream_callback;
	else if ((s->flags & CIP_BLOCKING) && (s->flags & CIP_SYNC_TO_DEVICE))
		context->callback.sc = slave_stream_callback;
	else
		context->callback.sc = out_stream_callback;

	context->callback.sc(context, cycle, header_length, header, s);
}

911
/**
912 913
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
914 915 916 917
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
918 919
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
920
 */
921
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
922 923 924 925 926 927 928 929 930 931 932 933 934
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
	} initial_state[] = {
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
935 936
	unsigned int header_size;
	enum dma_data_direction dir;
937
	int type, tag, err;
938 939 940

	mutex_lock(&s->mutex);

941
	if (WARN_ON(amdtp_stream_running(s) ||
942
		    (s->data_block_quadlets < 1))) {
943 944 945 946
		err = -EBADFD;
		goto err_unlock;
	}

947 948 949 950 951
	if (s->direction == AMDTP_IN_STREAM &&
	    s->flags & CIP_SKIP_INIT_DBC_CHECK)
		s->data_block_counter = UINT_MAX;
	else
		s->data_block_counter = 0;
952 953 954 955
	s->data_block_state = initial_state[s->sfc].data_block;
	s->syt_offset_state = initial_state[s->sfc].syt_offset;
	s->last_syt_offset = TICKS_PER_CYCLE;

956 957 958 959 960 961 962 963 964 965
	/* initialize packet buffer */
	if (s->direction == AMDTP_IN_STREAM) {
		dir = DMA_FROM_DEVICE;
		type = FW_ISO_CONTEXT_RECEIVE;
		header_size = IN_PACKET_HEADER_SIZE;
	} else {
		dir = DMA_TO_DEVICE;
		type = FW_ISO_CONTEXT_TRANSMIT;
		header_size = OUT_PACKET_HEADER_SIZE;
	}
966
	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
967
				      amdtp_stream_get_max_payload(s), dir);
968 969 970 971
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
972
					   type, channel, speed, header_size,
973
					   amdtp_stream_first_callback, s);
974 975 976 977
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
978
				"no free stream on this controller\n");
979 980 981
		goto err_buffer;
	}

982
	amdtp_stream_update(s);
983

984
	s->packet_index = 0;
985
	do {
986 987 988 989
		if (s->direction == AMDTP_IN_STREAM)
			err = queue_in_packet(s);
		else
			err = queue_out_packet(s, 0, true);
990 991 992
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
993

994
	/* NOTE: TAG1 matches CIP. This just affects in stream. */
995 996 997 998
	tag = FW_ISO_CONTEXT_MATCH_TAG1;
	if (s->flags & CIP_EMPTY_WITH_TAG0)
		tag |= FW_ISO_CONTEXT_MATCH_TAG0;

999
	s->callbacked = false;
1000
	err = fw_iso_context_start(s->context, -1, 0, tag);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
1018
EXPORT_SYMBOL(amdtp_stream_start);
1019

1020
/**
1021 1022
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
1023 1024 1025
 *
 * Returns the current buffer position, in frames.
 */
1026
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
1027
{
1028
	/* this optimization is allowed to be racy */
1029
	if (s->pointer_flush && amdtp_stream_running(s))
1030 1031 1032
		fw_iso_context_flush_completions(s->context);
	else
		s->pointer_flush = true;
1033 1034 1035

	return ACCESS_ONCE(s->pcm_buffer_pointer);
}
1036
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1037

1038
/**
1039 1040
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
1041
 */
1042
void amdtp_stream_update(struct amdtp_stream *s)
1043 1044 1045 1046
{
	ACCESS_ONCE(s->source_node_id_field) =
		(fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
}
1047
EXPORT_SYMBOL(amdtp_stream_update);
1048 1049

/**
1050 1051
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
1052 1053 1054 1055
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
1056
void amdtp_stream_stop(struct amdtp_stream *s)
1057 1058 1059
{
	mutex_lock(&s->mutex);

1060
	if (!amdtp_stream_running(s)) {
1061 1062 1063 1064
		mutex_unlock(&s->mutex);
		return;
	}

1065
	tasklet_kill(&s->period_tasklet);
1066 1067 1068 1069 1070
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

1071 1072
	s->callbacked = false;

1073 1074
	mutex_unlock(&s->mutex);
}
1075
EXPORT_SYMBOL(amdtp_stream_stop);
1076 1077

/**
1078
 * amdtp_stream_pcm_abort - abort the running PCM device
1079 1080 1081 1082 1083
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
1084
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1085 1086 1087 1088
{
	struct snd_pcm_substream *pcm;

	pcm = ACCESS_ONCE(s->pcm);
1089 1090
	if (pcm)
		snd_pcm_stop_xrun(pcm);
1091
}
1092
EXPORT_SYMBOL(amdtp_stream_pcm_abort);