amdtp.c 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
14
#include <linux/sched.h>
15
#include <sound/pcm.h>
16
#include <sound/pcm_params.h>
17
#include <sound/rawmidi.h>
18 19 20 21 22 23
#include "amdtp.h"

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

24 25 26 27 28 29
/*
 * Nominally 3125 bytes/second, but the MIDI port's clock might be
 * 1% too slow, and the bus clock 100 ppm too fast.
 */
#define MIDI_BYTES_PER_SECOND	3093

30 31 32 33 34 35
/*
 * Several devices look only at the first eight data blocks.
 * In any case, this is more than enough for the MIDI data rate.
 */
#define MAX_MIDI_RX_BLOCKS	8

36
#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
37

38 39
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
40 41
#define TAG_CIP			1

42
/* common isochronous packet header parameters */
43
#define CIP_EOH			(1u << 31)
44
#define CIP_EOH_MASK		0x80000000
45
#define CIP_FMT_AM		(0x10 << 24)
46 47 48 49 50 51 52 53 54 55 56
#define CIP_FMT_MASK		0x3f000000
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SFC_SHIFT	16

/*
 * Audio and Music transfer protocol specific parameters
 * only "Clock-based rate control mode" is supported
 */
#define AMDTP_FDF_AM824		(0 << (CIP_FDF_SFC_SHIFT + 3))
57
#define AMDTP_FDF_NO_DATA	0xff
58 59 60
#define AMDTP_DBS_MASK		0x00ff0000
#define AMDTP_DBS_SHIFT		16
#define AMDTP_DBC_MASK		0x000000ff
61 62 63 64 65

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

66
#define IN_PACKET_HEADER_SIZE	4
67 68
#define OUT_PACKET_HEADER_SIZE	0

69 70
static void pcm_period_tasklet(unsigned long data);

71
/**
72 73
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
74
 * @unit: the target of the stream
75
 * @dir: the direction of stream
76 77
 * @flags: the packet transmission method to use
 */
78
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
79
		      enum amdtp_stream_direction dir, enum cip_flags flags)
80 81
{
	s->unit = fw_unit_get(unit);
82
	s->direction = dir;
83 84 85
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
86
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
87
	s->packet_index = 0;
88

89 90 91 92
	init_waitqueue_head(&s->callback_wait);
	s->callbacked = false;
	s->sync_slave = NULL;

93 94
	return 0;
}
95
EXPORT_SYMBOL(amdtp_stream_init);
96 97

/**
98 99
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
100
 */
101
void amdtp_stream_destroy(struct amdtp_stream *s)
102
{
103
	WARN_ON(amdtp_stream_running(s));
104 105 106
	mutex_destroy(&s->mutex);
	fw_unit_put(s->unit);
}
107
EXPORT_SYMBOL(amdtp_stream_destroy);
108

109
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
110 111 112 113 114 115 116 117 118 119
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

120
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
121 122 123 124 125 126 127 128 129 130
	[CIP_SFC_32000]  =  32000,
	[CIP_SFC_44100]  =  44100,
	[CIP_SFC_48000]  =  48000,
	[CIP_SFC_88200]  =  88200,
	[CIP_SFC_96000]  =  96000,
	[CIP_SFC_176400] = 176400,
	[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/**
 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 * @s:		the AMDTP stream, which must be initialized.
 * @runtime:	the PCM substream runtime
 */
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
					struct snd_pcm_runtime *runtime)
{
	int err;

	/* AM824 in IEC 61883-6 can deliver 24bit data */
	err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
	if (err < 0)
		goto end;

	/*
	 * Currently firewire-lib processes 16 packets in one software
	 * interrupt callback. This equals to 2msec but actually the
	 * interval of the interrupts has a jitter.
	 * Additionally, even if adding a constraint to fit period size to
	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
	 * depending on sampling rate.
	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
	 * Here let us use 5msec for safe period interrupt.
	 */
	err = snd_pcm_hw_constraint_minmax(runtime,
					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
					   5000, UINT_MAX);
	if (err < 0)
		goto end;

	/* Non-Blocking stream has no more constraints */
	if (!(s->flags & CIP_BLOCKING))
		goto end;

	/*
	 * One AMDTP packet can include some frames. In blocking mode, the
	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
	 * depending on its sampling rate. For accurate period interrupt, it's
	 * preferrable to aligh period/buffer sizes to current SYT_INTERVAL.
	 *
	 * TODO: These constraints can be improved with propper rules.
	 * Currently apply LCM of SYT_INTEVALs.
	 */
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
	if (err < 0)
		goto end;
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
	return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);

186
/**
187 188
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
189
 * @rate: the sample rate
190 191 192
 * @pcm_channels: the number of PCM samples in each data block, to be encoded
 *                as AM824 multi-bit linear audio
 * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
193
 *
194
 * The parameters must be set before the stream is started, and must not be
195 196
 * changed while the stream is running.
 */
197 198 199 200
void amdtp_stream_set_parameters(struct amdtp_stream *s,
				 unsigned int rate,
				 unsigned int pcm_channels,
				 unsigned int midi_ports)
201
{
202
	unsigned int i, sfc, midi_channels;
203

204 205
	midi_channels = DIV_ROUND_UP(midi_ports, 8);

206 207
	if (WARN_ON(amdtp_stream_running(s)) |
	    WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
208
	    WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
209 210
		return;

211
	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
212
		if (amdtp_rate_table[sfc] == rate)
213
			goto sfc_found;
214
	WARN_ON(1);
215 216 217
	return;

sfc_found:
218
	s->pcm_channels = pcm_channels;
219
	s->sfc = sfc;
220
	s->data_block_quadlets = s->pcm_channels + midi_channels;
221 222 223
	s->midi_ports = midi_ports;

	s->syt_interval = amdtp_syt_intervals[sfc];
224 225 226 227 228 229

	/* default buffering in the device */
	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
	if (s->flags & CIP_BLOCKING)
		/* additional buffering needed to adjust for no-data packets */
		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
230 231 232 233 234

	/* init the position map for PCM and MIDI channels */
	for (i = 0; i < pcm_channels; i++)
		s->pcm_positions[i] = i;
	s->midi_position = s->pcm_channels;
235 236 237 238 239 240 241 242

	/*
	 * We do not know the actual MIDI FIFO size of most devices.  Just
	 * assume two bytes, i.e., one byte can be received over the bus while
	 * the previous one is transmitted over MIDI.
	 * (The value here is adjusted for midi_ratelimit_per_packet().)
	 */
	s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
243
}
244
EXPORT_SYMBOL(amdtp_stream_set_parameters);
245 246

/**
247 248
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
249 250
 *
 * This function must not be called before the stream has been configured
251
 * with amdtp_stream_set_parameters().
252
 */
253
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
254
{
255
	return 8 + s->syt_interval * s->data_block_quadlets * 4;
256
}
257
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
258

259
static void amdtp_write_s16(struct amdtp_stream *s,
260 261
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames);
262
static void amdtp_write_s32(struct amdtp_stream *s,
263 264
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames);
265 266 267
static void amdtp_read_s32(struct amdtp_stream *s,
			   struct snd_pcm_substream *pcm,
			   __be32 *buffer, unsigned int frames);
268 269

/**
270 271
 * amdtp_stream_set_pcm_format - set the PCM format
 * @s: the AMDTP stream to configure
272 273
 * @format: the format of the ALSA PCM device
 *
274 275 276
 * The sample format must be set after the other paramters (rate/PCM channels/
 * MIDI) and before the stream is started, and must not be changed while the
 * stream is running.
277
 */
278 279
void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
				 snd_pcm_format_t format)
280
{
281
	if (WARN_ON(amdtp_stream_pcm_running(s)))
282 283 284 285 286 287 288
		return;

	switch (format) {
	default:
		WARN_ON(1);
		/* fall through */
	case SNDRV_PCM_FORMAT_S16:
289
		if (s->direction == AMDTP_OUT_STREAM) {
290
			s->transfer_samples = amdtp_write_s16;
291 292 293 294
			break;
		}
		WARN_ON(1);
		/* fall through */
295
	case SNDRV_PCM_FORMAT_S32:
296 297 298 299
		if (s->direction == AMDTP_OUT_STREAM)
			s->transfer_samples = amdtp_write_s32;
		else
			s->transfer_samples = amdtp_read_s32;
300 301 302
		break;
	}
}
303
EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
304

305
/**
306 307
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
308 309 310
 *
 * This function should be called from the PCM device's .prepare callback.
 */
311
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
312 313 314 315
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
316
	s->pointer_flush = true;
317
}
318
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
319

320
static unsigned int calculate_data_blocks(struct amdtp_stream *s)
321 322 323
{
	unsigned int phase, data_blocks;

324 325 326
	if (s->flags & CIP_BLOCKING)
		data_blocks = s->syt_interval;
	else if (!cip_sfc_is_base_44100(s->sfc)) {
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		/* Sample_rate / 8000 is an integer, and precomputed. */
		data_blocks = s->data_block_state;
	} else {
		phase = s->data_block_state;

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
		if (s->sfc == CIP_SFC_44100)
			/* 6 6 5 6 5 6 5 ... */
			data_blocks = 5 + ((phase & 1) ^
					   (phase == 0 || phase >= 40));
		else
			/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
			data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
		if (++phase >= (80 >> (s->sfc >> 1)))
			phase = 0;
		s->data_block_state = phase;
	}

	return data_blocks;
}

355
static unsigned int calculate_syt(struct amdtp_stream *s,
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

	if (s->last_syt_offset < TICKS_PER_CYCLE) {
		if (!cip_sfc_is_base_44100(s->sfc))
			syt_offset = s->last_syt_offset + s->syt_offset_state;
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
			phase = s->syt_offset_state;
			index = phase % 13;
			syt_offset = s->last_syt_offset;
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
			s->syt_offset_state = phase;
		}
	} else
		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
	s->last_syt_offset = syt_offset;

387
	if (syt_offset < TICKS_PER_CYCLE) {
388
		syt_offset += s->transfer_delay;
389 390
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
391

392
		return syt & CIP_SYT_MASK;
393
	} else {
394
		return CIP_SYT_NO_INFO;
395
	}
396 397
}

398
static void amdtp_write_s32(struct amdtp_stream *s,
399 400 401 402
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
403
	unsigned int channels, remaining_frames, i, c;
404 405 406 407
	const u32 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
408
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
409 410 411 412
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
413 414
			buffer[s->pcm_positions[c]] =
					cpu_to_be32((*src >> 8) | 0x40000000);
415 416
			src++;
		}
417
		buffer += s->data_block_quadlets;
418 419 420 421 422
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

423
static void amdtp_write_s16(struct amdtp_stream *s,
424 425 426 427
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
428
	unsigned int channels, remaining_frames, i, c;
429 430 431 432
	const u16 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
433
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
434 435 436 437
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
438
			buffer[s->pcm_positions[c]] =
439
					cpu_to_be32((*src << 8) | 0x42000000);
440 441
			src++;
		}
442
		buffer += s->data_block_quadlets;
443 444 445 446 447
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static void amdtp_read_s32(struct amdtp_stream *s,
			   struct snd_pcm_substream *pcm,
			   __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
	unsigned int channels, remaining_frames, i, c;
	u32 *dst;

	channels = s->pcm_channels;
	dst  = (void *)runtime->dma_area +
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
463
			*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
464 465 466 467 468 469 470 471
			dst++;
		}
		buffer += s->data_block_quadlets;
		if (--remaining_frames == 0)
			dst = (void *)runtime->dma_area;
	}
}

472
static void amdtp_fill_pcm_silence(struct amdtp_stream *s,
473 474 475 476 477 478
				   __be32 *buffer, unsigned int frames)
{
	unsigned int i, c;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < s->pcm_channels; ++c)
479
			buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
480 481 482 483
		buffer += s->data_block_quadlets;
	}
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
/*
 * To avoid sending MIDI bytes at too high a rate, assume that the receiving
 * device has a FIFO, and track how much it is filled.  This values increases
 * by one whenever we send one byte in a packet, but the FIFO empties at
 * a constant rate independent of our packet rate.  One packet has syt_interval
 * samples, so the number of bytes that empty out of the FIFO, per packet(!),
 * is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate.  To avoid storing
 * fractional values, the values in midi_fifo_used[] are measured in bytes
 * multiplied by the sample rate.
 */
static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
{
	int used;

	used = s->midi_fifo_used[port];
	if (used == 0) /* common shortcut */
		return true;

	used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
	used = max(used, 0);
	s->midi_fifo_used[port] = used;

	return used < s->midi_fifo_limit;
}

static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
{
	s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
}

514
static void amdtp_fill_midi(struct amdtp_stream *s,
515 516
			    __be32 *buffer, unsigned int frames)
{
517 518 519 520
	unsigned int f, port;
	u8 *b;

	for (f = 0; f < frames; f++) {
521
		b = (u8 *)&buffer[s->midi_position];
522 523

		port = (s->data_block_counter + f) % 8;
524 525 526 527 528
		if (f < MAX_MIDI_RX_BLOCKS &&
		    midi_ratelimit_per_packet(s, port) &&
		    s->midi[port] != NULL &&
		    snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
			midi_rate_use_one_byte(s, port);
529
			b[0] = 0x81;
530 531 532 533 534 535
		} else {
			b[0] = 0x80;
			b[1] = 0;
		}
		b[2] = 0;
		b[3] = 0;
536 537 538 539 540 541 542 543 544 545 546 547 548 549

		buffer += s->data_block_quadlets;
	}
}

static void amdtp_pull_midi(struct amdtp_stream *s,
			    __be32 *buffer, unsigned int frames)
{
	unsigned int f, port;
	int len;
	u8 *b;

	for (f = 0; f < frames; f++) {
		port = (s->data_block_counter + f) % 8;
550
		b = (u8 *)&buffer[s->midi_position];
551

552 553 554 555 556 557
		len = b[0] - 0x80;
		if ((1 <= len) &&  (len <= 3) && (s->midi[port]))
			snd_rawmidi_receive(s->midi[port], b + 1, len);

		buffer += s->data_block_quadlets;
	}
558 559
}

560 561 562
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
563 564 565 566 567 568 569 570 571 572
{
	unsigned int ptr;

	/*
	 * In IEC 61883-6, one data block represents one event. In ALSA, one
	 * event equals to one PCM frame. But Dice has a quirk to transfer
	 * two PCM frames in one data block.
	 */
	if (s->double_pcm_frames)
		frames *= 2;
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		s->pointer_flush = false;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

static int queue_packet(struct amdtp_stream *s,
			unsigned int header_length,
			unsigned int payload_length, bool skip)
{
	struct fw_iso_packet p = {0};
601 602 603 604
	int err = 0;

	if (IS_ERR(s->context))
		goto end;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
	p.tag = TAG_CIP;
	p.header_length = header_length;
	p.payload_length = (!skip) ? payload_length : 0;
	p.skip = skip;
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
				   unsigned int payload_length, bool skip)
{
	return queue_packet(s, OUT_PACKET_HEADER_SIZE,
			    payload_length, skip);
}

631 632 633 634 635 636
static inline int queue_in_packet(struct amdtp_stream *s)
{
	return queue_packet(s, IN_PACKET_HEADER_SIZE,
			    amdtp_stream_get_max_payload(s), false);
}

637
static void handle_out_packet(struct amdtp_stream *s, unsigned int syt)
638 639
{
	__be32 *buffer;
640
	unsigned int data_blocks, payload_length;
641 642
	struct snd_pcm_substream *pcm;

643 644 645
	if (s->packet_index < 0)
		return;

646
	/* this module generate empty packet for 'no data' */
647
	if (!(s->flags & CIP_BLOCKING) || (syt != CIP_SYT_NO_INFO))
648
		data_blocks = calculate_data_blocks(s);
649 650
	else
		data_blocks = 0;
651

652
	buffer = s->buffer.packets[s->packet_index].buffer;
653
	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
654
				(s->data_block_quadlets << AMDTP_DBS_SHIFT) |
655 656
				s->data_block_counter);
	buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
657
				(s->sfc << CIP_FDF_SFC_SHIFT) | syt);
658 659 660 661 662 663 664 665 666 667 668 669
	buffer += 2;

	pcm = ACCESS_ONCE(s->pcm);
	if (pcm)
		s->transfer_samples(s, pcm, buffer, data_blocks);
	else
		amdtp_fill_pcm_silence(s, buffer, data_blocks);
	if (s->midi_ports)
		amdtp_fill_midi(s, buffer, data_blocks);

	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

670 671
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
	if (queue_out_packet(s, payload_length, false) < 0) {
672
		s->packet_index = -1;
673
		amdtp_stream_pcm_abort(s);
674 675
		return;
	}
676

677
	if (pcm)
678
		update_pcm_pointers(s, pcm, data_blocks);
679 680
}

681 682 683 684 685
static void handle_in_packet(struct amdtp_stream *s,
			     unsigned int payload_quadlets,
			     __be32 *buffer)
{
	u32 cip_header[2];
686 687
	unsigned int data_blocks, data_block_quadlets, data_block_counter,
		     dbc_interval;
688
	struct snd_pcm_substream *pcm = NULL;
689
	bool lost;
690 691 692 693 694 695

	cip_header[0] = be32_to_cpu(buffer[0]);
	cip_header[1] = be32_to_cpu(buffer[1]);

	/*
	 * This module supports 'Two-quadlet CIP header with SYT field'.
696
	 * For convenience, also check FMT field is AM824 or not.
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	 */
	if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
	    ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
	    ((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
		dev_info_ratelimited(&s->unit->device,
				"Invalid CIP header for AMDTP: %08X:%08X\n",
				cip_header[0], cip_header[1]);
		goto end;
	}

	/* Calculate data blocks */
	if (payload_quadlets < 3 ||
	    ((cip_header[1] & CIP_FDF_MASK) ==
				(AMDTP_FDF_NO_DATA << CIP_FDF_SFC_SHIFT))) {
		data_blocks = 0;
	} else {
		data_block_quadlets =
			(cip_header[0] & AMDTP_DBS_MASK) >> AMDTP_DBS_SHIFT;
		/* avoid division by zero */
		if (data_block_quadlets == 0) {
			dev_info_ratelimited(&s->unit->device,
				"Detect invalid value in dbs field: %08X\n",
				cip_header[0]);
			goto err;
		}
722 723
		if (s->flags & CIP_WRONG_DBS)
			data_block_quadlets = s->data_block_quadlets;
724 725 726 727 728 729

		data_blocks = (payload_quadlets - 2) / data_block_quadlets;
	}

	/* Check data block counter continuity */
	data_block_counter = cip_header[0] & AMDTP_DBC_MASK;
730 731 732 733
	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
	    s->data_block_counter != UINT_MAX)
		data_block_counter = s->data_block_counter;

734 735
	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && data_block_counter == 0) ||
	    (s->data_block_counter == UINT_MAX)) {
736 737
		lost = false;
	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
738
		lost = data_block_counter != s->data_block_counter;
739 740 741 742 743 744
	} else {
		if ((data_blocks > 0) && (s->tx_dbc_interval > 0))
			dbc_interval = s->tx_dbc_interval;
		else
			dbc_interval = data_blocks;

745
		lost = data_block_counter !=
746 747
		       ((s->data_block_counter + dbc_interval) & 0xff);
	}
748 749

	if (lost) {
750 751 752 753 754 755 756 757 758 759 760 761
		dev_info(&s->unit->device,
			 "Detect discontinuity of CIP: %02X %02X\n",
			 s->data_block_counter, data_block_counter);
		goto err;
	}

	if (data_blocks > 0) {
		buffer += 2;

		pcm = ACCESS_ONCE(s->pcm);
		if (pcm)
			s->transfer_samples(s, pcm, buffer, data_blocks);
762 763 764

		if (s->midi_ports)
			amdtp_pull_midi(s, buffer, data_blocks);
765 766
	}

767 768 769 770 771
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter = data_block_counter;
	else
		s->data_block_counter =
				(data_block_counter + data_blocks) & 0xff;
772 773 774 775 776 777 778 779 780 781 782 783 784
end:
	if (queue_in_packet(s) < 0)
		goto err;

	if (pcm)
		update_pcm_pointers(s, pcm, data_blocks);

	return;
err:
	s->packet_index = -1;
	amdtp_stream_pcm_abort(s);
}

785 786 787
static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
				size_t header_length, void *header,
				void *private_data)
788
{
789
	struct amdtp_stream *s = private_data;
790
	unsigned int i, syt, packets = header_length / 4;
791 792 793 794 795 796 797 798

	/*
	 * Compute the cycle of the last queued packet.
	 * (We need only the four lowest bits for the SYT, so we can ignore
	 * that bits 0-11 must wrap around at 3072.)
	 */
	cycle += QUEUE_LENGTH - packets;

799 800 801 802
	for (i = 0; i < packets; ++i) {
		syt = calculate_syt(s, ++cycle);
		handle_out_packet(s, syt);
	}
803
	fw_iso_context_queue_flush(s->context);
804 805
}

806 807 808 809 810
static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
			       size_t header_length, void *header,
			       void *private_data)
{
	struct amdtp_stream *s = private_data;
811
	unsigned int p, syt, packets, payload_quadlets;
812 813 814 815 816 817 818
	__be32 *buffer, *headers = header;

	/* The number of packets in buffer */
	packets = header_length / IN_PACKET_HEADER_SIZE;

	for (p = 0; p < packets; p++) {
		if (s->packet_index < 0)
819 820
			break;

821 822
		buffer = s->buffer.packets[s->packet_index].buffer;

823 824 825 826 827 828
		/* Process sync slave stream */
		if (s->sync_slave && s->sync_slave->callbacked) {
			syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
			handle_out_packet(s->sync_slave, syt);
		}

829 830 831 832 833 834
		/* The number of quadlets in this packet */
		payload_quadlets =
			(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
		handle_in_packet(s, payload_quadlets, buffer);
	}

835 836 837 838 839 840 841 842 843 844 845 846 847 848
	/* Queueing error or detecting discontinuity */
	if (s->packet_index < 0) {
		/* Abort sync slave. */
		if (s->sync_slave) {
			s->sync_slave->packet_index = -1;
			amdtp_stream_pcm_abort(s->sync_slave);
		}
		return;
	}

	/* when sync to device, flush the packets for slave stream */
	if (s->sync_slave && s->sync_slave->callbacked)
		fw_iso_context_queue_flush(s->sync_slave->context);

849 850 851
	fw_iso_context_queue_flush(s->context);
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/* processing is done by master callback */
static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
				  size_t header_length, void *header,
				  void *private_data)
{
	return;
}

/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
					u32 cycle, size_t header_length,
					void *header, void *private_data)
{
	struct amdtp_stream *s = private_data;

	/*
	 * For in-stream, first packet has come.
	 * For out-stream, prepared to transmit first packet
	 */
	s->callbacked = true;
	wake_up(&s->callback_wait);

	if (s->direction == AMDTP_IN_STREAM)
		context->callback.sc = in_stream_callback;
	else if ((s->flags & CIP_BLOCKING) && (s->flags & CIP_SYNC_TO_DEVICE))
		context->callback.sc = slave_stream_callback;
	else
		context->callback.sc = out_stream_callback;

	context->callback.sc(context, cycle, header_length, header, s);
}

884
/**
885 886
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
887 888 889 890
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
891 892
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
893
 */
894
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
895 896 897 898 899 900 901 902 903 904 905 906 907
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
	} initial_state[] = {
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
908 909
	unsigned int header_size;
	enum dma_data_direction dir;
910
	int type, tag, err;
911 912 913

	mutex_lock(&s->mutex);

914
	if (WARN_ON(amdtp_stream_running(s) ||
915
		    (s->data_block_quadlets < 1))) {
916 917 918 919
		err = -EBADFD;
		goto err_unlock;
	}

920 921 922 923 924
	if (s->direction == AMDTP_IN_STREAM &&
	    s->flags & CIP_SKIP_INIT_DBC_CHECK)
		s->data_block_counter = UINT_MAX;
	else
		s->data_block_counter = 0;
925 926 927 928
	s->data_block_state = initial_state[s->sfc].data_block;
	s->syt_offset_state = initial_state[s->sfc].syt_offset;
	s->last_syt_offset = TICKS_PER_CYCLE;

929 930 931 932 933 934 935 936 937 938
	/* initialize packet buffer */
	if (s->direction == AMDTP_IN_STREAM) {
		dir = DMA_FROM_DEVICE;
		type = FW_ISO_CONTEXT_RECEIVE;
		header_size = IN_PACKET_HEADER_SIZE;
	} else {
		dir = DMA_TO_DEVICE;
		type = FW_ISO_CONTEXT_TRANSMIT;
		header_size = OUT_PACKET_HEADER_SIZE;
	}
939
	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
940
				      amdtp_stream_get_max_payload(s), dir);
941 942 943 944
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
945
					   type, channel, speed, header_size,
946
					   amdtp_stream_first_callback, s);
947 948 949 950
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
951
				"no free stream on this controller\n");
952 953 954
		goto err_buffer;
	}

955
	amdtp_stream_update(s);
956

957
	s->packet_index = 0;
958
	do {
959 960 961 962
		if (s->direction == AMDTP_IN_STREAM)
			err = queue_in_packet(s);
		else
			err = queue_out_packet(s, 0, true);
963 964 965
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
966

967
	/* NOTE: TAG1 matches CIP. This just affects in stream. */
968 969 970 971
	tag = FW_ISO_CONTEXT_MATCH_TAG1;
	if (s->flags & CIP_EMPTY_WITH_TAG0)
		tag |= FW_ISO_CONTEXT_MATCH_TAG0;

972
	s->callbacked = false;
973
	err = fw_iso_context_start(s->context, -1, 0, tag);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
991
EXPORT_SYMBOL(amdtp_stream_start);
992

993
/**
994 995
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
996 997 998
 *
 * Returns the current buffer position, in frames.
 */
999
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
1000
{
1001
	/* this optimization is allowed to be racy */
1002
	if (s->pointer_flush && amdtp_stream_running(s))
1003 1004 1005
		fw_iso_context_flush_completions(s->context);
	else
		s->pointer_flush = true;
1006 1007 1008

	return ACCESS_ONCE(s->pcm_buffer_pointer);
}
1009
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1010

1011
/**
1012 1013
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
1014
 */
1015
void amdtp_stream_update(struct amdtp_stream *s)
1016 1017 1018 1019
{
	ACCESS_ONCE(s->source_node_id_field) =
		(fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
}
1020
EXPORT_SYMBOL(amdtp_stream_update);
1021 1022

/**
1023 1024
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
1025 1026 1027 1028
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
1029
void amdtp_stream_stop(struct amdtp_stream *s)
1030 1031 1032
{
	mutex_lock(&s->mutex);

1033
	if (!amdtp_stream_running(s)) {
1034 1035 1036 1037
		mutex_unlock(&s->mutex);
		return;
	}

1038
	tasklet_kill(&s->period_tasklet);
1039 1040 1041 1042 1043
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

1044 1045
	s->callbacked = false;

1046 1047
	mutex_unlock(&s->mutex);
}
1048
EXPORT_SYMBOL(amdtp_stream_stop);
1049 1050

/**
1051
 * amdtp_stream_pcm_abort - abort the running PCM device
1052 1053 1054 1055 1056
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
1057
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1058 1059 1060 1061
{
	struct snd_pcm_substream *pcm;

	pcm = ACCESS_ONCE(s->pcm);
1062 1063
	if (pcm)
		snd_pcm_stop_xrun(pcm);
1064
}
1065
EXPORT_SYMBOL(amdtp_stream_pcm_abort);