ixgbe_common.c 115.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
4
  Copyright(c) 1999 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24 25 26 27 28 29 30 31
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
J
Jiri Pirko 已提交
32
#include <linux/netdevice.h>
33

34
#include "ixgbe.h"
35 36 37
#include "ixgbe_common.h"
#include "ixgbe_phy.h"

38
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 40
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 42 43
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44
					u16 count);
45 46 47 48
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 50

static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 53 54 55 56 57
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset);
58
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59

60 61 62 63 64
/* Base table for registers values that change by MAC */
const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
	IXGBE_MVALS_INIT(8259X)
};

65 66 67 68 69 70 71 72 73
/**
 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 *  control
 *  @hw: pointer to hardware structure
 *
 *  There are several phys that do not support autoneg flow control. This
 *  function check the device id to see if the associated phy supports
 *  autoneg flow control.
 **/
74
bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75
{
76 77 78
	bool supported = false;
	ixgbe_link_speed speed;
	bool link_up;
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	switch (hw->phy.media_type) {
	case ixgbe_media_type_fiber:
		hw->mac.ops.check_link(hw, &speed, &link_up, false);
		/* if link is down, assume supported */
		if (link_up)
			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
				true : false;
		else
			supported = true;
		break;
	case ixgbe_media_type_backplane:
		supported = true;
		break;
	case ixgbe_media_type_copper:
		/* only some copper devices support flow control autoneg */
		switch (hw->device_id) {
		case IXGBE_DEV_ID_82599_T3_LOM:
		case IXGBE_DEV_ID_X540T:
		case IXGBE_DEV_ID_X540T1:
99
		case IXGBE_DEV_ID_X550T:
100
		case IXGBE_DEV_ID_X550T1:
101
		case IXGBE_DEV_ID_X550EM_X_10G_T:
102
		case IXGBE_DEV_ID_X550EM_A_10G_T:
103 104 105 106 107
			supported = true;
			break;
		default:
			break;
		}
108
	default:
109
		break;
110
	}
111 112

	return supported;
113 114 115
}

/**
116
 *  ixgbe_setup_fc_generic - Set up flow control
117 118 119 120
 *  @hw: pointer to hardware structure
 *
 *  Called at init time to set up flow control.
 **/
121
s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
122 123 124 125
{
	s32 ret_val = 0;
	u32 reg = 0, reg_bp = 0;
	u16 reg_cu = 0;
126
	bool locked = false;
127 128 129 130 131 132 133

	/*
	 * Validate the requested mode.  Strict IEEE mode does not allow
	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
	 */
	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
134
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
	}

	/*
	 * 10gig parts do not have a word in the EEPROM to determine the
	 * default flow control setting, so we explicitly set it to full.
	 */
	if (hw->fc.requested_mode == ixgbe_fc_default)
		hw->fc.requested_mode = ixgbe_fc_full;

	/*
	 * Set up the 1G and 10G flow control advertisement registers so the
	 * HW will be able to do fc autoneg once the cable is plugged in.  If
	 * we link at 10G, the 1G advertisement is harmless and vice versa.
	 */
	switch (hw->phy.media_type) {
150 151 152
	case ixgbe_media_type_backplane:
		/* some MAC's need RMW protection on AUTOC */
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
153
		if (ret_val)
154
			return ret_val;
155 156

		/* only backplane uses autoc so fall though */
157 158
	case ixgbe_media_type_fiber:
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
159

160 161 162 163 164 165
		break;
	case ixgbe_media_type_copper:
		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
					MDIO_MMD_AN, &reg_cu);
		break;
	default:
166
		break;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	}

	/*
	 * The possible values of fc.requested_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.requested_mode) {
	case ixgbe_fc_none:
		/* Flow control completely disabled by software override. */
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
		if (hw->phy.media_type == ixgbe_media_type_backplane)
			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
				    IXGBE_AUTOC_ASM_PAUSE);
		else if (hw->phy.media_type == ixgbe_media_type_copper)
			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
194 195
		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
196
		if (hw->phy.media_type == ixgbe_media_type_backplane) {
197 198
			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
199
		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
200 201
			reg_cu |= IXGBE_TAF_ASM_PAUSE;
			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
202 203
		}
		break;
204 205 206 207 208 209 210 211 212 213
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE, as such we fall
		 * through to the fc_full statement.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
214 215
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
216
		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
217
		if (hw->phy.media_type == ixgbe_media_type_backplane)
218 219
			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
				  IXGBE_AUTOC_ASM_PAUSE;
220
		else if (hw->phy.media_type == ixgbe_media_type_copper)
221
			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
222 223 224
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
225
		return IXGBE_ERR_CONFIG;
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	}

	if (hw->mac.type != ixgbe_mac_X540) {
		/*
		 * Enable auto-negotiation between the MAC & PHY;
		 * the MAC will advertise clause 37 flow control.
		 */
		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);

		/* Disable AN timeout */
		if (hw->fc.strict_ieee)
			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;

		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
	}

	/*
	 * AUTOC restart handles negotiation of 1G and 10G on backplane
	 * and copper. There is no need to set the PCS1GCTL register.
	 *
	 */
	if (hw->phy.media_type == ixgbe_media_type_backplane) {
250 251 252 253
		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
		 * LESM is on, likewise reset_pipeline requries the lock as
		 * it also writes AUTOC.
		 */
254 255
		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
		if (ret_val)
256
			return ret_val;
257

258
	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
259
		   ixgbe_device_supports_autoneg_fc(hw)) {
260 261 262 263 264 265 266 267
		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
				      MDIO_MMD_AN, reg_cu);
	}

	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
	return ret_val;
}

268
/**
269
 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
270 271 272 273 274 275 276
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware by filling the bus info structure and media type, clears
 *  all on chip counters, initializes receive address registers, multicast
 *  table, VLAN filter table, calls routine to set up link and flow control
 *  settings, and leaves transmit and receive units disabled and uninitialized
 **/
277
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
278
{
279
	s32 ret_val;
280
	u32 ctrl_ext;
D
Don Skidmore 已提交
281
	u16 device_caps;
282 283 284 285 286

	/* Set the media type */
	hw->phy.media_type = hw->mac.ops.get_media_type(hw);

	/* Identify the PHY */
287
	hw->phy.ops.identify(hw);
288 289

	/* Clear the VLAN filter table */
290
	hw->mac.ops.clear_vfta(hw);
291 292

	/* Clear statistics registers */
293
	hw->mac.ops.clear_hw_cntrs(hw);
294 295 296 297 298

	/* Set No Snoop Disable */
	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
299
	IXGBE_WRITE_FLUSH(hw);
300

301
	/* Setup flow control */
302
	ret_val = hw->mac.ops.setup_fc(hw);
303 304
	if (ret_val)
		return ret_val;
305

D
Don Skidmore 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
	/* Cashe bit indicating need for crosstalk fix */
	switch (hw->mac.type) {
	case ixgbe_mac_82599EB:
	case ixgbe_mac_X550EM_x:
	case ixgbe_mac_x550em_a:
		hw->mac.ops.get_device_caps(hw, &device_caps);
		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
			hw->need_crosstalk_fix = false;
		else
			hw->need_crosstalk_fix = true;
		break;
	default:
		hw->need_crosstalk_fix = false;
		break;
	}

322 323 324
	/* Clear adapter stopped flag */
	hw->adapter_stopped = false;

325
	return 0;
326 327
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/**
 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 *  @hw: pointer to hw structure
 *
 * Performs the init sequence common to the second generation
 * of 10 GbE devices.
 * Devices in the second generation:
 *     82599
 *     X540
 **/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
	u32 i;

	/* Clear the rate limiters */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
	}
	IXGBE_WRITE_FLUSH(hw);

349
#ifndef CONFIG_SPARC
350 351
	/* Disable relaxed ordering */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
352 353
		u32 regval;

354
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
355
		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
356 357 358 359
		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
	}

	for (i = 0; i < hw->mac.max_rx_queues; i++) {
360 361
		u32 regval;

362
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
363 364
		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
365 366
		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
	}
367
#endif
368 369 370
	return 0;
}

371
/**
372
 *  ixgbe_init_hw_generic - Generic hardware initialization
373 374
 *  @hw: pointer to hardware structure
 *
375
 *  Initialize the hardware by resetting the hardware, filling the bus info
376 377 378 379 380
 *  structure and media type, clears all on chip counters, initializes receive
 *  address registers, multicast table, VLAN filter table, calls routine to set
 *  up link and flow control settings, and leaves transmit and receive units
 *  disabled and uninitialized
 **/
381
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
382
{
383 384
	s32 status;

385
	/* Reset the hardware */
386
	status = hw->mac.ops.reset_hw(hw);
387

388 389 390 391
	if (status == 0) {
		/* Start the HW */
		status = hw->mac.ops.start_hw(hw);
	}
392

393 394 395
	/* Initialize the LED link active for LED blink support */
	hw->mac.ops.init_led_link_act(hw);

396
	return status;
397 398 399
}

/**
400
 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
401 402 403 404 405
 *  @hw: pointer to hardware structure
 *
 *  Clears all hardware statistics counters by reading them from the hardware
 *  Statistics counters are clear on read.
 **/
406
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
{
	u16 i = 0;

	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
	IXGBE_READ_REG(hw, IXGBE_ERRBC);
	IXGBE_READ_REG(hw, IXGBE_MSPDC);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_MPC(i));

	IXGBE_READ_REG(hw, IXGBE_MLFC);
	IXGBE_READ_REG(hw, IXGBE_MRFC);
	IXGBE_READ_REG(hw, IXGBE_RLEC);
	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
422 423 424 425 426 427 428
	if (hw->mac.type >= ixgbe_mac_82599EB) {
		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
	} else {
		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
	}
429 430 431 432

	for (i = 0; i < 8; i++) {
		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
433 434 435 436 437 438 439
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
		}
440
	}
441 442 443
	if (hw->mac.type >= ixgbe_mac_82599EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
444 445 446 447 448 449 450 451 452 453 454 455 456 457
	IXGBE_READ_REG(hw, IXGBE_PRC64);
	IXGBE_READ_REG(hw, IXGBE_PRC127);
	IXGBE_READ_REG(hw, IXGBE_PRC255);
	IXGBE_READ_REG(hw, IXGBE_PRC511);
	IXGBE_READ_REG(hw, IXGBE_PRC1023);
	IXGBE_READ_REG(hw, IXGBE_PRC1522);
	IXGBE_READ_REG(hw, IXGBE_GPRC);
	IXGBE_READ_REG(hw, IXGBE_BPRC);
	IXGBE_READ_REG(hw, IXGBE_MPRC);
	IXGBE_READ_REG(hw, IXGBE_GPTC);
	IXGBE_READ_REG(hw, IXGBE_GORCL);
	IXGBE_READ_REG(hw, IXGBE_GORCH);
	IXGBE_READ_REG(hw, IXGBE_GOTCL);
	IXGBE_READ_REG(hw, IXGBE_GOTCH);
E
Emil Tantilov 已提交
458 459 460
	if (hw->mac.type == ixgbe_mac_82598EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	IXGBE_READ_REG(hw, IXGBE_RUC);
	IXGBE_READ_REG(hw, IXGBE_RFC);
	IXGBE_READ_REG(hw, IXGBE_ROC);
	IXGBE_READ_REG(hw, IXGBE_RJC);
	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
	IXGBE_READ_REG(hw, IXGBE_TORL);
	IXGBE_READ_REG(hw, IXGBE_TORH);
	IXGBE_READ_REG(hw, IXGBE_TPR);
	IXGBE_READ_REG(hw, IXGBE_TPT);
	IXGBE_READ_REG(hw, IXGBE_PTC64);
	IXGBE_READ_REG(hw, IXGBE_PTC127);
	IXGBE_READ_REG(hw, IXGBE_PTC255);
	IXGBE_READ_REG(hw, IXGBE_PTC511);
	IXGBE_READ_REG(hw, IXGBE_PTC1023);
	IXGBE_READ_REG(hw, IXGBE_PTC1522);
	IXGBE_READ_REG(hw, IXGBE_MPTC);
	IXGBE_READ_REG(hw, IXGBE_BPTC);
	for (i = 0; i < 16; i++) {
		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
483 484 485 486 487 488 489 490 491 492
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
		}
493 494
	}

495
	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
496 497
		if (hw->phy.id == 0)
			hw->phy.ops.identify(hw);
498 499 500 501
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
502 503
	}

504 505 506 507
	return 0;
}

/**
508
 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
509
 *  @hw: pointer to hardware structure
510 511
 *  @pba_num: stores the part number string from the EEPROM
 *  @pba_num_size: part number string buffer length
512
 *
513
 *  Reads the part number string from the EEPROM.
514
 **/
515
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
516
				  u32 pba_num_size)
517 518 519
{
	s32 ret_val;
	u16 data;
520 521 522 523 524 525 526 527
	u16 pba_ptr;
	u16 offset;
	u16 length;

	if (pba_num == NULL) {
		hw_dbg(hw, "PBA string buffer was null\n");
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
528 529 530 531 532 533 534

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

535
	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
536 537 538 539
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

	/*
	 * if data is not ptr guard the PBA must be in legacy format which
	 * means pba_ptr is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (data != IXGBE_PBANUM_PTR_GUARD) {
		hw_dbg(hw, "NVM PBA number is not stored as string\n");

		/* we will need 11 characters to store the PBA */
		if (pba_num_size < 11) {
			hw_dbg(hw, "PBA string buffer too small\n");
			return IXGBE_ERR_NO_SPACE;
		}

		/* extract hex string from data and pba_ptr */
		pba_num[0] = (data >> 12) & 0xF;
		pba_num[1] = (data >> 8) & 0xF;
		pba_num[2] = (data >> 4) & 0xF;
		pba_num[3] = data & 0xF;
		pba_num[4] = (pba_ptr >> 12) & 0xF;
		pba_num[5] = (pba_ptr >> 8) & 0xF;
		pba_num[6] = '-';
		pba_num[7] = 0;
		pba_num[8] = (pba_ptr >> 4) & 0xF;
		pba_num[9] = pba_ptr & 0xF;

		/* put a null character on the end of our string */
		pba_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (pba_num[offset] < 0xA)
				pba_num[offset] += '0';
			else if (pba_num[offset] < 0x10)
				pba_num[offset] += 'A' - 0xA;
		}

		return 0;
	}

	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	if (length == 0xFFFF || length == 0) {
		hw_dbg(hw, "NVM PBA number section invalid length\n");
		return IXGBE_ERR_PBA_SECTION;
	}

	/* check if pba_num buffer is big enough */
	if (pba_num_size  < (((u32)length * 2) - 1)) {
		hw_dbg(hw, "PBA string buffer too small\n");
		return IXGBE_ERR_NO_SPACE;
	}

	/* trim pba length from start of string */
	pba_ptr++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
		if (ret_val) {
			hw_dbg(hw, "NVM Read Error\n");
			return ret_val;
		}
		pba_num[offset * 2] = (u8)(data >> 8);
		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
	}
	pba_num[offset * 2] = '\0';
612 613 614 615 616 617

	return 0;
}

/**
 *  ixgbe_get_mac_addr_generic - Generic get MAC address
618 619 620 621 622 623 624
 *  @hw: pointer to hardware structure
 *  @mac_addr: Adapter MAC address
 *
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 *  A reset of the adapter must be performed prior to calling this function
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 **/
625
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));

	for (i = 0; i < 4; i++)
		mac_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < 2; i++)
		mac_addr[i+4] = (u8)(rar_high >> (i*8));

	return 0;
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
	case IXGBE_PCI_LINK_WIDTH_1:
		return ixgbe_bus_width_pcie_x1;
	case IXGBE_PCI_LINK_WIDTH_2:
		return ixgbe_bus_width_pcie_x2;
	case IXGBE_PCI_LINK_WIDTH_4:
		return ixgbe_bus_width_pcie_x4;
	case IXGBE_PCI_LINK_WIDTH_8:
		return ixgbe_bus_width_pcie_x8;
	default:
		return ixgbe_bus_width_unknown;
	}
}

enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_SPEED) {
	case IXGBE_PCI_LINK_SPEED_2500:
		return ixgbe_bus_speed_2500;
	case IXGBE_PCI_LINK_SPEED_5000:
		return ixgbe_bus_speed_5000;
	case IXGBE_PCI_LINK_SPEED_8000:
		return ixgbe_bus_speed_8000;
	default:
		return ixgbe_bus_speed_unknown;
	}
}

673 674 675 676 677 678 679 680 681 682 683 684 685
/**
 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 *  @hw: pointer to hardware structure
 *
 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 **/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
	u16 link_status;

	hw->bus.type = ixgbe_bus_type_pci_express;

	/* Get the negotiated link width and speed from PCI config space */
686
	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
687

688 689
	hw->bus.width = ixgbe_convert_bus_width(link_status);
	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
690

691
	hw->mac.ops.set_lan_id(hw);
692 693 694 695 696 697 698 699 700 701 702 703 704 705

	return 0;
}

/**
 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
	struct ixgbe_bus_info *bus = &hw->bus;
M
Mark Rustad 已提交
706
	u16 ee_ctrl_4;
707 708 709 710 711 712 713
	u32 reg;

	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
	bus->lan_id = bus->func;

	/* check for a port swap */
714
	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
715 716
	if (reg & IXGBE_FACTPS_LFS)
		bus->func ^= 0x1;
M
Mark Rustad 已提交
717 718 719 720 721 722 723

	/* Get MAC instance from EEPROM for configuring CS4227 */
	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
	}
724 725
}

726
/**
727
 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
728 729 730 731 732 733 734
 *  @hw: pointer to hardware structure
 *
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 *  disables transmit and receive units. The adapter_stopped flag is used by
 *  the shared code and drivers to determine if the adapter is in a stopped
 *  state and should not touch the hardware.
 **/
735
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
736 737 738 739 740 741 742 743 744 745 746
{
	u32 reg_val;
	u16 i;

	/*
	 * Set the adapter_stopped flag so other driver functions stop touching
	 * the hardware
	 */
	hw->adapter_stopped = true;

	/* Disable the receive unit */
747
	hw->mac.ops.disable_rx(hw);
748

749
	/* Clear interrupt mask to stop interrupts from being generated */
750 751
	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);

752
	/* Clear any pending interrupts, flush previous writes */
753 754 755
	IXGBE_READ_REG(hw, IXGBE_EICR);

	/* Disable the transmit unit.  Each queue must be disabled. */
756 757 758 759 760 761 762 763 764
	for (i = 0; i < hw->mac.max_tx_queues; i++)
		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);

	/* Disable the receive unit by stopping each queue */
	for (i = 0; i < hw->mac.max_rx_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
		reg_val &= ~IXGBE_RXDCTL_ENABLE;
		reg_val |= IXGBE_RXDCTL_SWFLSH;
		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
765 766
	}

767 768 769 770
	/* flush all queues disables */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(1000, 2000);

771 772 773 774
	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests
	 */
775
	return ixgbe_disable_pcie_master(hw);
776 777
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
/**
 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
 *  @hw: pointer to hardware structure
 *
 *  Store the index for the link active LED. This will be used to support
 *  blinking the LED.
 **/
s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
{
	struct ixgbe_mac_info *mac = &hw->mac;
	u32 led_reg, led_mode;
	u16 i;

	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* Get LED link active from the LEDCTL register */
	for (i = 0; i < 4; i++) {
		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);

		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
		    IXGBE_LED_LINK_ACTIVE) {
			mac->led_link_act = i;
			return 0;
		}
	}

	/* If LEDCTL register does not have the LED link active set, then use
	 * known MAC defaults.
	 */
	switch (hw->mac.type) {
	case ixgbe_mac_x550em_a:
		mac->led_link_act = 0;
		break;
	case ixgbe_mac_X550EM_x:
		mac->led_link_act = 1;
		break;
	default:
		mac->led_link_act = 2;
	}

	return 0;
}

821
/**
822
 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
823 824 825
 *  @hw: pointer to hardware structure
 *  @index: led number to turn on
 **/
826
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
827 828 829
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

830 831 832
	if (index > 3)
		return IXGBE_ERR_PARAM;

833 834 835 836
	/* To turn on the LED, set mode to ON. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
837
	IXGBE_WRITE_FLUSH(hw);
838 839 840 841 842

	return 0;
}

/**
843
 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
844 845 846
 *  @hw: pointer to hardware structure
 *  @index: led number to turn off
 **/
847
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
848 849 850
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

851 852 853
	if (index > 3)
		return IXGBE_ERR_PARAM;

854 855 856 857
	/* To turn off the LED, set mode to OFF. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
858
	IXGBE_WRITE_FLUSH(hw);
859 860 861 862 863

	return 0;
}

/**
864
 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
865 866 867 868 869
 *  @hw: pointer to hardware structure
 *
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 *  ixgbe_hw struct in order to set up EEPROM access.
 **/
870
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
871 872 873 874 875 876 877
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
	u32 eec;
	u16 eeprom_size;

	if (eeprom->type == ixgbe_eeprom_uninitialized) {
		eeprom->type = ixgbe_eeprom_none;
878 879 880
		/* Set default semaphore delay to 10ms which is a well
		 * tested value */
		eeprom->semaphore_delay = 10;
881 882
		/* Clear EEPROM page size, it will be initialized as needed */
		eeprom->word_page_size = 0;
883 884 885 886 887

		/*
		 * Check for EEPROM present first.
		 * If not present leave as none
		 */
888
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
889 890 891 892 893 894 895 896 897
		if (eec & IXGBE_EEC_PRES) {
			eeprom->type = ixgbe_eeprom_spi;

			/*
			 * SPI EEPROM is assumed here.  This code would need to
			 * change if a future EEPROM is not SPI.
			 */
			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
					    IXGBE_EEC_SIZE_SHIFT);
J
Jacob Keller 已提交
898 899
			eeprom->word_size = BIT(eeprom_size +
						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
900 901 902 903 904 905
		}

		if (eec & IXGBE_EEC_ADDR_SIZE)
			eeprom->address_bits = 16;
		else
			eeprom->address_bits = 8;
906 907
		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
		       eeprom->type, eeprom->word_size, eeprom->address_bits);
908 909 910 911 912
	}

	return 0;
}

913
/**
914
 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
915
 *  @hw: pointer to hardware structure
916 917 918
 *  @offset: offset within the EEPROM to write
 *  @words: number of words
 *  @data: 16 bit word(s) to write to EEPROM
919
 *
920
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
921
 **/
922 923
s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					       u16 words, u16 *data)
924
{
925
	s32 status;
926
	u16 i, count;
927 928 929

	hw->eeprom.ops.init_params(hw);

930 931
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
932

933 934
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
935

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	/*
	 * The EEPROM page size cannot be queried from the chip. We do lazy
	 * initialization. It is worth to do that when we write large buffer.
	 */
	if ((hw->eeprom.word_page_size == 0) &&
	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
		ixgbe_detect_eeprom_page_size_generic(hw, offset);

	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
							    count, &data[i]);

		if (status != 0)
			break;
	}

	return status;
}

/**
 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of word(s)
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
{
	s32 status;
	u16 word;
	u16 page_size;
	u16 i;
	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;

981 982
	/* Prepare the EEPROM for writing  */
	status = ixgbe_acquire_eeprom(hw);
983 984
	if (status)
		return status;
985

986 987 988
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
989 990
	}

991 992 993 994 995 996 997
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);

		/* Send the WRITE ENABLE command (8 bit opcode) */
		ixgbe_shift_out_eeprom_bits(hw,
					    IXGBE_EEPROM_WREN_OPCODE_SPI,
					    IXGBE_EEPROM_OPCODE_BITS);
998

999
		ixgbe_standby_eeprom(hw);
1000

1001 1002 1003 1004 1005 1006
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		/* Send the Write command (8-bit opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		page_size = hw->eeprom.word_page_size;

		/* Send the data in burst via SPI */
		do {
			word = data[i];
			word = (word >> 8) | (word << 8);
			ixgbe_shift_out_eeprom_bits(hw, word, 16);

			if (page_size == 0)
				break;

			/* do not wrap around page */
			if (((offset + i) & (page_size - 1)) ==
			    (page_size - 1))
				break;
		} while (++i < words);

		ixgbe_standby_eeprom(hw);
		usleep_range(10000, 20000);
1033
	}
1034 1035
	/* Done with writing - release the EEPROM */
	ixgbe_release_eeprom(hw);
1036

1037
	return 0;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
}

/**
 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @data: 16 bit word to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	hw->eeprom.ops.init_params(hw);
1052

1053 1054
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1055

1056
	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1057 1058
}

1059
/**
1060
 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1061 1062
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
1063 1064
 *  @words: number of word(s)
 *  @data: read 16 bit words(s) from EEPROM
1065
 *
1066
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1067
 **/
1068 1069
s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
1070
{
1071
	s32 status;
1072
	u16 i, count;
1073 1074 1075

	hw->eeprom.ops.init_params(hw);

1076 1077
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1078

1079 1080
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);

		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
							   count, &data[i]);

1094 1095
		if (status)
			return status;
1096 1097
	}

1098
	return 0;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
}

/**
 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @words: number of word(s)
 *  @data: read 16 bit word(s) from EEPROM
 *
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 **/
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data)
{
	s32 status;
	u16 word_in;
	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
	u16 i;

1118 1119
	/* Prepare the EEPROM for reading  */
	status = ixgbe_acquire_eeprom(hw);
1120 1121
	if (status)
		return status;
1122

1123 1124 1125
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
1126 1127
	}

1128 1129 1130 1131 1132 1133 1134 1135
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145
		/* Send the READ command (opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		/* Read the data. */
		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
		data[i] = (word_in >> 8) | (word_in << 8);
1146
	}
1147

1148 1149 1150 1151
	/* End this read operation */
	ixgbe_release_eeprom(hw);

	return 0;
1152
}
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/**
 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @data: read 16 bit value from EEPROM
 *
 *  Reads 16 bit value from EEPROM through bit-bang method
 **/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
				       u16 *data)
{
	hw->eeprom.ops.init_params(hw);

1167 1168
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1169

1170
	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1171 1172 1173
}

/**
1174
 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1175
 *  @hw: pointer to hardware structure
1176 1177 1178
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of word(s)
 *  @data: 16 bit word(s) from the EEPROM
1179
 *
1180
 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1181
 **/
1182 1183
s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				   u16 words, u16 *data)
1184 1185
{
	u32 eerd;
1186
	s32 status;
1187
	u32 i;
1188

1189 1190
	hw->eeprom.ops.init_params(hw);

1191 1192
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1193

1194 1195
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1196

1197
	for (i = 0; i < words; i++) {
1198
		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1199
		       IXGBE_EEPROM_RW_REG_START;
1200

1201 1202
		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1203

1204 1205 1206 1207 1208
		if (status == 0) {
			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
				   IXGBE_EEPROM_RW_REG_DATA);
		} else {
			hw_dbg(hw, "Eeprom read timed out\n");
1209
			return status;
1210 1211
		}
	}
1212 1213

	return 0;
1214
}
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
/**
 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be used as a scratch pad
 *
 *  Discover EEPROM page size by writing marching data at given offset.
 *  This function is called only when we are writing a new large buffer
 *  at given offset so the data would be overwritten anyway.
 **/
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset)
{
	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1229
	s32 status;
1230 1231 1232 1233 1234 1235 1236 1237 1238
	u16 i;

	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
		data[i] = i;

	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
	hw->eeprom.word_page_size = 0;
1239 1240
	if (status)
		return status;
1241 1242

	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1243 1244
	if (status)
		return status;
1245 1246 1247 1248 1249 1250 1251

	/*
	 * When writing in burst more than the actual page size
	 * EEPROM address wraps around current page.
	 */
	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];

1252
	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1253
	       hw->eeprom.word_page_size);
1254
	return 0;
1255 1256
}

1257
/**
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
}

/**
 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1272 1273
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
1274 1275
 *  @words: number of words
 *  @data: word(s) write to the EEPROM
1276
 *
1277
 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1278
 **/
1279 1280
s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				    u16 words, u16 *data)
1281 1282
{
	u32 eewr;
1283
	s32 status;
1284
	u16 i;
1285 1286 1287

	hw->eeprom.ops.init_params(hw);

1288 1289
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1290

1291 1292
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1293

1294 1295 1296 1297
	for (i = 0; i < words; i++) {
		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
		       IXGBE_EEPROM_RW_REG_START;
1298

1299
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1300
		if (status) {
1301
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1302
			return status;
1303
		}
1304

1305
		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1306

1307
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1308
		if (status) {
1309
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1310
			return status;
1311
		}
1312 1313
	}

1314
	return 0;
1315 1316
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/**
 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
 *  @data: word write to the EEPROM
 *
 *  Write a 16 bit word to the EEPROM using the EEWR register.
 **/
s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
}

1330
/**
1331
 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1332
 *  @hw: pointer to hardware structure
1333
 *  @ee_reg: EEPROM flag for polling
1334
 *
1335 1336
 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
 *  read or write is done respectively.
1337
 **/
1338
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1339 1340 1341 1342
{
	u32 i;
	u32 reg;

1343 1344 1345 1346 1347 1348 1349
	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
		if (ee_reg == IXGBE_NVM_POLL_READ)
			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
		else
			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);

		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1350
			return 0;
1351 1352 1353
		}
		udelay(5);
	}
1354
	return IXGBE_ERR_EEPROM;
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365
/**
 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *
 *  Prepares EEPROM for access using bit-bang method. This function should
 *  be called before issuing a command to the EEPROM.
 **/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
1366
	u32 eec;
1367 1368
	u32 i;

1369
	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1370
		return IXGBE_ERR_SWFW_SYNC;
1371

1372
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1373

1374 1375
	/* Request EEPROM Access */
	eec |= IXGBE_EEC_REQ;
1376
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1377

1378
	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1379
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1380 1381 1382 1383
		if (eec & IXGBE_EEC_GNT)
			break;
		udelay(5);
	}
1384

1385 1386 1387
	/* Release if grant not acquired */
	if (!(eec & IXGBE_EEC_GNT)) {
		eec &= ~IXGBE_EEC_REQ;
1388
		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1389
		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1390

1391 1392
		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
		return IXGBE_ERR_EEPROM;
1393
	}
1394 1395 1396 1397

	/* Setup EEPROM for Read/Write */
	/* Clear CS and SK */
	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1398
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1399 1400 1401
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	return 0;
1402 1403
}

1404 1405 1406 1407 1408 1409 1410 1411
/**
 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 **/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
1412
	u32 timeout = 2000;
1413 1414 1415 1416 1417 1418 1419 1420 1421
	u32 i;
	u32 swsm;

	/* Get SMBI software semaphore between device drivers first */
	for (i = 0; i < timeout; i++) {
		/*
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
1422
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1423
		if (!(swsm & IXGBE_SWSM_SMBI))
1424
			break;
1425
		usleep_range(50, 100);
1426 1427
	}

E
Emil Tantilov 已提交
1428
	if (i == timeout) {
1429
		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1430
		/* this release is particularly important because our attempts
E
Emil Tantilov 已提交
1431 1432 1433 1434 1435 1436
		 * above to get the semaphore may have succeeded, and if there
		 * was a timeout, we should unconditionally clear the semaphore
		 * bits to free the driver to make progress
		 */
		ixgbe_release_eeprom_semaphore(hw);

1437
		usleep_range(50, 100);
1438
		/* one last try
E
Emil Tantilov 已提交
1439 1440 1441
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
1442
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1443 1444 1445 1446
		if (swsm & IXGBE_SWSM_SMBI) {
			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
			return IXGBE_ERR_EEPROM;
		}
E
Emil Tantilov 已提交
1447 1448
	}

1449
	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1450
	for (i = 0; i < timeout; i++) {
1451
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1452

1453 1454
		/* Set the SW EEPROM semaphore bit to request access */
		swsm |= IXGBE_SWSM_SWESMBI;
1455
		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1456

1457 1458 1459
		/* If we set the bit successfully then we got the
		 * semaphore.
		 */
1460
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1461 1462
		if (swsm & IXGBE_SWSM_SWESMBI)
			break;
1463

1464 1465
		usleep_range(50, 100);
	}
1466

1467 1468 1469 1470 1471 1472 1473
	/* Release semaphores and return error if SW EEPROM semaphore
	 * was not granted because we don't have access to the EEPROM
	 */
	if (i >= timeout) {
		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
		ixgbe_release_eeprom_semaphore(hw);
		return IXGBE_ERR_EEPROM;
1474 1475
	}

1476
	return 0;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
}

/**
 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  This function clears hardware semaphore bits.
 **/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
	u32 swsm;

1489
	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1490 1491 1492

	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1493
	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1494
	IXGBE_WRITE_FLUSH(hw);
1495 1496
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
/**
 *  ixgbe_ready_eeprom - Polls for EEPROM ready
 *  @hw: pointer to hardware structure
 **/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
	u16 i;
	u8 spi_stat_reg;

	/*
	 * Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1514
					    IXGBE_EEPROM_OPCODE_BITS);
1515 1516 1517 1518 1519 1520
		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		ixgbe_standby_eeprom(hw);
1521
	}
1522 1523 1524 1525 1526 1527 1528

	/*
	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
	 * devices (and only 0-5mSec on 5V devices)
	 */
	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
		hw_dbg(hw, "SPI EEPROM Status error\n");
1529
		return IXGBE_ERR_EEPROM;
1530 1531
	}

1532
	return 0;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
}

/**
 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

1543
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1544 1545 1546

	/* Toggle CS to flush commands */
	eec |= IXGBE_EEC_CS;
1547
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1548 1549 1550
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	eec &= ~IXGBE_EEC_CS;
1551
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 *  @hw: pointer to hardware structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 **/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1563
					u16 count)
1564 1565 1566 1567 1568
{
	u32 eec;
	u32 mask;
	u32 i;

1569
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1570 1571 1572 1573 1574

	/*
	 * Mask is used to shift "count" bits of "data" out to the EEPROM
	 * one bit at a time.  Determine the starting bit based on count
	 */
J
Jacob Keller 已提交
1575
	mask = BIT(count - 1);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

	for (i = 0; i < count; i++) {
		/*
		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
		 * "1", and then raising and then lowering the clock (the SK
		 * bit controls the clock input to the EEPROM).  A "0" is
		 * shifted out to the EEPROM by setting "DI" to "0" and then
		 * raising and then lowering the clock.
		 */
		if (data & mask)
			eec |= IXGBE_EEC_DI;
		else
			eec &= ~IXGBE_EEC_DI;

1590
		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		IXGBE_WRITE_FLUSH(hw);

		udelay(1);

		ixgbe_raise_eeprom_clk(hw, &eec);
		ixgbe_lower_eeprom_clk(hw, &eec);

		/*
		 * Shift mask to signify next bit of data to shift in to the
		 * EEPROM
		 */
		mask = mask >> 1;
1603
	}
1604 1605 1606

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eec &= ~IXGBE_EEC_DI;
1607
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	IXGBE_WRITE_FLUSH(hw);
}

/**
 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 *  @hw: pointer to hardware structure
 **/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
	u32 eec;
	u32 i;
	u16 data = 0;

	/*
	 * In order to read a register from the EEPROM, we need to shift
	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
	 * the clock input to the EEPROM (setting the SK bit), and then reading
	 * the value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */
1628
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1629 1630 1631 1632 1633 1634 1635

	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);

	for (i = 0; i < count; i++) {
		data = data << 1;
		ixgbe_raise_eeprom_clk(hw, &eec);

1636
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

		eec &= ~(IXGBE_EEC_DI);
		if (eec & IXGBE_EEC_DO)
			data |= 1;

		ixgbe_lower_eeprom_clk(hw, &eec);
	}

	return data;
}

/**
 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eec: EEC register's current value
 **/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Raise the clock input to the EEPROM
	 * (setting the SK bit), then delay
	 */
	*eec = *eec | IXGBE_EEC_SK;
1660
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eecd: EECD's current value
 **/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Lower the clock input to the EEPROM (clearing the SK bit), then
	 * delay
	 */
	*eec = *eec & ~IXGBE_EEC_SK;
1677
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

1690
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1691 1692 1693 1694

	eec |= IXGBE_EEC_CS;  /* Pull CS high */
	eec &= ~IXGBE_EEC_SK; /* Lower SCK */

1695
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1696 1697 1698 1699 1700 1701
	IXGBE_WRITE_FLUSH(hw);

	udelay(1);

	/* Stop requesting EEPROM access */
	eec &= ~IXGBE_EEC_REQ;
1702
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1703

1704
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1705

1706 1707 1708 1709 1710 1711
	/*
	 * Delay before attempt to obtain semaphore again to allow FW
	 * access. semaphore_delay is in ms we need us for usleep_range
	 */
	usleep_range(hw->eeprom.semaphore_delay * 1000,
		     hw->eeprom.semaphore_delay * 2000);
1712 1713
}

1714
/**
1715
 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1716 1717
 *  @hw: pointer to hardware structure
 **/
1718
s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
{
	u16 i;
	u16 j;
	u16 checksum = 0;
	u16 length = 0;
	u16 pointer = 0;
	u16 word = 0;

	/* Include 0x0-0x3F in the checksum */
	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1729
		if (hw->eeprom.ops.read(hw, i, &word)) {
1730 1731 1732 1733 1734 1735 1736 1737
			hw_dbg(hw, "EEPROM read failed\n");
			break;
		}
		checksum += word;
	}

	/* Include all data from pointers except for the fw pointer */
	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		if (hw->eeprom.ops.read(hw, i, &pointer)) {
			hw_dbg(hw, "EEPROM read failed\n");
			return IXGBE_ERR_EEPROM;
		}

		/* If the pointer seems invalid */
		if (pointer == 0xFFFF || pointer == 0)
			continue;

		if (hw->eeprom.ops.read(hw, pointer, &length)) {
			hw_dbg(hw, "EEPROM read failed\n");
			return IXGBE_ERR_EEPROM;
		}
1751

1752 1753
		if (length == 0xFFFF || length == 0)
			continue;
1754

1755 1756 1757 1758
		for (j = pointer + 1; j <= pointer + length; j++) {
			if (hw->eeprom.ops.read(hw, j, &word)) {
				hw_dbg(hw, "EEPROM read failed\n");
				return IXGBE_ERR_EEPROM;
1759
			}
1760
			checksum += word;
1761 1762 1763 1764 1765
		}
	}

	checksum = (u16)IXGBE_EEPROM_SUM - checksum;

1766
	return (s32)checksum;
1767 1768 1769
}

/**
1770
 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1771 1772 1773 1774 1775 1776
 *  @hw: pointer to hardware structure
 *  @checksum_val: calculated checksum
 *
 *  Performs checksum calculation and validates the EEPROM checksum.  If the
 *  caller does not need checksum_val, the value can be NULL.
 **/
1777
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1778
					   u16 *checksum_val)
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
{
	s32 status;
	u16 checksum;
	u16 read_checksum = 0;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
1789
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1790 1791 1792 1793
	if (status) {
		hw_dbg(hw, "EEPROM read failed\n");
		return status;
	}
1794

1795 1796 1797
	status = hw->eeprom.ops.calc_checksum(hw);
	if (status < 0)
		return status;
1798

1799
	checksum = (u16)(status & 0xffff);
1800

1801 1802
	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
	if (status) {
1803
		hw_dbg(hw, "EEPROM read failed\n");
1804
		return status;
1805 1806
	}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	/* Verify read checksum from EEPROM is the same as
	 * calculated checksum
	 */
	if (read_checksum != checksum)
		status = IXGBE_ERR_EEPROM_CHECKSUM;

	/* If the user cares, return the calculated checksum */
	if (checksum_val)
		*checksum_val = checksum;

1817 1818 1819
	return status;
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/**
 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
	s32 status;
	u16 checksum;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1835
	if (status) {
1836
		hw_dbg(hw, "EEPROM read failed\n");
1837
		return status;
1838 1839
	}

1840 1841 1842 1843 1844 1845 1846 1847
	status = hw->eeprom.ops.calc_checksum(hw);
	if (status < 0)
		return status;

	checksum = (u16)(status & 0xffff);

	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);

1848 1849 1850
	return status;
}

1851
/**
1852
 *  ixgbe_set_rar_generic - Set Rx address register
1853 1854
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
1855 1856
 *  @addr: Address to put into receive address register
 *  @vmdq: VMDq "set" or "pool" index
1857 1858 1859 1860
 *  @enable_addr: set flag that address is active
 *
 *  Puts an ethernet address into a receive address register.
 **/
1861
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1862
			  u32 enable_addr)
1863 1864
{
	u32 rar_low, rar_high;
1865 1866
	u32 rar_entries = hw->mac.num_rar_entries;

1867 1868 1869 1870 1871 1872
	/* Make sure we are using a valid rar index range */
	if (index >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

1873 1874
	/* setup VMDq pool selection before this RAR gets enabled */
	hw->mac.ops.set_vmdq(hw, index, vmdq);
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	/*
	 * HW expects these in little endian so we reverse the byte
	 * order from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) |
		   ((u32)addr[3] << 24));
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1892

1893 1894
	if (enable_addr != 0)
		rar_high |= IXGBE_RAH_AV;
1895

1896 1897
	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

	return 0;
}

/**
 *  ixgbe_clear_rar_generic - Remove Rx address register
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
 *
 *  Clears an ethernet address from a receive address register.
 **/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;
	u32 rar_entries = hw->mac.num_rar_entries;

	/* Make sure we are using a valid rar index range */
1915
	if (index >= rar_entries) {
1916
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1917
		return IXGBE_ERR_INVALID_ARGUMENT;
1918 1919
	}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);

	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);

1931 1932
	/* clear VMDq pool/queue selection for this RAR */
	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1933 1934 1935 1936

	return 0;
}

1937 1938
/**
 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1939 1940 1941
 *  @hw: pointer to hardware structure
 *
 *  Places the MAC address in receive address register 0 and clears the rest
1942
 *  of the receive address registers. Clears the multicast table. Assumes
1943 1944
 *  the receiver is in reset when the routine is called.
 **/
1945
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1946 1947
{
	u32 i;
1948
	u32 rar_entries = hw->mac.num_rar_entries;
1949 1950 1951 1952 1953 1954

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
J
Joe Perches 已提交
1955
	if (!is_valid_ether_addr(hw->mac.addr)) {
1956
		/* Get the MAC address from the RAR0 for later reference */
1957
		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1958

1959
		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1960 1961 1962
	} else {
		/* Setup the receive address. */
		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1963
		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1964

1965
		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1966
	}
A
Alexander Duyck 已提交
1967 1968 1969 1970

	/*  clear VMDq pool/queue selection for RAR 0 */
	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);

1971
	hw->addr_ctrl.overflow_promisc = 0;
1972 1973 1974 1975

	hw->addr_ctrl.rar_used_count = 1;

	/* Zero out the other receive addresses. */
1976
	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	for (i = 1; i < rar_entries; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
	}

	/* Clear the MTA */
	hw->addr_ctrl.mta_in_use = 0;
	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);

	hw_dbg(hw, " Clearing MTA\n");
1987
	for (i = 0; i < hw->mac.mcft_size; i++)
1988 1989
		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);

1990 1991 1992
	if (hw->mac.ops.init_uta_tables)
		hw->mac.ops.init_uta_tables(hw);

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	return 0;
}

/**
 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 *  @hw: pointer to hardware structure
 *  @mc_addr: the multicast address
 *
 *  Extracts the 12 bits, from a multicast address, to determine which
 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 *  incoming rx multicast addresses, to determine the bit-vector to check in
 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2005
 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2006 2007 2008 2009 2010 2011 2012
 *  to mc_filter_type.
 **/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector = 0;

	switch (hw->mac.mc_filter_type) {
2013
	case 0:   /* use bits [47:36] of the address */
2014 2015
		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
		break;
2016
	case 1:   /* use bits [46:35] of the address */
2017 2018
		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
		break;
2019
	case 2:   /* use bits [45:34] of the address */
2020 2021
		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
		break;
2022
	case 3:   /* use bits [43:32] of the address */
2023 2024
		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
		break;
2025
	default:  /* Invalid mc_filter_type */
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		hw_dbg(hw, "MC filter type param set incorrectly\n");
		break;
	}

	/* vector can only be 12-bits or boundary will be exceeded */
	vector &= 0xFFF;
	return vector;
}

/**
 *  ixgbe_set_mta - Set bit-vector in multicast table
 *  @hw: pointer to hardware structure
 *  @hash_value: Multicast address hash value
 *
 *  Sets the bit-vector in the multicast table.
 **/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector;
	u32 vector_bit;
	u32 vector_reg;

	hw->addr_ctrl.mta_in_use++;

	vector = ixgbe_mta_vector(hw, mc_addr);
	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);

	/*
	 * The MTA is a register array of 128 32-bit registers. It is treated
	 * like an array of 4096 bits.  We want to set bit
	 * BitArray[vector_value]. So we figure out what register the bit is
	 * in, read it, OR in the new bit, then write back the new value.  The
	 * register is determined by the upper 7 bits of the vector value and
	 * the bit within that register are determined by the lower 5 bits of
	 * the value.
	 */
	vector_reg = (vector >> 5) & 0x7F;
	vector_bit = vector & 0x1F;
J
Jacob Keller 已提交
2064
	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2065 2066 2067
}

/**
2068
 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2069
 *  @hw: pointer to hardware structure
2070
 *  @netdev: pointer to net device structure
2071 2072
 *
 *  The given list replaces any existing list. Clears the MC addrs from receive
2073
 *  address registers and the multicast table. Uses unused receive address
2074 2075 2076
 *  registers for the first multicast addresses, and hashes the rest into the
 *  multicast table.
 **/
2077 2078
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
				      struct net_device *netdev)
2079
{
2080
	struct netdev_hw_addr *ha;
2081 2082 2083 2084 2085 2086
	u32 i;

	/*
	 * Set the new number of MC addresses that we are being requested to
	 * use.
	 */
2087
	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2088 2089
	hw->addr_ctrl.mta_in_use = 0;

2090
	/* Clear mta_shadow */
2091
	hw_dbg(hw, " Clearing MTA\n");
2092
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2093

2094
	/* Update mta shadow */
2095
	netdev_for_each_mc_addr(ha, netdev) {
2096
		hw_dbg(hw, " Adding the multicast addresses:\n");
2097
		ixgbe_set_mta(hw, ha->addr);
2098 2099 2100
	}

	/* Enable mta */
2101 2102 2103 2104
	for (i = 0; i < hw->mac.mcft_size; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
				      hw->mac.mta_shadow[i]);

2105 2106
	if (hw->addr_ctrl.mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2107
				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2108

2109
	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2110 2111 2112 2113
	return 0;
}

/**
2114
 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2115 2116
 *  @hw: pointer to hardware structure
 *
2117
 *  Enables multicast address in RAR and the use of the multicast hash table.
2118
 **/
2119
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2120
{
2121
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2122

2123 2124
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2125
				hw->mac.mc_filter_type);
2126 2127 2128 2129 2130

	return 0;
}

/**
2131
 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2132 2133
 *  @hw: pointer to hardware structure
 *
2134
 *  Disables multicast address in RAR and the use of the multicast hash table.
2135
 **/
2136
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2137
{
2138
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2139

2140 2141
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2142 2143 2144 2145

	return 0;
}

2146
/**
2147
 *  ixgbe_fc_enable_generic - Enable flow control
2148 2149 2150 2151
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to the current settings.
 **/
2152
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2153
{
2154
	u32 mflcn_reg, fccfg_reg;
2155
	u32 reg;
2156
	u32 fcrtl, fcrth;
2157
	int i;
2158

2159
	/* Validate the water mark configuration. */
2160 2161
	if (!hw->fc.pause_time)
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2162

2163 2164 2165 2166 2167 2168 2169
	/* Low water mark of zero causes XOFF floods */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
			if (!hw->fc.low_water[i] ||
			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
				hw_dbg(hw, "Invalid water mark configuration\n");
2170
				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2171 2172 2173 2174
			}
		}
	}

2175
	/* Negotiate the fc mode to use */
2176
	ixgbe_fc_autoneg(hw);
2177

2178
	/* Disable any previous flow control settings */
2179
	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2180
	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2181 2182 2183 2184 2185 2186 2187 2188 2189

	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);

	/*
	 * The possible values of fc.current_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
2190 2191
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
2192 2193 2194 2195 2196
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.current_mode) {
	case ixgbe_fc_none:
2197 2198 2199 2200
		/*
		 * Flow control is disabled by software override or autoneg.
		 * The code below will actually disable it in the HW.
		 */
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
2227
		return IXGBE_ERR_CONFIG;
2228 2229
	}

2230
	/* Set 802.3x based flow control settings. */
2231
	mflcn_reg |= IXGBE_MFLCN_DPF;
2232 2233 2234
	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);

2235 2236 2237 2238
	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
2239
			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2240 2241 2242 2243 2244 2245 2246
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
		} else {
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
			/*
			 * In order to prevent Tx hangs when the internal Tx
			 * switch is enabled we must set the high water mark
2247 2248 2249
			 * to the Rx packet buffer size - 24KB.  This allows
			 * the Tx switch to function even under heavy Rx
			 * workloads.
2250
			 */
2251
			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2252
		}
2253

2254 2255
		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
	}
2256

2257
	/* Configure pause time (2 TCs per register) */
2258 2259 2260 2261 2262
	reg = hw->fc.pause_time * 0x00010001;
	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);

	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2263

2264
	return 0;
2265 2266
}

2267
/**
2268
 *  ixgbe_negotiate_fc - Negotiate flow control
2269
 *  @hw: pointer to hardware structure
2270 2271 2272 2273 2274 2275
 *  @adv_reg: flow control advertised settings
 *  @lp_reg: link partner's flow control settings
 *  @adv_sym: symmetric pause bit in advertisement
 *  @adv_asm: asymmetric pause bit in advertisement
 *  @lp_sym: symmetric pause bit in link partner advertisement
 *  @lp_asm: asymmetric pause bit in link partner advertisement
2276
 *
2277 2278
 *  Find the intersection between advertised settings and link partner's
 *  advertised settings
2279
 **/
2280 2281
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2282
{
2283 2284
	if ((!(adv_reg)) ||  (!(lp_reg)))
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2285

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
		/*
		 * Now we need to check if the user selected Rx ONLY
		 * of pause frames.  In this case, we had to advertise
		 * FULL flow control because we could not advertise RX
		 * ONLY. Hence, we must now check to see if we need to
		 * turn OFF the TRANSMISSION of PAUSE frames.
		 */
		if (hw->fc.requested_mode == ixgbe_fc_full) {
			hw->fc.current_mode = ixgbe_fc_full;
			hw_dbg(hw, "Flow Control = FULL.\n");
		} else {
			hw->fc.current_mode = ixgbe_fc_rx_pause;
			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
		}
	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_tx_pause;
		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_rx_pause;
		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2309
	} else {
2310 2311
		hw->fc.current_mode = ixgbe_fc_none;
		hw_dbg(hw, "Flow Control = NONE.\n");
2312
	}
2313
	return 0;
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
}

/**
 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according on 1 gig fiber.
 **/
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
{
	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2325
	s32 ret_val;
2326 2327 2328 2329 2330 2331

	/*
	 * On multispeed fiber at 1g, bail out if
	 * - link is up but AN did not complete, or if
	 * - link is up and AN completed but timed out
	 */
2332 2333

	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2334
	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2335
	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2336
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2337

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);

	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE,
			       IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
{
	u32 links2, anlp1_reg, autoc_reg, links;
2359
	s32 ret_val;
2360

2361
	/*
2362 2363 2364
	 * On backplane, bail out if
	 * - backplane autoneg was not completed, or if
	 * - we are 82599 and link partner is not AN enabled
2365
	 */
2366
	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2367
	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2368
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2369

2370 2371
	if (hw->mac.type == ixgbe_mac_82599EB) {
		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2372
		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2373
			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2374
	}
2375
	/*
2376
	 * Read the 10g AN autoc and LP ability registers and resolve
2377 2378
	 * local flow control settings accordingly
	 */
2379 2380
	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
{
	u16 technology_ability_reg = 0;
	u16 lp_technology_ability_reg = 0;

	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
			     MDIO_MMD_AN,
			     &technology_ability_reg);
	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
			     MDIO_MMD_AN,
			     &lp_technology_ability_reg);

	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
				  (u32)lp_technology_ability_reg,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
}

/**
2414
 *  ixgbe_fc_autoneg - Configure flow control
2415 2416
 *  @hw: pointer to hardware structure
 *
2417 2418
 *  Compares our advertised flow control capabilities to those advertised by
 *  our link partner, and determines the proper flow control mode to use.
2419
 **/
2420
void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2421
{
2422 2423 2424
	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
	ixgbe_link_speed speed;
	bool link_up;
2425 2426

	/*
2427 2428 2429 2430 2431 2432 2433
	 * AN should have completed when the cable was plugged in.
	 * Look for reasons to bail out.  Bail out if:
	 * - FC autoneg is disabled, or if
	 * - link is not up.
	 *
	 * Since we're being called from an LSC, link is already known to be up.
	 * So use link_up_wait_to_complete=false.
2434
	 */
2435
	if (hw->fc.disable_fc_autoneg)
2436
		goto out;
2437

2438 2439
	hw->mac.ops.check_link(hw, &speed, &link_up, false);
	if (!link_up)
2440
		goto out;
2441 2442

	switch (hw->phy.media_type) {
2443
	/* Autoneg flow control on fiber adapters */
2444
	case ixgbe_media_type_fiber:
2445 2446 2447 2448 2449
		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
			ret_val = ixgbe_fc_autoneg_fiber(hw);
		break;

	/* Autoneg flow control on backplane adapters */
2450
	case ixgbe_media_type_backplane:
2451
		ret_val = ixgbe_fc_autoneg_backplane(hw);
2452 2453
		break;

2454
	/* Autoneg flow control on copper adapters */
2455
	case ixgbe_media_type_copper:
2456
		if (ixgbe_device_supports_autoneg_fc(hw))
2457
			ret_val = ixgbe_fc_autoneg_copper(hw);
2458 2459 2460
		break;

	default:
2461
		break;
2462
	}
2463

2464
out:
2465 2466 2467 2468 2469 2470
	if (ret_val == 0) {
		hw->fc.fc_was_autonegged = true;
	} else {
		hw->fc.fc_was_autonegged = false;
		hw->fc.current_mode = hw->fc.requested_mode;
	}
2471 2472
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/**
 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
 * @hw: pointer to hardware structure
 *
 * System-wide timeout range is encoded in PCIe Device Control2 register.
 *
 *  Add 10% to specified maximum and return the number of times to poll for
 *  completion timeout, in units of 100 microsec.  Never return less than
 *  800 = 80 millisec.
 **/
static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
{
	s16 devctl2;
	u32 pollcnt;

2488
	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;

	switch (devctl2) {
	case IXGBE_PCIDEVCTRL2_65_130ms:
		 pollcnt = 1300;         /* 130 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_260_520ms:
		pollcnt = 5200;         /* 520 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_1_2s:
		pollcnt = 20000;        /* 2 sec */
		break;
	case IXGBE_PCIDEVCTRL2_4_8s:
		pollcnt = 80000;        /* 8 sec */
		break;
	case IXGBE_PCIDEVCTRL2_17_34s:
		pollcnt = 34000;        /* 34 sec */
		break;
	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
	default:
		pollcnt = 800;          /* 80 millisec minimum */
		break;
	}

	/* add 10% to spec maximum */
	return (pollcnt * 11) / 10;
}

2520 2521 2522 2523 2524 2525 2526 2527 2528
/**
 *  ixgbe_disable_pcie_master - Disable PCI-express master access
 *  @hw: pointer to hardware structure
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 *  bit hasn't caused the master requests to be disabled, else 0
 *  is returned signifying master requests disabled.
 **/
2529
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2530
{
2531
	u32 i, poll;
2532 2533 2534 2535
	u16 value;

	/* Always set this bit to ensure any future transactions are blocked */
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2536

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	/* Poll for bit to read as set */
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
			break;
		usleep_range(100, 120);
	}
	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
		goto gio_disable_fail;
	}

2548
	/* Exit if master requests are blocked */
2549 2550
	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
	    ixgbe_removed(hw->hw_addr))
2551
		return 0;
2552

2553
	/* Poll for master request bit to clear */
2554
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2555
		udelay(100);
2556
		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2557
			return 0;
2558 2559
	}

2560 2561 2562 2563 2564 2565 2566 2567
	/*
	 * Two consecutive resets are required via CTRL.RST per datasheet
	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
	 * of this need.  The first reset prevents new master requests from
	 * being issued by our device.  We then must wait 1usec or more for any
	 * remaining completions from the PCIe bus to trickle in, and then reset
	 * again to clear out any effects they may have had on our device.
	 */
2568
	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2569
gio_disable_fail:
2570
	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2571

2572 2573 2574
	if (hw->mac.type >= ixgbe_mac_X550)
		return 0;

2575 2576 2577 2578
	/*
	 * Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
2579 2580
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
2581
		udelay(100);
2582 2583
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
2584
			return 0;
2585
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2586
			return 0;
2587 2588
	}

2589
	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2590
	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2591 2592 2593
}

/**
2594
 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2595
 *  @hw: pointer to hardware structure
2596
 *  @mask: Mask to specify which semaphore to acquire
2597
 *
E
Emil Tantilov 已提交
2598
 *  Acquires the SWFW semaphore through the GSSR register for the specified
2599 2600
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
2601
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2602
{
2603
	u32 gssr = 0;
2604 2605
	u32 swmask = mask;
	u32 fwmask = mask << 5;
2606 2607
	u32 timeout = 200;
	u32 i;
2608

2609
	for (i = 0; i < timeout; i++) {
2610
		/*
2611 2612
		 * SW NVM semaphore bit is used for access to all
		 * SW_FW_SYNC bits (not just NVM)
2613
		 */
2614
		if (ixgbe_get_eeprom_semaphore(hw))
2615
			return IXGBE_ERR_SWFW_SYNC;
2616 2617

		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		if (!(gssr & (fwmask | swmask))) {
			gssr |= swmask;
			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
			ixgbe_release_eeprom_semaphore(hw);
			return 0;
		} else {
			/* Resource is currently in use by FW or SW */
			ixgbe_release_eeprom_semaphore(hw);
			usleep_range(5000, 10000);
		}
2628 2629
	}

2630 2631 2632
	/* If time expired clear the bits holding the lock and retry */
	if (gssr & (fwmask | swmask))
		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2633

2634 2635
	usleep_range(5000, 10000);
	return IXGBE_ERR_SWFW_SYNC;
2636 2637 2638 2639 2640
}

/**
 *  ixgbe_release_swfw_sync - Release SWFW semaphore
 *  @hw: pointer to hardware structure
2641
 *  @mask: Mask to specify which semaphore to release
2642
 *
E
Emil Tantilov 已提交
2643
 *  Releases the SWFW semaphore through the GSSR register for the specified
2644 2645
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
2646
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
{
	u32 gssr;
	u32 swmask = mask;

	ixgbe_get_eeprom_semaphore(hw);

	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
	gssr &= ~swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
/**
 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
 * @hw: pointer to hardware structure
 * @reg_val: Value we read from AUTOC
 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
 *	    true in this the generic case.
 *
 * The default case requires no protection so just to the register read.
 **/
s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
{
	*locked = false;
	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	return 0;
}

/**
 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
 * @hw: pointer to hardware structure
 * @reg_val: value to write to AUTOC
 * @locked: bool to indicate whether the SW/FW lock was already taken by
 *	    previous read.
 **/
s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
{
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
	return 0;
}

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
/**
 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Stops the receive data path and waits for the HW to internally
 *  empty the Rx security block.
 **/
s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
{
#define IXGBE_MAX_SECRX_POLL 40
	int i;
	int secrxreg;

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
			break;
		else
			/* Use interrupt-safe sleep just in case */
2711
			udelay(1000);
2712 2713 2714 2715
	}

	/* For informational purposes only */
	if (i >= IXGBE_MAX_SECRX_POLL)
2716
		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

	return 0;

}

/**
 *  ixgbe_enable_rx_buff - Enables the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Enables the receive data path
 **/
s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
{
2730
	u32 secrxreg;
2731 2732 2733 2734 2735 2736 2737 2738 2739

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

2740 2741 2742 2743 2744 2745 2746 2747 2748
/**
 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit
 **/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
2749 2750 2751 2752
	if (regval & IXGBE_RXCTRL_RXEN)
		hw->mac.ops.enable_rx(hw);
	else
		hw->mac.ops.disable_rx(hw);
2753 2754 2755

	return 0;
}
2756 2757 2758 2759 2760 2761 2762 2763 2764

/**
 *  ixgbe_blink_led_start_generic - Blink LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to blink
 **/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
	ixgbe_link_speed speed = 0;
2765
	bool link_up = false;
2766 2767
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2768
	bool locked = false;
2769
	s32 ret_val;
2770

2771 2772 2773
	if (index > 3)
		return IXGBE_ERR_PARAM;

2774 2775 2776 2777 2778 2779 2780
	/*
	 * Link must be up to auto-blink the LEDs;
	 * Force it if link is down.
	 */
	hw->mac.ops.check_link(hw, &speed, &link_up, false);

	if (!link_up) {
2781
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2782
		if (ret_val)
2783
			return ret_val;
2784

2785
		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2786
		autoc_reg |= IXGBE_AUTOC_FLU;
2787 2788

		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2789
		if (ret_val)
2790
			return ret_val;
2791

2792
		IXGBE_WRITE_FLUSH(hw);
2793

2794
		usleep_range(10000, 20000);
2795 2796 2797 2798 2799 2800 2801
	}

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_BLINK(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2802
	return 0;
2803 2804 2805 2806 2807 2808 2809 2810 2811
}

/**
 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to stop blinking
 **/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
2812
	u32 autoc_reg = 0;
2813
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2814
	bool locked = false;
2815
	s32 ret_val;
2816

2817 2818 2819
	if (index > 3)
		return IXGBE_ERR_PARAM;

2820
	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2821
	if (ret_val)
2822
		return ret_val;
2823 2824 2825 2826

	autoc_reg &= ~IXGBE_AUTOC_FLU;
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;

2827
	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2828
	if (ret_val)
2829
		return ret_val;
2830

2831 2832 2833 2834 2835 2836
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg &= ~IXGBE_LED_BLINK(index);
	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2837
	return 0;
2838
}
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

/**
 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_offset: SAN MAC address offset
 *
 *  This function will read the EEPROM location for the SAN MAC address
 *  pointer, and returns the value at that location.  This is used in both
 *  get and set mac_addr routines.
 **/
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2850
					u16 *san_mac_offset)
2851
{
2852 2853
	s32 ret_val;

2854 2855 2856 2857
	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.
	 */
2858 2859 2860 2861 2862
	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
				      san_mac_offset);
	if (ret_val)
		hw_err(hw, "eeprom read at offset %d failed\n",
		       IXGBE_SAN_MAC_ADDR_PTR);
2863

2864
	return ret_val;
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
}

/**
 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_addr: SAN MAC address
 *
 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
 *  per-port, so set_lan_id() must be called before reading the addresses.
 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
 *  upon for non-SFP connections, so we must call it here.
 **/
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
	u16 san_mac_data, san_mac_offset;
	u8 i;
2881
	s32 ret_val;
2882 2883 2884 2885 2886

	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.  If they're not, no point in calling set_lan_id() here.
	 */
2887 2888
	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2889

2890
		goto san_mac_addr_clr;
2891 2892 2893 2894 2895

	/* make sure we know which port we need to program */
	hw->mac.ops.set_lan_id(hw);
	/* apply the port offset to the address offset */
	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2896
			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2897
	for (i = 0; i < 3; i++) {
2898 2899 2900 2901 2902 2903 2904
		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
					      &san_mac_data);
		if (ret_val) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       san_mac_offset);
			goto san_mac_addr_clr;
		}
2905 2906 2907 2908 2909
		san_mac_addr[i * 2] = (u8)(san_mac_data);
		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
		san_mac_offset++;
	}
	return 0;
2910 2911 2912 2913 2914 2915 2916 2917

san_mac_addr_clr:
	/* No addresses available in this EEPROM.  It's not necessarily an
	 * error though, so just wipe the local address and return.
	 */
	for (i = 0; i < 6; i++)
		san_mac_addr[i] = 0xFF;
	return ret_val;
2918 2919 2920 2921 2922 2923 2924 2925 2926
}

/**
 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
 *  @hw: pointer to hardware structure
 *
 *  Read PCIe configuration space, and get the MSI-X vector count from
 *  the capabilities table.
 **/
2927
u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2928
{
2929
	u16 msix_count;
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	u16 max_msix_count;
	u16 pcie_offset;

	switch (hw->mac.type) {
	case ixgbe_mac_82598EB:
		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
		break;
	case ixgbe_mac_82599EB:
	case ixgbe_mac_X540:
2940 2941
	case ixgbe_mac_X550:
	case ixgbe_mac_X550EM_x:
2942
	case ixgbe_mac_x550em_a:
2943 2944 2945 2946
		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
		break;
	default:
2947
		return 1;
2948 2949
	}

2950 2951 2952
	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
	if (ixgbe_removed(hw->hw_addr))
		msix_count = 0;
2953 2954
	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;

2955
	/* MSI-X count is zero-based in HW */
2956 2957
	msix_count++;

2958 2959 2960
	if (msix_count > max_msix_count)
		msix_count = max_msix_count;

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	return msix_count;
}

/**
 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to disassociate
 *  @vmdq: VMDq pool index to remove from the rar
 **/
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar_lo, mpsar_hi;
	u32 rar_entries = hw->mac.num_rar_entries;

2975 2976 2977 2978 2979
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
2980

2981 2982
	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2983

2984
	if (ixgbe_removed(hw->hw_addr))
2985
		return 0;
2986

2987
	if (!mpsar_lo && !mpsar_hi)
2988
		return 0;
2989

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
		if (mpsar_lo) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
			mpsar_lo = 0;
		}
		if (mpsar_hi) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
			mpsar_hi = 0;
		}
	} else if (vmdq < 32) {
J
Jacob Keller 已提交
3000
		mpsar_lo &= ~BIT(vmdq);
3001
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3002
	} else {
J
Jacob Keller 已提交
3003
		mpsar_hi &= ~BIT(vmdq - 32);
3004
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3005 3006
	}

3007
	/* was that the last pool using this rar? */
3008 3009
	if (mpsar_lo == 0 && mpsar_hi == 0 &&
	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3010
		hw->mac.ops.clear_rar(hw, rar);
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	return 0;
}

/**
 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to associate with a VMDq index
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar;
	u32 rar_entries = hw->mac.num_rar_entries;

3026 3027
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
3028
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3029 3030 3031 3032 3033
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

	if (vmdq < 32) {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
J
Jacob Keller 已提交
3034
		mpsar |= BIT(vmdq);
3035 3036 3037
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
	} else {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
J
Jacob Keller 已提交
3038
		mpsar |= BIT(vmdq - 32);
3039
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3040 3041 3042 3043
	}
	return 0;
}

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
/**
 *  This function should only be involved in the IOV mode.
 *  In IOV mode, Default pool is next pool after the number of
 *  VFs advertized and not 0.
 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
 *
 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
{
	u32 rar = hw->mac.san_mac_rar_index;

	if (vmdq < 32) {
J
Jacob Keller 已提交
3059
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3060 3061 3062
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
	} else {
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
J
Jacob Keller 已提交
3063
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3064 3065 3066 3067 3068
	}

	return 0;
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
/**
 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
{
	int i;

	for (i = 0; i < 128; i++)
		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);

	return 0;
}

/**
 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *
 *  return the VLVF index where this VLAN id should be placed
 *
 **/
3091
static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3092
{
3093
	s32 regindex, first_empty_slot;
3094
	u32 bits;
3095 3096 3097 3098 3099

	/* short cut the special case */
	if (vlan == 0)
		return 0;

3100 3101 3102 3103 3104 3105
	/* if vlvf_bypass is set we don't want to use an empty slot, we
	 * will simply bypass the VLVF if there are no entries present in the
	 * VLVF that contain our VLAN
	 */
	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;

3106 3107 3108 3109 3110 3111 3112 3113 3114
	/* add VLAN enable bit for comparison */
	vlan |= IXGBE_VLVF_VIEN;

	/* Search for the vlan id in the VLVF entries. Save off the first empty
	 * slot found along the way.
	 *
	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
	 */
	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3115
		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3116 3117 3118
		if (bits == vlan)
			return regindex;
		if (!first_empty_slot && !bits)
3119 3120 3121
			first_empty_slot = regindex;
	}

3122 3123 3124 3125 3126
	/* If we are here then we didn't find the VLAN.  Return first empty
	 * slot we found during our search, else error.
	 */
	if (!first_empty_slot)
		hw_dbg(hw, "No space in VLVF.\n");
3127

3128
	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3129 3130 3131 3132 3133 3134 3135 3136
}

/**
 *  ixgbe_set_vfta_generic - Set VLAN filter table
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3137
 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3138 3139 3140 3141
 *
 *  Turn on/off specified VLAN in the VLAN filter table.
 **/
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3142
			   bool vlan_on, bool vlvf_bypass)
3143
{
3144
	u32 regidx, vfta_delta, vfta, bits;
3145
	s32 vlvf_index;
3146

3147
	if ((vlan > 4095) || (vind > 63))
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
		return IXGBE_ERR_PARAM;

	/*
	 * this is a 2 part operation - first the VFTA, then the
	 * VLVF and VLVFB if VT Mode is set
	 * We don't write the VFTA until we know the VLVF part succeeded.
	 */

	/* Part 1
	 * The VFTA is a bitstring made up of 128 32-bit registers
	 * that enable the particular VLAN id, much like the MTA:
	 *    bits[11-5]: which register
	 *    bits[4-0]:  which bit in the register
	 */
3162
	regidx = vlan / 32;
J
Jacob Keller 已提交
3163
	vfta_delta = BIT(vlan % 32);
3164 3165 3166 3167 3168 3169 3170 3171
	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));

	/* vfta_delta represents the difference between the current value
	 * of vfta and the value we want in the register.  Since the diff
	 * is an XOR mask we can just update vfta using an XOR.
	 */
	vfta_delta &= vlan_on ? ~vfta : vfta;
	vfta ^= vfta_delta;
3172 3173 3174 3175 3176 3177 3178 3179 3180

	/* Part 2
	 * If VT Mode is set
	 *   Either vlan_on
	 *     make sure the vlan is in VLVF
	 *     set the vind bit in the matching VLVFB
	 *   Or !vlan_on
	 *     clear the pool bit and possibly the vind
	 */
3181 3182 3183
	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
		goto vfta_update;

3184 3185 3186 3187
	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
	if (vlvf_index < 0) {
		if (vlvf_bypass)
			goto vfta_update;
3188
		return vlvf_index;
3189
	}
3190

3191 3192 3193
	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));

	/* set the pool bit */
J
Jacob Keller 已提交
3194
	bits |= BIT(vind % 32);
3195 3196 3197 3198
	if (vlan_on)
		goto vlvf_update;

	/* clear the pool bit */
J
Jacob Keller 已提交
3199
	bits ^= BIT(vind % 32);
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

	if (!bits &&
	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
		/* Clear VFTA first, then disable VLVF.  Otherwise
		 * we run the risk of stray packets leaking into
		 * the PF via the default pool
		 */
		if (vfta_delta)
			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);

		/* disable VLVF and clear remaining bit from pool */
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);

		return 0;
3215 3216
	}

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	/* If there are still bits set in the VLVFB registers
	 * for the VLAN ID indicated we need to see if the
	 * caller is requesting that we clear the VFTA entry bit.
	 * If the caller has requested that we clear the VFTA
	 * entry bit but there are still pools/VFs using this VLAN
	 * ID entry then ignore the request.  We're not worried
	 * about the case where we're turning the VFTA VLAN ID
	 * entry bit on, only when requested to turn it off as
	 * there may be multiple pools and/or VFs using the
	 * VLAN ID entry.  In that case we cannot clear the
	 * VFTA bit until all pools/VFs using that VLAN ID have also
	 * been cleared.  This will be indicated by "bits" being
	 * zero.
	 */
3231
	vfta_delta = 0;
3232

3233 3234 3235 3236
vlvf_update:
	/* record pool change and enable VLAN ID if not already enabled */
	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3237 3238

vfta_update:
3239
	/* Update VFTA now that we are ready for traffic */
3240 3241
	if (vfta_delta)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260

	return 0;
}

/**
 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to hardware structure
 *
 *  Clears the VLAN filer table, and the VMDq index associated with the filter
 **/
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < hw->mac.vft_size; offset++)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);

	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3261 3262
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3263 3264 3265 3266 3267
	}

	return 0;
}

D
Don Skidmore 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
/**
 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
 *  @hw: pointer to hardware structure
 *
 *  Contains the logic to identify if we need to verify link for the
 *  crosstalk fix
 **/
static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
{
	/* Does FW say we need the fix */
	if (!hw->need_crosstalk_fix)
		return false;

	/* Only consider SFP+ PHYs i.e. media type fiber */
	switch (hw->mac.ops.get_media_type(hw)) {
	case ixgbe_media_type_fiber:
	case ixgbe_media_type_fiber_qsfp:
		break;
	default:
		return false;
	}

	return true;
}

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
/**
 *  ixgbe_check_mac_link_generic - Determine link and speed status
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @link_up: true when link is up
 *  @link_up_wait_to_complete: bool used to wait for link up or not
 *
 *  Reads the links register to determine if link is up and the current speed
 **/
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3303
				 bool *link_up, bool link_up_wait_to_complete)
3304
{
3305
	u32 links_reg, links_orig;
3306 3307
	u32 i;

D
Don Skidmore 已提交
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	/* If Crosstalk fix enabled do the sanity check of making sure
	 * the SFP+ cage is full.
	 */
	if (ixgbe_need_crosstalk_fix(hw)) {
		u32 sfp_cage_full;

		switch (hw->mac.type) {
		case ixgbe_mac_82599EB:
			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
					IXGBE_ESDP_SDP2;
			break;
		case ixgbe_mac_X550EM_x:
		case ixgbe_mac_x550em_a:
			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
					IXGBE_ESDP_SDP0;
			break;
		default:
			/* sanity check - No SFP+ devices here */
			sfp_cage_full = false;
			break;
		}

		if (!sfp_cage_full) {
			*link_up = false;
			*speed = IXGBE_LINK_SPEED_UNKNOWN;
			return 0;
		}
	}

3337 3338 3339
	/* clear the old state */
	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);

3340
	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3341 3342 3343 3344 3345 3346

	if (links_orig != links_reg) {
		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
		       links_orig, links_reg);
	}

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	if (link_up_wait_to_complete) {
		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
			if (links_reg & IXGBE_LINKS_UP) {
				*link_up = true;
				break;
			} else {
				*link_up = false;
			}
			msleep(100);
			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
		}
	} else {
		if (links_reg & IXGBE_LINKS_UP)
			*link_up = true;
		else
			*link_up = false;
	}

3365 3366 3367 3368 3369 3370 3371 3372 3373
	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
	case IXGBE_LINKS_SPEED_10G_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_10GB_FULL;
		break;
	case IXGBE_LINKS_SPEED_1G_82599:
3374
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3375 3376 3377 3378 3379 3380 3381 3382 3383
		break;
	case IXGBE_LINKS_SPEED_100_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_100_FULL;
		break;
	default:
3384
		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3385
	}
3386 3387 3388

	return 0;
}
3389 3390

/**
3391
 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3392 3393 3394 3395 3396 3397 3398 3399 3400
 *  the EEPROM
 *  @hw: pointer to hardware structure
 *  @wwnn_prefix: the alternative WWNN prefix
 *  @wwpn_prefix: the alternative WWPN prefix
 *
 *  This function will read the EEPROM from the alternative SAN MAC address
 *  block to check the support for the alternative WWNN/WWPN prefix support.
 **/
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3401
					u16 *wwpn_prefix)
3402 3403 3404 3405 3406 3407 3408 3409 3410
{
	u16 offset, caps;
	u16 alt_san_mac_blk_offset;

	/* clear output first */
	*wwnn_prefix = 0xFFFF;
	*wwpn_prefix = 0xFFFF;

	/* check if alternative SAN MAC is supported */
3411 3412 3413
	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
		goto wwn_prefix_err;
3414 3415 3416

	if ((alt_san_mac_blk_offset == 0) ||
	    (alt_san_mac_blk_offset == 0xFFFF))
3417
		return 0;
3418 3419 3420

	/* check capability in alternative san mac address block */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3421 3422
	if (hw->eeprom.ops.read(hw, offset, &caps))
		goto wwn_prefix_err;
3423
	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3424
		return 0;
3425 3426 3427

	/* get the corresponding prefix for WWNN/WWPN */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3428 3429
	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3430 3431

	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3432 3433
	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
		goto wwn_prefix_err;
3434 3435

	return 0;
3436 3437 3438 3439

wwn_prefix_err:
	hw_err(hw, "eeprom read at offset %d failed\n", offset);
	return 0;
3440
}
3441 3442 3443 3444

/**
 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
 *  @hw: pointer to hardware structure
3445 3446
 *  @enable: enable or disable switch for MAC anti-spoofing
 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3447 3448
 *
 **/
3449
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3450
{
3451 3452 3453
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8;
	u32 pfvfspoof;
3454 3455 3456 3457

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

3458
	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3459
	if (enable)
3460 3461 3462 3463
		pfvfspoof |= BIT(vf_target_shift);
	else
		pfvfspoof &= ~BIT(vf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
}

/**
 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for VLAN anti-spoofing
 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
 *
 **/
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
{
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
	u32 pfvfspoof;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
	if (enable)
J
Jacob Keller 已提交
3484
		pfvfspoof |= BIT(vf_target_shift);
3485
	else
J
Jacob Keller 已提交
3486
		pfvfspoof &= ~BIT(vf_target_shift);
3487 3488
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
}
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503

/**
 *  ixgbe_get_device_caps_generic - Get additional device capabilities
 *  @hw: pointer to hardware structure
 *  @device_caps: the EEPROM word with the extra device capabilities
 *
 *  This function will read the EEPROM location for the device capabilities,
 *  and return the word through device_caps.
 **/
s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
{
	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);

	return 0;
}
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569

/**
 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
 * @hw: pointer to hardware structure
 * @num_pb: number of packet buffers to allocate
 * @headroom: reserve n KB of headroom
 * @strategy: packet buffer allocation strategy
 **/
void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
			     int num_pb,
			     u32 headroom,
			     int strategy)
{
	u32 pbsize = hw->mac.rx_pb_size;
	int i = 0;
	u32 rxpktsize, txpktsize, txpbthresh;

	/* Reserve headroom */
	pbsize -= headroom;

	if (!num_pb)
		num_pb = 1;

	/* Divide remaining packet buffer space amongst the number
	 * of packet buffers requested using supplied strategy.
	 */
	switch (strategy) {
	case (PBA_STRATEGY_WEIGHTED):
		/* pba_80_48 strategy weight first half of packet buffer with
		 * 5/8 of the packet buffer space.
		 */
		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
		pbsize -= rxpktsize * (num_pb / 2);
		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
		for (; i < (num_pb / 2); i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		/* Fall through to configure remaining packet buffers */
	case (PBA_STRATEGY_EQUAL):
		/* Divide the remaining Rx packet buffer evenly among the TCs */
		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
		for (; i < num_pb; i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		break;
	default:
		break;
	}

	/*
	 * Setup Tx packet buffer and threshold equally for all TCs
	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
	 * 10 since the largest packet we support is just over 9K.
	 */
	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
	for (i = 0; i < num_pb; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
	}

	/* Clear unused TCs, if any, to zero buffer size*/
	for (; i < IXGBE_MAX_PB; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
	}
}
E
Emil Tantilov 已提交
3570 3571 3572 3573 3574

/**
 *  ixgbe_calculate_checksum - Calculate checksum for buffer
 *  @buffer: pointer to EEPROM
 *  @length: size of EEPROM to calculate a checksum for
3575
 *
E
Emil Tantilov 已提交
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
 *  Calculates the checksum for some buffer on a specified length.  The
 *  checksum calculated is returned.
 **/
static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
{
	u32 i;
	u8 sum = 0;

	if (!buffer)
		return 0;

	for (i = 0; i < length; i++)
		sum += buffer[i];

	return (u8) (0 - sum);
}

/**
 *  ixgbe_host_interface_command - Issue command to manageability block
 *  @hw: pointer to the HW structure
 *  @buffer: contains the command to write and where the return status will
 *           be placed
D
Don Skidmore 已提交
3598
 *  @length: length of buffer, must be multiple of 4 bytes
3599 3600 3601 3602 3603 3604 3605
 *  @timeout: time in ms to wait for command completion
 *  @return_data: read and return data from the buffer (true) or not (false)
 *  Needed because FW structures are big endian and decoding of
 *  these fields can be 8 bit or 16 bit based on command. Decoding
 *  is not easily understood without making a table of commands.
 *  So we will leave this up to the caller to read back the data
 *  in these cases.
E
Emil Tantilov 已提交
3606 3607 3608 3609
 *
 *  Communicates with the manageability block.  On success return 0
 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
 **/
3610
s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3611 3612
				 u32 length, u32 timeout,
				 bool return_data)
E
Emil Tantilov 已提交
3613 3614
{
	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3615
	u32 hicr, i, bi, fwsts;
3616
	u16 buf_len, dword_len;
3617 3618 3619 3620
	union {
		struct ixgbe_hic_hdr hdr;
		u32 u32arr[1];
	} *bp = buffer;
3621
	s32 status;
E
Emil Tantilov 已提交
3622

3623
	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3624
		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3625
		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
E
Emil Tantilov 已提交
3626
	}
3627 3628 3629 3630
	/* Take management host interface semaphore */
	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
	if (status)
		return status;
E
Emil Tantilov 已提交
3631

3632 3633 3634 3635
	/* Set bit 9 of FWSTS clearing FW reset indication */
	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);

E
Emil Tantilov 已提交
3636 3637
	/* Check that the host interface is enabled. */
	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3638
	if (!(hicr & IXGBE_HICR_EN)) {
E
Emil Tantilov 已提交
3639
		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3640 3641
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3642 3643
	}

3644
	/* Calculate length in DWORDs. We must be DWORD aligned */
3645
	if (length % sizeof(u32)) {
3646
		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3647 3648
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto rel_out;
3649 3650
	}

E
Emil Tantilov 已提交
3651 3652
	dword_len = length >> 2;

3653
	/* The device driver writes the relevant command block
E
Emil Tantilov 已提交
3654 3655 3656 3657
	 * into the ram area.
	 */
	for (i = 0; i < dword_len; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3658
				      i, cpu_to_le32(bp->u32arr[i]));
E
Emil Tantilov 已提交
3659 3660 3661 3662

	/* Setting this bit tells the ARC that a new command is pending. */
	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);

3663
	for (i = 0; i < timeout; i++) {
E
Emil Tantilov 已提交
3664 3665 3666 3667 3668 3669 3670
		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
		if (!(hicr & IXGBE_HICR_C))
			break;
		usleep_range(1000, 2000);
	}

	/* Check command successful completion. */
3671 3672
	if ((timeout && i == timeout) ||
	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
E
Emil Tantilov 已提交
3673
		hw_dbg(hw, "Command has failed with no status valid.\n");
3674 3675
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3676 3677
	}

3678
	if (!return_data)
3679
		goto rel_out;
3680

E
Emil Tantilov 已提交
3681 3682 3683 3684
	/* Calculate length in DWORDs */
	dword_len = hdr_size >> 2;

	/* first pull in the header so we know the buffer length */
3685
	for (bi = 0; bi < dword_len; bi++) {
3686 3687
		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&bp->u32arr[bi]);
3688
	}
E
Emil Tantilov 已提交
3689 3690

	/* If there is any thing in data position pull it in */
3691 3692
	buf_len = bp->hdr.buf_len;
	if (!buf_len)
3693
		goto rel_out;
E
Emil Tantilov 已提交
3694

3695
	if (length < round_up(buf_len, 4) + hdr_size) {
E
Emil Tantilov 已提交
3696
		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3697 3698
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3699 3700
	}

3701 3702
	/* Calculate length in DWORDs, add 3 for odd lengths */
	dword_len = (buf_len + 3) >> 2;
E
Emil Tantilov 已提交
3703

3704
	/* Pull in the rest of the buffer (bi is where we left off) */
3705
	for (; bi <= dword_len; bi++) {
3706 3707
		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&bp->u32arr[bi]);
3708
	}
E
Emil Tantilov 已提交
3709

3710 3711 3712 3713
rel_out:
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);

	return status;
E
Emil Tantilov 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
}

/**
 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
 *  @hw: pointer to the HW structure
 *  @maj: driver version major number
 *  @min: driver version minor number
 *  @build: driver version build number
 *  @sub: driver version sub build number
 *
 *  Sends driver version number to firmware through the manageability
 *  block.  On success return 0
 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
 **/
s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
				 u8 build, u8 sub)
{
	struct ixgbe_hic_drv_info fw_cmd;
	int i;
3734
	s32 ret_val;
E
Emil Tantilov 已提交
3735 3736 3737 3738

	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3739
	fw_cmd.port_num = hw->bus.func;
E
Emil Tantilov 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	fw_cmd.ver_maj = maj;
	fw_cmd.ver_min = min;
	fw_cmd.ver_build = build;
	fw_cmd.ver_sub = sub;
	fw_cmd.hdr.checksum = 0;
	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
	fw_cmd.pad = 0;
	fw_cmd.pad2 = 0;

	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3751
		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3752 3753 3754
						       sizeof(fw_cmd),
						       IXGBE_HI_COMMAND_TIMEOUT,
						       true);
E
Emil Tantilov 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
		if (ret_val != 0)
			continue;

		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
		    FW_CEM_RESP_STATUS_SUCCESS)
			ret_val = 0;
		else
			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;

		break;
	}

	return ret_val;
}
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779

/**
 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
 * @hw: pointer to the hardware structure
 *
 * The 82599 and x540 MACs can experience issues if TX work is still pending
 * when a reset occurs.  This function prevents this by flushing the PCIe
 * buffers on the system.
 **/
void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
{
D
Don Skidmore 已提交
3780 3781
	u32 gcr_ext, hlreg0, i, poll;
	u16 value;
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797

	/*
	 * If double reset is not requested then all transactions should
	 * already be clear and as such there is no work to do
	 */
	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
		return;

	/*
	 * Set loopback enable to prevent any transmits from being sent
	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
	 * has already been cleared.
	 */
	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);

D
Don Skidmore 已提交
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	/* wait for a last completion before clearing buffers */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(3000, 6000);

	/* Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
		usleep_range(100, 200);
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
			break;
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
			break;
	}

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
	/* initiate cleaning flow for buffers in the PCIe transaction layer */
	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);

	/* Flush all writes and allow 20usec for all transactions to clear */
	IXGBE_WRITE_FLUSH(hw);
	udelay(20);

	/* restore previous register values */
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
}
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852

static const u8 ixgbe_emc_temp_data[4] = {
	IXGBE_EMC_INTERNAL_DATA,
	IXGBE_EMC_DIODE1_DATA,
	IXGBE_EMC_DIODE2_DATA,
	IXGBE_EMC_DIODE3_DATA
};
static const u8 ixgbe_emc_therm_limit[4] = {
	IXGBE_EMC_INTERNAL_THERM_LIMIT,
	IXGBE_EMC_DIODE1_THERM_LIMIT,
	IXGBE_EMC_DIODE2_THERM_LIMIT,
	IXGBE_EMC_DIODE3_THERM_LIMIT
};

/**
 *  ixgbe_get_ets_data - Extracts the ETS bit data
 *  @hw: pointer to hardware structure
 *  @ets_cfg: extected ETS data
 *  @ets_offset: offset of ETS data
 *
 *  Returns error code.
 **/
static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
			      u16 *ets_offset)
{
3853
	s32 status;
3854 3855 3856

	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
	if (status)
3857
		return status;
3858

3859 3860
	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
		return IXGBE_NOT_IMPLEMENTED;
3861 3862 3863

	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
	if (status)
3864
		return status;
3865

3866 3867
	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
		return IXGBE_NOT_IMPLEMENTED;
3868

3869
	return 0;
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
}

/**
 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
 *  @hw: pointer to hardware structure
 *
 *  Returns the thermal sensor data structure
 **/
s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
{
3880
	s32 status;
3881 3882 3883 3884 3885 3886 3887
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  num_sensors;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

3888
	/* Only support thermal sensors attached to physical port 0 */
3889 3890
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3891 3892 3893

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3894
		return status;
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
					     &ets_sensor);
		if (status)
3907
			return status;
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919

		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);

		if (sensor_location != 0) {
			status = hw->phy.ops.read_i2c_byte(hw,
					ixgbe_emc_temp_data[sensor_index],
					IXGBE_I2C_THERMAL_SENSOR_ADDR,
					&data->sensor[i].temp);
			if (status)
3920
				return status;
3921 3922
		}
	}
3923 3924

	return 0;
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
}

/**
 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
 * @hw: pointer to hardware structure
 *
 * Inits the thermal sensor thresholds according to the NVM map
 * and save off the threshold and location values into mac.thermal_sensor_data
 **/
s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
{
3936
	s32 status;
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  low_thresh_delta;
	u8  num_sensors;
	u8  therm_limit;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));

3948
	/* Only support thermal sensors attached to physical port 0 */
3949 3950
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3951 3952 3953

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3954
		return status;
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965

	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

3966 3967 3968 3969 3970
		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       ets_offset + 1 + i);
			continue;
		}
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);
		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;

		hw->phy.ops.write_i2c_byte(hw,
			ixgbe_emc_therm_limit[sensor_index],
			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);

		if (sensor_location == 0)
			continue;

		data->sensor[i].location = sensor_location;
		data->sensor[i].caution_thresh = therm_limit;
		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
	}
3988 3989

	return 0;
3990 3991
}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
{
	u32 rxctrl;

	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	if (rxctrl & IXGBE_RXCTRL_RXEN) {
		if (hw->mac.type != ixgbe_mac_82598EB) {
			u32 pfdtxgswc;

			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
				hw->mac.set_lben = true;
			} else {
				hw->mac.set_lben = false;
			}
		}
		rxctrl &= ~IXGBE_RXCTRL_RXEN;
		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
	}
}

void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
{
	u32 rxctrl;

	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));

	if (hw->mac.type != ixgbe_mac_82598EB) {
		if (hw->mac.set_lben) {
			u32 pfdtxgswc;

			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
			hw->mac.set_lben = false;
		}
	}
}
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

/** ixgbe_mng_present - returns true when management capability is present
 * @hw: pointer to hardware structure
 **/
bool ixgbe_mng_present(struct ixgbe_hw *hw)
{
	u32 fwsm;

	if (hw->mac.type < ixgbe_mac_82599EB)
		return false;

	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
	fwsm &= IXGBE_FWSM_MODE_MASK;
	return fwsm == IXGBE_FWSM_FW_MODE_PT;
}
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257

/**
 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Set the link speed in the MAC and/or PHY register and restarts link.
 */
s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
					  ixgbe_link_speed speed,
					  bool autoneg_wait_to_complete)
{
	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	s32 status = 0;
	u32 speedcnt = 0;
	u32 i = 0;
	bool autoneg, link_up = false;

	/* Mask off requested but non-supported speeds */
	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
	if (status)
		return status;

	speed &= link_speed;

	/* Try each speed one by one, highest priority first.  We do this in
	 * software because 10Gb fiber doesn't support speed autonegotiation.
	 */
	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
		speedcnt++;
		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;

		/* If we already have link at this speed, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
			goto out;

		/* Set the module link speed */
		switch (hw->phy.media_type) {
		case ixgbe_media_type_fiber:
			hw->mac.ops.set_rate_select_speed(hw,
						    IXGBE_LINK_SPEED_10GB_FULL);
			break;
		case ixgbe_media_type_fiber_qsfp:
			/* QSFP module automatically detects MAC link speed */
			break;
		default:
			hw_dbg(hw, "Unexpected media type\n");
			break;
		}

		/* Allow module to change analog characteristics (1G->10G) */
		msleep(40);

		status = hw->mac.ops.setup_mac_link(hw,
						    IXGBE_LINK_SPEED_10GB_FULL,
						    autoneg_wait_to_complete);
		if (status)
			return status;

		/* Flap the Tx laser if it has not already been done */
		if (hw->mac.ops.flap_tx_laser)
			hw->mac.ops.flap_tx_laser(hw);

		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
		 * Section 73.10.2, we may have to wait up to 500ms if KR is
		 * attempted.  82599 uses the same timing for 10g SFI.
		 */
		for (i = 0; i < 5; i++) {
			/* Wait for the link partner to also set speed */
			msleep(100);

			/* If we have link, just jump out */
			status = hw->mac.ops.check_link(hw, &link_speed,
							&link_up, false);
			if (status)
				return status;

			if (link_up)
				goto out;
		}
	}

	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
		speedcnt++;
		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;

		/* If we already have link at this speed, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
			goto out;

		/* Set the module link speed */
		switch (hw->phy.media_type) {
		case ixgbe_media_type_fiber:
			hw->mac.ops.set_rate_select_speed(hw,
						     IXGBE_LINK_SPEED_1GB_FULL);
			break;
		case ixgbe_media_type_fiber_qsfp:
			/* QSFP module automatically detects link speed */
			break;
		default:
			hw_dbg(hw, "Unexpected media type\n");
			break;
		}

		/* Allow module to change analog characteristics (10G->1G) */
		msleep(40);

		status = hw->mac.ops.setup_mac_link(hw,
						    IXGBE_LINK_SPEED_1GB_FULL,
						    autoneg_wait_to_complete);
		if (status)
			return status;

		/* Flap the Tx laser if it has not already been done */
		if (hw->mac.ops.flap_tx_laser)
			hw->mac.ops.flap_tx_laser(hw);

		/* Wait for the link partner to also set speed */
		msleep(100);

		/* If we have link, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_up)
			goto out;
	}

	/* We didn't get link.  Configure back to the highest speed we tried,
	 * (if there was more than one).  We call ourselves back with just the
	 * single highest speed that the user requested.
	 */
	if (speedcnt > 1)
		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
						      highest_link_speed,
						      autoneg_wait_to_complete);

out:
	/* Set autoneg_advertised value based on input link speed */
	hw->phy.autoneg_advertised = 0;

	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;

	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;

	return status;
}

/**
 *  ixgbe_set_soft_rate_select_speed - Set module link speed
 *  @hw: pointer to hardware structure
 *  @speed: link speed to set
 *
 *  Set module link speed via the soft rate select.
 */
void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
				      ixgbe_link_speed speed)
{
	s32 status;
	u8 rs, eeprom_data;

	switch (speed) {
	case IXGBE_LINK_SPEED_10GB_FULL:
		/* one bit mask same as setting on */
		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
		break;
	case IXGBE_LINK_SPEED_1GB_FULL:
		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
		break;
	default:
		hw_dbg(hw, "Invalid fixed module speed\n");
		return;
	}

	/* Set RS0 */
	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
					   IXGBE_I2C_EEPROM_DEV_ADDR2,
					   &eeprom_data);
	if (status) {
		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
		return;
	}

	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;

	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
					    IXGBE_I2C_EEPROM_DEV_ADDR2,
					    eeprom_data);
	if (status) {
		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
		return;
	}
}