ixgbe_common.c 104.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
4
  Copyright(c) 1999 - 2014 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24 25 26 27 28 29 30 31
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
J
Jiri Pirko 已提交
32
#include <linux/netdevice.h>
33

34
#include "ixgbe.h"
35 36 37
#include "ixgbe_common.h"
#include "ixgbe_phy.h"

38
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 40
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 42 43
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44
					u16 count);
45 46 47 48
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 50

static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 53 54 55 56 57
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset);
58
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59

60 61 62 63 64 65 66 67 68
/**
 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 *  control
 *  @hw: pointer to hardware structure
 *
 *  There are several phys that do not support autoneg flow control. This
 *  function check the device id to see if the associated phy supports
 *  autoneg flow control.
 **/
69
bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
70
{
71 72 73
	bool supported = false;
	ixgbe_link_speed speed;
	bool link_up;
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	switch (hw->phy.media_type) {
	case ixgbe_media_type_fiber:
		hw->mac.ops.check_link(hw, &speed, &link_up, false);
		/* if link is down, assume supported */
		if (link_up)
			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
				true : false;
		else
			supported = true;
		break;
	case ixgbe_media_type_backplane:
		supported = true;
		break;
	case ixgbe_media_type_copper:
		/* only some copper devices support flow control autoneg */
		switch (hw->device_id) {
		case IXGBE_DEV_ID_82599_T3_LOM:
		case IXGBE_DEV_ID_X540T:
		case IXGBE_DEV_ID_X540T1:
			supported = true;
			break;
		default:
			break;
		}
99
	default:
100
		break;
101
	}
102 103

	return supported;
104 105 106 107 108 109 110 111
}

/**
 *  ixgbe_setup_fc - Set up flow control
 *  @hw: pointer to hardware structure
 *
 *  Called at init time to set up flow control.
 **/
112
static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113 114 115 116
{
	s32 ret_val = 0;
	u32 reg = 0, reg_bp = 0;
	u16 reg_cu = 0;
117
	bool locked = false;
118 119 120 121 122 123 124

	/*
	 * Validate the requested mode.  Strict IEEE mode does not allow
	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
	 */
	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	}

	/*
	 * 10gig parts do not have a word in the EEPROM to determine the
	 * default flow control setting, so we explicitly set it to full.
	 */
	if (hw->fc.requested_mode == ixgbe_fc_default)
		hw->fc.requested_mode = ixgbe_fc_full;

	/*
	 * Set up the 1G and 10G flow control advertisement registers so the
	 * HW will be able to do fc autoneg once the cable is plugged in.  If
	 * we link at 10G, the 1G advertisement is harmless and vice versa.
	 */
	switch (hw->phy.media_type) {
141 142 143
	case ixgbe_media_type_backplane:
		/* some MAC's need RMW protection on AUTOC */
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
144
		if (ret_val)
145
			return ret_val;
146 147

		/* only backplane uses autoc so fall though */
148 149
	case ixgbe_media_type_fiber:
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
150

151 152 153 154 155 156
		break;
	case ixgbe_media_type_copper:
		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
					MDIO_MMD_AN, &reg_cu);
		break;
	default:
157
		break;
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
	}

	/*
	 * The possible values of fc.requested_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.requested_mode) {
	case ixgbe_fc_none:
		/* Flow control completely disabled by software override. */
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
		if (hw->phy.media_type == ixgbe_media_type_backplane)
			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
				    IXGBE_AUTOC_ASM_PAUSE);
		else if (hw->phy.media_type == ixgbe_media_type_copper)
			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
185 186
		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
187
		if (hw->phy.media_type == ixgbe_media_type_backplane) {
188 189
			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
190
		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
191 192
			reg_cu |= IXGBE_TAF_ASM_PAUSE;
			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
193 194
		}
		break;
195 196 197 198 199 200 201 202 203 204
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE, as such we fall
		 * through to the fc_full statement.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
205 206
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
207
		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
208
		if (hw->phy.media_type == ixgbe_media_type_backplane)
209 210
			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
				  IXGBE_AUTOC_ASM_PAUSE;
211
		else if (hw->phy.media_type == ixgbe_media_type_copper)
212
			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
213 214 215
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
216
		return IXGBE_ERR_CONFIG;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	}

	if (hw->mac.type != ixgbe_mac_X540) {
		/*
		 * Enable auto-negotiation between the MAC & PHY;
		 * the MAC will advertise clause 37 flow control.
		 */
		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);

		/* Disable AN timeout */
		if (hw->fc.strict_ieee)
			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;

		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
	}

	/*
	 * AUTOC restart handles negotiation of 1G and 10G on backplane
	 * and copper. There is no need to set the PCS1GCTL register.
	 *
	 */
	if (hw->phy.media_type == ixgbe_media_type_backplane) {
241 242 243 244
		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
		 * LESM is on, likewise reset_pipeline requries the lock as
		 * it also writes AUTOC.
		 */
245 246
		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
		if (ret_val)
247
			return ret_val;
248

249
	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
250
		   ixgbe_device_supports_autoneg_fc(hw)) {
251 252 253 254 255 256 257 258
		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
				      MDIO_MMD_AN, reg_cu);
	}

	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
	return ret_val;
}

259
/**
260
 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
261 262 263 264 265 266 267
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware by filling the bus info structure and media type, clears
 *  all on chip counters, initializes receive address registers, multicast
 *  table, VLAN filter table, calls routine to set up link and flow control
 *  settings, and leaves transmit and receive units disabled and uninitialized
 **/
268
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
269
{
270
	s32 ret_val;
271 272 273 274 275 276
	u32 ctrl_ext;

	/* Set the media type */
	hw->phy.media_type = hw->mac.ops.get_media_type(hw);

	/* Identify the PHY */
277
	hw->phy.ops.identify(hw);
278 279

	/* Clear the VLAN filter table */
280
	hw->mac.ops.clear_vfta(hw);
281 282

	/* Clear statistics registers */
283
	hw->mac.ops.clear_hw_cntrs(hw);
284 285 286 287 288

	/* Set No Snoop Disable */
	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
289
	IXGBE_WRITE_FLUSH(hw);
290

291
	/* Setup flow control */
292 293
	ret_val = ixgbe_setup_fc(hw);
	if (!ret_val)
294
		return 0;
295

296 297 298
	/* Clear adapter stopped flag */
	hw->adapter_stopped = false;

299
	return ret_val;
300 301
}

302 303 304 305 306 307 308 309 310 311 312 313 314
/**
 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 *  @hw: pointer to hw structure
 *
 * Performs the init sequence common to the second generation
 * of 10 GbE devices.
 * Devices in the second generation:
 *     82599
 *     X540
 **/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
	u32 i;
315
	u32 regval;
316 317 318 319 320 321 322 323

	/* Clear the rate limiters */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
	}
	IXGBE_WRITE_FLUSH(hw);

324 325 326
	/* Disable relaxed ordering */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
327
		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
328 329 330 331 332
		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
	}

	for (i = 0; i < hw->mac.max_rx_queues; i++) {
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
333 334
		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
335 336 337
		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
	}

338 339 340
	return 0;
}

341
/**
342
 *  ixgbe_init_hw_generic - Generic hardware initialization
343 344
 *  @hw: pointer to hardware structure
 *
345
 *  Initialize the hardware by resetting the hardware, filling the bus info
346 347 348 349 350
 *  structure and media type, clears all on chip counters, initializes receive
 *  address registers, multicast table, VLAN filter table, calls routine to set
 *  up link and flow control settings, and leaves transmit and receive units
 *  disabled and uninitialized
 **/
351
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
352
{
353 354
	s32 status;

355
	/* Reset the hardware */
356
	status = hw->mac.ops.reset_hw(hw);
357

358 359 360 361
	if (status == 0) {
		/* Start the HW */
		status = hw->mac.ops.start_hw(hw);
	}
362

363
	return status;
364 365 366
}

/**
367
 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
368 369 370 371 372
 *  @hw: pointer to hardware structure
 *
 *  Clears all hardware statistics counters by reading them from the hardware
 *  Statistics counters are clear on read.
 **/
373
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
{
	u16 i = 0;

	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
	IXGBE_READ_REG(hw, IXGBE_ERRBC);
	IXGBE_READ_REG(hw, IXGBE_MSPDC);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_MPC(i));

	IXGBE_READ_REG(hw, IXGBE_MLFC);
	IXGBE_READ_REG(hw, IXGBE_MRFC);
	IXGBE_READ_REG(hw, IXGBE_RLEC);
	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
389 390 391 392 393 394 395
	if (hw->mac.type >= ixgbe_mac_82599EB) {
		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
	} else {
		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
	}
396 397 398 399

	for (i = 0; i < 8; i++) {
		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
400 401 402 403 404 405 406
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
		}
407
	}
408 409 410
	if (hw->mac.type >= ixgbe_mac_82599EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
411 412 413 414 415 416 417 418 419 420 421 422 423 424
	IXGBE_READ_REG(hw, IXGBE_PRC64);
	IXGBE_READ_REG(hw, IXGBE_PRC127);
	IXGBE_READ_REG(hw, IXGBE_PRC255);
	IXGBE_READ_REG(hw, IXGBE_PRC511);
	IXGBE_READ_REG(hw, IXGBE_PRC1023);
	IXGBE_READ_REG(hw, IXGBE_PRC1522);
	IXGBE_READ_REG(hw, IXGBE_GPRC);
	IXGBE_READ_REG(hw, IXGBE_BPRC);
	IXGBE_READ_REG(hw, IXGBE_MPRC);
	IXGBE_READ_REG(hw, IXGBE_GPTC);
	IXGBE_READ_REG(hw, IXGBE_GORCL);
	IXGBE_READ_REG(hw, IXGBE_GORCH);
	IXGBE_READ_REG(hw, IXGBE_GOTCL);
	IXGBE_READ_REG(hw, IXGBE_GOTCH);
E
Emil Tantilov 已提交
425 426 427
	if (hw->mac.type == ixgbe_mac_82598EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	IXGBE_READ_REG(hw, IXGBE_RUC);
	IXGBE_READ_REG(hw, IXGBE_RFC);
	IXGBE_READ_REG(hw, IXGBE_ROC);
	IXGBE_READ_REG(hw, IXGBE_RJC);
	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
	IXGBE_READ_REG(hw, IXGBE_TORL);
	IXGBE_READ_REG(hw, IXGBE_TORH);
	IXGBE_READ_REG(hw, IXGBE_TPR);
	IXGBE_READ_REG(hw, IXGBE_TPT);
	IXGBE_READ_REG(hw, IXGBE_PTC64);
	IXGBE_READ_REG(hw, IXGBE_PTC127);
	IXGBE_READ_REG(hw, IXGBE_PTC255);
	IXGBE_READ_REG(hw, IXGBE_PTC511);
	IXGBE_READ_REG(hw, IXGBE_PTC1023);
	IXGBE_READ_REG(hw, IXGBE_PTC1522);
	IXGBE_READ_REG(hw, IXGBE_MPTC);
	IXGBE_READ_REG(hw, IXGBE_BPTC);
	for (i = 0; i < 16; i++) {
		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
450 451 452 453 454 455 456 457 458 459
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
		}
460 461
	}

462 463 464
	if (hw->mac.type == ixgbe_mac_X540) {
		if (hw->phy.id == 0)
			hw->phy.ops.identify(hw);
465 466 467 468
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
469 470
	}

471 472 473 474
	return 0;
}

/**
475
 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
476
 *  @hw: pointer to hardware structure
477 478
 *  @pba_num: stores the part number string from the EEPROM
 *  @pba_num_size: part number string buffer length
479
 *
480
 *  Reads the part number string from the EEPROM.
481
 **/
482
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
483
				  u32 pba_num_size)
484 485 486
{
	s32 ret_val;
	u16 data;
487 488 489 490 491 492 493 494
	u16 pba_ptr;
	u16 offset;
	u16 length;

	if (pba_num == NULL) {
		hw_dbg(hw, "PBA string buffer was null\n");
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
495 496 497 498 499 500 501

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

502
	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
503 504 505 506
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

	/*
	 * if data is not ptr guard the PBA must be in legacy format which
	 * means pba_ptr is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (data != IXGBE_PBANUM_PTR_GUARD) {
		hw_dbg(hw, "NVM PBA number is not stored as string\n");

		/* we will need 11 characters to store the PBA */
		if (pba_num_size < 11) {
			hw_dbg(hw, "PBA string buffer too small\n");
			return IXGBE_ERR_NO_SPACE;
		}

		/* extract hex string from data and pba_ptr */
		pba_num[0] = (data >> 12) & 0xF;
		pba_num[1] = (data >> 8) & 0xF;
		pba_num[2] = (data >> 4) & 0xF;
		pba_num[3] = data & 0xF;
		pba_num[4] = (pba_ptr >> 12) & 0xF;
		pba_num[5] = (pba_ptr >> 8) & 0xF;
		pba_num[6] = '-';
		pba_num[7] = 0;
		pba_num[8] = (pba_ptr >> 4) & 0xF;
		pba_num[9] = pba_ptr & 0xF;

		/* put a null character on the end of our string */
		pba_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (pba_num[offset] < 0xA)
				pba_num[offset] += '0';
			else if (pba_num[offset] < 0x10)
				pba_num[offset] += 'A' - 0xA;
		}

		return 0;
	}

	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	if (length == 0xFFFF || length == 0) {
		hw_dbg(hw, "NVM PBA number section invalid length\n");
		return IXGBE_ERR_PBA_SECTION;
	}

	/* check if pba_num buffer is big enough */
	if (pba_num_size  < (((u32)length * 2) - 1)) {
		hw_dbg(hw, "PBA string buffer too small\n");
		return IXGBE_ERR_NO_SPACE;
	}

	/* trim pba length from start of string */
	pba_ptr++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
		if (ret_val) {
			hw_dbg(hw, "NVM Read Error\n");
			return ret_val;
		}
		pba_num[offset * 2] = (u8)(data >> 8);
		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
	}
	pba_num[offset * 2] = '\0';
579 580 581 582 583 584

	return 0;
}

/**
 *  ixgbe_get_mac_addr_generic - Generic get MAC address
585 586 587 588 589 590 591
 *  @hw: pointer to hardware structure
 *  @mac_addr: Adapter MAC address
 *
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 *  A reset of the adapter must be performed prior to calling this function
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 **/
592
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));

	for (i = 0; i < 4; i++)
		mac_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < 2; i++)
		mac_addr[i+4] = (u8)(rar_high >> (i*8));

	return 0;
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
	case IXGBE_PCI_LINK_WIDTH_1:
		return ixgbe_bus_width_pcie_x1;
	case IXGBE_PCI_LINK_WIDTH_2:
		return ixgbe_bus_width_pcie_x2;
	case IXGBE_PCI_LINK_WIDTH_4:
		return ixgbe_bus_width_pcie_x4;
	case IXGBE_PCI_LINK_WIDTH_8:
		return ixgbe_bus_width_pcie_x8;
	default:
		return ixgbe_bus_width_unknown;
	}
}

enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_SPEED) {
	case IXGBE_PCI_LINK_SPEED_2500:
		return ixgbe_bus_speed_2500;
	case IXGBE_PCI_LINK_SPEED_5000:
		return ixgbe_bus_speed_5000;
	case IXGBE_PCI_LINK_SPEED_8000:
		return ixgbe_bus_speed_8000;
	default:
		return ixgbe_bus_speed_unknown;
	}
}

640 641 642 643 644 645 646 647 648 649 650 651 652
/**
 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 *  @hw: pointer to hardware structure
 *
 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 **/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
	u16 link_status;

	hw->bus.type = ixgbe_bus_type_pci_express;

	/* Get the negotiated link width and speed from PCI config space */
653
	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
654

655 656
	hw->bus.width = ixgbe_convert_bus_width(link_status);
	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
657

658
	hw->mac.ops.set_lan_id(hw);
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

	return 0;
}

/**
 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
	struct ixgbe_bus_info *bus = &hw->bus;
	u32 reg;

	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
	bus->lan_id = bus->func;

	/* check for a port swap */
	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
	if (reg & IXGBE_FACTPS_LFS)
		bus->func ^= 0x1;
}

685
/**
686
 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
687 688 689 690 691 692 693
 *  @hw: pointer to hardware structure
 *
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 *  disables transmit and receive units. The adapter_stopped flag is used by
 *  the shared code and drivers to determine if the adapter is in a stopped
 *  state and should not touch the hardware.
 **/
694
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
695 696 697 698 699 700 701 702 703 704 705
{
	u32 reg_val;
	u16 i;

	/*
	 * Set the adapter_stopped flag so other driver functions stop touching
	 * the hardware
	 */
	hw->adapter_stopped = true;

	/* Disable the receive unit */
706
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
707

708
	/* Clear interrupt mask to stop interrupts from being generated */
709 710
	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);

711
	/* Clear any pending interrupts, flush previous writes */
712 713 714
	IXGBE_READ_REG(hw, IXGBE_EICR);

	/* Disable the transmit unit.  Each queue must be disabled. */
715 716 717 718 719 720 721 722 723
	for (i = 0; i < hw->mac.max_tx_queues; i++)
		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);

	/* Disable the receive unit by stopping each queue */
	for (i = 0; i < hw->mac.max_rx_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
		reg_val &= ~IXGBE_RXDCTL_ENABLE;
		reg_val |= IXGBE_RXDCTL_SWFLSH;
		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
724 725
	}

726 727 728 729
	/* flush all queues disables */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(1000, 2000);

730 731 732 733
	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests
	 */
734
	return ixgbe_disable_pcie_master(hw);
735 736 737
}

/**
738
 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
739 740 741
 *  @hw: pointer to hardware structure
 *  @index: led number to turn on
 **/
742
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
743 744 745 746 747 748 749
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn on the LED, set mode to ON. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
750
	IXGBE_WRITE_FLUSH(hw);
751 752 753 754 755

	return 0;
}

/**
756
 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
757 758 759
 *  @hw: pointer to hardware structure
 *  @index: led number to turn off
 **/
760
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
761 762 763 764 765 766 767
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn off the LED, set mode to OFF. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
768
	IXGBE_WRITE_FLUSH(hw);
769 770 771 772 773

	return 0;
}

/**
774
 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
775 776 777 778 779
 *  @hw: pointer to hardware structure
 *
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 *  ixgbe_hw struct in order to set up EEPROM access.
 **/
780
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
781 782 783 784 785 786 787
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
	u32 eec;
	u16 eeprom_size;

	if (eeprom->type == ixgbe_eeprom_uninitialized) {
		eeprom->type = ixgbe_eeprom_none;
788 789 790
		/* Set default semaphore delay to 10ms which is a well
		 * tested value */
		eeprom->semaphore_delay = 10;
791 792
		/* Clear EEPROM page size, it will be initialized as needed */
		eeprom->word_page_size = 0;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

		/*
		 * Check for EEPROM present first.
		 * If not present leave as none
		 */
		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
		if (eec & IXGBE_EEC_PRES) {
			eeprom->type = ixgbe_eeprom_spi;

			/*
			 * SPI EEPROM is assumed here.  This code would need to
			 * change if a future EEPROM is not SPI.
			 */
			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
					    IXGBE_EEC_SIZE_SHIFT);
			eeprom->word_size = 1 << (eeprom_size +
						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
		}

		if (eec & IXGBE_EEC_ADDR_SIZE)
			eeprom->address_bits = 16;
		else
			eeprom->address_bits = 8;
816 817
		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
		       eeprom->type, eeprom->word_size, eeprom->address_bits);
818 819 820 821 822
	}

	return 0;
}

823
/**
824
 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
825
 *  @hw: pointer to hardware structure
826 827 828
 *  @offset: offset within the EEPROM to write
 *  @words: number of words
 *  @data: 16 bit word(s) to write to EEPROM
829
 *
830
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
831
 **/
832 833
s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					       u16 words, u16 *data)
834
{
835
	s32 status;
836
	u16 i, count;
837 838 839

	hw->eeprom.ops.init_params(hw);

840 841
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
842

843 844
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
845

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	/*
	 * The EEPROM page size cannot be queried from the chip. We do lazy
	 * initialization. It is worth to do that when we write large buffer.
	 */
	if ((hw->eeprom.word_page_size == 0) &&
	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
		ixgbe_detect_eeprom_page_size_generic(hw, offset);

	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
							    count, &data[i]);

		if (status != 0)
			break;
	}

	return status;
}

/**
 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of word(s)
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
{
	s32 status;
	u16 word;
	u16 page_size;
	u16 i;
	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;

891 892
	/* Prepare the EEPROM for writing  */
	status = ixgbe_acquire_eeprom(hw);
893 894
	if (status)
		return status;
895

896 897 898
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
899 900
	}

901 902 903 904 905 906 907
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);

		/* Send the WRITE ENABLE command (8 bit opcode) */
		ixgbe_shift_out_eeprom_bits(hw,
					    IXGBE_EEPROM_WREN_OPCODE_SPI,
					    IXGBE_EEPROM_OPCODE_BITS);
908

909
		ixgbe_standby_eeprom(hw);
910

911 912 913 914 915 916
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		/* Send the Write command (8-bit opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		page_size = hw->eeprom.word_page_size;

		/* Send the data in burst via SPI */
		do {
			word = data[i];
			word = (word >> 8) | (word << 8);
			ixgbe_shift_out_eeprom_bits(hw, word, 16);

			if (page_size == 0)
				break;

			/* do not wrap around page */
			if (((offset + i) & (page_size - 1)) ==
			    (page_size - 1))
				break;
		} while (++i < words);

		ixgbe_standby_eeprom(hw);
		usleep_range(10000, 20000);
943
	}
944 945
	/* Done with writing - release the EEPROM */
	ixgbe_release_eeprom(hw);
946

947
	return 0;
948 949 950 951 952 953 954 955 956 957 958 959 960 961
}

/**
 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @data: 16 bit word to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	hw->eeprom.ops.init_params(hw);
962

963 964
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
965

966
	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
967 968
}

969
/**
970
 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
971 972
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
973 974
 *  @words: number of word(s)
 *  @data: read 16 bit words(s) from EEPROM
975
 *
976
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
977
 **/
978 979
s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
980
{
981
	s32 status;
982
	u16 i, count;
983 984 985

	hw->eeprom.ops.init_params(hw);

986 987
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
988

989 990
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003
	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);

		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
							   count, &data[i]);

1004 1005
		if (status)
			return status;
1006 1007
	}

1008
	return 0;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
}

/**
 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @words: number of word(s)
 *  @data: read 16 bit word(s) from EEPROM
 *
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 **/
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data)
{
	s32 status;
	u16 word_in;
	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
	u16 i;

1028 1029
	/* Prepare the EEPROM for reading  */
	status = ixgbe_acquire_eeprom(hw);
1030 1031
	if (status)
		return status;
1032

1033 1034 1035
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
1036 1037
	}

1038 1039 1040 1041 1042 1043 1044 1045
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055
		/* Send the READ command (opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		/* Read the data. */
		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
		data[i] = (word_in >> 8) | (word_in << 8);
1056
	}
1057

1058 1059 1060 1061
	/* End this read operation */
	ixgbe_release_eeprom(hw);

	return 0;
1062
}
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/**
 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @data: read 16 bit value from EEPROM
 *
 *  Reads 16 bit value from EEPROM through bit-bang method
 **/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
				       u16 *data)
{
	hw->eeprom.ops.init_params(hw);

1077 1078
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1079

1080
	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1081 1082 1083
}

/**
1084
 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1085
 *  @hw: pointer to hardware structure
1086 1087 1088
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of word(s)
 *  @data: 16 bit word(s) from the EEPROM
1089
 *
1090
 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1091
 **/
1092 1093
s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				   u16 words, u16 *data)
1094 1095
{
	u32 eerd;
1096
	s32 status;
1097
	u32 i;
1098

1099 1100
	hw->eeprom.ops.init_params(hw);

1101 1102
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1103

1104 1105
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1106

1107
	for (i = 0; i < words; i++) {
1108
		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1109
		       IXGBE_EEPROM_RW_REG_START;
1110

1111 1112
		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1113

1114 1115 1116 1117 1118
		if (status == 0) {
			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
				   IXGBE_EEPROM_RW_REG_DATA);
		} else {
			hw_dbg(hw, "Eeprom read timed out\n");
1119
			return status;
1120 1121
		}
	}
1122 1123

	return 0;
1124
}
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
/**
 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be used as a scratch pad
 *
 *  Discover EEPROM page size by writing marching data at given offset.
 *  This function is called only when we are writing a new large buffer
 *  at given offset so the data would be overwritten anyway.
 **/
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset)
{
	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1139
	s32 status;
1140 1141 1142 1143 1144 1145 1146 1147 1148
	u16 i;

	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
		data[i] = i;

	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
	hw->eeprom.word_page_size = 0;
1149 1150
	if (status)
		return status;
1151 1152

	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1153 1154
	if (status)
		return status;
1155 1156 1157 1158 1159 1160 1161

	/*
	 * When writing in burst more than the actual page size
	 * EEPROM address wraps around current page.
	 */
	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];

1162
	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1163
	       hw->eeprom.word_page_size);
1164
	return 0;
1165 1166
}

1167
/**
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
}

/**
 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1182 1183
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
1184 1185
 *  @words: number of words
 *  @data: word(s) write to the EEPROM
1186
 *
1187
 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1188
 **/
1189 1190
s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				    u16 words, u16 *data)
1191 1192
{
	u32 eewr;
1193
	s32 status;
1194
	u16 i;
1195 1196 1197

	hw->eeprom.ops.init_params(hw);

1198 1199
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1200

1201 1202
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1203

1204 1205 1206 1207
	for (i = 0; i < words; i++) {
		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
		       IXGBE_EEPROM_RW_REG_START;
1208

1209
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1210
		if (status) {
1211
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1212
			return status;
1213
		}
1214

1215
		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1216

1217
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1218
		if (status) {
1219
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1220
			return status;
1221
		}
1222 1223
	}

1224
	return 0;
1225 1226
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/**
 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
 *  @data: word write to the EEPROM
 *
 *  Write a 16 bit word to the EEPROM using the EEWR register.
 **/
s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
}

1240
/**
1241
 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1242
 *  @hw: pointer to hardware structure
1243
 *  @ee_reg: EEPROM flag for polling
1244
 *
1245 1246
 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
 *  read or write is done respectively.
1247
 **/
1248
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1249 1250 1251 1252
{
	u32 i;
	u32 reg;

1253 1254 1255 1256 1257 1258 1259
	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
		if (ee_reg == IXGBE_NVM_POLL_READ)
			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
		else
			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);

		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1260
			return 0;
1261 1262 1263
		}
		udelay(5);
	}
1264
	return IXGBE_ERR_EEPROM;
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274 1275
/**
 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *
 *  Prepares EEPROM for access using bit-bang method. This function should
 *  be called before issuing a command to the EEPROM.
 **/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
1276
	u32 eec;
1277 1278
	u32 i;

1279
	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1280
		return IXGBE_ERR_SWFW_SYNC;
1281

1282
	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1283

1284 1285 1286
	/* Request EEPROM Access */
	eec |= IXGBE_EEC_REQ;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1287

1288 1289 1290 1291 1292 1293
	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
		if (eec & IXGBE_EEC_GNT)
			break;
		udelay(5);
	}
1294

1295 1296 1297 1298 1299
	/* Release if grant not acquired */
	if (!(eec & IXGBE_EEC_GNT)) {
		eec &= ~IXGBE_EEC_REQ;
		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1300

1301 1302
		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
		return IXGBE_ERR_EEPROM;
1303
	}
1304 1305 1306 1307 1308 1309 1310 1311

	/* Setup EEPROM for Read/Write */
	/* Clear CS and SK */
	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	return 0;
1312 1313
}

1314 1315 1316 1317 1318 1319 1320 1321
/**
 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 **/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
1322
	u32 timeout = 2000;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	u32 i;
	u32 swsm;

	/* Get SMBI software semaphore between device drivers first */
	for (i = 0; i < timeout; i++) {
		/*
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1333
		if (!(swsm & IXGBE_SWSM_SMBI))
1334
			break;
1335
		usleep_range(50, 100);
1336 1337
	}

E
Emil Tantilov 已提交
1338
	if (i == timeout) {
1339
		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1340
		/* this release is particularly important because our attempts
E
Emil Tantilov 已提交
1341 1342 1343 1344 1345 1346
		 * above to get the semaphore may have succeeded, and if there
		 * was a timeout, we should unconditionally clear the semaphore
		 * bits to free the driver to make progress
		 */
		ixgbe_release_eeprom_semaphore(hw);

1347
		usleep_range(50, 100);
1348
		/* one last try
E
Emil Tantilov 已提交
1349 1350 1351 1352
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1353 1354 1355 1356
		if (swsm & IXGBE_SWSM_SMBI) {
			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
			return IXGBE_ERR_EEPROM;
		}
E
Emil Tantilov 已提交
1357 1358
	}

1359
	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1360 1361
	for (i = 0; i < timeout; i++) {
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1362

1363 1364 1365
		/* Set the SW EEPROM semaphore bit to request access */
		swsm |= IXGBE_SWSM_SWESMBI;
		IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1366

1367 1368 1369 1370 1371 1372
		/* If we set the bit successfully then we got the
		 * semaphore.
		 */
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
		if (swsm & IXGBE_SWSM_SWESMBI)
			break;
1373

1374 1375
		usleep_range(50, 100);
	}
1376

1377 1378 1379 1380 1381 1382 1383
	/* Release semaphores and return error if SW EEPROM semaphore
	 * was not granted because we don't have access to the EEPROM
	 */
	if (i >= timeout) {
		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
		ixgbe_release_eeprom_semaphore(hw);
		return IXGBE_ERR_EEPROM;
1384 1385
	}

1386
	return 0;
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
}

/**
 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  This function clears hardware semaphore bits.
 **/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
	u32 swsm;

	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);

	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1404
	IXGBE_WRITE_FLUSH(hw);
1405 1406
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/**
 *  ixgbe_ready_eeprom - Polls for EEPROM ready
 *  @hw: pointer to hardware structure
 **/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
	u16 i;
	u8 spi_stat_reg;

	/*
	 * Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1424
					    IXGBE_EEPROM_OPCODE_BITS);
1425 1426 1427 1428 1429 1430
		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		ixgbe_standby_eeprom(hw);
1431
	}
1432 1433 1434 1435 1436 1437 1438

	/*
	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
	 * devices (and only 0-5mSec on 5V devices)
	 */
	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
		hw_dbg(hw, "SPI EEPROM Status error\n");
1439
		return IXGBE_ERR_EEPROM;
1440 1441
	}

1442
	return 0;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
}

/**
 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	/* Toggle CS to flush commands */
	eec |= IXGBE_EEC_CS;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	eec &= ~IXGBE_EEC_CS;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 *  @hw: pointer to hardware structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 **/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1473
					u16 count)
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
{
	u32 eec;
	u32 mask;
	u32 i;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	/*
	 * Mask is used to shift "count" bits of "data" out to the EEPROM
	 * one bit at a time.  Determine the starting bit based on count
	 */
	mask = 0x01 << (count - 1);

	for (i = 0; i < count; i++) {
		/*
		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
		 * "1", and then raising and then lowering the clock (the SK
		 * bit controls the clock input to the EEPROM).  A "0" is
		 * shifted out to the EEPROM by setting "DI" to "0" and then
		 * raising and then lowering the clock.
		 */
		if (data & mask)
			eec |= IXGBE_EEC_DI;
		else
			eec &= ~IXGBE_EEC_DI;

		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
		IXGBE_WRITE_FLUSH(hw);

		udelay(1);

		ixgbe_raise_eeprom_clk(hw, &eec);
		ixgbe_lower_eeprom_clk(hw, &eec);

		/*
		 * Shift mask to signify next bit of data to shift in to the
		 * EEPROM
		 */
		mask = mask >> 1;
1513
	}
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eec &= ~IXGBE_EEC_DI;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
}

/**
 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 *  @hw: pointer to hardware structure
 **/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
	u32 eec;
	u32 i;
	u16 data = 0;

	/*
	 * In order to read a register from the EEPROM, we need to shift
	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
	 * the clock input to the EEPROM (setting the SK bit), and then reading
	 * the value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */
	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);

	for (i = 0; i < count; i++) {
		data = data << 1;
		ixgbe_raise_eeprom_clk(hw, &eec);

		eec = IXGBE_READ_REG(hw, IXGBE_EEC);

		eec &= ~(IXGBE_EEC_DI);
		if (eec & IXGBE_EEC_DO)
			data |= 1;

		ixgbe_lower_eeprom_clk(hw, &eec);
	}

	return data;
}

/**
 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eec: EEC register's current value
 **/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Raise the clock input to the EEPROM
	 * (setting the SK bit), then delay
	 */
	*eec = *eec | IXGBE_EEC_SK;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eecd: EECD's current value
 **/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Lower the clock input to the EEPROM (clearing the SK bit), then
	 * delay
	 */
	*eec = *eec & ~IXGBE_EEC_SK;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	eec |= IXGBE_EEC_CS;  /* Pull CS high */
	eec &= ~IXGBE_EEC_SK; /* Lower SCK */

	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);

	udelay(1);

	/* Stop requesting EEPROM access */
	eec &= ~IXGBE_EEC_REQ;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);

1614
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1615

1616 1617 1618 1619 1620 1621
	/*
	 * Delay before attempt to obtain semaphore again to allow FW
	 * access. semaphore_delay is in ms we need us for usleep_range
	 */
	usleep_range(hw->eeprom.semaphore_delay * 1000,
		     hw->eeprom.semaphore_delay * 2000);
1622 1623
}

1624
/**
1625
 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1626 1627
 *  @hw: pointer to hardware structure
 **/
1628
u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
{
	u16 i;
	u16 j;
	u16 checksum = 0;
	u16 length = 0;
	u16 pointer = 0;
	u16 word = 0;

	/* Include 0x0-0x3F in the checksum */
	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1639
		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1640 1641 1642 1643 1644 1645 1646 1647
			hw_dbg(hw, "EEPROM read failed\n");
			break;
		}
		checksum += word;
	}

	/* Include all data from pointers except for the fw pointer */
	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1648
		hw->eeprom.ops.read(hw, i, &pointer);
1649 1650 1651

		/* Make sure the pointer seems valid */
		if (pointer != 0xFFFF && pointer != 0) {
1652
			hw->eeprom.ops.read(hw, pointer, &length);
1653 1654 1655

			if (length != 0xFFFF && length != 0) {
				for (j = pointer+1; j <= pointer+length; j++) {
1656
					hw->eeprom.ops.read(hw, j, &word);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
					checksum += word;
				}
			}
		}
	}

	checksum = (u16)IXGBE_EEPROM_SUM - checksum;

	return checksum;
}

/**
1669
 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1670 1671 1672 1673 1674 1675
 *  @hw: pointer to hardware structure
 *  @checksum_val: calculated checksum
 *
 *  Performs checksum calculation and validates the EEPROM checksum.  If the
 *  caller does not need checksum_val, the value can be NULL.
 **/
1676
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1677
					   u16 *checksum_val)
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
{
	s32 status;
	u16 checksum;
	u16 read_checksum = 0;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
1688
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1689 1690

	if (status == 0) {
1691
		checksum = hw->eeprom.ops.calc_checksum(hw);
1692

1693
		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

		/*
		 * Verify read checksum from EEPROM is the same as
		 * calculated checksum
		 */
		if (read_checksum != checksum)
			status = IXGBE_ERR_EEPROM_CHECKSUM;

		/* If the user cares, return the calculated checksum */
		if (checksum_val)
			*checksum_val = checksum;
	} else {
		hw_dbg(hw, "EEPROM read failed\n");
	}

	return status;
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
/**
 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
	s32 status;
	u16 checksum;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	status = hw->eeprom.ops.read(hw, 0, &checksum);

	if (status == 0) {
1729
		checksum = hw->eeprom.ops.calc_checksum(hw);
1730
		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1731
					      checksum);
1732 1733 1734 1735 1736 1737 1738
	} else {
		hw_dbg(hw, "EEPROM read failed\n");
	}

	return status;
}

1739
/**
1740
 *  ixgbe_set_rar_generic - Set Rx address register
1741 1742
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
1743 1744
 *  @addr: Address to put into receive address register
 *  @vmdq: VMDq "set" or "pool" index
1745 1746 1747 1748
 *  @enable_addr: set flag that address is active
 *
 *  Puts an ethernet address into a receive address register.
 **/
1749
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1750
			  u32 enable_addr)
1751 1752
{
	u32 rar_low, rar_high;
1753 1754
	u32 rar_entries = hw->mac.num_rar_entries;

1755 1756 1757 1758 1759 1760
	/* Make sure we are using a valid rar index range */
	if (index >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

1761 1762
	/* setup VMDq pool selection before this RAR gets enabled */
	hw->mac.ops.set_vmdq(hw, index, vmdq);
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	/*
	 * HW expects these in little endian so we reverse the byte
	 * order from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) |
		   ((u32)addr[3] << 24));
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1780

1781 1782
	if (enable_addr != 0)
		rar_high |= IXGBE_RAH_AV;
1783

1784 1785
	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

	return 0;
}

/**
 *  ixgbe_clear_rar_generic - Remove Rx address register
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
 *
 *  Clears an ethernet address from a receive address register.
 **/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;
	u32 rar_entries = hw->mac.num_rar_entries;

	/* Make sure we are using a valid rar index range */
1803
	if (index >= rar_entries) {
1804
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1805
		return IXGBE_ERR_INVALID_ARGUMENT;
1806 1807
	}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);

	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);

1819 1820
	/* clear VMDq pool/queue selection for this RAR */
	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1821 1822 1823 1824

	return 0;
}

1825 1826
/**
 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1827 1828 1829
 *  @hw: pointer to hardware structure
 *
 *  Places the MAC address in receive address register 0 and clears the rest
1830
 *  of the receive address registers. Clears the multicast table. Assumes
1831 1832
 *  the receiver is in reset when the routine is called.
 **/
1833
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1834 1835
{
	u32 i;
1836
	u32 rar_entries = hw->mac.num_rar_entries;
1837 1838 1839 1840 1841 1842

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
J
Joe Perches 已提交
1843
	if (!is_valid_ether_addr(hw->mac.addr)) {
1844
		/* Get the MAC address from the RAR0 for later reference */
1845
		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1846

1847
		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1848 1849 1850
	} else {
		/* Setup the receive address. */
		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1851
		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1852

1853
		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1854 1855 1856

		/*  clear VMDq pool/queue selection for RAR 0 */
		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1857
	}
1858
	hw->addr_ctrl.overflow_promisc = 0;
1859 1860 1861 1862

	hw->addr_ctrl.rar_used_count = 1;

	/* Zero out the other receive addresses. */
1863
	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	for (i = 1; i < rar_entries; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
	}

	/* Clear the MTA */
	hw->addr_ctrl.mta_in_use = 0;
	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);

	hw_dbg(hw, " Clearing MTA\n");
1874
	for (i = 0; i < hw->mac.mcft_size; i++)
1875 1876
		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);

1877 1878 1879
	if (hw->mac.ops.init_uta_tables)
		hw->mac.ops.init_uta_tables(hw);

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	return 0;
}

/**
 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 *  @hw: pointer to hardware structure
 *  @mc_addr: the multicast address
 *
 *  Extracts the 12 bits, from a multicast address, to determine which
 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 *  incoming rx multicast addresses, to determine the bit-vector to check in
 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1892
 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1893 1894 1895 1896 1897 1898 1899
 *  to mc_filter_type.
 **/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector = 0;

	switch (hw->mac.mc_filter_type) {
1900
	case 0:   /* use bits [47:36] of the address */
1901 1902
		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
		break;
1903
	case 1:   /* use bits [46:35] of the address */
1904 1905
		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
		break;
1906
	case 2:   /* use bits [45:34] of the address */
1907 1908
		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
		break;
1909
	case 3:   /* use bits [43:32] of the address */
1910 1911
		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
		break;
1912
	default:  /* Invalid mc_filter_type */
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		hw_dbg(hw, "MC filter type param set incorrectly\n");
		break;
	}

	/* vector can only be 12-bits or boundary will be exceeded */
	vector &= 0xFFF;
	return vector;
}

/**
 *  ixgbe_set_mta - Set bit-vector in multicast table
 *  @hw: pointer to hardware structure
 *  @hash_value: Multicast address hash value
 *
 *  Sets the bit-vector in the multicast table.
 **/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector;
	u32 vector_bit;
	u32 vector_reg;

	hw->addr_ctrl.mta_in_use++;

	vector = ixgbe_mta_vector(hw, mc_addr);
	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);

	/*
	 * The MTA is a register array of 128 32-bit registers. It is treated
	 * like an array of 4096 bits.  We want to set bit
	 * BitArray[vector_value]. So we figure out what register the bit is
	 * in, read it, OR in the new bit, then write back the new value.  The
	 * register is determined by the upper 7 bits of the vector value and
	 * the bit within that register are determined by the lower 5 bits of
	 * the value.
	 */
	vector_reg = (vector >> 5) & 0x7F;
	vector_bit = vector & 0x1F;
1951
	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1952 1953 1954
}

/**
1955
 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1956
 *  @hw: pointer to hardware structure
1957
 *  @netdev: pointer to net device structure
1958 1959
 *
 *  The given list replaces any existing list. Clears the MC addrs from receive
1960
 *  address registers and the multicast table. Uses unused receive address
1961 1962 1963
 *  registers for the first multicast addresses, and hashes the rest into the
 *  multicast table.
 **/
1964 1965
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
				      struct net_device *netdev)
1966
{
1967
	struct netdev_hw_addr *ha;
1968 1969 1970 1971 1972 1973
	u32 i;

	/*
	 * Set the new number of MC addresses that we are being requested to
	 * use.
	 */
1974
	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1975 1976
	hw->addr_ctrl.mta_in_use = 0;

1977
	/* Clear mta_shadow */
1978
	hw_dbg(hw, " Clearing MTA\n");
1979
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1980

1981
	/* Update mta shadow */
1982
	netdev_for_each_mc_addr(ha, netdev) {
1983
		hw_dbg(hw, " Adding the multicast addresses:\n");
1984
		ixgbe_set_mta(hw, ha->addr);
1985 1986 1987
	}

	/* Enable mta */
1988 1989 1990 1991
	for (i = 0; i < hw->mac.mcft_size; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
				      hw->mac.mta_shadow[i]);

1992 1993
	if (hw->addr_ctrl.mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1994
				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1995

1996
	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1997 1998 1999 2000
	return 0;
}

/**
2001
 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2002 2003
 *  @hw: pointer to hardware structure
 *
2004
 *  Enables multicast address in RAR and the use of the multicast hash table.
2005
 **/
2006
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2007
{
2008
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2009

2010 2011
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2012
				hw->mac.mc_filter_type);
2013 2014 2015 2016 2017

	return 0;
}

/**
2018
 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2019 2020
 *  @hw: pointer to hardware structure
 *
2021
 *  Disables multicast address in RAR and the use of the multicast hash table.
2022
 **/
2023
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2024
{
2025
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2026

2027 2028
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2029 2030 2031 2032

	return 0;
}

2033
/**
2034
 *  ixgbe_fc_enable_generic - Enable flow control
2035 2036 2037 2038
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to the current settings.
 **/
2039
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2040
{
2041
	u32 mflcn_reg, fccfg_reg;
2042
	u32 reg;
2043
	u32 fcrtl, fcrth;
2044
	int i;
2045

2046
	/* Validate the water mark configuration. */
2047 2048
	if (!hw->fc.pause_time)
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2049

2050 2051 2052 2053 2054 2055 2056
	/* Low water mark of zero causes XOFF floods */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
			if (!hw->fc.low_water[i] ||
			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
				hw_dbg(hw, "Invalid water mark configuration\n");
2057
				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2058 2059 2060 2061
			}
		}
	}

2062
	/* Negotiate the fc mode to use */
2063
	ixgbe_fc_autoneg(hw);
2064

2065
	/* Disable any previous flow control settings */
2066
	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2067
	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2068 2069 2070 2071 2072 2073 2074 2075 2076

	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);

	/*
	 * The possible values of fc.current_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
2077 2078
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
2079 2080 2081 2082 2083
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.current_mode) {
	case ixgbe_fc_none:
2084 2085 2086 2087
		/*
		 * Flow control is disabled by software override or autoneg.
		 * The code below will actually disable it in the HW.
		 */
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
2114
		return IXGBE_ERR_CONFIG;
2115 2116
	}

2117
	/* Set 802.3x based flow control settings. */
2118
	mflcn_reg |= IXGBE_MFLCN_DPF;
2119 2120 2121
	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);

2122 2123 2124 2125
	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
2126
			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
		} else {
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
			/*
			 * In order to prevent Tx hangs when the internal Tx
			 * switch is enabled we must set the high water mark
			 * to the maximum FCRTH value.  This allows the Tx
			 * switch to function even under heavy Rx workloads.
			 */
			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
		}
2139

2140 2141
		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
	}
2142

2143
	/* Configure pause time (2 TCs per register) */
2144 2145 2146 2147 2148
	reg = hw->fc.pause_time * 0x00010001;
	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);

	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2149

2150
	return 0;
2151 2152
}

2153
/**
2154
 *  ixgbe_negotiate_fc - Negotiate flow control
2155
 *  @hw: pointer to hardware structure
2156 2157 2158 2159 2160 2161
 *  @adv_reg: flow control advertised settings
 *  @lp_reg: link partner's flow control settings
 *  @adv_sym: symmetric pause bit in advertisement
 *  @adv_asm: asymmetric pause bit in advertisement
 *  @lp_sym: symmetric pause bit in link partner advertisement
 *  @lp_asm: asymmetric pause bit in link partner advertisement
2162
 *
2163 2164
 *  Find the intersection between advertised settings and link partner's
 *  advertised settings
2165
 **/
2166 2167
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2168
{
2169 2170
	if ((!(adv_reg)) ||  (!(lp_reg)))
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2171

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
		/*
		 * Now we need to check if the user selected Rx ONLY
		 * of pause frames.  In this case, we had to advertise
		 * FULL flow control because we could not advertise RX
		 * ONLY. Hence, we must now check to see if we need to
		 * turn OFF the TRANSMISSION of PAUSE frames.
		 */
		if (hw->fc.requested_mode == ixgbe_fc_full) {
			hw->fc.current_mode = ixgbe_fc_full;
			hw_dbg(hw, "Flow Control = FULL.\n");
		} else {
			hw->fc.current_mode = ixgbe_fc_rx_pause;
			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
		}
	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_tx_pause;
		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_rx_pause;
		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2195
	} else {
2196 2197
		hw->fc.current_mode = ixgbe_fc_none;
		hw_dbg(hw, "Flow Control = NONE.\n");
2198
	}
2199
	return 0;
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
}

/**
 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according on 1 gig fiber.
 **/
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
{
	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2211
	s32 ret_val;
2212 2213 2214 2215 2216 2217

	/*
	 * On multispeed fiber at 1g, bail out if
	 * - link is up but AN did not complete, or if
	 * - link is up and AN completed but timed out
	 */
2218 2219

	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2220
	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2221
	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2222
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2223

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);

	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE,
			       IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
{
	u32 links2, anlp1_reg, autoc_reg, links;
2245
	s32 ret_val;
2246

2247
	/*
2248 2249 2250
	 * On backplane, bail out if
	 * - backplane autoneg was not completed, or if
	 * - we are 82599 and link partner is not AN enabled
2251
	 */
2252
	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2253
	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2254
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2255

2256 2257
	if (hw->mac.type == ixgbe_mac_82599EB) {
		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2258
		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2259
			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2260
	}
2261
	/*
2262
	 * Read the 10g AN autoc and LP ability registers and resolve
2263 2264
	 * local flow control settings accordingly
	 */
2265 2266
	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
{
	u16 technology_ability_reg = 0;
	u16 lp_technology_ability_reg = 0;

	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
			     MDIO_MMD_AN,
			     &technology_ability_reg);
	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
			     MDIO_MMD_AN,
			     &lp_technology_ability_reg);

	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
				  (u32)lp_technology_ability_reg,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
}

/**
2300
 *  ixgbe_fc_autoneg - Configure flow control
2301 2302
 *  @hw: pointer to hardware structure
 *
2303 2304
 *  Compares our advertised flow control capabilities to those advertised by
 *  our link partner, and determines the proper flow control mode to use.
2305
 **/
2306
void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2307
{
2308 2309 2310
	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
	ixgbe_link_speed speed;
	bool link_up;
2311 2312

	/*
2313 2314 2315 2316 2317 2318 2319
	 * AN should have completed when the cable was plugged in.
	 * Look for reasons to bail out.  Bail out if:
	 * - FC autoneg is disabled, or if
	 * - link is not up.
	 *
	 * Since we're being called from an LSC, link is already known to be up.
	 * So use link_up_wait_to_complete=false.
2320
	 */
2321
	if (hw->fc.disable_fc_autoneg)
2322
		goto out;
2323

2324 2325
	hw->mac.ops.check_link(hw, &speed, &link_up, false);
	if (!link_up)
2326
		goto out;
2327 2328

	switch (hw->phy.media_type) {
2329
	/* Autoneg flow control on fiber adapters */
2330
	case ixgbe_media_type_fiber:
2331 2332 2333 2334 2335
		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
			ret_val = ixgbe_fc_autoneg_fiber(hw);
		break;

	/* Autoneg flow control on backplane adapters */
2336
	case ixgbe_media_type_backplane:
2337
		ret_val = ixgbe_fc_autoneg_backplane(hw);
2338 2339
		break;

2340
	/* Autoneg flow control on copper adapters */
2341
	case ixgbe_media_type_copper:
2342
		if (ixgbe_device_supports_autoneg_fc(hw))
2343
			ret_val = ixgbe_fc_autoneg_copper(hw);
2344 2345 2346
		break;

	default:
2347
		break;
2348
	}
2349

2350
out:
2351 2352 2353 2354 2355 2356
	if (ret_val == 0) {
		hw->fc.fc_was_autonegged = true;
	} else {
		hw->fc.fc_was_autonegged = false;
		hw->fc.current_mode = hw->fc.requested_mode;
	}
2357 2358
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
/**
 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
 * @hw: pointer to hardware structure
 *
 * System-wide timeout range is encoded in PCIe Device Control2 register.
 *
 *  Add 10% to specified maximum and return the number of times to poll for
 *  completion timeout, in units of 100 microsec.  Never return less than
 *  800 = 80 millisec.
 **/
static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
{
	s16 devctl2;
	u32 pollcnt;

2374
	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;

	switch (devctl2) {
	case IXGBE_PCIDEVCTRL2_65_130ms:
		 pollcnt = 1300;         /* 130 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_260_520ms:
		pollcnt = 5200;         /* 520 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_1_2s:
		pollcnt = 20000;        /* 2 sec */
		break;
	case IXGBE_PCIDEVCTRL2_4_8s:
		pollcnt = 80000;        /* 8 sec */
		break;
	case IXGBE_PCIDEVCTRL2_17_34s:
		pollcnt = 34000;        /* 34 sec */
		break;
	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
	default:
		pollcnt = 800;          /* 80 millisec minimum */
		break;
	}

	/* add 10% to spec maximum */
	return (pollcnt * 11) / 10;
}

2406 2407 2408 2409 2410 2411 2412 2413 2414
/**
 *  ixgbe_disable_pcie_master - Disable PCI-express master access
 *  @hw: pointer to hardware structure
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 *  bit hasn't caused the master requests to be disabled, else 0
 *  is returned signifying master requests disabled.
 **/
2415
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2416
{
2417
	u32 i, poll;
2418 2419 2420 2421
	u16 value;

	/* Always set this bit to ensure any future transactions are blocked */
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2422

2423
	/* Exit if master requests are blocked */
2424 2425
	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
	    ixgbe_removed(hw->hw_addr))
2426
		return 0;
2427

2428
	/* Poll for master request bit to clear */
2429
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2430
		udelay(100);
2431
		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2432
			return 0;
2433 2434
	}

2435 2436 2437 2438 2439 2440 2441 2442
	/*
	 * Two consecutive resets are required via CTRL.RST per datasheet
	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
	 * of this need.  The first reset prevents new master requests from
	 * being issued by our device.  We then must wait 1usec or more for any
	 * remaining completions from the PCIe bus to trickle in, and then reset
	 * again to clear out any effects they may have had on our device.
	 */
2443
	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2444
	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2445 2446 2447 2448 2449

	/*
	 * Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
2450 2451
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
2452
		udelay(100);
2453 2454
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
2455
			return 0;
2456
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2457
			return 0;
2458 2459
	}

2460
	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2461
	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2462 2463 2464
}

/**
2465
 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2466
 *  @hw: pointer to hardware structure
2467
 *  @mask: Mask to specify which semaphore to acquire
2468
 *
E
Emil Tantilov 已提交
2469
 *  Acquires the SWFW semaphore through the GSSR register for the specified
2470 2471 2472 2473
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
2474
	u32 gssr = 0;
2475 2476
	u32 swmask = mask;
	u32 fwmask = mask << 5;
2477 2478
	u32 timeout = 200;
	u32 i;
2479

2480
	for (i = 0; i < timeout; i++) {
2481
		/*
2482 2483
		 * SW NVM semaphore bit is used for access to all
		 * SW_FW_SYNC bits (not just NVM)
2484
		 */
2485
		if (ixgbe_get_eeprom_semaphore(hw))
2486
			return IXGBE_ERR_SWFW_SYNC;
2487 2488

		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		if (!(gssr & (fwmask | swmask))) {
			gssr |= swmask;
			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
			ixgbe_release_eeprom_semaphore(hw);
			return 0;
		} else {
			/* Resource is currently in use by FW or SW */
			ixgbe_release_eeprom_semaphore(hw);
			usleep_range(5000, 10000);
		}
2499 2500
	}

2501 2502 2503
	/* If time expired clear the bits holding the lock and retry */
	if (gssr & (fwmask | swmask))
		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2504

2505 2506
	usleep_range(5000, 10000);
	return IXGBE_ERR_SWFW_SYNC;
2507 2508 2509 2510 2511
}

/**
 *  ixgbe_release_swfw_sync - Release SWFW semaphore
 *  @hw: pointer to hardware structure
2512
 *  @mask: Mask to specify which semaphore to release
2513
 *
E
Emil Tantilov 已提交
2514
 *  Releases the SWFW semaphore through the GSSR register for the specified
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
	u32 gssr;
	u32 swmask = mask;

	ixgbe_get_eeprom_semaphore(hw);

	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
	gssr &= ~swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
/**
 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
 * @hw: pointer to hardware structure
 * @reg_val: Value we read from AUTOC
 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
 *	    true in this the generic case.
 *
 * The default case requires no protection so just to the register read.
 **/
s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
{
	*locked = false;
	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	return 0;
}

/**
 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
 * @hw: pointer to hardware structure
 * @reg_val: value to write to AUTOC
 * @locked: bool to indicate whether the SW/FW lock was already taken by
 *	    previous read.
 **/
s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
{
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
	return 0;
}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
/**
 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Stops the receive data path and waits for the HW to internally
 *  empty the Rx security block.
 **/
s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
{
#define IXGBE_MAX_SECRX_POLL 40
	int i;
	int secrxreg;

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
			break;
		else
			/* Use interrupt-safe sleep just in case */
2582
			udelay(1000);
2583 2584 2585 2586
	}

	/* For informational purposes only */
	if (i >= IXGBE_MAX_SECRX_POLL)
2587
		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	return 0;

}

/**
 *  ixgbe_enable_rx_buff - Enables the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Enables the receive data path
 **/
s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
{
	int secrxreg;

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
/**
 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit
 **/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);

	return 0;
}
2624 2625 2626 2627 2628 2629 2630 2631 2632

/**
 *  ixgbe_blink_led_start_generic - Blink LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to blink
 **/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
	ixgbe_link_speed speed = 0;
2633
	bool link_up = false;
2634 2635
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2636
	bool locked = false;
2637
	s32 ret_val;
2638 2639 2640 2641 2642 2643 2644 2645

	/*
	 * Link must be up to auto-blink the LEDs;
	 * Force it if link is down.
	 */
	hw->mac.ops.check_link(hw, &speed, &link_up, false);

	if (!link_up) {
2646
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2647
		if (ret_val)
2648
			return ret_val;
2649

2650
		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2651
		autoc_reg |= IXGBE_AUTOC_FLU;
2652 2653

		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2654
		if (ret_val)
2655
			return ret_val;
2656

2657
		IXGBE_WRITE_FLUSH(hw);
2658

2659
		usleep_range(10000, 20000);
2660 2661 2662 2663 2664 2665 2666
	}

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_BLINK(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2667
	return 0;
2668 2669 2670 2671 2672 2673 2674 2675 2676
}

/**
 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to stop blinking
 **/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
2677
	u32 autoc_reg = 0;
2678
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2679
	bool locked = false;
2680
	s32 ret_val;
2681

2682
	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2683
	if (ret_val)
2684
		return ret_val;
2685 2686 2687 2688

	autoc_reg &= ~IXGBE_AUTOC_FLU;
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;

2689
	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2690
	if (ret_val)
2691
		return ret_val;
2692

2693 2694 2695 2696 2697 2698
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg &= ~IXGBE_LED_BLINK(index);
	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2699
	return 0;
2700
}
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711

/**
 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_offset: SAN MAC address offset
 *
 *  This function will read the EEPROM location for the SAN MAC address
 *  pointer, and returns the value at that location.  This is used in both
 *  get and set mac_addr routines.
 **/
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2712
					u16 *san_mac_offset)
2713
{
2714 2715
	s32 ret_val;

2716 2717 2718 2719
	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.
	 */
2720 2721 2722 2723 2724
	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
				      san_mac_offset);
	if (ret_val)
		hw_err(hw, "eeprom read at offset %d failed\n",
		       IXGBE_SAN_MAC_ADDR_PTR);
2725

2726
	return ret_val;
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
}

/**
 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_addr: SAN MAC address
 *
 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
 *  per-port, so set_lan_id() must be called before reading the addresses.
 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
 *  upon for non-SFP connections, so we must call it here.
 **/
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
	u16 san_mac_data, san_mac_offset;
	u8 i;
2743
	s32 ret_val;
2744 2745 2746 2747 2748

	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.  If they're not, no point in calling set_lan_id() here.
	 */
2749 2750
	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2751

2752
		goto san_mac_addr_clr;
2753 2754 2755 2756 2757

	/* make sure we know which port we need to program */
	hw->mac.ops.set_lan_id(hw);
	/* apply the port offset to the address offset */
	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2758
			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2759
	for (i = 0; i < 3; i++) {
2760 2761 2762 2763 2764 2765 2766
		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
					      &san_mac_data);
		if (ret_val) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       san_mac_offset);
			goto san_mac_addr_clr;
		}
2767 2768 2769 2770 2771
		san_mac_addr[i * 2] = (u8)(san_mac_data);
		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
		san_mac_offset++;
	}
	return 0;
2772 2773 2774 2775 2776 2777 2778 2779

san_mac_addr_clr:
	/* No addresses available in this EEPROM.  It's not necessarily an
	 * error though, so just wipe the local address and return.
	 */
	for (i = 0; i < 6; i++)
		san_mac_addr[i] = 0xFF;
	return ret_val;
2780 2781 2782 2783 2784 2785 2786 2787 2788
}

/**
 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
 *  @hw: pointer to hardware structure
 *
 *  Read PCIe configuration space, and get the MSI-X vector count from
 *  the capabilities table.
 **/
2789
u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2790
{
2791
	u16 msix_count;
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	u16 max_msix_count;
	u16 pcie_offset;

	switch (hw->mac.type) {
	case ixgbe_mac_82598EB:
		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
		break;
	case ixgbe_mac_82599EB:
	case ixgbe_mac_X540:
2802 2803
	case ixgbe_mac_X550:
	case ixgbe_mac_X550EM_x:
2804 2805 2806 2807
		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
		break;
	default:
2808
		return 1;
2809 2810
	}

2811 2812 2813
	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
	if (ixgbe_removed(hw->hw_addr))
		msix_count = 0;
2814 2815
	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;

2816
	/* MSI-X count is zero-based in HW */
2817 2818
	msix_count++;

2819 2820 2821
	if (msix_count > max_msix_count)
		msix_count = max_msix_count;

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	return msix_count;
}

/**
 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to disassociate
 *  @vmdq: VMDq pool index to remove from the rar
 **/
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar_lo, mpsar_hi;
	u32 rar_entries = hw->mac.num_rar_entries;

2836 2837 2838 2839 2840
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
2841

2842 2843
	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2844

2845
	if (ixgbe_removed(hw->hw_addr))
2846
		return 0;
2847

2848
	if (!mpsar_lo && !mpsar_hi)
2849
		return 0;
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
		if (mpsar_lo) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
			mpsar_lo = 0;
		}
		if (mpsar_hi) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
			mpsar_hi = 0;
		}
	} else if (vmdq < 32) {
		mpsar_lo &= ~(1 << vmdq);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2863
	} else {
2864 2865
		mpsar_hi &= ~(1 << (vmdq - 32));
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2866 2867
	}

2868 2869 2870
	/* was that the last pool using this rar? */
	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
		hw->mac.ops.clear_rar(hw, rar);
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	return 0;
}

/**
 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to associate with a VMDq index
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar;
	u32 rar_entries = hw->mac.num_rar_entries;

2885 2886
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
2887
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

	if (vmdq < 32) {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
		mpsar |= 1 << vmdq;
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
	} else {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
		mpsar |= 1 << (vmdq - 32);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2899 2900 2901 2902
	}
	return 0;
}

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/**
 *  This function should only be involved in the IOV mode.
 *  In IOV mode, Default pool is next pool after the number of
 *  VFs advertized and not 0.
 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
 *
 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
{
	u32 rar = hw->mac.san_mac_rar_index;

	if (vmdq < 32) {
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
	} else {
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
	}

	return 0;
}

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
/**
 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
{
	int i;

	for (i = 0; i < 128; i++)
		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);

	return 0;
}

/**
 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *
 *  return the VLVF index where this VLAN id should be placed
 *
 **/
E
Emil Tantilov 已提交
2950
static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
{
	u32 bits = 0;
	u32 first_empty_slot = 0;
	s32 regindex;

	/* short cut the special case */
	if (vlan == 0)
		return 0;

	/*
	  * Search for the vlan id in the VLVF entries. Save off the first empty
	  * slot found along the way
	  */
	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
		if (!bits && !(first_empty_slot))
			first_empty_slot = regindex;
		else if ((bits & 0x0FFF) == vlan)
			break;
	}

	/*
	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
	  * in the VLVF. Else use the first empty VLVF register for this
	  * vlan id.
	  */
	if (regindex >= IXGBE_VLVF_ENTRIES) {
		if (first_empty_slot)
			regindex = first_empty_slot;
		else {
			hw_dbg(hw, "No space in VLVF.\n");
			regindex = IXGBE_ERR_NO_SPACE;
		}
	}

	return regindex;
}

/**
 *  ixgbe_set_vfta_generic - Set VLAN filter table
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
 *
 *  Turn on/off specified VLAN in the VLAN filter table.
 **/
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2999
			   bool vlan_on)
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
{
	s32 regindex;
	u32 bitindex;
	u32 vfta;
	u32 bits;
	u32 vt;
	u32 targetbit;
	bool vfta_changed = false;

	if (vlan > 4095)
		return IXGBE_ERR_PARAM;

	/*
	 * this is a 2 part operation - first the VFTA, then the
	 * VLVF and VLVFB if VT Mode is set
	 * We don't write the VFTA until we know the VLVF part succeeded.
	 */

	/* Part 1
	 * The VFTA is a bitstring made up of 128 32-bit registers
	 * that enable the particular VLAN id, much like the MTA:
	 *    bits[11-5]: which register
	 *    bits[4-0]:  which bit in the register
	 */
	regindex = (vlan >> 5) & 0x7F;
	bitindex = vlan & 0x1F;
	targetbit = (1 << bitindex);
	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));

	if (vlan_on) {
		if (!(vfta & targetbit)) {
			vfta |= targetbit;
			vfta_changed = true;
		}
	} else {
		if ((vfta & targetbit)) {
			vfta &= ~targetbit;
			vfta_changed = true;
		}
	}

	/* Part 2
	 * If VT Mode is set
	 *   Either vlan_on
	 *     make sure the vlan is in VLVF
	 *     set the vind bit in the matching VLVFB
	 *   Or !vlan_on
	 *     clear the pool bit and possibly the vind
	 */
	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
		s32 vlvf_index;

		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
		if (vlvf_index < 0)
			return vlvf_index;

		if (vlan_on) {
			/* set the pool bit */
			if (vind < 32) {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB(vlvf_index*2));
				bits |= (1 << vind);
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB(vlvf_index*2),
						bits);
			} else {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1));
				bits |= (1 << (vind-32));
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1),
						bits);
			}
		} else {
			/* clear the pool bit */
			if (vind < 32) {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB(vlvf_index*2));
				bits &= ~(1 << vind);
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB(vlvf_index*2),
						bits);
				bits |= IXGBE_READ_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1));
			} else {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1));
				bits &= ~(1 << (vind-32));
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1),
						bits);
				bits |= IXGBE_READ_REG(hw,
						IXGBE_VLVFB(vlvf_index*2));
			}
		}

		/*
		 * If there are still bits set in the VLVFB registers
		 * for the VLAN ID indicated we need to see if the
		 * caller is requesting that we clear the VFTA entry bit.
		 * If the caller has requested that we clear the VFTA
		 * entry bit but there are still pools/VFs using this VLAN
		 * ID entry then ignore the request.  We're not worried
		 * about the case where we're turning the VFTA VLAN ID
		 * entry bit on, only when requested to turn it off as
		 * there may be multiple pools and/or VFs using the
		 * VLAN ID entry.  In that case we cannot clear the
		 * VFTA bit until all pools/VFs using that VLAN ID have also
		 * been cleared.  This will be indicated by "bits" being
		 * zero.
		 */
		if (bits) {
			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
					(IXGBE_VLVF_VIEN | vlan));
			if (!vlan_on) {
				/* someone wants to clear the vfta entry
				 * but some pools/VFs are still using it.
				 * Ignore it. */
				vfta_changed = false;
			}
3121
		} else {
3122
			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3123
		}
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	}

	if (vfta_changed)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);

	return 0;
}

/**
 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to hardware structure
 *
 *  Clears the VLAN filer table, and the VMDq index associated with the filter
 **/
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < hw->mac.vft_size; offset++)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);

	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
	}

	return 0;
}

/**
 *  ixgbe_check_mac_link_generic - Determine link and speed status
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @link_up: true when link is up
 *  @link_up_wait_to_complete: bool used to wait for link up or not
 *
 *  Reads the links register to determine if link is up and the current speed
 **/
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3164
				 bool *link_up, bool link_up_wait_to_complete)
3165
{
3166
	u32 links_reg, links_orig;
3167 3168
	u32 i;

3169 3170 3171
	/* clear the old state */
	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);

3172
	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3173 3174 3175 3176 3177 3178

	if (links_orig != links_reg) {
		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
		       links_orig, links_reg);
	}

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
	if (link_up_wait_to_complete) {
		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
			if (links_reg & IXGBE_LINKS_UP) {
				*link_up = true;
				break;
			} else {
				*link_up = false;
			}
			msleep(100);
			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
		}
	} else {
		if (links_reg & IXGBE_LINKS_UP)
			*link_up = true;
		else
			*link_up = false;
	}

3197 3198 3199 3200 3201 3202 3203 3204 3205
	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
	case IXGBE_LINKS_SPEED_10G_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_10GB_FULL;
		break;
	case IXGBE_LINKS_SPEED_1G_82599:
3206
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3207 3208 3209 3210 3211 3212 3213 3214 3215
		break;
	case IXGBE_LINKS_SPEED_100_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_100_FULL;
		break;
	default:
3216
		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3217
	}
3218 3219 3220

	return 0;
}
3221 3222

/**
3223
 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3224 3225 3226 3227 3228 3229 3230 3231 3232
 *  the EEPROM
 *  @hw: pointer to hardware structure
 *  @wwnn_prefix: the alternative WWNN prefix
 *  @wwpn_prefix: the alternative WWPN prefix
 *
 *  This function will read the EEPROM from the alternative SAN MAC address
 *  block to check the support for the alternative WWNN/WWPN prefix support.
 **/
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3233
					u16 *wwpn_prefix)
3234 3235 3236 3237 3238 3239 3240 3241 3242
{
	u16 offset, caps;
	u16 alt_san_mac_blk_offset;

	/* clear output first */
	*wwnn_prefix = 0xFFFF;
	*wwpn_prefix = 0xFFFF;

	/* check if alternative SAN MAC is supported */
3243 3244 3245
	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
		goto wwn_prefix_err;
3246 3247 3248

	if ((alt_san_mac_blk_offset == 0) ||
	    (alt_san_mac_blk_offset == 0xFFFF))
3249
		return 0;
3250 3251 3252

	/* check capability in alternative san mac address block */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3253 3254
	if (hw->eeprom.ops.read(hw, offset, &caps))
		goto wwn_prefix_err;
3255
	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3256
		return 0;
3257 3258 3259

	/* get the corresponding prefix for WWNN/WWPN */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3260 3261
	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3262 3263

	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3264 3265
	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
		goto wwn_prefix_err;
3266 3267

	return 0;
3268 3269 3270 3271

wwn_prefix_err:
	hw_err(hw, "eeprom read at offset %d failed\n", offset);
	return 0;
3272
}
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

/**
 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for anti-spoofing
 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
 *
 **/
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
{
	int j;
	int pf_target_reg = pf >> 3;
	int pf_target_shift = pf % 8;
	u32 pfvfspoof = 0;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	if (enable)
		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;

	/*
	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
	 * MAC anti-spoof enables in each register array element.
	 */
3298
	for (j = 0; j < pf_target_reg; j++)
3299 3300 3301 3302
		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);

	/*
	 * The PF should be allowed to spoof so that it can support
3303 3304 3305 3306 3307 3308 3309 3310
	 * emulation mode NICs.  Do not set the bits assigned to the PF
	 */
	pfvfspoof &= (1 << pf_target_shift) - 1;
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);

	/*
	 * Remaining pools belong to the PF so they do not need to have
	 * anti-spoofing enabled.
3311
	 */
3312 3313
	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
}

/**
 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for VLAN anti-spoofing
 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
 *
 **/
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
{
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
	u32 pfvfspoof;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
	if (enable)
		pfvfspoof |= (1 << vf_target_shift);
	else
		pfvfspoof &= ~(1 << vf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
}
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353

/**
 *  ixgbe_get_device_caps_generic - Get additional device capabilities
 *  @hw: pointer to hardware structure
 *  @device_caps: the EEPROM word with the extra device capabilities
 *
 *  This function will read the EEPROM location for the device capabilities,
 *  and return the word through device_caps.
 **/
s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
{
	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);

	return 0;
}
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419

/**
 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
 * @hw: pointer to hardware structure
 * @num_pb: number of packet buffers to allocate
 * @headroom: reserve n KB of headroom
 * @strategy: packet buffer allocation strategy
 **/
void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
			     int num_pb,
			     u32 headroom,
			     int strategy)
{
	u32 pbsize = hw->mac.rx_pb_size;
	int i = 0;
	u32 rxpktsize, txpktsize, txpbthresh;

	/* Reserve headroom */
	pbsize -= headroom;

	if (!num_pb)
		num_pb = 1;

	/* Divide remaining packet buffer space amongst the number
	 * of packet buffers requested using supplied strategy.
	 */
	switch (strategy) {
	case (PBA_STRATEGY_WEIGHTED):
		/* pba_80_48 strategy weight first half of packet buffer with
		 * 5/8 of the packet buffer space.
		 */
		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
		pbsize -= rxpktsize * (num_pb / 2);
		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
		for (; i < (num_pb / 2); i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		/* Fall through to configure remaining packet buffers */
	case (PBA_STRATEGY_EQUAL):
		/* Divide the remaining Rx packet buffer evenly among the TCs */
		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
		for (; i < num_pb; i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		break;
	default:
		break;
	}

	/*
	 * Setup Tx packet buffer and threshold equally for all TCs
	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
	 * 10 since the largest packet we support is just over 9K.
	 */
	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
	for (i = 0; i < num_pb; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
	}

	/* Clear unused TCs, if any, to zero buffer size*/
	for (; i < IXGBE_MAX_PB; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
	}
}
E
Emil Tantilov 已提交
3420 3421 3422 3423 3424

/**
 *  ixgbe_calculate_checksum - Calculate checksum for buffer
 *  @buffer: pointer to EEPROM
 *  @length: size of EEPROM to calculate a checksum for
3425
 *
E
Emil Tantilov 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
 *  Calculates the checksum for some buffer on a specified length.  The
 *  checksum calculated is returned.
 **/
static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
{
	u32 i;
	u8 sum = 0;

	if (!buffer)
		return 0;

	for (i = 0; i < length; i++)
		sum += buffer[i];

	return (u8) (0 - sum);
}

/**
 *  ixgbe_host_interface_command - Issue command to manageability block
 *  @hw: pointer to the HW structure
 *  @buffer: contains the command to write and where the return status will
 *           be placed
D
Don Skidmore 已提交
3448
 *  @length: length of buffer, must be multiple of 4 bytes
E
Emil Tantilov 已提交
3449 3450 3451 3452
 *
 *  Communicates with the manageability block.  On success return 0
 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
 **/
3453
static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
E
Emil Tantilov 已提交
3454 3455
					u32 length)
{
3456
	u32 hicr, i, bi;
E
Emil Tantilov 已提交
3457 3458 3459 3460 3461 3462
	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
	u8 buf_len, dword_len;

	if (length == 0 || length & 0x3 ||
	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
		hw_dbg(hw, "Buffer length failure.\n");
3463
		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
E
Emil Tantilov 已提交
3464 3465 3466 3467 3468 3469
	}

	/* Check that the host interface is enabled. */
	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
	if ((hicr & IXGBE_HICR_EN) == 0) {
		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3470
		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
E
Emil Tantilov 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	}

	/* Calculate length in DWORDs */
	dword_len = length >> 2;

	/*
	 * The device driver writes the relevant command block
	 * into the ram area.
	 */
	for (i = 0; i < dword_len; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3482
				      i, cpu_to_le32(buffer[i]));
E
Emil Tantilov 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

	/* Setting this bit tells the ARC that a new command is pending. */
	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);

	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
		if (!(hicr & IXGBE_HICR_C))
			break;
		usleep_range(1000, 2000);
	}

	/* Check command successful completion. */
	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
		hw_dbg(hw, "Command has failed with no status valid.\n");
3498
		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
E
Emil Tantilov 已提交
3499 3500 3501 3502 3503 3504
	}

	/* Calculate length in DWORDs */
	dword_len = hdr_size >> 2;

	/* first pull in the header so we know the buffer length */
3505 3506 3507
	for (bi = 0; bi < dword_len; bi++) {
		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&buffer[bi]);
3508
	}
E
Emil Tantilov 已提交
3509 3510 3511 3512

	/* If there is any thing in data position pull it in */
	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
	if (buf_len == 0)
3513
		return 0;
E
Emil Tantilov 已提交
3514 3515 3516

	if (length < (buf_len + hdr_size)) {
		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3517
		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
E
Emil Tantilov 已提交
3518 3519
	}

3520 3521
	/* Calculate length in DWORDs, add 3 for odd lengths */
	dword_len = (buf_len + 3) >> 2;
E
Emil Tantilov 已提交
3522

3523 3524 3525 3526 3527
	/* Pull in the rest of the buffer (bi is where we left off)*/
	for (; bi <= dword_len; bi++) {
		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&buffer[bi]);
	}
E
Emil Tantilov 已提交
3528

3529
	return 0;
E
Emil Tantilov 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
}

/**
 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
 *  @hw: pointer to the HW structure
 *  @maj: driver version major number
 *  @min: driver version minor number
 *  @build: driver version build number
 *  @sub: driver version sub build number
 *
 *  Sends driver version number to firmware through the manageability
 *  block.  On success return 0
 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
 **/
s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
				 u8 build, u8 sub)
{
	struct ixgbe_hic_drv_info fw_cmd;
	int i;
3550
	s32 ret_val;
E
Emil Tantilov 已提交
3551

3552 3553
	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
		return IXGBE_ERR_SWFW_SYNC;
E
Emil Tantilov 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569

	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
	fw_cmd.port_num = (u8)hw->bus.func;
	fw_cmd.ver_maj = maj;
	fw_cmd.ver_min = min;
	fw_cmd.ver_build = build;
	fw_cmd.ver_sub = sub;
	fw_cmd.hdr.checksum = 0;
	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
	fw_cmd.pad = 0;
	fw_cmd.pad2 = 0;

	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3570
		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
E
Emil Tantilov 已提交
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
						       sizeof(fw_cmd));
		if (ret_val != 0)
			continue;

		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
		    FW_CEM_RESP_STATUS_SUCCESS)
			ret_val = 0;
		else
			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;

		break;
	}

	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
	return ret_val;
}
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

/**
 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
 * @hw: pointer to the hardware structure
 *
 * The 82599 and x540 MACs can experience issues if TX work is still pending
 * when a reset occurs.  This function prevents this by flushing the PCIe
 * buffers on the system.
 **/
void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
{
D
Don Skidmore 已提交
3598 3599
	u32 gcr_ext, hlreg0, i, poll;
	u16 value;
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

	/*
	 * If double reset is not requested then all transactions should
	 * already be clear and as such there is no work to do
	 */
	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
		return;

	/*
	 * Set loopback enable to prevent any transmits from being sent
	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
	 * has already been cleared.
	 */
	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);

D
Don Skidmore 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
	/* wait for a last completion before clearing buffers */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(3000, 6000);

	/* Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
		usleep_range(100, 200);
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
			break;
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
			break;
	}

3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
	/* initiate cleaning flow for buffers in the PCIe transaction layer */
	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);

	/* Flush all writes and allow 20usec for all transactions to clear */
	IXGBE_WRITE_FLUSH(hw);
	udelay(20);

	/* restore previous register values */
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
}
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670

static const u8 ixgbe_emc_temp_data[4] = {
	IXGBE_EMC_INTERNAL_DATA,
	IXGBE_EMC_DIODE1_DATA,
	IXGBE_EMC_DIODE2_DATA,
	IXGBE_EMC_DIODE3_DATA
};
static const u8 ixgbe_emc_therm_limit[4] = {
	IXGBE_EMC_INTERNAL_THERM_LIMIT,
	IXGBE_EMC_DIODE1_THERM_LIMIT,
	IXGBE_EMC_DIODE2_THERM_LIMIT,
	IXGBE_EMC_DIODE3_THERM_LIMIT
};

/**
 *  ixgbe_get_ets_data - Extracts the ETS bit data
 *  @hw: pointer to hardware structure
 *  @ets_cfg: extected ETS data
 *  @ets_offset: offset of ETS data
 *
 *  Returns error code.
 **/
static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
			      u16 *ets_offset)
{
3671
	s32 status;
3672 3673 3674

	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
	if (status)
3675
		return status;
3676

3677 3678
	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
		return IXGBE_NOT_IMPLEMENTED;
3679 3680 3681

	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
	if (status)
3682
		return status;
3683

3684 3685
	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
		return IXGBE_NOT_IMPLEMENTED;
3686

3687
	return 0;
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
}

/**
 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
 *  @hw: pointer to hardware structure
 *
 *  Returns the thermal sensor data structure
 **/
s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
{
3698
	s32 status;
3699 3700 3701 3702 3703 3704 3705
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  num_sensors;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

3706
	/* Only support thermal sensors attached to physical port 0 */
3707 3708
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3709 3710 3711

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3712
		return status;
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724

	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
					     &ets_sensor);
		if (status)
3725
			return status;
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737

		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);

		if (sensor_location != 0) {
			status = hw->phy.ops.read_i2c_byte(hw,
					ixgbe_emc_temp_data[sensor_index],
					IXGBE_I2C_THERMAL_SENSOR_ADDR,
					&data->sensor[i].temp);
			if (status)
3738
				return status;
3739 3740
		}
	}
3741 3742

	return 0;
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
}

/**
 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
 * @hw: pointer to hardware structure
 *
 * Inits the thermal sensor thresholds according to the NVM map
 * and save off the threshold and location values into mac.thermal_sensor_data
 **/
s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
{
3754
	s32 status;
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  low_thresh_delta;
	u8  num_sensors;
	u8  therm_limit;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));

3766
	/* Only support thermal sensors attached to physical port 0 */
3767 3768
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3769 3770 3771

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3772
		return status;
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783

	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

3784 3785 3786 3787 3788
		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       ets_offset + 1 + i);
			continue;
		}
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);
		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;

		hw->phy.ops.write_i2c_byte(hw,
			ixgbe_emc_therm_limit[sensor_index],
			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);

		if (sensor_location == 0)
			continue;

		data->sensor[i].location = sensor_location;
		data->sensor[i].caution_thresh = therm_limit;
		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
	}
3806 3807

	return 0;
3808 3809
}