ixgbe_common.c 114.7 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
4
  Copyright(c) 1999 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24 25 26 27 28 29 30 31
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
J
Jiri Pirko 已提交
32
#include <linux/netdevice.h>
33

34
#include "ixgbe.h"
35 36 37
#include "ixgbe_common.h"
#include "ixgbe_phy.h"

38
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 40
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 42 43
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44
					u16 count);
45 46 47 48
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 50

static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 53 54 55 56 57
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset);
58
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59

60 61 62 63 64
/* Base table for registers values that change by MAC */
const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
	IXGBE_MVALS_INIT(8259X)
};

65 66 67 68 69 70 71 72 73
/**
 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 *  control
 *  @hw: pointer to hardware structure
 *
 *  There are several phys that do not support autoneg flow control. This
 *  function check the device id to see if the associated phy supports
 *  autoneg flow control.
 **/
74
bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75
{
76 77 78
	bool supported = false;
	ixgbe_link_speed speed;
	bool link_up;
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	switch (hw->phy.media_type) {
	case ixgbe_media_type_fiber:
		hw->mac.ops.check_link(hw, &speed, &link_up, false);
		/* if link is down, assume supported */
		if (link_up)
			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
				true : false;
		else
			supported = true;
		break;
	case ixgbe_media_type_backplane:
		supported = true;
		break;
	case ixgbe_media_type_copper:
		/* only some copper devices support flow control autoneg */
		switch (hw->device_id) {
		case IXGBE_DEV_ID_82599_T3_LOM:
		case IXGBE_DEV_ID_X540T:
		case IXGBE_DEV_ID_X540T1:
99
		case IXGBE_DEV_ID_X550T:
100
		case IXGBE_DEV_ID_X550T1:
101
		case IXGBE_DEV_ID_X550EM_X_10G_T:
102 103 104 105 106
			supported = true;
			break;
		default:
			break;
		}
107
	default:
108
		break;
109
	}
110 111

	return supported;
112 113 114
}

/**
115
 *  ixgbe_setup_fc_generic - Set up flow control
116 117 118 119
 *  @hw: pointer to hardware structure
 *
 *  Called at init time to set up flow control.
 **/
120
s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
121 122 123 124
{
	s32 ret_val = 0;
	u32 reg = 0, reg_bp = 0;
	u16 reg_cu = 0;
125
	bool locked = false;
126 127 128 129 130 131 132

	/*
	 * Validate the requested mode.  Strict IEEE mode does not allow
	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
	 */
	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
133
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	}

	/*
	 * 10gig parts do not have a word in the EEPROM to determine the
	 * default flow control setting, so we explicitly set it to full.
	 */
	if (hw->fc.requested_mode == ixgbe_fc_default)
		hw->fc.requested_mode = ixgbe_fc_full;

	/*
	 * Set up the 1G and 10G flow control advertisement registers so the
	 * HW will be able to do fc autoneg once the cable is plugged in.  If
	 * we link at 10G, the 1G advertisement is harmless and vice versa.
	 */
	switch (hw->phy.media_type) {
149 150 151
	case ixgbe_media_type_backplane:
		/* some MAC's need RMW protection on AUTOC */
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
152
		if (ret_val)
153
			return ret_val;
154 155

		/* only backplane uses autoc so fall though */
156 157
	case ixgbe_media_type_fiber:
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
158

159 160 161 162 163 164
		break;
	case ixgbe_media_type_copper:
		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
					MDIO_MMD_AN, &reg_cu);
		break;
	default:
165
		break;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	}

	/*
	 * The possible values of fc.requested_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.requested_mode) {
	case ixgbe_fc_none:
		/* Flow control completely disabled by software override. */
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
		if (hw->phy.media_type == ixgbe_media_type_backplane)
			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
				    IXGBE_AUTOC_ASM_PAUSE);
		else if (hw->phy.media_type == ixgbe_media_type_copper)
			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
193 194
		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
195
		if (hw->phy.media_type == ixgbe_media_type_backplane) {
196 197
			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
198
		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
199 200
			reg_cu |= IXGBE_TAF_ASM_PAUSE;
			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
201 202
		}
		break;
203 204 205 206 207 208 209 210 211 212
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE, as such we fall
		 * through to the fc_full statement.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
213 214
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
215
		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
216
		if (hw->phy.media_type == ixgbe_media_type_backplane)
217 218
			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
				  IXGBE_AUTOC_ASM_PAUSE;
219
		else if (hw->phy.media_type == ixgbe_media_type_copper)
220
			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
221 222 223
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
224
		return IXGBE_ERR_CONFIG;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	}

	if (hw->mac.type != ixgbe_mac_X540) {
		/*
		 * Enable auto-negotiation between the MAC & PHY;
		 * the MAC will advertise clause 37 flow control.
		 */
		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);

		/* Disable AN timeout */
		if (hw->fc.strict_ieee)
			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;

		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
	}

	/*
	 * AUTOC restart handles negotiation of 1G and 10G on backplane
	 * and copper. There is no need to set the PCS1GCTL register.
	 *
	 */
	if (hw->phy.media_type == ixgbe_media_type_backplane) {
249 250 251 252
		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
		 * LESM is on, likewise reset_pipeline requries the lock as
		 * it also writes AUTOC.
		 */
253 254
		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
		if (ret_val)
255
			return ret_val;
256

257
	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
258
		   ixgbe_device_supports_autoneg_fc(hw)) {
259 260 261 262 263 264 265 266
		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
				      MDIO_MMD_AN, reg_cu);
	}

	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
	return ret_val;
}

267
/**
268
 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
269 270 271 272 273 274 275
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware by filling the bus info structure and media type, clears
 *  all on chip counters, initializes receive address registers, multicast
 *  table, VLAN filter table, calls routine to set up link and flow control
 *  settings, and leaves transmit and receive units disabled and uninitialized
 **/
276
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
277
{
278
	s32 ret_val;
279
	u32 ctrl_ext;
D
Don Skidmore 已提交
280
	u16 device_caps;
281 282 283 284 285

	/* Set the media type */
	hw->phy.media_type = hw->mac.ops.get_media_type(hw);

	/* Identify the PHY */
286
	hw->phy.ops.identify(hw);
287 288

	/* Clear the VLAN filter table */
289
	hw->mac.ops.clear_vfta(hw);
290 291

	/* Clear statistics registers */
292
	hw->mac.ops.clear_hw_cntrs(hw);
293 294 295 296 297

	/* Set No Snoop Disable */
	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
298
	IXGBE_WRITE_FLUSH(hw);
299

300
	/* Setup flow control */
301
	ret_val = hw->mac.ops.setup_fc(hw);
302 303
	if (ret_val)
		return ret_val;
304

D
Don Skidmore 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	/* Cashe bit indicating need for crosstalk fix */
	switch (hw->mac.type) {
	case ixgbe_mac_82599EB:
	case ixgbe_mac_X550EM_x:
	case ixgbe_mac_x550em_a:
		hw->mac.ops.get_device_caps(hw, &device_caps);
		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
			hw->need_crosstalk_fix = false;
		else
			hw->need_crosstalk_fix = true;
		break;
	default:
		hw->need_crosstalk_fix = false;
		break;
	}

321 322 323
	/* Clear adapter stopped flag */
	hw->adapter_stopped = false;

324
	return 0;
325 326
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/**
 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 *  @hw: pointer to hw structure
 *
 * Performs the init sequence common to the second generation
 * of 10 GbE devices.
 * Devices in the second generation:
 *     82599
 *     X540
 **/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
	u32 i;

	/* Clear the rate limiters */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
	}
	IXGBE_WRITE_FLUSH(hw);

348
#ifndef CONFIG_SPARC
349 350
	/* Disable relaxed ordering */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
351 352
		u32 regval;

353
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
354
		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
355 356 357 358
		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
	}

	for (i = 0; i < hw->mac.max_rx_queues; i++) {
359 360
		u32 regval;

361
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
362 363
		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
364 365
		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
	}
366
#endif
367 368 369
	return 0;
}

370
/**
371
 *  ixgbe_init_hw_generic - Generic hardware initialization
372 373
 *  @hw: pointer to hardware structure
 *
374
 *  Initialize the hardware by resetting the hardware, filling the bus info
375 376 377 378 379
 *  structure and media type, clears all on chip counters, initializes receive
 *  address registers, multicast table, VLAN filter table, calls routine to set
 *  up link and flow control settings, and leaves transmit and receive units
 *  disabled and uninitialized
 **/
380
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
381
{
382 383
	s32 status;

384
	/* Reset the hardware */
385
	status = hw->mac.ops.reset_hw(hw);
386

387 388 389 390
	if (status == 0) {
		/* Start the HW */
		status = hw->mac.ops.start_hw(hw);
	}
391

392
	return status;
393 394 395
}

/**
396
 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
397 398 399 400 401
 *  @hw: pointer to hardware structure
 *
 *  Clears all hardware statistics counters by reading them from the hardware
 *  Statistics counters are clear on read.
 **/
402
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
{
	u16 i = 0;

	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
	IXGBE_READ_REG(hw, IXGBE_ERRBC);
	IXGBE_READ_REG(hw, IXGBE_MSPDC);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_MPC(i));

	IXGBE_READ_REG(hw, IXGBE_MLFC);
	IXGBE_READ_REG(hw, IXGBE_MRFC);
	IXGBE_READ_REG(hw, IXGBE_RLEC);
	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
418 419 420 421 422 423 424
	if (hw->mac.type >= ixgbe_mac_82599EB) {
		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
	} else {
		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
	}
425 426 427 428

	for (i = 0; i < 8; i++) {
		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
429 430 431 432 433 434 435
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
		}
436
	}
437 438 439
	if (hw->mac.type >= ixgbe_mac_82599EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
440 441 442 443 444 445 446 447 448 449 450 451 452 453
	IXGBE_READ_REG(hw, IXGBE_PRC64);
	IXGBE_READ_REG(hw, IXGBE_PRC127);
	IXGBE_READ_REG(hw, IXGBE_PRC255);
	IXGBE_READ_REG(hw, IXGBE_PRC511);
	IXGBE_READ_REG(hw, IXGBE_PRC1023);
	IXGBE_READ_REG(hw, IXGBE_PRC1522);
	IXGBE_READ_REG(hw, IXGBE_GPRC);
	IXGBE_READ_REG(hw, IXGBE_BPRC);
	IXGBE_READ_REG(hw, IXGBE_MPRC);
	IXGBE_READ_REG(hw, IXGBE_GPTC);
	IXGBE_READ_REG(hw, IXGBE_GORCL);
	IXGBE_READ_REG(hw, IXGBE_GORCH);
	IXGBE_READ_REG(hw, IXGBE_GOTCL);
	IXGBE_READ_REG(hw, IXGBE_GOTCH);
E
Emil Tantilov 已提交
454 455 456
	if (hw->mac.type == ixgbe_mac_82598EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	IXGBE_READ_REG(hw, IXGBE_RUC);
	IXGBE_READ_REG(hw, IXGBE_RFC);
	IXGBE_READ_REG(hw, IXGBE_ROC);
	IXGBE_READ_REG(hw, IXGBE_RJC);
	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
	IXGBE_READ_REG(hw, IXGBE_TORL);
	IXGBE_READ_REG(hw, IXGBE_TORH);
	IXGBE_READ_REG(hw, IXGBE_TPR);
	IXGBE_READ_REG(hw, IXGBE_TPT);
	IXGBE_READ_REG(hw, IXGBE_PTC64);
	IXGBE_READ_REG(hw, IXGBE_PTC127);
	IXGBE_READ_REG(hw, IXGBE_PTC255);
	IXGBE_READ_REG(hw, IXGBE_PTC511);
	IXGBE_READ_REG(hw, IXGBE_PTC1023);
	IXGBE_READ_REG(hw, IXGBE_PTC1522);
	IXGBE_READ_REG(hw, IXGBE_MPTC);
	IXGBE_READ_REG(hw, IXGBE_BPTC);
	for (i = 0; i < 16; i++) {
		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
479 480 481 482 483 484 485 486 487 488
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
		}
489 490
	}

491
	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
492 493
		if (hw->phy.id == 0)
			hw->phy.ops.identify(hw);
494 495 496 497
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
498 499
	}

500 501 502 503
	return 0;
}

/**
504
 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
505
 *  @hw: pointer to hardware structure
506 507
 *  @pba_num: stores the part number string from the EEPROM
 *  @pba_num_size: part number string buffer length
508
 *
509
 *  Reads the part number string from the EEPROM.
510
 **/
511
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
512
				  u32 pba_num_size)
513 514 515
{
	s32 ret_val;
	u16 data;
516 517 518 519 520 521 522 523
	u16 pba_ptr;
	u16 offset;
	u16 length;

	if (pba_num == NULL) {
		hw_dbg(hw, "PBA string buffer was null\n");
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
524 525 526 527 528 529 530

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

531
	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
532 533 534 535
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

	/*
	 * if data is not ptr guard the PBA must be in legacy format which
	 * means pba_ptr is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (data != IXGBE_PBANUM_PTR_GUARD) {
		hw_dbg(hw, "NVM PBA number is not stored as string\n");

		/* we will need 11 characters to store the PBA */
		if (pba_num_size < 11) {
			hw_dbg(hw, "PBA string buffer too small\n");
			return IXGBE_ERR_NO_SPACE;
		}

		/* extract hex string from data and pba_ptr */
		pba_num[0] = (data >> 12) & 0xF;
		pba_num[1] = (data >> 8) & 0xF;
		pba_num[2] = (data >> 4) & 0xF;
		pba_num[3] = data & 0xF;
		pba_num[4] = (pba_ptr >> 12) & 0xF;
		pba_num[5] = (pba_ptr >> 8) & 0xF;
		pba_num[6] = '-';
		pba_num[7] = 0;
		pba_num[8] = (pba_ptr >> 4) & 0xF;
		pba_num[9] = pba_ptr & 0xF;

		/* put a null character on the end of our string */
		pba_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (pba_num[offset] < 0xA)
				pba_num[offset] += '0';
			else if (pba_num[offset] < 0x10)
				pba_num[offset] += 'A' - 0xA;
		}

		return 0;
	}

	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	if (length == 0xFFFF || length == 0) {
		hw_dbg(hw, "NVM PBA number section invalid length\n");
		return IXGBE_ERR_PBA_SECTION;
	}

	/* check if pba_num buffer is big enough */
	if (pba_num_size  < (((u32)length * 2) - 1)) {
		hw_dbg(hw, "PBA string buffer too small\n");
		return IXGBE_ERR_NO_SPACE;
	}

	/* trim pba length from start of string */
	pba_ptr++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
		if (ret_val) {
			hw_dbg(hw, "NVM Read Error\n");
			return ret_val;
		}
		pba_num[offset * 2] = (u8)(data >> 8);
		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
	}
	pba_num[offset * 2] = '\0';
608 609 610 611 612 613

	return 0;
}

/**
 *  ixgbe_get_mac_addr_generic - Generic get MAC address
614 615 616 617 618 619 620
 *  @hw: pointer to hardware structure
 *  @mac_addr: Adapter MAC address
 *
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 *  A reset of the adapter must be performed prior to calling this function
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 **/
621
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));

	for (i = 0; i < 4; i++)
		mac_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < 2; i++)
		mac_addr[i+4] = (u8)(rar_high >> (i*8));

	return 0;
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
	case IXGBE_PCI_LINK_WIDTH_1:
		return ixgbe_bus_width_pcie_x1;
	case IXGBE_PCI_LINK_WIDTH_2:
		return ixgbe_bus_width_pcie_x2;
	case IXGBE_PCI_LINK_WIDTH_4:
		return ixgbe_bus_width_pcie_x4;
	case IXGBE_PCI_LINK_WIDTH_8:
		return ixgbe_bus_width_pcie_x8;
	default:
		return ixgbe_bus_width_unknown;
	}
}

enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_SPEED) {
	case IXGBE_PCI_LINK_SPEED_2500:
		return ixgbe_bus_speed_2500;
	case IXGBE_PCI_LINK_SPEED_5000:
		return ixgbe_bus_speed_5000;
	case IXGBE_PCI_LINK_SPEED_8000:
		return ixgbe_bus_speed_8000;
	default:
		return ixgbe_bus_speed_unknown;
	}
}

669 670 671 672 673 674 675 676 677 678 679 680 681
/**
 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 *  @hw: pointer to hardware structure
 *
 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 **/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
	u16 link_status;

	hw->bus.type = ixgbe_bus_type_pci_express;

	/* Get the negotiated link width and speed from PCI config space */
682
	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
683

684 685
	hw->bus.width = ixgbe_convert_bus_width(link_status);
	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
686

687
	hw->mac.ops.set_lan_id(hw);
688 689 690 691 692 693 694 695 696 697 698 699 700 701

	return 0;
}

/**
 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
	struct ixgbe_bus_info *bus = &hw->bus;
M
Mark Rustad 已提交
702
	u16 ee_ctrl_4;
703 704 705 706 707 708 709
	u32 reg;

	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
	bus->lan_id = bus->func;

	/* check for a port swap */
710
	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
711 712
	if (reg & IXGBE_FACTPS_LFS)
		bus->func ^= 0x1;
M
Mark Rustad 已提交
713 714 715 716 717 718 719

	/* Get MAC instance from EEPROM for configuring CS4227 */
	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
	}
720 721
}

722
/**
723
 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
724 725 726 727 728 729 730
 *  @hw: pointer to hardware structure
 *
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 *  disables transmit and receive units. The adapter_stopped flag is used by
 *  the shared code and drivers to determine if the adapter is in a stopped
 *  state and should not touch the hardware.
 **/
731
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
732 733 734 735 736 737 738 739 740 741 742
{
	u32 reg_val;
	u16 i;

	/*
	 * Set the adapter_stopped flag so other driver functions stop touching
	 * the hardware
	 */
	hw->adapter_stopped = true;

	/* Disable the receive unit */
743
	hw->mac.ops.disable_rx(hw);
744

745
	/* Clear interrupt mask to stop interrupts from being generated */
746 747
	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);

748
	/* Clear any pending interrupts, flush previous writes */
749 750 751
	IXGBE_READ_REG(hw, IXGBE_EICR);

	/* Disable the transmit unit.  Each queue must be disabled. */
752 753 754 755 756 757 758 759 760
	for (i = 0; i < hw->mac.max_tx_queues; i++)
		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);

	/* Disable the receive unit by stopping each queue */
	for (i = 0; i < hw->mac.max_rx_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
		reg_val &= ~IXGBE_RXDCTL_ENABLE;
		reg_val |= IXGBE_RXDCTL_SWFLSH;
		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
761 762
	}

763 764 765 766
	/* flush all queues disables */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(1000, 2000);

767 768 769 770
	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests
	 */
771
	return ixgbe_disable_pcie_master(hw);
772 773 774
}

/**
775
 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
776 777 778
 *  @hw: pointer to hardware structure
 *  @index: led number to turn on
 **/
779
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
780 781 782
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

783 784 785
	if (index > 3)
		return IXGBE_ERR_PARAM;

786 787 788 789
	/* To turn on the LED, set mode to ON. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
790
	IXGBE_WRITE_FLUSH(hw);
791 792 793 794 795

	return 0;
}

/**
796
 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
797 798 799
 *  @hw: pointer to hardware structure
 *  @index: led number to turn off
 **/
800
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
801 802 803
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

804 805 806
	if (index > 3)
		return IXGBE_ERR_PARAM;

807 808 809 810
	/* To turn off the LED, set mode to OFF. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
811
	IXGBE_WRITE_FLUSH(hw);
812 813 814 815 816

	return 0;
}

/**
817
 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
818 819 820 821 822
 *  @hw: pointer to hardware structure
 *
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 *  ixgbe_hw struct in order to set up EEPROM access.
 **/
823
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
824 825 826 827 828 829 830
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
	u32 eec;
	u16 eeprom_size;

	if (eeprom->type == ixgbe_eeprom_uninitialized) {
		eeprom->type = ixgbe_eeprom_none;
831 832 833
		/* Set default semaphore delay to 10ms which is a well
		 * tested value */
		eeprom->semaphore_delay = 10;
834 835
		/* Clear EEPROM page size, it will be initialized as needed */
		eeprom->word_page_size = 0;
836 837 838 839 840

		/*
		 * Check for EEPROM present first.
		 * If not present leave as none
		 */
841
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
842 843 844 845 846 847 848 849 850
		if (eec & IXGBE_EEC_PRES) {
			eeprom->type = ixgbe_eeprom_spi;

			/*
			 * SPI EEPROM is assumed here.  This code would need to
			 * change if a future EEPROM is not SPI.
			 */
			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
					    IXGBE_EEC_SIZE_SHIFT);
J
Jacob Keller 已提交
851 852
			eeprom->word_size = BIT(eeprom_size +
						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
853 854 855 856 857 858
		}

		if (eec & IXGBE_EEC_ADDR_SIZE)
			eeprom->address_bits = 16;
		else
			eeprom->address_bits = 8;
859 860
		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
		       eeprom->type, eeprom->word_size, eeprom->address_bits);
861 862 863 864 865
	}

	return 0;
}

866
/**
867
 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
868
 *  @hw: pointer to hardware structure
869 870 871
 *  @offset: offset within the EEPROM to write
 *  @words: number of words
 *  @data: 16 bit word(s) to write to EEPROM
872
 *
873
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
874
 **/
875 876
s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					       u16 words, u16 *data)
877
{
878
	s32 status;
879
	u16 i, count;
880 881 882

	hw->eeprom.ops.init_params(hw);

883 884
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
885

886 887
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	/*
	 * The EEPROM page size cannot be queried from the chip. We do lazy
	 * initialization. It is worth to do that when we write large buffer.
	 */
	if ((hw->eeprom.word_page_size == 0) &&
	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
		ixgbe_detect_eeprom_page_size_generic(hw, offset);

	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
							    count, &data[i]);

		if (status != 0)
			break;
	}

	return status;
}

/**
 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of word(s)
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
{
	s32 status;
	u16 word;
	u16 page_size;
	u16 i;
	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;

934 935
	/* Prepare the EEPROM for writing  */
	status = ixgbe_acquire_eeprom(hw);
936 937
	if (status)
		return status;
938

939 940 941
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
942 943
	}

944 945 946 947 948 949 950
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);

		/* Send the WRITE ENABLE command (8 bit opcode) */
		ixgbe_shift_out_eeprom_bits(hw,
					    IXGBE_EEPROM_WREN_OPCODE_SPI,
					    IXGBE_EEPROM_OPCODE_BITS);
951

952
		ixgbe_standby_eeprom(hw);
953

954 955 956 957 958 959
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
		/* Send the Write command (8-bit opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		page_size = hw->eeprom.word_page_size;

		/* Send the data in burst via SPI */
		do {
			word = data[i];
			word = (word >> 8) | (word << 8);
			ixgbe_shift_out_eeprom_bits(hw, word, 16);

			if (page_size == 0)
				break;

			/* do not wrap around page */
			if (((offset + i) & (page_size - 1)) ==
			    (page_size - 1))
				break;
		} while (++i < words);

		ixgbe_standby_eeprom(hw);
		usleep_range(10000, 20000);
986
	}
987 988
	/* Done with writing - release the EEPROM */
	ixgbe_release_eeprom(hw);
989

990
	return 0;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
}

/**
 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @data: 16 bit word to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	hw->eeprom.ops.init_params(hw);
1005

1006 1007
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1008

1009
	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1010 1011
}

1012
/**
1013
 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1014 1015
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
1016 1017
 *  @words: number of word(s)
 *  @data: read 16 bit words(s) from EEPROM
1018
 *
1019
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1020
 **/
1021 1022
s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
1023
{
1024
	s32 status;
1025
	u16 i, count;
1026 1027 1028

	hw->eeprom.ops.init_params(hw);

1029 1030
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1031

1032 1033
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);

		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
							   count, &data[i]);

1047 1048
		if (status)
			return status;
1049 1050
	}

1051
	return 0;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
}

/**
 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @words: number of word(s)
 *  @data: read 16 bit word(s) from EEPROM
 *
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 **/
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data)
{
	s32 status;
	u16 word_in;
	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
	u16 i;

1071 1072
	/* Prepare the EEPROM for reading  */
	status = ixgbe_acquire_eeprom(hw);
1073 1074
	if (status)
		return status;
1075

1076 1077 1078
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
1079 1080
	}

1081 1082 1083 1084 1085 1086 1087 1088
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098
		/* Send the READ command (opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		/* Read the data. */
		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
		data[i] = (word_in >> 8) | (word_in << 8);
1099
	}
1100

1101 1102 1103 1104
	/* End this read operation */
	ixgbe_release_eeprom(hw);

	return 0;
1105
}
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/**
 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @data: read 16 bit value from EEPROM
 *
 *  Reads 16 bit value from EEPROM through bit-bang method
 **/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
				       u16 *data)
{
	hw->eeprom.ops.init_params(hw);

1120 1121
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1122

1123
	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1124 1125 1126
}

/**
1127
 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1128
 *  @hw: pointer to hardware structure
1129 1130 1131
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of word(s)
 *  @data: 16 bit word(s) from the EEPROM
1132
 *
1133
 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1134
 **/
1135 1136
s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				   u16 words, u16 *data)
1137 1138
{
	u32 eerd;
1139
	s32 status;
1140
	u32 i;
1141

1142 1143
	hw->eeprom.ops.init_params(hw);

1144 1145
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1146

1147 1148
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1149

1150
	for (i = 0; i < words; i++) {
1151
		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1152
		       IXGBE_EEPROM_RW_REG_START;
1153

1154 1155
		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1156

1157 1158 1159 1160 1161
		if (status == 0) {
			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
				   IXGBE_EEPROM_RW_REG_DATA);
		} else {
			hw_dbg(hw, "Eeprom read timed out\n");
1162
			return status;
1163 1164
		}
	}
1165 1166

	return 0;
1167
}
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/**
 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be used as a scratch pad
 *
 *  Discover EEPROM page size by writing marching data at given offset.
 *  This function is called only when we are writing a new large buffer
 *  at given offset so the data would be overwritten anyway.
 **/
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset)
{
	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1182
	s32 status;
1183 1184 1185 1186 1187 1188 1189 1190 1191
	u16 i;

	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
		data[i] = i;

	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
	hw->eeprom.word_page_size = 0;
1192 1193
	if (status)
		return status;
1194 1195

	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1196 1197
	if (status)
		return status;
1198 1199 1200 1201 1202 1203 1204

	/*
	 * When writing in burst more than the actual page size
	 * EEPROM address wraps around current page.
	 */
	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];

1205
	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1206
	       hw->eeprom.word_page_size);
1207
	return 0;
1208 1209
}

1210
/**
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
}

/**
 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1225 1226
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
1227 1228
 *  @words: number of words
 *  @data: word(s) write to the EEPROM
1229
 *
1230
 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1231
 **/
1232 1233
s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				    u16 words, u16 *data)
1234 1235
{
	u32 eewr;
1236
	s32 status;
1237
	u16 i;
1238 1239 1240

	hw->eeprom.ops.init_params(hw);

1241 1242
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1243

1244 1245
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1246

1247 1248 1249 1250
	for (i = 0; i < words; i++) {
		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
		       IXGBE_EEPROM_RW_REG_START;
1251

1252
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1253
		if (status) {
1254
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1255
			return status;
1256
		}
1257

1258
		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1259

1260
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1261
		if (status) {
1262
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1263
			return status;
1264
		}
1265 1266
	}

1267
	return 0;
1268 1269
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/**
 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
 *  @data: word write to the EEPROM
 *
 *  Write a 16 bit word to the EEPROM using the EEWR register.
 **/
s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
}

1283
/**
1284
 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1285
 *  @hw: pointer to hardware structure
1286
 *  @ee_reg: EEPROM flag for polling
1287
 *
1288 1289
 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
 *  read or write is done respectively.
1290
 **/
1291
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1292 1293 1294 1295
{
	u32 i;
	u32 reg;

1296 1297 1298 1299 1300 1301 1302
	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
		if (ee_reg == IXGBE_NVM_POLL_READ)
			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
		else
			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);

		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1303
			return 0;
1304 1305 1306
		}
		udelay(5);
	}
1307
	return IXGBE_ERR_EEPROM;
1308 1309
}

1310 1311 1312 1313 1314 1315 1316 1317 1318
/**
 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *
 *  Prepares EEPROM for access using bit-bang method. This function should
 *  be called before issuing a command to the EEPROM.
 **/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
1319
	u32 eec;
1320 1321
	u32 i;

1322
	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1323
		return IXGBE_ERR_SWFW_SYNC;
1324

1325
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1326

1327 1328
	/* Request EEPROM Access */
	eec |= IXGBE_EEC_REQ;
1329
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1330

1331
	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1332
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1333 1334 1335 1336
		if (eec & IXGBE_EEC_GNT)
			break;
		udelay(5);
	}
1337

1338 1339 1340
	/* Release if grant not acquired */
	if (!(eec & IXGBE_EEC_GNT)) {
		eec &= ~IXGBE_EEC_REQ;
1341
		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1342
		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1343

1344 1345
		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
		return IXGBE_ERR_EEPROM;
1346
	}
1347 1348 1349 1350

	/* Setup EEPROM for Read/Write */
	/* Clear CS and SK */
	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1351
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1352 1353 1354
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	return 0;
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364
/**
 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 **/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
1365
	u32 timeout = 2000;
1366 1367 1368 1369 1370 1371 1372 1373 1374
	u32 i;
	u32 swsm;

	/* Get SMBI software semaphore between device drivers first */
	for (i = 0; i < timeout; i++) {
		/*
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
1375
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1376
		if (!(swsm & IXGBE_SWSM_SMBI))
1377
			break;
1378
		usleep_range(50, 100);
1379 1380
	}

E
Emil Tantilov 已提交
1381
	if (i == timeout) {
1382
		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1383
		/* this release is particularly important because our attempts
E
Emil Tantilov 已提交
1384 1385 1386 1387 1388 1389
		 * above to get the semaphore may have succeeded, and if there
		 * was a timeout, we should unconditionally clear the semaphore
		 * bits to free the driver to make progress
		 */
		ixgbe_release_eeprom_semaphore(hw);

1390
		usleep_range(50, 100);
1391
		/* one last try
E
Emil Tantilov 已提交
1392 1393 1394
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
1395
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1396 1397 1398 1399
		if (swsm & IXGBE_SWSM_SMBI) {
			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
			return IXGBE_ERR_EEPROM;
		}
E
Emil Tantilov 已提交
1400 1401
	}

1402
	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1403
	for (i = 0; i < timeout; i++) {
1404
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1405

1406 1407
		/* Set the SW EEPROM semaphore bit to request access */
		swsm |= IXGBE_SWSM_SWESMBI;
1408
		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1409

1410 1411 1412
		/* If we set the bit successfully then we got the
		 * semaphore.
		 */
1413
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1414 1415
		if (swsm & IXGBE_SWSM_SWESMBI)
			break;
1416

1417 1418
		usleep_range(50, 100);
	}
1419

1420 1421 1422 1423 1424 1425 1426
	/* Release semaphores and return error if SW EEPROM semaphore
	 * was not granted because we don't have access to the EEPROM
	 */
	if (i >= timeout) {
		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
		ixgbe_release_eeprom_semaphore(hw);
		return IXGBE_ERR_EEPROM;
1427 1428
	}

1429
	return 0;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
}

/**
 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  This function clears hardware semaphore bits.
 **/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
	u32 swsm;

1442
	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1443 1444 1445

	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1446
	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1447
	IXGBE_WRITE_FLUSH(hw);
1448 1449
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 *  ixgbe_ready_eeprom - Polls for EEPROM ready
 *  @hw: pointer to hardware structure
 **/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
	u16 i;
	u8 spi_stat_reg;

	/*
	 * Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1467
					    IXGBE_EEPROM_OPCODE_BITS);
1468 1469 1470 1471 1472 1473
		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		ixgbe_standby_eeprom(hw);
1474
	}
1475 1476 1477 1478 1479 1480 1481

	/*
	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
	 * devices (and only 0-5mSec on 5V devices)
	 */
	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
		hw_dbg(hw, "SPI EEPROM Status error\n");
1482
		return IXGBE_ERR_EEPROM;
1483 1484
	}

1485
	return 0;
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
}

/**
 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

1496
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1497 1498 1499

	/* Toggle CS to flush commands */
	eec |= IXGBE_EEC_CS;
1500
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1501 1502 1503
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	eec &= ~IXGBE_EEC_CS;
1504
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 *  @hw: pointer to hardware structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 **/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1516
					u16 count)
1517 1518 1519 1520 1521
{
	u32 eec;
	u32 mask;
	u32 i;

1522
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1523 1524 1525 1526 1527

	/*
	 * Mask is used to shift "count" bits of "data" out to the EEPROM
	 * one bit at a time.  Determine the starting bit based on count
	 */
J
Jacob Keller 已提交
1528
	mask = BIT(count - 1);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

	for (i = 0; i < count; i++) {
		/*
		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
		 * "1", and then raising and then lowering the clock (the SK
		 * bit controls the clock input to the EEPROM).  A "0" is
		 * shifted out to the EEPROM by setting "DI" to "0" and then
		 * raising and then lowering the clock.
		 */
		if (data & mask)
			eec |= IXGBE_EEC_DI;
		else
			eec &= ~IXGBE_EEC_DI;

1543
		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		IXGBE_WRITE_FLUSH(hw);

		udelay(1);

		ixgbe_raise_eeprom_clk(hw, &eec);
		ixgbe_lower_eeprom_clk(hw, &eec);

		/*
		 * Shift mask to signify next bit of data to shift in to the
		 * EEPROM
		 */
		mask = mask >> 1;
1556
	}
1557 1558 1559

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eec &= ~IXGBE_EEC_DI;
1560
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	IXGBE_WRITE_FLUSH(hw);
}

/**
 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 *  @hw: pointer to hardware structure
 **/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
	u32 eec;
	u32 i;
	u16 data = 0;

	/*
	 * In order to read a register from the EEPROM, we need to shift
	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
	 * the clock input to the EEPROM (setting the SK bit), and then reading
	 * the value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */
1581
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1582 1583 1584 1585 1586 1587 1588

	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);

	for (i = 0; i < count; i++) {
		data = data << 1;
		ixgbe_raise_eeprom_clk(hw, &eec);

1589
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

		eec &= ~(IXGBE_EEC_DI);
		if (eec & IXGBE_EEC_DO)
			data |= 1;

		ixgbe_lower_eeprom_clk(hw, &eec);
	}

	return data;
}

/**
 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eec: EEC register's current value
 **/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Raise the clock input to the EEPROM
	 * (setting the SK bit), then delay
	 */
	*eec = *eec | IXGBE_EEC_SK;
1613
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eecd: EECD's current value
 **/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Lower the clock input to the EEPROM (clearing the SK bit), then
	 * delay
	 */
	*eec = *eec & ~IXGBE_EEC_SK;
1630
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

1643
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1644 1645 1646 1647

	eec |= IXGBE_EEC_CS;  /* Pull CS high */
	eec &= ~IXGBE_EEC_SK; /* Lower SCK */

1648
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1649 1650 1651 1652 1653 1654
	IXGBE_WRITE_FLUSH(hw);

	udelay(1);

	/* Stop requesting EEPROM access */
	eec &= ~IXGBE_EEC_REQ;
1655
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1656

1657
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1658

1659 1660 1661 1662 1663 1664
	/*
	 * Delay before attempt to obtain semaphore again to allow FW
	 * access. semaphore_delay is in ms we need us for usleep_range
	 */
	usleep_range(hw->eeprom.semaphore_delay * 1000,
		     hw->eeprom.semaphore_delay * 2000);
1665 1666
}

1667
/**
1668
 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1669 1670
 *  @hw: pointer to hardware structure
 **/
1671
s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
{
	u16 i;
	u16 j;
	u16 checksum = 0;
	u16 length = 0;
	u16 pointer = 0;
	u16 word = 0;

	/* Include 0x0-0x3F in the checksum */
	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1682
		if (hw->eeprom.ops.read(hw, i, &word)) {
1683 1684 1685 1686 1687 1688 1689 1690
			hw_dbg(hw, "EEPROM read failed\n");
			break;
		}
		checksum += word;
	}

	/* Include all data from pointers except for the fw pointer */
	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
		if (hw->eeprom.ops.read(hw, i, &pointer)) {
			hw_dbg(hw, "EEPROM read failed\n");
			return IXGBE_ERR_EEPROM;
		}

		/* If the pointer seems invalid */
		if (pointer == 0xFFFF || pointer == 0)
			continue;

		if (hw->eeprom.ops.read(hw, pointer, &length)) {
			hw_dbg(hw, "EEPROM read failed\n");
			return IXGBE_ERR_EEPROM;
		}
1704

1705 1706
		if (length == 0xFFFF || length == 0)
			continue;
1707

1708 1709 1710 1711
		for (j = pointer + 1; j <= pointer + length; j++) {
			if (hw->eeprom.ops.read(hw, j, &word)) {
				hw_dbg(hw, "EEPROM read failed\n");
				return IXGBE_ERR_EEPROM;
1712
			}
1713
			checksum += word;
1714 1715 1716 1717 1718
		}
	}

	checksum = (u16)IXGBE_EEPROM_SUM - checksum;

1719
	return (s32)checksum;
1720 1721 1722
}

/**
1723
 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1724 1725 1726 1727 1728 1729
 *  @hw: pointer to hardware structure
 *  @checksum_val: calculated checksum
 *
 *  Performs checksum calculation and validates the EEPROM checksum.  If the
 *  caller does not need checksum_val, the value can be NULL.
 **/
1730
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1731
					   u16 *checksum_val)
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
{
	s32 status;
	u16 checksum;
	u16 read_checksum = 0;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
1742
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1743 1744 1745 1746
	if (status) {
		hw_dbg(hw, "EEPROM read failed\n");
		return status;
	}
1747

1748 1749 1750
	status = hw->eeprom.ops.calc_checksum(hw);
	if (status < 0)
		return status;
1751

1752
	checksum = (u16)(status & 0xffff);
1753

1754 1755
	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
	if (status) {
1756
		hw_dbg(hw, "EEPROM read failed\n");
1757
		return status;
1758 1759
	}

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	/* Verify read checksum from EEPROM is the same as
	 * calculated checksum
	 */
	if (read_checksum != checksum)
		status = IXGBE_ERR_EEPROM_CHECKSUM;

	/* If the user cares, return the calculated checksum */
	if (checksum_val)
		*checksum_val = checksum;

1770 1771 1772
	return status;
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/**
 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
	s32 status;
	u16 checksum;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1788
	if (status) {
1789
		hw_dbg(hw, "EEPROM read failed\n");
1790
		return status;
1791 1792
	}

1793 1794 1795 1796 1797 1798 1799 1800
	status = hw->eeprom.ops.calc_checksum(hw);
	if (status < 0)
		return status;

	checksum = (u16)(status & 0xffff);

	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);

1801 1802 1803
	return status;
}

1804
/**
1805
 *  ixgbe_set_rar_generic - Set Rx address register
1806 1807
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
1808 1809
 *  @addr: Address to put into receive address register
 *  @vmdq: VMDq "set" or "pool" index
1810 1811 1812 1813
 *  @enable_addr: set flag that address is active
 *
 *  Puts an ethernet address into a receive address register.
 **/
1814
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1815
			  u32 enable_addr)
1816 1817
{
	u32 rar_low, rar_high;
1818 1819
	u32 rar_entries = hw->mac.num_rar_entries;

1820 1821 1822 1823 1824 1825
	/* Make sure we are using a valid rar index range */
	if (index >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

1826 1827
	/* setup VMDq pool selection before this RAR gets enabled */
	hw->mac.ops.set_vmdq(hw, index, vmdq);
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	/*
	 * HW expects these in little endian so we reverse the byte
	 * order from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) |
		   ((u32)addr[3] << 24));
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1845

1846 1847
	if (enable_addr != 0)
		rar_high |= IXGBE_RAH_AV;
1848

1849 1850
	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

	return 0;
}

/**
 *  ixgbe_clear_rar_generic - Remove Rx address register
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
 *
 *  Clears an ethernet address from a receive address register.
 **/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;
	u32 rar_entries = hw->mac.num_rar_entries;

	/* Make sure we are using a valid rar index range */
1868
	if (index >= rar_entries) {
1869
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1870
		return IXGBE_ERR_INVALID_ARGUMENT;
1871 1872
	}

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);

	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);

1884 1885
	/* clear VMDq pool/queue selection for this RAR */
	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1886 1887 1888 1889

	return 0;
}

1890 1891
/**
 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1892 1893 1894
 *  @hw: pointer to hardware structure
 *
 *  Places the MAC address in receive address register 0 and clears the rest
1895
 *  of the receive address registers. Clears the multicast table. Assumes
1896 1897
 *  the receiver is in reset when the routine is called.
 **/
1898
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1899 1900
{
	u32 i;
1901
	u32 rar_entries = hw->mac.num_rar_entries;
1902 1903 1904 1905 1906 1907

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
J
Joe Perches 已提交
1908
	if (!is_valid_ether_addr(hw->mac.addr)) {
1909
		/* Get the MAC address from the RAR0 for later reference */
1910
		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1911

1912
		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1913 1914 1915
	} else {
		/* Setup the receive address. */
		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1916
		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1917

1918
		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1919
	}
A
Alexander Duyck 已提交
1920 1921 1922 1923

	/*  clear VMDq pool/queue selection for RAR 0 */
	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);

1924
	hw->addr_ctrl.overflow_promisc = 0;
1925 1926 1927 1928

	hw->addr_ctrl.rar_used_count = 1;

	/* Zero out the other receive addresses. */
1929
	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	for (i = 1; i < rar_entries; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
	}

	/* Clear the MTA */
	hw->addr_ctrl.mta_in_use = 0;
	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);

	hw_dbg(hw, " Clearing MTA\n");
1940
	for (i = 0; i < hw->mac.mcft_size; i++)
1941 1942
		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);

1943 1944 1945
	if (hw->mac.ops.init_uta_tables)
		hw->mac.ops.init_uta_tables(hw);

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	return 0;
}

/**
 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 *  @hw: pointer to hardware structure
 *  @mc_addr: the multicast address
 *
 *  Extracts the 12 bits, from a multicast address, to determine which
 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 *  incoming rx multicast addresses, to determine the bit-vector to check in
 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1958
 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1959 1960 1961 1962 1963 1964 1965
 *  to mc_filter_type.
 **/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector = 0;

	switch (hw->mac.mc_filter_type) {
1966
	case 0:   /* use bits [47:36] of the address */
1967 1968
		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
		break;
1969
	case 1:   /* use bits [46:35] of the address */
1970 1971
		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
		break;
1972
	case 2:   /* use bits [45:34] of the address */
1973 1974
		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
		break;
1975
	case 3:   /* use bits [43:32] of the address */
1976 1977
		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
		break;
1978
	default:  /* Invalid mc_filter_type */
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
		hw_dbg(hw, "MC filter type param set incorrectly\n");
		break;
	}

	/* vector can only be 12-bits or boundary will be exceeded */
	vector &= 0xFFF;
	return vector;
}

/**
 *  ixgbe_set_mta - Set bit-vector in multicast table
 *  @hw: pointer to hardware structure
 *  @hash_value: Multicast address hash value
 *
 *  Sets the bit-vector in the multicast table.
 **/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector;
	u32 vector_bit;
	u32 vector_reg;

	hw->addr_ctrl.mta_in_use++;

	vector = ixgbe_mta_vector(hw, mc_addr);
	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);

	/*
	 * The MTA is a register array of 128 32-bit registers. It is treated
	 * like an array of 4096 bits.  We want to set bit
	 * BitArray[vector_value]. So we figure out what register the bit is
	 * in, read it, OR in the new bit, then write back the new value.  The
	 * register is determined by the upper 7 bits of the vector value and
	 * the bit within that register are determined by the lower 5 bits of
	 * the value.
	 */
	vector_reg = (vector >> 5) & 0x7F;
	vector_bit = vector & 0x1F;
J
Jacob Keller 已提交
2017
	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2018 2019 2020
}

/**
2021
 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2022
 *  @hw: pointer to hardware structure
2023
 *  @netdev: pointer to net device structure
2024 2025
 *
 *  The given list replaces any existing list. Clears the MC addrs from receive
2026
 *  address registers and the multicast table. Uses unused receive address
2027 2028 2029
 *  registers for the first multicast addresses, and hashes the rest into the
 *  multicast table.
 **/
2030 2031
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
				      struct net_device *netdev)
2032
{
2033
	struct netdev_hw_addr *ha;
2034 2035 2036 2037 2038 2039
	u32 i;

	/*
	 * Set the new number of MC addresses that we are being requested to
	 * use.
	 */
2040
	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2041 2042
	hw->addr_ctrl.mta_in_use = 0;

2043
	/* Clear mta_shadow */
2044
	hw_dbg(hw, " Clearing MTA\n");
2045
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2046

2047
	/* Update mta shadow */
2048
	netdev_for_each_mc_addr(ha, netdev) {
2049
		hw_dbg(hw, " Adding the multicast addresses:\n");
2050
		ixgbe_set_mta(hw, ha->addr);
2051 2052 2053
	}

	/* Enable mta */
2054 2055 2056 2057
	for (i = 0; i < hw->mac.mcft_size; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
				      hw->mac.mta_shadow[i]);

2058 2059
	if (hw->addr_ctrl.mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2060
				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2061

2062
	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2063 2064 2065 2066
	return 0;
}

/**
2067
 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2068 2069
 *  @hw: pointer to hardware structure
 *
2070
 *  Enables multicast address in RAR and the use of the multicast hash table.
2071
 **/
2072
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2073
{
2074
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2075

2076 2077
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2078
				hw->mac.mc_filter_type);
2079 2080 2081 2082 2083

	return 0;
}

/**
2084
 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2085 2086
 *  @hw: pointer to hardware structure
 *
2087
 *  Disables multicast address in RAR and the use of the multicast hash table.
2088
 **/
2089
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2090
{
2091
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2092

2093 2094
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2095 2096 2097 2098

	return 0;
}

2099
/**
2100
 *  ixgbe_fc_enable_generic - Enable flow control
2101 2102 2103 2104
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to the current settings.
 **/
2105
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2106
{
2107
	u32 mflcn_reg, fccfg_reg;
2108
	u32 reg;
2109
	u32 fcrtl, fcrth;
2110
	int i;
2111

2112
	/* Validate the water mark configuration. */
2113 2114
	if (!hw->fc.pause_time)
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2115

2116 2117 2118 2119 2120 2121 2122
	/* Low water mark of zero causes XOFF floods */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
			if (!hw->fc.low_water[i] ||
			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
				hw_dbg(hw, "Invalid water mark configuration\n");
2123
				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2124 2125 2126 2127
			}
		}
	}

2128
	/* Negotiate the fc mode to use */
2129
	ixgbe_fc_autoneg(hw);
2130

2131
	/* Disable any previous flow control settings */
2132
	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2133
	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2134 2135 2136 2137 2138 2139 2140 2141 2142

	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);

	/*
	 * The possible values of fc.current_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
2143 2144
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
2145 2146 2147 2148 2149
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.current_mode) {
	case ixgbe_fc_none:
2150 2151 2152 2153
		/*
		 * Flow control is disabled by software override or autoneg.
		 * The code below will actually disable it in the HW.
		 */
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
2180
		return IXGBE_ERR_CONFIG;
2181 2182
	}

2183
	/* Set 802.3x based flow control settings. */
2184
	mflcn_reg |= IXGBE_MFLCN_DPF;
2185 2186 2187
	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);

2188 2189 2190 2191
	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
2192
			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2193 2194 2195 2196 2197 2198 2199
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
		} else {
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
			/*
			 * In order to prevent Tx hangs when the internal Tx
			 * switch is enabled we must set the high water mark
2200 2201 2202
			 * to the Rx packet buffer size - 24KB.  This allows
			 * the Tx switch to function even under heavy Rx
			 * workloads.
2203
			 */
2204
			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2205
		}
2206

2207 2208
		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
	}
2209

2210
	/* Configure pause time (2 TCs per register) */
2211 2212 2213 2214 2215
	reg = hw->fc.pause_time * 0x00010001;
	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);

	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2216

2217
	return 0;
2218 2219
}

2220
/**
2221
 *  ixgbe_negotiate_fc - Negotiate flow control
2222
 *  @hw: pointer to hardware structure
2223 2224 2225 2226 2227 2228
 *  @adv_reg: flow control advertised settings
 *  @lp_reg: link partner's flow control settings
 *  @adv_sym: symmetric pause bit in advertisement
 *  @adv_asm: asymmetric pause bit in advertisement
 *  @lp_sym: symmetric pause bit in link partner advertisement
 *  @lp_asm: asymmetric pause bit in link partner advertisement
2229
 *
2230 2231
 *  Find the intersection between advertised settings and link partner's
 *  advertised settings
2232
 **/
2233 2234
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2235
{
2236 2237
	if ((!(adv_reg)) ||  (!(lp_reg)))
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2238

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
		/*
		 * Now we need to check if the user selected Rx ONLY
		 * of pause frames.  In this case, we had to advertise
		 * FULL flow control because we could not advertise RX
		 * ONLY. Hence, we must now check to see if we need to
		 * turn OFF the TRANSMISSION of PAUSE frames.
		 */
		if (hw->fc.requested_mode == ixgbe_fc_full) {
			hw->fc.current_mode = ixgbe_fc_full;
			hw_dbg(hw, "Flow Control = FULL.\n");
		} else {
			hw->fc.current_mode = ixgbe_fc_rx_pause;
			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
		}
	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_tx_pause;
		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_rx_pause;
		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2262
	} else {
2263 2264
		hw->fc.current_mode = ixgbe_fc_none;
		hw_dbg(hw, "Flow Control = NONE.\n");
2265
	}
2266
	return 0;
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
}

/**
 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according on 1 gig fiber.
 **/
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
{
	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2278
	s32 ret_val;
2279 2280 2281 2282 2283 2284

	/*
	 * On multispeed fiber at 1g, bail out if
	 * - link is up but AN did not complete, or if
	 * - link is up and AN completed but timed out
	 */
2285 2286

	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2287
	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2288
	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2289
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);

	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE,
			       IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
{
	u32 links2, anlp1_reg, autoc_reg, links;
2312
	s32 ret_val;
2313

2314
	/*
2315 2316 2317
	 * On backplane, bail out if
	 * - backplane autoneg was not completed, or if
	 * - we are 82599 and link partner is not AN enabled
2318
	 */
2319
	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2320
	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2321
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2322

2323 2324
	if (hw->mac.type == ixgbe_mac_82599EB) {
		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2325
		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2326
			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2327
	}
2328
	/*
2329
	 * Read the 10g AN autoc and LP ability registers and resolve
2330 2331
	 * local flow control settings accordingly
	 */
2332 2333
	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2334

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
{
	u16 technology_ability_reg = 0;
	u16 lp_technology_ability_reg = 0;

	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
			     MDIO_MMD_AN,
			     &technology_ability_reg);
	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
			     MDIO_MMD_AN,
			     &lp_technology_ability_reg);

	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
				  (u32)lp_technology_ability_reg,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
}

/**
2367
 *  ixgbe_fc_autoneg - Configure flow control
2368 2369
 *  @hw: pointer to hardware structure
 *
2370 2371
 *  Compares our advertised flow control capabilities to those advertised by
 *  our link partner, and determines the proper flow control mode to use.
2372
 **/
2373
void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2374
{
2375 2376 2377
	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
	ixgbe_link_speed speed;
	bool link_up;
2378 2379

	/*
2380 2381 2382 2383 2384 2385 2386
	 * AN should have completed when the cable was plugged in.
	 * Look for reasons to bail out.  Bail out if:
	 * - FC autoneg is disabled, or if
	 * - link is not up.
	 *
	 * Since we're being called from an LSC, link is already known to be up.
	 * So use link_up_wait_to_complete=false.
2387
	 */
2388
	if (hw->fc.disable_fc_autoneg)
2389
		goto out;
2390

2391 2392
	hw->mac.ops.check_link(hw, &speed, &link_up, false);
	if (!link_up)
2393
		goto out;
2394 2395

	switch (hw->phy.media_type) {
2396
	/* Autoneg flow control on fiber adapters */
2397
	case ixgbe_media_type_fiber:
2398 2399 2400 2401 2402
		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
			ret_val = ixgbe_fc_autoneg_fiber(hw);
		break;

	/* Autoneg flow control on backplane adapters */
2403
	case ixgbe_media_type_backplane:
2404
		ret_val = ixgbe_fc_autoneg_backplane(hw);
2405 2406
		break;

2407
	/* Autoneg flow control on copper adapters */
2408
	case ixgbe_media_type_copper:
2409
		if (ixgbe_device_supports_autoneg_fc(hw))
2410
			ret_val = ixgbe_fc_autoneg_copper(hw);
2411 2412 2413
		break;

	default:
2414
		break;
2415
	}
2416

2417
out:
2418 2419 2420 2421 2422 2423
	if (ret_val == 0) {
		hw->fc.fc_was_autonegged = true;
	} else {
		hw->fc.fc_was_autonegged = false;
		hw->fc.current_mode = hw->fc.requested_mode;
	}
2424 2425
}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
/**
 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
 * @hw: pointer to hardware structure
 *
 * System-wide timeout range is encoded in PCIe Device Control2 register.
 *
 *  Add 10% to specified maximum and return the number of times to poll for
 *  completion timeout, in units of 100 microsec.  Never return less than
 *  800 = 80 millisec.
 **/
static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
{
	s16 devctl2;
	u32 pollcnt;

2441
	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;

	switch (devctl2) {
	case IXGBE_PCIDEVCTRL2_65_130ms:
		 pollcnt = 1300;         /* 130 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_260_520ms:
		pollcnt = 5200;         /* 520 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_1_2s:
		pollcnt = 20000;        /* 2 sec */
		break;
	case IXGBE_PCIDEVCTRL2_4_8s:
		pollcnt = 80000;        /* 8 sec */
		break;
	case IXGBE_PCIDEVCTRL2_17_34s:
		pollcnt = 34000;        /* 34 sec */
		break;
	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
	default:
		pollcnt = 800;          /* 80 millisec minimum */
		break;
	}

	/* add 10% to spec maximum */
	return (pollcnt * 11) / 10;
}

2473 2474 2475 2476 2477 2478 2479 2480 2481
/**
 *  ixgbe_disable_pcie_master - Disable PCI-express master access
 *  @hw: pointer to hardware structure
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 *  bit hasn't caused the master requests to be disabled, else 0
 *  is returned signifying master requests disabled.
 **/
2482
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2483
{
2484
	u32 i, poll;
2485 2486 2487 2488
	u16 value;

	/* Always set this bit to ensure any future transactions are blocked */
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	/* Poll for bit to read as set */
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
			break;
		usleep_range(100, 120);
	}
	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
		goto gio_disable_fail;
	}

2501
	/* Exit if master requests are blocked */
2502 2503
	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
	    ixgbe_removed(hw->hw_addr))
2504
		return 0;
2505

2506
	/* Poll for master request bit to clear */
2507
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2508
		udelay(100);
2509
		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2510
			return 0;
2511 2512
	}

2513 2514 2515 2516 2517 2518 2519 2520
	/*
	 * Two consecutive resets are required via CTRL.RST per datasheet
	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
	 * of this need.  The first reset prevents new master requests from
	 * being issued by our device.  We then must wait 1usec or more for any
	 * remaining completions from the PCIe bus to trickle in, and then reset
	 * again to clear out any effects they may have had on our device.
	 */
2521
	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2522
gio_disable_fail:
2523
	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2524

2525 2526 2527
	if (hw->mac.type >= ixgbe_mac_X550)
		return 0;

2528 2529 2530 2531
	/*
	 * Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
2532 2533
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
2534
		udelay(100);
2535 2536
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
2537
			return 0;
2538
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2539
			return 0;
2540 2541
	}

2542
	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2543
	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2544 2545 2546
}

/**
2547
 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2548
 *  @hw: pointer to hardware structure
2549
 *  @mask: Mask to specify which semaphore to acquire
2550
 *
E
Emil Tantilov 已提交
2551
 *  Acquires the SWFW semaphore through the GSSR register for the specified
2552 2553
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
2554
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2555
{
2556
	u32 gssr = 0;
2557 2558
	u32 swmask = mask;
	u32 fwmask = mask << 5;
2559 2560
	u32 timeout = 200;
	u32 i;
2561

2562
	for (i = 0; i < timeout; i++) {
2563
		/*
2564 2565
		 * SW NVM semaphore bit is used for access to all
		 * SW_FW_SYNC bits (not just NVM)
2566
		 */
2567
		if (ixgbe_get_eeprom_semaphore(hw))
2568
			return IXGBE_ERR_SWFW_SYNC;
2569 2570

		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
		if (!(gssr & (fwmask | swmask))) {
			gssr |= swmask;
			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
			ixgbe_release_eeprom_semaphore(hw);
			return 0;
		} else {
			/* Resource is currently in use by FW or SW */
			ixgbe_release_eeprom_semaphore(hw);
			usleep_range(5000, 10000);
		}
2581 2582
	}

2583 2584 2585
	/* If time expired clear the bits holding the lock and retry */
	if (gssr & (fwmask | swmask))
		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2586

2587 2588
	usleep_range(5000, 10000);
	return IXGBE_ERR_SWFW_SYNC;
2589 2590 2591 2592 2593
}

/**
 *  ixgbe_release_swfw_sync - Release SWFW semaphore
 *  @hw: pointer to hardware structure
2594
 *  @mask: Mask to specify which semaphore to release
2595
 *
E
Emil Tantilov 已提交
2596
 *  Releases the SWFW semaphore through the GSSR register for the specified
2597 2598
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
2599
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
{
	u32 gssr;
	u32 swmask = mask;

	ixgbe_get_eeprom_semaphore(hw);

	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
	gssr &= ~swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
/**
 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
 * @hw: pointer to hardware structure
 * @reg_val: Value we read from AUTOC
 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
 *	    true in this the generic case.
 *
 * The default case requires no protection so just to the register read.
 **/
s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
{
	*locked = false;
	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	return 0;
}

/**
 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
 * @hw: pointer to hardware structure
 * @reg_val: value to write to AUTOC
 * @locked: bool to indicate whether the SW/FW lock was already taken by
 *	    previous read.
 **/
s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
{
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
	return 0;
}

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
/**
 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Stops the receive data path and waits for the HW to internally
 *  empty the Rx security block.
 **/
s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
{
#define IXGBE_MAX_SECRX_POLL 40
	int i;
	int secrxreg;

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
			break;
		else
			/* Use interrupt-safe sleep just in case */
2664
			udelay(1000);
2665 2666 2667 2668
	}

	/* For informational purposes only */
	if (i >= IXGBE_MAX_SECRX_POLL)
2669
		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682

	return 0;

}

/**
 *  ixgbe_enable_rx_buff - Enables the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Enables the receive data path
 **/
s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
{
2683
	u32 secrxreg;
2684 2685 2686 2687 2688 2689 2690 2691 2692

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

2693 2694 2695 2696 2697 2698 2699 2700 2701
/**
 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit
 **/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
2702 2703 2704 2705
	if (regval & IXGBE_RXCTRL_RXEN)
		hw->mac.ops.enable_rx(hw);
	else
		hw->mac.ops.disable_rx(hw);
2706 2707 2708

	return 0;
}
2709 2710 2711 2712 2713 2714 2715 2716 2717

/**
 *  ixgbe_blink_led_start_generic - Blink LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to blink
 **/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
	ixgbe_link_speed speed = 0;
2718
	bool link_up = false;
2719 2720
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2721
	bool locked = false;
2722
	s32 ret_val;
2723

2724 2725 2726
	if (index > 3)
		return IXGBE_ERR_PARAM;

2727 2728 2729 2730 2731 2732 2733
	/*
	 * Link must be up to auto-blink the LEDs;
	 * Force it if link is down.
	 */
	hw->mac.ops.check_link(hw, &speed, &link_up, false);

	if (!link_up) {
2734
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2735
		if (ret_val)
2736
			return ret_val;
2737

2738
		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2739
		autoc_reg |= IXGBE_AUTOC_FLU;
2740 2741

		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2742
		if (ret_val)
2743
			return ret_val;
2744

2745
		IXGBE_WRITE_FLUSH(hw);
2746

2747
		usleep_range(10000, 20000);
2748 2749 2750 2751 2752 2753 2754
	}

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_BLINK(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2755
	return 0;
2756 2757 2758 2759 2760 2761 2762 2763 2764
}

/**
 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to stop blinking
 **/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
2765
	u32 autoc_reg = 0;
2766
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2767
	bool locked = false;
2768
	s32 ret_val;
2769

2770 2771 2772
	if (index > 3)
		return IXGBE_ERR_PARAM;

2773
	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2774
	if (ret_val)
2775
		return ret_val;
2776 2777 2778 2779

	autoc_reg &= ~IXGBE_AUTOC_FLU;
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;

2780
	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2781
	if (ret_val)
2782
		return ret_val;
2783

2784 2785 2786 2787 2788 2789
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg &= ~IXGBE_LED_BLINK(index);
	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2790
	return 0;
2791
}
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

/**
 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_offset: SAN MAC address offset
 *
 *  This function will read the EEPROM location for the SAN MAC address
 *  pointer, and returns the value at that location.  This is used in both
 *  get and set mac_addr routines.
 **/
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2803
					u16 *san_mac_offset)
2804
{
2805 2806
	s32 ret_val;

2807 2808 2809 2810
	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.
	 */
2811 2812 2813 2814 2815
	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
				      san_mac_offset);
	if (ret_val)
		hw_err(hw, "eeprom read at offset %d failed\n",
		       IXGBE_SAN_MAC_ADDR_PTR);
2816

2817
	return ret_val;
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
}

/**
 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_addr: SAN MAC address
 *
 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
 *  per-port, so set_lan_id() must be called before reading the addresses.
 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
 *  upon for non-SFP connections, so we must call it here.
 **/
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
	u16 san_mac_data, san_mac_offset;
	u8 i;
2834
	s32 ret_val;
2835 2836 2837 2838 2839

	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.  If they're not, no point in calling set_lan_id() here.
	 */
2840 2841
	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2842

2843
		goto san_mac_addr_clr;
2844 2845 2846 2847 2848

	/* make sure we know which port we need to program */
	hw->mac.ops.set_lan_id(hw);
	/* apply the port offset to the address offset */
	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2849
			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2850
	for (i = 0; i < 3; i++) {
2851 2852 2853 2854 2855 2856 2857
		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
					      &san_mac_data);
		if (ret_val) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       san_mac_offset);
			goto san_mac_addr_clr;
		}
2858 2859 2860 2861 2862
		san_mac_addr[i * 2] = (u8)(san_mac_data);
		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
		san_mac_offset++;
	}
	return 0;
2863 2864 2865 2866 2867 2868 2869 2870

san_mac_addr_clr:
	/* No addresses available in this EEPROM.  It's not necessarily an
	 * error though, so just wipe the local address and return.
	 */
	for (i = 0; i < 6; i++)
		san_mac_addr[i] = 0xFF;
	return ret_val;
2871 2872 2873 2874 2875 2876 2877 2878 2879
}

/**
 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
 *  @hw: pointer to hardware structure
 *
 *  Read PCIe configuration space, and get the MSI-X vector count from
 *  the capabilities table.
 **/
2880
u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2881
{
2882
	u16 msix_count;
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	u16 max_msix_count;
	u16 pcie_offset;

	switch (hw->mac.type) {
	case ixgbe_mac_82598EB:
		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
		break;
	case ixgbe_mac_82599EB:
	case ixgbe_mac_X540:
2893 2894
	case ixgbe_mac_X550:
	case ixgbe_mac_X550EM_x:
2895
	case ixgbe_mac_x550em_a:
2896 2897 2898 2899
		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
		break;
	default:
2900
		return 1;
2901 2902
	}

2903 2904 2905
	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
	if (ixgbe_removed(hw->hw_addr))
		msix_count = 0;
2906 2907
	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;

2908
	/* MSI-X count is zero-based in HW */
2909 2910
	msix_count++;

2911 2912 2913
	if (msix_count > max_msix_count)
		msix_count = max_msix_count;

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	return msix_count;
}

/**
 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to disassociate
 *  @vmdq: VMDq pool index to remove from the rar
 **/
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar_lo, mpsar_hi;
	u32 rar_entries = hw->mac.num_rar_entries;

2928 2929 2930 2931 2932
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
2933

2934 2935
	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2936

2937
	if (ixgbe_removed(hw->hw_addr))
2938
		return 0;
2939

2940
	if (!mpsar_lo && !mpsar_hi)
2941
		return 0;
2942

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
		if (mpsar_lo) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
			mpsar_lo = 0;
		}
		if (mpsar_hi) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
			mpsar_hi = 0;
		}
	} else if (vmdq < 32) {
J
Jacob Keller 已提交
2953
		mpsar_lo &= ~BIT(vmdq);
2954
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2955
	} else {
J
Jacob Keller 已提交
2956
		mpsar_hi &= ~BIT(vmdq - 32);
2957
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2958 2959
	}

2960 2961 2962
	/* was that the last pool using this rar? */
	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
		hw->mac.ops.clear_rar(hw, rar);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	return 0;
}

/**
 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to associate with a VMDq index
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar;
	u32 rar_entries = hw->mac.num_rar_entries;

2977 2978
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
2979
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2980 2981 2982 2983 2984
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

	if (vmdq < 32) {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
J
Jacob Keller 已提交
2985
		mpsar |= BIT(vmdq);
2986 2987 2988
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
	} else {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
J
Jacob Keller 已提交
2989
		mpsar |= BIT(vmdq - 32);
2990
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2991 2992 2993 2994
	}
	return 0;
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
/**
 *  This function should only be involved in the IOV mode.
 *  In IOV mode, Default pool is next pool after the number of
 *  VFs advertized and not 0.
 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
 *
 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
{
	u32 rar = hw->mac.san_mac_rar_index;

	if (vmdq < 32) {
J
Jacob Keller 已提交
3010
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3011 3012 3013
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
	} else {
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
J
Jacob Keller 已提交
3014
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3015 3016 3017 3018 3019
	}

	return 0;
}

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
/**
 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
{
	int i;

	for (i = 0; i < 128; i++)
		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);

	return 0;
}

/**
 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *
 *  return the VLVF index where this VLAN id should be placed
 *
 **/
3042
static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3043
{
3044
	s32 regindex, first_empty_slot;
3045
	u32 bits;
3046 3047 3048 3049 3050

	/* short cut the special case */
	if (vlan == 0)
		return 0;

3051 3052 3053 3054 3055 3056
	/* if vlvf_bypass is set we don't want to use an empty slot, we
	 * will simply bypass the VLVF if there are no entries present in the
	 * VLVF that contain our VLAN
	 */
	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;

3057 3058 3059 3060 3061 3062 3063 3064 3065
	/* add VLAN enable bit for comparison */
	vlan |= IXGBE_VLVF_VIEN;

	/* Search for the vlan id in the VLVF entries. Save off the first empty
	 * slot found along the way.
	 *
	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
	 */
	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3066
		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3067 3068 3069
		if (bits == vlan)
			return regindex;
		if (!first_empty_slot && !bits)
3070 3071 3072
			first_empty_slot = regindex;
	}

3073 3074 3075 3076 3077
	/* If we are here then we didn't find the VLAN.  Return first empty
	 * slot we found during our search, else error.
	 */
	if (!first_empty_slot)
		hw_dbg(hw, "No space in VLVF.\n");
3078

3079
	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3080 3081 3082 3083 3084 3085 3086 3087
}

/**
 *  ixgbe_set_vfta_generic - Set VLAN filter table
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3088
 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3089 3090 3091 3092
 *
 *  Turn on/off specified VLAN in the VLAN filter table.
 **/
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3093
			   bool vlan_on, bool vlvf_bypass)
3094
{
3095
	u32 regidx, vfta_delta, vfta, bits;
3096
	s32 vlvf_index;
3097

3098
	if ((vlan > 4095) || (vind > 63))
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
		return IXGBE_ERR_PARAM;

	/*
	 * this is a 2 part operation - first the VFTA, then the
	 * VLVF and VLVFB if VT Mode is set
	 * We don't write the VFTA until we know the VLVF part succeeded.
	 */

	/* Part 1
	 * The VFTA is a bitstring made up of 128 32-bit registers
	 * that enable the particular VLAN id, much like the MTA:
	 *    bits[11-5]: which register
	 *    bits[4-0]:  which bit in the register
	 */
3113
	regidx = vlan / 32;
J
Jacob Keller 已提交
3114
	vfta_delta = BIT(vlan % 32);
3115 3116 3117 3118 3119 3120 3121 3122
	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));

	/* vfta_delta represents the difference between the current value
	 * of vfta and the value we want in the register.  Since the diff
	 * is an XOR mask we can just update vfta using an XOR.
	 */
	vfta_delta &= vlan_on ? ~vfta : vfta;
	vfta ^= vfta_delta;
3123 3124 3125 3126 3127 3128 3129 3130 3131

	/* Part 2
	 * If VT Mode is set
	 *   Either vlan_on
	 *     make sure the vlan is in VLVF
	 *     set the vind bit in the matching VLVFB
	 *   Or !vlan_on
	 *     clear the pool bit and possibly the vind
	 */
3132 3133 3134
	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
		goto vfta_update;

3135 3136 3137 3138
	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
	if (vlvf_index < 0) {
		if (vlvf_bypass)
			goto vfta_update;
3139
		return vlvf_index;
3140
	}
3141

3142 3143 3144
	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));

	/* set the pool bit */
J
Jacob Keller 已提交
3145
	bits |= BIT(vind % 32);
3146 3147 3148 3149
	if (vlan_on)
		goto vlvf_update;

	/* clear the pool bit */
J
Jacob Keller 已提交
3150
	bits ^= BIT(vind % 32);
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165

	if (!bits &&
	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
		/* Clear VFTA first, then disable VLVF.  Otherwise
		 * we run the risk of stray packets leaking into
		 * the PF via the default pool
		 */
		if (vfta_delta)
			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);

		/* disable VLVF and clear remaining bit from pool */
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);

		return 0;
3166 3167
	}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	/* If there are still bits set in the VLVFB registers
	 * for the VLAN ID indicated we need to see if the
	 * caller is requesting that we clear the VFTA entry bit.
	 * If the caller has requested that we clear the VFTA
	 * entry bit but there are still pools/VFs using this VLAN
	 * ID entry then ignore the request.  We're not worried
	 * about the case where we're turning the VFTA VLAN ID
	 * entry bit on, only when requested to turn it off as
	 * there may be multiple pools and/or VFs using the
	 * VLAN ID entry.  In that case we cannot clear the
	 * VFTA bit until all pools/VFs using that VLAN ID have also
	 * been cleared.  This will be indicated by "bits" being
	 * zero.
	 */
3182
	vfta_delta = 0;
3183

3184 3185 3186 3187
vlvf_update:
	/* record pool change and enable VLAN ID if not already enabled */
	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3188 3189

vfta_update:
3190
	/* Update VFTA now that we are ready for traffic */
3191 3192
	if (vfta_delta)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211

	return 0;
}

/**
 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to hardware structure
 *
 *  Clears the VLAN filer table, and the VMDq index associated with the filter
 **/
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < hw->mac.vft_size; offset++)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);

	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3212 3213
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3214 3215 3216 3217 3218
	}

	return 0;
}

D
Don Skidmore 已提交
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
/**
 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
 *  @hw: pointer to hardware structure
 *
 *  Contains the logic to identify if we need to verify link for the
 *  crosstalk fix
 **/
static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
{
	/* Does FW say we need the fix */
	if (!hw->need_crosstalk_fix)
		return false;

	/* Only consider SFP+ PHYs i.e. media type fiber */
	switch (hw->mac.ops.get_media_type(hw)) {
	case ixgbe_media_type_fiber:
	case ixgbe_media_type_fiber_qsfp:
		break;
	default:
		return false;
	}

	return true;
}

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
/**
 *  ixgbe_check_mac_link_generic - Determine link and speed status
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @link_up: true when link is up
 *  @link_up_wait_to_complete: bool used to wait for link up or not
 *
 *  Reads the links register to determine if link is up and the current speed
 **/
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3254
				 bool *link_up, bool link_up_wait_to_complete)
3255
{
3256
	u32 links_reg, links_orig;
3257 3258
	u32 i;

D
Don Skidmore 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	/* If Crosstalk fix enabled do the sanity check of making sure
	 * the SFP+ cage is full.
	 */
	if (ixgbe_need_crosstalk_fix(hw)) {
		u32 sfp_cage_full;

		switch (hw->mac.type) {
		case ixgbe_mac_82599EB:
			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
					IXGBE_ESDP_SDP2;
			break;
		case ixgbe_mac_X550EM_x:
		case ixgbe_mac_x550em_a:
			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
					IXGBE_ESDP_SDP0;
			break;
		default:
			/* sanity check - No SFP+ devices here */
			sfp_cage_full = false;
			break;
		}

		if (!sfp_cage_full) {
			*link_up = false;
			*speed = IXGBE_LINK_SPEED_UNKNOWN;
			return 0;
		}
	}

3288 3289 3290
	/* clear the old state */
	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);

3291
	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3292 3293 3294 3295 3296 3297

	if (links_orig != links_reg) {
		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
		       links_orig, links_reg);
	}

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	if (link_up_wait_to_complete) {
		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
			if (links_reg & IXGBE_LINKS_UP) {
				*link_up = true;
				break;
			} else {
				*link_up = false;
			}
			msleep(100);
			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
		}
	} else {
		if (links_reg & IXGBE_LINKS_UP)
			*link_up = true;
		else
			*link_up = false;
	}

3316 3317 3318 3319 3320 3321 3322 3323 3324
	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
	case IXGBE_LINKS_SPEED_10G_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_10GB_FULL;
		break;
	case IXGBE_LINKS_SPEED_1G_82599:
3325
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3326 3327 3328 3329 3330 3331 3332 3333 3334
		break;
	case IXGBE_LINKS_SPEED_100_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_100_FULL;
		break;
	default:
3335
		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3336
	}
3337 3338 3339

	return 0;
}
3340 3341

/**
3342
 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3343 3344 3345 3346 3347 3348 3349 3350 3351
 *  the EEPROM
 *  @hw: pointer to hardware structure
 *  @wwnn_prefix: the alternative WWNN prefix
 *  @wwpn_prefix: the alternative WWPN prefix
 *
 *  This function will read the EEPROM from the alternative SAN MAC address
 *  block to check the support for the alternative WWNN/WWPN prefix support.
 **/
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3352
					u16 *wwpn_prefix)
3353 3354 3355 3356 3357 3358 3359 3360 3361
{
	u16 offset, caps;
	u16 alt_san_mac_blk_offset;

	/* clear output first */
	*wwnn_prefix = 0xFFFF;
	*wwpn_prefix = 0xFFFF;

	/* check if alternative SAN MAC is supported */
3362 3363 3364
	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
		goto wwn_prefix_err;
3365 3366 3367

	if ((alt_san_mac_blk_offset == 0) ||
	    (alt_san_mac_blk_offset == 0xFFFF))
3368
		return 0;
3369 3370 3371

	/* check capability in alternative san mac address block */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3372 3373
	if (hw->eeprom.ops.read(hw, offset, &caps))
		goto wwn_prefix_err;
3374
	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3375
		return 0;
3376 3377 3378

	/* get the corresponding prefix for WWNN/WWPN */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3379 3380
	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3381 3382

	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3383 3384
	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
		goto wwn_prefix_err;
3385 3386

	return 0;
3387 3388 3389 3390

wwn_prefix_err:
	hw_err(hw, "eeprom read at offset %d failed\n", offset);
	return 0;
3391
}
3392 3393 3394 3395

/**
 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
 *  @hw: pointer to hardware structure
3396 3397
 *  @enable: enable or disable switch for MAC anti-spoofing
 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3398 3399
 *
 **/
3400
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3401
{
3402 3403 3404
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8;
	u32 pfvfspoof;
3405 3406 3407 3408

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

3409
	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3410
	if (enable)
3411 3412 3413 3414
		pfvfspoof |= BIT(vf_target_shift);
	else
		pfvfspoof &= ~BIT(vf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
}

/**
 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for VLAN anti-spoofing
 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
 *
 **/
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
{
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
	u32 pfvfspoof;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
	if (enable)
J
Jacob Keller 已提交
3435
		pfvfspoof |= BIT(vf_target_shift);
3436
	else
J
Jacob Keller 已提交
3437
		pfvfspoof &= ~BIT(vf_target_shift);
3438 3439
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
}
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454

/**
 *  ixgbe_get_device_caps_generic - Get additional device capabilities
 *  @hw: pointer to hardware structure
 *  @device_caps: the EEPROM word with the extra device capabilities
 *
 *  This function will read the EEPROM location for the device capabilities,
 *  and return the word through device_caps.
 **/
s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
{
	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);

	return 0;
}
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

/**
 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
 * @hw: pointer to hardware structure
 * @num_pb: number of packet buffers to allocate
 * @headroom: reserve n KB of headroom
 * @strategy: packet buffer allocation strategy
 **/
void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
			     int num_pb,
			     u32 headroom,
			     int strategy)
{
	u32 pbsize = hw->mac.rx_pb_size;
	int i = 0;
	u32 rxpktsize, txpktsize, txpbthresh;

	/* Reserve headroom */
	pbsize -= headroom;

	if (!num_pb)
		num_pb = 1;

	/* Divide remaining packet buffer space amongst the number
	 * of packet buffers requested using supplied strategy.
	 */
	switch (strategy) {
	case (PBA_STRATEGY_WEIGHTED):
		/* pba_80_48 strategy weight first half of packet buffer with
		 * 5/8 of the packet buffer space.
		 */
		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
		pbsize -= rxpktsize * (num_pb / 2);
		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
		for (; i < (num_pb / 2); i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		/* Fall through to configure remaining packet buffers */
	case (PBA_STRATEGY_EQUAL):
		/* Divide the remaining Rx packet buffer evenly among the TCs */
		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
		for (; i < num_pb; i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		break;
	default:
		break;
	}

	/*
	 * Setup Tx packet buffer and threshold equally for all TCs
	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
	 * 10 since the largest packet we support is just over 9K.
	 */
	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
	for (i = 0; i < num_pb; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
	}

	/* Clear unused TCs, if any, to zero buffer size*/
	for (; i < IXGBE_MAX_PB; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
	}
}
E
Emil Tantilov 已提交
3521 3522 3523 3524 3525

/**
 *  ixgbe_calculate_checksum - Calculate checksum for buffer
 *  @buffer: pointer to EEPROM
 *  @length: size of EEPROM to calculate a checksum for
3526
 *
E
Emil Tantilov 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
 *  Calculates the checksum for some buffer on a specified length.  The
 *  checksum calculated is returned.
 **/
static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
{
	u32 i;
	u8 sum = 0;

	if (!buffer)
		return 0;

	for (i = 0; i < length; i++)
		sum += buffer[i];

	return (u8) (0 - sum);
}

/**
 *  ixgbe_host_interface_command - Issue command to manageability block
 *  @hw: pointer to the HW structure
 *  @buffer: contains the command to write and where the return status will
 *           be placed
D
Don Skidmore 已提交
3549
 *  @length: length of buffer, must be multiple of 4 bytes
3550 3551 3552 3553 3554 3555 3556
 *  @timeout: time in ms to wait for command completion
 *  @return_data: read and return data from the buffer (true) or not (false)
 *  Needed because FW structures are big endian and decoding of
 *  these fields can be 8 bit or 16 bit based on command. Decoding
 *  is not easily understood without making a table of commands.
 *  So we will leave this up to the caller to read back the data
 *  in these cases.
E
Emil Tantilov 已提交
3557 3558 3559 3560
 *
 *  Communicates with the manageability block.  On success return 0
 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
 **/
3561
s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3562 3563
				 u32 length, u32 timeout,
				 bool return_data)
E
Emil Tantilov 已提交
3564 3565
{
	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3566
	u32 hicr, i, bi, fwsts;
3567
	u16 buf_len, dword_len;
3568 3569 3570 3571
	union {
		struct ixgbe_hic_hdr hdr;
		u32 u32arr[1];
	} *bp = buffer;
3572
	s32 status;
E
Emil Tantilov 已提交
3573

3574
	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3575
		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3576
		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
E
Emil Tantilov 已提交
3577
	}
3578 3579 3580 3581
	/* Take management host interface semaphore */
	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
	if (status)
		return status;
E
Emil Tantilov 已提交
3582

3583 3584 3585 3586
	/* Set bit 9 of FWSTS clearing FW reset indication */
	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);

E
Emil Tantilov 已提交
3587 3588
	/* Check that the host interface is enabled. */
	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3589
	if (!(hicr & IXGBE_HICR_EN)) {
E
Emil Tantilov 已提交
3590
		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3591 3592
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3593 3594
	}

3595
	/* Calculate length in DWORDs. We must be DWORD aligned */
3596
	if (length % sizeof(u32)) {
3597
		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3598 3599
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto rel_out;
3600 3601
	}

E
Emil Tantilov 已提交
3602 3603
	dword_len = length >> 2;

3604
	/* The device driver writes the relevant command block
E
Emil Tantilov 已提交
3605 3606 3607 3608
	 * into the ram area.
	 */
	for (i = 0; i < dword_len; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3609
				      i, cpu_to_le32(bp->u32arr[i]));
E
Emil Tantilov 已提交
3610 3611 3612 3613

	/* Setting this bit tells the ARC that a new command is pending. */
	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);

3614
	for (i = 0; i < timeout; i++) {
E
Emil Tantilov 已提交
3615 3616 3617 3618 3619 3620 3621
		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
		if (!(hicr & IXGBE_HICR_C))
			break;
		usleep_range(1000, 2000);
	}

	/* Check command successful completion. */
3622 3623
	if ((timeout && i == timeout) ||
	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
E
Emil Tantilov 已提交
3624
		hw_dbg(hw, "Command has failed with no status valid.\n");
3625 3626
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3627 3628
	}

3629
	if (!return_data)
3630
		goto rel_out;
3631

E
Emil Tantilov 已提交
3632 3633 3634 3635
	/* Calculate length in DWORDs */
	dword_len = hdr_size >> 2;

	/* first pull in the header so we know the buffer length */
3636
	for (bi = 0; bi < dword_len; bi++) {
3637 3638
		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&bp->u32arr[bi]);
3639
	}
E
Emil Tantilov 已提交
3640 3641

	/* If there is any thing in data position pull it in */
3642 3643
	buf_len = bp->hdr.buf_len;
	if (!buf_len)
3644
		goto rel_out;
E
Emil Tantilov 已提交
3645

3646
	if (length < round_up(buf_len, 4) + hdr_size) {
E
Emil Tantilov 已提交
3647
		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3648 3649
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3650 3651
	}

3652 3653
	/* Calculate length in DWORDs, add 3 for odd lengths */
	dword_len = (buf_len + 3) >> 2;
E
Emil Tantilov 已提交
3654

3655
	/* Pull in the rest of the buffer (bi is where we left off) */
3656
	for (; bi <= dword_len; bi++) {
3657 3658
		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&bp->u32arr[bi]);
3659
	}
E
Emil Tantilov 已提交
3660

3661 3662 3663 3664
rel_out:
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);

	return status;
E
Emil Tantilov 已提交
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
}

/**
 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
 *  @hw: pointer to the HW structure
 *  @maj: driver version major number
 *  @min: driver version minor number
 *  @build: driver version build number
 *  @sub: driver version sub build number
 *
 *  Sends driver version number to firmware through the manageability
 *  block.  On success return 0
 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
 **/
s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
				 u8 build, u8 sub)
{
	struct ixgbe_hic_drv_info fw_cmd;
	int i;
3685
	s32 ret_val;
E
Emil Tantilov 已提交
3686 3687 3688 3689

	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3690
	fw_cmd.port_num = hw->bus.func;
E
Emil Tantilov 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	fw_cmd.ver_maj = maj;
	fw_cmd.ver_min = min;
	fw_cmd.ver_build = build;
	fw_cmd.ver_sub = sub;
	fw_cmd.hdr.checksum = 0;
	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
	fw_cmd.pad = 0;
	fw_cmd.pad2 = 0;

	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3702
		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3703 3704 3705
						       sizeof(fw_cmd),
						       IXGBE_HI_COMMAND_TIMEOUT,
						       true);
E
Emil Tantilov 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
		if (ret_val != 0)
			continue;

		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
		    FW_CEM_RESP_STATUS_SUCCESS)
			ret_val = 0;
		else
			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;

		break;
	}

	return ret_val;
}
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

/**
 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
 * @hw: pointer to the hardware structure
 *
 * The 82599 and x540 MACs can experience issues if TX work is still pending
 * when a reset occurs.  This function prevents this by flushing the PCIe
 * buffers on the system.
 **/
void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
{
D
Don Skidmore 已提交
3731 3732
	u32 gcr_ext, hlreg0, i, poll;
	u16 value;
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748

	/*
	 * If double reset is not requested then all transactions should
	 * already be clear and as such there is no work to do
	 */
	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
		return;

	/*
	 * Set loopback enable to prevent any transmits from being sent
	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
	 * has already been cleared.
	 */
	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);

D
Don Skidmore 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	/* wait for a last completion before clearing buffers */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(3000, 6000);

	/* Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
		usleep_range(100, 200);
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
			break;
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
			break;
	}

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
	/* initiate cleaning flow for buffers in the PCIe transaction layer */
	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);

	/* Flush all writes and allow 20usec for all transactions to clear */
	IXGBE_WRITE_FLUSH(hw);
	udelay(20);

	/* restore previous register values */
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
}
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803

static const u8 ixgbe_emc_temp_data[4] = {
	IXGBE_EMC_INTERNAL_DATA,
	IXGBE_EMC_DIODE1_DATA,
	IXGBE_EMC_DIODE2_DATA,
	IXGBE_EMC_DIODE3_DATA
};
static const u8 ixgbe_emc_therm_limit[4] = {
	IXGBE_EMC_INTERNAL_THERM_LIMIT,
	IXGBE_EMC_DIODE1_THERM_LIMIT,
	IXGBE_EMC_DIODE2_THERM_LIMIT,
	IXGBE_EMC_DIODE3_THERM_LIMIT
};

/**
 *  ixgbe_get_ets_data - Extracts the ETS bit data
 *  @hw: pointer to hardware structure
 *  @ets_cfg: extected ETS data
 *  @ets_offset: offset of ETS data
 *
 *  Returns error code.
 **/
static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
			      u16 *ets_offset)
{
3804
	s32 status;
3805 3806 3807

	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
	if (status)
3808
		return status;
3809

3810 3811
	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
		return IXGBE_NOT_IMPLEMENTED;
3812 3813 3814

	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
	if (status)
3815
		return status;
3816

3817 3818
	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
		return IXGBE_NOT_IMPLEMENTED;
3819

3820
	return 0;
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
}

/**
 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
 *  @hw: pointer to hardware structure
 *
 *  Returns the thermal sensor data structure
 **/
s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
{
3831
	s32 status;
3832 3833 3834 3835 3836 3837 3838
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  num_sensors;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

3839
	/* Only support thermal sensors attached to physical port 0 */
3840 3841
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3842 3843 3844

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3845
		return status;
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857

	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
					     &ets_sensor);
		if (status)
3858
			return status;
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);

		if (sensor_location != 0) {
			status = hw->phy.ops.read_i2c_byte(hw,
					ixgbe_emc_temp_data[sensor_index],
					IXGBE_I2C_THERMAL_SENSOR_ADDR,
					&data->sensor[i].temp);
			if (status)
3871
				return status;
3872 3873
		}
	}
3874 3875

	return 0;
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
}

/**
 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
 * @hw: pointer to hardware structure
 *
 * Inits the thermal sensor thresholds according to the NVM map
 * and save off the threshold and location values into mac.thermal_sensor_data
 **/
s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
{
3887
	s32 status;
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  low_thresh_delta;
	u8  num_sensors;
	u8  therm_limit;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));

3899
	/* Only support thermal sensors attached to physical port 0 */
3900 3901
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3902 3903 3904

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3905
		return status;
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916

	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

3917 3918 3919 3920 3921
		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       ets_offset + 1 + i);
			continue;
		}
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);
		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;

		hw->phy.ops.write_i2c_byte(hw,
			ixgbe_emc_therm_limit[sensor_index],
			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);

		if (sensor_location == 0)
			continue;

		data->sensor[i].location = sensor_location;
		data->sensor[i].caution_thresh = therm_limit;
		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
	}
3939 3940

	return 0;
3941 3942
}

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
{
	u32 rxctrl;

	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	if (rxctrl & IXGBE_RXCTRL_RXEN) {
		if (hw->mac.type != ixgbe_mac_82598EB) {
			u32 pfdtxgswc;

			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
				hw->mac.set_lben = true;
			} else {
				hw->mac.set_lben = false;
			}
		}
		rxctrl &= ~IXGBE_RXCTRL_RXEN;
		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
	}
}

void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
{
	u32 rxctrl;

	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));

	if (hw->mac.type != ixgbe_mac_82598EB) {
		if (hw->mac.set_lben) {
			u32 pfdtxgswc;

			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
			hw->mac.set_lben = false;
		}
	}
}
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998

/** ixgbe_mng_present - returns true when management capability is present
 * @hw: pointer to hardware structure
 **/
bool ixgbe_mng_present(struct ixgbe_hw *hw)
{
	u32 fwsm;

	if (hw->mac.type < ixgbe_mac_82599EB)
		return false;

	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
	fwsm &= IXGBE_FWSM_MODE_MASK;
	return fwsm == IXGBE_FWSM_FW_MODE_PT;
}
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208

/**
 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Set the link speed in the MAC and/or PHY register and restarts link.
 */
s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
					  ixgbe_link_speed speed,
					  bool autoneg_wait_to_complete)
{
	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	s32 status = 0;
	u32 speedcnt = 0;
	u32 i = 0;
	bool autoneg, link_up = false;

	/* Mask off requested but non-supported speeds */
	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
	if (status)
		return status;

	speed &= link_speed;

	/* Try each speed one by one, highest priority first.  We do this in
	 * software because 10Gb fiber doesn't support speed autonegotiation.
	 */
	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
		speedcnt++;
		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;

		/* If we already have link at this speed, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
			goto out;

		/* Set the module link speed */
		switch (hw->phy.media_type) {
		case ixgbe_media_type_fiber:
			hw->mac.ops.set_rate_select_speed(hw,
						    IXGBE_LINK_SPEED_10GB_FULL);
			break;
		case ixgbe_media_type_fiber_qsfp:
			/* QSFP module automatically detects MAC link speed */
			break;
		default:
			hw_dbg(hw, "Unexpected media type\n");
			break;
		}

		/* Allow module to change analog characteristics (1G->10G) */
		msleep(40);

		status = hw->mac.ops.setup_mac_link(hw,
						    IXGBE_LINK_SPEED_10GB_FULL,
						    autoneg_wait_to_complete);
		if (status)
			return status;

		/* Flap the Tx laser if it has not already been done */
		if (hw->mac.ops.flap_tx_laser)
			hw->mac.ops.flap_tx_laser(hw);

		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
		 * Section 73.10.2, we may have to wait up to 500ms if KR is
		 * attempted.  82599 uses the same timing for 10g SFI.
		 */
		for (i = 0; i < 5; i++) {
			/* Wait for the link partner to also set speed */
			msleep(100);

			/* If we have link, just jump out */
			status = hw->mac.ops.check_link(hw, &link_speed,
							&link_up, false);
			if (status)
				return status;

			if (link_up)
				goto out;
		}
	}

	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
		speedcnt++;
		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;

		/* If we already have link at this speed, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
			goto out;

		/* Set the module link speed */
		switch (hw->phy.media_type) {
		case ixgbe_media_type_fiber:
			hw->mac.ops.set_rate_select_speed(hw,
						     IXGBE_LINK_SPEED_1GB_FULL);
			break;
		case ixgbe_media_type_fiber_qsfp:
			/* QSFP module automatically detects link speed */
			break;
		default:
			hw_dbg(hw, "Unexpected media type\n");
			break;
		}

		/* Allow module to change analog characteristics (10G->1G) */
		msleep(40);

		status = hw->mac.ops.setup_mac_link(hw,
						    IXGBE_LINK_SPEED_1GB_FULL,
						    autoneg_wait_to_complete);
		if (status)
			return status;

		/* Flap the Tx laser if it has not already been done */
		if (hw->mac.ops.flap_tx_laser)
			hw->mac.ops.flap_tx_laser(hw);

		/* Wait for the link partner to also set speed */
		msleep(100);

		/* If we have link, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_up)
			goto out;
	}

	/* We didn't get link.  Configure back to the highest speed we tried,
	 * (if there was more than one).  We call ourselves back with just the
	 * single highest speed that the user requested.
	 */
	if (speedcnt > 1)
		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
						      highest_link_speed,
						      autoneg_wait_to_complete);

out:
	/* Set autoneg_advertised value based on input link speed */
	hw->phy.autoneg_advertised = 0;

	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;

	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;

	return status;
}

/**
 *  ixgbe_set_soft_rate_select_speed - Set module link speed
 *  @hw: pointer to hardware structure
 *  @speed: link speed to set
 *
 *  Set module link speed via the soft rate select.
 */
void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
				      ixgbe_link_speed speed)
{
	s32 status;
	u8 rs, eeprom_data;

	switch (speed) {
	case IXGBE_LINK_SPEED_10GB_FULL:
		/* one bit mask same as setting on */
		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
		break;
	case IXGBE_LINK_SPEED_1GB_FULL:
		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
		break;
	default:
		hw_dbg(hw, "Invalid fixed module speed\n");
		return;
	}

	/* Set RS0 */
	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
					   IXGBE_I2C_EEPROM_DEV_ADDR2,
					   &eeprom_data);
	if (status) {
		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
		return;
	}

	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;

	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
					    IXGBE_I2C_EEPROM_DEV_ADDR2,
					    eeprom_data);
	if (status) {
		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
		return;
	}
}