ksz9477.c 37.6 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/*
 * Microchip KSZ9477 switch driver main logic
 *
5
 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 7 8 9
 */

#include <linux/kernel.h>
#include <linux/module.h>
10
#include <linux/iopoll.h>
11 12 13
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/if_bridge.h>
14
#include <linux/if_vlan.h>
15 16 17
#include <net/dsa.h>
#include <net/switchdev.h>

18
#include "ksz9477_reg.h"
19
#include "ksz_common.h"
20

21 22 23 24 25
/* Used with variable features to indicate capabilities. */
#define GBIT_SUPPORT			BIT(0)
#define NEW_XMII			BIT(1)
#define IS_9893				BIT(2)

26 27
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
28
	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
29 30 31 32 33
}

static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
			 bool set)
{
34 35
	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
			   bits, set ? bits : 0);
36 37
}

38 39
static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
40
	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
41 42 43 44 45
}

static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
			       u32 bits, bool set)
{
46 47
	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
			   bits, set ? bits : 0);
48 49
}

50 51 52 53 54 55 56 57 58 59 60
static int ksz9477_change_mtu(struct dsa_switch *ds, int port, int mtu)
{
	struct ksz_device *dev = ds->priv;
	u16 frame_size, max_frame = 0;
	int i;

	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;

	/* Cache the per-port MTU setting */
	dev->ports[port].max_frame = frame_size;

61
	for (i = 0; i < dev->info->port_cnt; i++)
62 63 64 65 66 67 68 69 70 71 72
		max_frame = max(max_frame, dev->ports[i].max_frame);

	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
				  REG_SW_MTU_MASK, max_frame);
}

static int ksz9477_max_mtu(struct dsa_switch *ds, int port)
{
	return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
}

73
static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
74
{
75
	unsigned int val;
76

77 78
	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
					val, !(val & VLAN_START), 10, 1000);
79 80 81 82 83 84 85 86 87 88 89 90 91
}

static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
				  u32 *vlan_table)
{
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);

	/* wait to be cleared */
92 93
	ret = ksz9477_wait_vlan_ctrl_ready(dev);
	if (ret) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
		dev_dbg(dev->dev, "Failed to read vlan table\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
				  u32 *vlan_table)
{
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);

	/* wait to be cleared */
125 126
	ret = ksz9477_wait_vlan_ctrl_ready(dev);
	if (ret) {
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
		dev_dbg(dev->dev, "Failed to write vlan table\n");
		goto exit;
	}

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

	/* update vlan cache table */
	dev->vlan_cache[vid].table[0] = vlan_table[0];
	dev->vlan_cache[vid].table[1] = vlan_table[1];
	dev->vlan_cache[vid].table[2] = vlan_table[2];

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
{
	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}

static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
{
	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}

160
static int ksz9477_wait_alu_ready(struct ksz_device *dev)
161
{
162
	unsigned int val;
163

164 165
	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
					val, !(val & ALU_START), 10, 1000);
166 167
}

168
static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
169
{
170
	unsigned int val;
171

172 173 174 175
	return regmap_read_poll_timeout(dev->regmap[2],
					REG_SW_ALU_STAT_CTRL__4,
					val, !(val & ALU_STAT_START),
					10, 1000);
176 177 178 179 180 181 182 183 184 185 186
}

static int ksz9477_reset_switch(struct ksz_device *dev)
{
	u8 data8;
	u32 data32;

	/* reset switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);

	/* turn off SPI DO Edge select */
187 188
	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
			   SPI_AUTO_EDGE_DETECTION, 0);
189 190 191 192 193 194 195 196 197 198 199 200 201

	/* default configuration */
	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	/* disable interrupts */
	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);

	/* set broadcast storm protection 10% rate */
202 203 204 205
	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
			   BROADCAST_STORM_RATE,
			   (BROADCAST_STORM_VALUE *
			   BROADCAST_STORM_PROT_RATE) / 100);
206

207 208 209 210 211 212
	data8 = SW_ENABLE_REFCLKO;
	if (dev->synclko_disable)
		data8 = 0;
	else if (dev->synclko_125)
		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
213

214 215 216
	return 0;
}

217 218 219 220
static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
			      u64 *cnt)
{
	struct ksz_port *p = &dev->ports[port];
221
	unsigned int val;
222 223 224 225 226 227 228 229 230
	u32 data;
	int ret;

	/* retain the flush/freeze bit */
	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
	data |= MIB_COUNTER_READ;
	data |= (addr << MIB_COUNTER_INDEX_S);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);

231 232 233
	ret = regmap_read_poll_timeout(dev->regmap[2],
			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
			val, !(val & MIB_COUNTER_READ), 10, 1000);
234
	/* failed to read MIB. get out of loop */
235
	if (ret) {
236 237 238 239 240 241 242 243 244 245 246 247
		dev_dbg(dev->dev, "Failed to get MIB\n");
		return;
	}

	/* count resets upon read */
	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
	*cnt += data;
}

static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
			      u64 *dropped, u64 *cnt)
{
248
	addr = dev->info->mib_names[addr].index;
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	ksz9477_r_mib_cnt(dev, port, addr, cnt);
}

static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
{
	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
	struct ksz_port *p = &dev->ports[port];

	/* enable/disable the port for flush/freeze function */
	mutex_lock(&p->mib.cnt_mutex);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);

	/* used by MIB counter reading code to know freeze is enabled */
	p->freeze = freeze;
	mutex_unlock(&p->mib.cnt_mutex);
}

static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
{
	struct ksz_port_mib *mib = &dev->ports[port].mib;

	/* flush all enabled port MIB counters */
	mutex_lock(&mib->cnt_mutex);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
		     MIB_COUNTER_FLUSH_FREEZE);
	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
	mutex_unlock(&mib->cnt_mutex);

	mib->cnt_ptr = 0;
279
	memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
280 281
}

282
static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
283 284
						      int port,
						      enum dsa_tag_protocol mp)
285
{
286 287 288 289 290 291
	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
	struct ksz_device *dev = ds->priv;

	if (dev->features & IS_9893)
		proto = DSA_TAG_PROTO_KSZ9893;
	return proto;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
}

static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
	struct ksz_device *dev = ds->priv;
	u16 val = 0xffff;

	/* No real PHY after this. Simulate the PHY.
	 * A fixed PHY can be setup in the device tree, but this function is
	 * still called for that port during initialization.
	 * For RGMII PHY there is no way to access it so the fixed PHY should
	 * be used.  For SGMII PHY the supporting code will be added later.
	 */
	if (addr >= dev->phy_port_cnt) {
		struct ksz_port *p = &dev->ports[addr];

		switch (reg) {
		case MII_BMCR:
			val = 0x1140;
			break;
		case MII_BMSR:
			val = 0x796d;
			break;
		case MII_PHYSID1:
			val = 0x0022;
			break;
		case MII_PHYSID2:
			val = 0x1631;
			break;
		case MII_ADVERTISE:
			val = 0x05e1;
			break;
		case MII_LPA:
			val = 0xc5e1;
			break;
		case MII_CTRL1000:
			val = 0x0700;
			break;
		case MII_STAT1000:
			if (p->phydev.speed == SPEED_1000)
				val = 0x3800;
			else
				val = 0;
			break;
		}
	} else {
		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
	}

	return val;
}

static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
			       u16 val)
{
	struct ksz_device *dev = ds->priv;

	/* No real PHY after this. */
	if (addr >= dev->phy_port_cnt)
		return 0;
352 353 354 355

	/* No gigabit support.  Do not write to this register. */
	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
		return 0;
356 357 358 359 360 361 362 363
	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);

	return 0;
}

static void ksz9477_get_strings(struct dsa_switch *ds, int port,
				u32 stringset, uint8_t *buf)
{
364
	struct ksz_device *dev = ds->priv;
365 366 367 368 369
	int i;

	if (stringset != ETH_SS_STATS)
		return;

370 371 372
	for (i = 0; i < dev->info->mib_cnt; i++) {
		memcpy(buf + i * ETH_GSTRING_LEN,
		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
373 374 375 376 377 378 379 380 381 382 383 384
	}
}

static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
				    u8 member)
{
	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
}

static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
				       u8 state)
{
385
	ksz_port_stp_state_set(ds, port, state, P_STP_CTRL);
386 387 388 389 390 391
}

static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
{
	u8 data;

392 393 394 395
	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);

396
	if (port < dev->info->port_cnt) {
397 398 399 400 401 402 403 404 405 406 407 408 409 410
		/* flush individual port */
		ksz_pread8(dev, port, P_STP_CTRL, &data);
		if (!(data & PORT_LEARN_DISABLE))
			ksz_pwrite8(dev, port, P_STP_CTRL,
				    data | PORT_LEARN_DISABLE);
		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
		ksz_pwrite8(dev, port, P_STP_CTRL, data);
	} else {
		/* flush all */
		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
	}
}

static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
411 412
				       bool flag,
				       struct netlink_ext_ack *extack)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
{
	struct ksz_device *dev = ds->priv;

	if (flag) {
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, true);
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
	} else {
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, false);
	}

	return 0;
}

429
static int ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
430 431
				 const struct switchdev_obj_port_vlan *vlan,
				 struct netlink_ext_ack *extack)
432 433 434 435
{
	struct ksz_device *dev = ds->priv;
	u32 vlan_table[3];
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
436
	int err;
437

438 439
	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
	if (err) {
440
		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
441
		return err;
442
	}
443

444 445 446 447 448 449
	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
	if (untagged)
		vlan_table[1] |= BIT(port);
	else
		vlan_table[1] &= ~BIT(port);
	vlan_table[1] &= ~(BIT(dev->cpu_port));
450

451
	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
452

453 454
	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
	if (err) {
455
		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
456
		return err;
457
	}
458 459 460 461

	/* change PVID */
	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
462 463

	return 0;
464 465 466 467 468 469 470 471 472 473 474 475 476
}

static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
				 const struct switchdev_obj_port_vlan *vlan)
{
	struct ksz_device *dev = ds->priv;
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	u32 vlan_table[3];
	u16 pvid;

	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
	pvid = pvid & 0xFFF;

477 478 479 480
	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
		dev_dbg(dev->dev, "Failed to get vlan table\n");
		return -ETIMEDOUT;
	}
481

482
	vlan_table[2] &= ~BIT(port);
483

484 485
	if (pvid == vlan->vid)
		pvid = 1;
486

487 488
	if (untagged)
		vlan_table[1] &= ~BIT(port);
489

490 491 492
	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
		dev_dbg(dev->dev, "Failed to set vlan table\n");
		return -ETIMEDOUT;
493 494 495 496 497 498 499 500
	}

	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);

	return 0;
}

static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
501 502
				const unsigned char *addr, u16 vid,
				struct dsa_db db)
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
{
	struct ksz_device *dev = ds->priv;
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* find any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
524 525
	ret = ksz9477_wait_alu_ready(dev);
	if (ret) {
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	/* read ALU entry */
	ksz9477_read_table(dev, alu_table);

	/* update ALU entry */
	alu_table[0] = ALU_V_STATIC_VALID;
	alu_table[1] |= BIT(port);
	if (vid)
		alu_table[1] |= ALU_V_USE_FID;
	alu_table[2] = (vid << ALU_V_FID_S);
	alu_table[2] |= ((addr[0] << 8) | addr[1]);
	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
	alu_table[3] |= ((addr[4] << 8) | addr[5]);

	ksz9477_write_table(dev, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
548 549
	ret = ksz9477_wait_alu_ready(dev);
	if (ret)
550 551 552 553 554 555 556 557 558
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
559 560
				const unsigned char *addr, u16 vid,
				struct dsa_db db)
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
{
	struct ksz_device *dev = ds->priv;
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* read any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
582 583
	ret = ksz9477_wait_alu_ready(dev);
	if (ret) {
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
	if (alu_table[0] & ALU_V_STATIC_VALID) {
		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);

		/* clear forwarding port */
		alu_table[2] &= ~BIT(port);

		/* if there is no port to forward, clear table */
		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
			alu_table[0] = 0;
			alu_table[1] = 0;
			alu_table[2] = 0;
			alu_table[3] = 0;
		}
	} else {
		alu_table[0] = 0;
		alu_table[1] = 0;
		alu_table[2] = 0;
		alu_table[3] = 0;
	}

	ksz9477_write_table(dev, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
616 617
	ret = ksz9477_wait_alu_ready(dev);
	if (ret)
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
{
	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
			ALU_V_PRIO_AGE_CNT_M;
	alu->mstp = alu_table[0] & ALU_V_MSTP_M;

	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;

	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;

	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
	alu->mac[1] = alu_table[2] & 0xFF;
	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
	alu->mac[5] = alu_table[3] & 0xFF;
}

static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
				 dsa_fdb_dump_cb_t *cb, void *data)
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;
	u32 ksz_data;
	u32 alu_table[4];
	struct alu_struct alu;
	int timeout;

	mutex_lock(&dev->alu_mutex);

	/* start ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);

	do {
		timeout = 1000;
		do {
			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
				break;
			usleep_range(1, 10);
		} while (timeout-- > 0);

		if (!timeout) {
			dev_dbg(dev->dev, "Failed to search ALU\n");
			ret = -ETIMEDOUT;
			goto exit;
		}

		/* read ALU table */
		ksz9477_read_table(dev, alu_table);

		ksz9477_convert_alu(&alu, alu_table);

		if (alu.port_forward & BIT(port)) {
			ret = cb(alu.mac, alu.fid, alu.is_static, data);
			if (ret)
				goto exit;
		}
	} while (ksz_data & ALU_START);

exit:

	/* stop ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);

	mutex_unlock(&dev->alu_mutex);

	return ret;
}

701
static int ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
702 703
				const struct switchdev_obj_port_mdb *mdb,
				struct dsa_db db)
704 705 706 707 708 709
{
	struct ksz_device *dev = ds->priv;
	u32 static_table[4];
	u32 data;
	int index;
	u32 mac_hi, mac_lo;
710
	int err = 0;
711 712 713 714 715 716 717

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

718
	for (index = 0; index < dev->info->num_statics; index++) {
719 720 721 722 723 724
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
725 726
		err = ksz9477_wait_alu_sta_ready(dev);
		if (err) {
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		ksz9477_read_table(dev, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */
			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    static_table[3] == mac_lo) {
				/* found matching one */
				break;
			}
		} else {
			/* found empty one */
			break;
		}
	}

	/* no available entry */
749
	if (index == dev->info->num_statics) {
750
		err = -ENOSPC;
751
		goto exit;
752
	}
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

	/* add entry */
	static_table[0] = ALU_V_STATIC_VALID;
	static_table[1] |= BIT(port);
	if (mdb->vid)
		static_table[1] |= ALU_V_USE_FID;
	static_table[2] = (mdb->vid << ALU_V_FID_S);
	static_table[2] |= mac_hi;
	static_table[3] = mac_lo;

	ksz9477_write_table(dev, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
769
	if (ksz9477_wait_alu_sta_ready(dev))
770 771 772 773
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);
774
	return err;
775 776 777
}

static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
778 779
				const struct switchdev_obj_port_mdb *mdb,
				struct dsa_db db)
780 781 782 783 784 785 786 787 788 789 790 791 792 793
{
	struct ksz_device *dev = ds->priv;
	u32 static_table[4];
	u32 data;
	int index;
	int ret = 0;
	u32 mac_hi, mac_lo;

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

794
	for (index = 0; index < dev->info->num_statics; index++) {
795 796 797 798 799 800
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
801 802
		ret = ksz9477_wait_alu_sta_ready(dev);
		if (ret) {
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		ksz9477_read_table(dev, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */

			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    static_table[3] == mac_lo) {
				/* found matching one */
				break;
			}
		}
	}

	/* no available entry */
823
	if (index == dev->info->num_statics)
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		goto exit;

	/* clear port */
	static_table[1] &= ~BIT(port);

	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
		/* delete entry */
		static_table[0] = 0;
		static_table[1] = 0;
		static_table[2] = 0;
		static_table[3] = 0;
	}

	ksz9477_write_table(dev, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
843 844
	ret = ksz9477_wait_alu_sta_ready(dev);
	if (ret)
845 846 847 848 849 850 851 852 853 854
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
				   struct dsa_mall_mirror_tc_entry *mirror,
855
				   bool ingress, struct netlink_ext_ack *extack)
856 857
{
	struct ksz_device *dev = ds->priv;
858 859 860 861 862 863 864
	u8 data;
	int p;

	/* Limit to one sniffer port
	 * Check if any of the port is already set for sniffing
	 * If yes, instruct the user to remove the previous entry & exit
	 */
865
	for (p = 0; p < dev->info->port_cnt; p++) {
866 867 868 869 870 871 872 873 874 875 876 877
		/* Skip the current sniffing port */
		if (p == mirror->to_local_port)
			continue;

		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);

		if (data & PORT_MIRROR_SNIFFER) {
			NL_SET_ERR_MSG_MOD(extack,
					   "Sniffer port is already configured, delete existing rules & retry");
			return -EBUSY;
		}
	}
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

	if (ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);

	/* configure mirror port */
	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
		     PORT_MIRROR_SNIFFER, true);

	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);

	return 0;
}

static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
				    struct dsa_mall_mirror_tc_entry *mirror)
{
	struct ksz_device *dev = ds->priv;
897
	bool in_use = false;
898
	u8 data;
899
	int p;
900 901 902 903 904 905 906

	if (mirror->ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);


907
	/* Check if any of the port is still referring to sniffer port */
908
	for (p = 0; p < dev->info->port_cnt; p++) {
909 910 911 912 913 914 915 916 917 918
		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);

		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
			in_use = true;
			break;
		}
	}

	/* delete sniffing if there are no other mirroring rules */
	if (!in_use)
919 920 921 922
		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
			     PORT_MIRROR_SNIFFER, false);
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
{
	bool gbit;

	if (dev->features & NEW_XMII)
		gbit = !(data & PORT_MII_NOT_1GBIT);
	else
		gbit = !!(data & PORT_MII_1000MBIT_S1);
	return gbit;
}

static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
{
	if (dev->features & NEW_XMII) {
		if (gbit)
			*data &= ~PORT_MII_NOT_1GBIT;
		else
			*data |= PORT_MII_NOT_1GBIT;
	} else {
		if (gbit)
			*data |= PORT_MII_1000MBIT_S1;
		else
			*data &= ~PORT_MII_1000MBIT_S1;
	}
}

static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
{
	int mode;

	if (dev->features & NEW_XMII) {
		switch (data & PORT_MII_SEL_M) {
		case PORT_MII_SEL:
			mode = 0;
			break;
		case PORT_RMII_SEL:
			mode = 1;
			break;
		case PORT_GMII_SEL:
			mode = 2;
			break;
		default:
			mode = 3;
		}
	} else {
		switch (data & PORT_MII_SEL_M) {
		case PORT_MII_SEL_S1:
			mode = 0;
			break;
		case PORT_RMII_SEL_S1:
			mode = 1;
			break;
		case PORT_GMII_SEL_S1:
			mode = 2;
			break;
		default:
			mode = 3;
		}
	}
	return mode;
}

static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
{
	u8 xmii;

	if (dev->features & NEW_XMII) {
		switch (mode) {
		case 0:
			xmii = PORT_MII_SEL;
			break;
		case 1:
			xmii = PORT_RMII_SEL;
			break;
		case 2:
			xmii = PORT_GMII_SEL;
			break;
		default:
			xmii = PORT_RGMII_SEL;
			break;
		}
	} else {
		switch (mode) {
		case 0:
			xmii = PORT_MII_SEL_S1;
			break;
		case 1:
			xmii = PORT_RMII_SEL_S1;
			break;
		case 2:
			xmii = PORT_GMII_SEL_S1;
			break;
		default:
			xmii = PORT_RGMII_SEL_S1;
			break;
		}
	}
	*data &= ~PORT_MII_SEL_M;
	*data |= xmii;
}

static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
{
	phy_interface_t interface;
	bool gbit;
	int mode;
	u8 data8;

	if (port < dev->phy_port_cnt)
		return PHY_INTERFACE_MODE_NA;
	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
	gbit = ksz9477_get_gbit(dev, data8);
	mode = ksz9477_get_xmii(dev, data8);
	switch (mode) {
	case 2:
		interface = PHY_INTERFACE_MODE_GMII;
		if (gbit)
			break;
1041
		fallthrough;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	case 0:
		interface = PHY_INTERFACE_MODE_MII;
		break;
	case 1:
		interface = PHY_INTERFACE_MODE_RMII;
		break;
	default:
		interface = PHY_INTERFACE_MODE_RGMII;
		if (data8 & PORT_RGMII_ID_EG_ENABLE)
			interface = PHY_INTERFACE_MODE_RGMII_TXID;
		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
			interface = PHY_INTERFACE_MODE_RGMII_RXID;
			if (data8 & PORT_RGMII_ID_EG_ENABLE)
				interface = PHY_INTERFACE_MODE_RGMII_ID;
		}
		break;
1058
	}
1059
	return interface;
1060 1061
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
				   u8 dev_addr, u16 reg_addr, u16 val)
{
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
}

static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
{
	/* Apply PHY settings to address errata listed in
	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
	 * Silicon Errata and Data Sheet Clarification documents:
	 *
	 * Register settings are needed to improve PHY receive performance
	 */
	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);

	/* Transmit waveform amplitude can be improved
	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
	 */
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);

	/* Energy Efficient Ethernet (EEE) feature select must
	 * be manually disabled (except on KSZ8565 which is 100Mbit)
	 */
	if (dev->features & GBIT_SUPPORT)
		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);

	/* Register settings are required to meet data sheet
	 * supply current specifications
	 */
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
}

1118 1119 1120
static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
	struct ksz_port *p = &dev->ports[port];
1121 1122 1123
	struct dsa_switch *ds = dev->ds;
	u8 data8, member;
	u16 data16;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	/* enable tag tail for host port */
	if (cpu_port)
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
			     true);

	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);

	/* set back pressure */
	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);

	/* enable broadcast storm limit */
	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);

	/* disable DiffServ priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);

	/* replace priority */
	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
		     false);
	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
			   MTI_PVID_REPLACE, false);

	/* enable 802.1p priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);

	if (port < dev->phy_port_cnt) {
		/* do not force flow control */
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
			     false);

1156
		if (dev->info->phy_errata_9477)
1157
			ksz9477_phy_errata_setup(dev, port);
1158 1159 1160 1161 1162 1163 1164 1165
	} else {
		/* force flow control */
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
			     true);

		/* configure MAC to 1G & RGMII mode */
		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1166
		switch (p->interface) {
1167
		case PHY_INTERFACE_MODE_MII:
1168 1169
			ksz9477_set_xmii(dev, 0, &data8);
			ksz9477_set_gbit(dev, false, &data8);
1170 1171 1172
			p->phydev.speed = SPEED_100;
			break;
		case PHY_INTERFACE_MODE_RMII:
1173 1174
			ksz9477_set_xmii(dev, 1, &data8);
			ksz9477_set_gbit(dev, false, &data8);
1175 1176 1177
			p->phydev.speed = SPEED_100;
			break;
		case PHY_INTERFACE_MODE_GMII:
1178 1179
			ksz9477_set_xmii(dev, 2, &data8);
			ksz9477_set_gbit(dev, true, &data8);
1180 1181 1182
			p->phydev.speed = SPEED_1000;
			break;
		default:
1183 1184
			ksz9477_set_xmii(dev, 3, &data8);
			ksz9477_set_gbit(dev, true, &data8);
1185 1186
			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1187 1188
			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1189
				data8 |= PORT_RGMII_ID_IG_ENABLE;
1190 1191
			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1192
				data8 |= PORT_RGMII_ID_EG_ENABLE;
1193 1194 1195
			/* On KSZ9893, disable RGMII in-band status support */
			if (dev->features & IS_9893)
				data8 &= ~PORT_MII_MAC_MODE;
1196 1197 1198 1199 1200 1201
			p->phydev.speed = SPEED_1000;
			break;
		}
		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
		p->phydev.duplex = 1;
	}
1202

1203
	if (cpu_port)
1204
		member = dsa_user_ports(ds);
1205
	else
1206 1207
		member = BIT(dsa_upstream_port(ds, port));

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	ksz9477_cfg_port_member(dev, port, member);

	/* clear pending interrupts */
	if (port < dev->phy_port_cnt)
		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}

static void ksz9477_config_cpu_port(struct dsa_switch *ds)
{
	struct ksz_device *dev = ds->priv;
	struct ksz_port *p;
	int i;

1221 1222 1223
	for (i = 0; i < dev->info->port_cnt; i++) {
		if (dsa_is_cpu_port(ds, i) &&
		    (dev->info->cpu_ports & (1 << i))) {
1224
			phy_interface_t interface;
1225 1226
			const char *prev_msg;
			const char *prev_mode;
1227

1228
			dev->cpu_port = i;
1229
			p = &dev->ports[i];
1230

1231 1232 1233 1234 1235
			/* Read from XMII register to determine host port
			 * interface.  If set specifically in device tree
			 * note the difference to help debugging.
			 */
			interface = ksz9477_get_interface(dev, i);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
			if (!p->interface) {
				if (dev->compat_interface) {
					dev_warn(dev->dev,
						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
						 "Please update your device tree.\n",
						 i);
					p->interface = dev->compat_interface;
				} else {
					p->interface = interface;
				}
			}
1247
			if (interface && interface != p->interface) {
1248 1249 1250 1251 1252 1253 1254 1255 1256
				prev_msg = " instead of ";
				prev_mode = phy_modes(interface);
			} else {
				prev_msg = "";
				prev_mode = "";
			}
			dev_info(dev->dev,
				 "Port%d: using phy mode %s%s%s\n",
				 i,
1257
				 phy_modes(p->interface),
1258 1259
				 prev_msg,
				 prev_mode);
1260

1261 1262 1263 1264 1265 1266
			/* enable cpu port */
			ksz9477_port_setup(dev, i, true);
			p->on = 1;
		}
	}

1267
	for (i = 0; i < dev->info->port_cnt; i++) {
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		if (i == dev->cpu_port)
			continue;
		p = &dev->ports[i];

		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
		p->on = 1;
		if (i < dev->phy_port_cnt)
			p->phy = 1;
		if (dev->chip_id == 0x00947700 && i == 6) {
			p->sgmii = 1;

			/* SGMII PHY detection code is not implemented yet. */
			p->phy = 0;
		}
	}
}

static int ksz9477_setup(struct dsa_switch *ds)
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;

	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1291
				       dev->info->num_vlans, GFP_KERNEL);
1292 1293 1294 1295 1296 1297 1298 1299 1300
	if (!dev->vlan_cache)
		return -ENOMEM;

	ret = ksz9477_reset_switch(dev);
	if (ret) {
		dev_err(ds->dev, "failed to reset switch\n");
		return ret;
	}

1301 1302 1303 1304
	/* Required for port partitioning. */
	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
		      true);

1305 1306 1307
	/* Do not work correctly with tail tagging. */
	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);

1308 1309 1310 1311 1312 1313 1314 1315
	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);

	/* Now we can configure default MTU value */
	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
	if (ret)
		return ret;
1316 1317 1318 1319 1320 1321 1322 1323

	ksz9477_config_cpu_port(ds);

	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);

	/* queue based egress rate limit */
	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);

1324 1325 1326
	/* enable global MIB counter freeze function */
	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);

1327 1328 1329
	/* start switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);

1330 1331
	ksz_init_mib_timer(dev);

1332 1333
	ds->configure_vlan_while_not_filtering = false;

1334 1335 1336 1337 1338 1339 1340 1341
	return 0;
}

static const struct dsa_switch_ops ksz9477_switch_ops = {
	.get_tag_protocol	= ksz9477_get_tag_protocol,
	.setup			= ksz9477_setup,
	.phy_read		= ksz9477_phy_read16,
	.phy_write		= ksz9477_phy_write16,
1342
	.phylink_mac_link_down	= ksz_mac_link_down,
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	.port_enable		= ksz_enable_port,
	.get_strings		= ksz9477_get_strings,
	.get_ethtool_stats	= ksz_get_ethtool_stats,
	.get_sset_count		= ksz_sset_count,
	.port_bridge_join	= ksz_port_bridge_join,
	.port_bridge_leave	= ksz_port_bridge_leave,
	.port_stp_state_set	= ksz9477_port_stp_state_set,
	.port_fast_age		= ksz_port_fast_age,
	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
	.port_vlan_add		= ksz9477_port_vlan_add,
	.port_vlan_del		= ksz9477_port_vlan_del,
	.port_fdb_dump		= ksz9477_port_fdb_dump,
	.port_fdb_add		= ksz9477_port_fdb_add,
	.port_fdb_del		= ksz9477_port_fdb_del,
	.port_mdb_add           = ksz9477_port_mdb_add,
	.port_mdb_del           = ksz9477_port_mdb_del,
	.port_mirror_add	= ksz9477_port_mirror_add,
	.port_mirror_del	= ksz9477_port_mirror_del,
1361
	.get_stats64		= ksz_get_stats64,
1362 1363
	.port_change_mtu	= ksz9477_change_mtu,
	.port_max_mtu		= ksz9477_max_mtu,
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
};

static u32 ksz9477_get_port_addr(int port, int offset)
{
	return PORT_CTRL_ADDR(port, offset);
}

static int ksz9477_switch_detect(struct ksz_device *dev)
{
	u8 data8;
1374 1375
	u8 id_hi;
	u8 id_lo;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	u32 id32;
	int ret;

	/* turn off SPI DO Edge select */
	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	if (ret)
		return ret;

	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
	if (ret)
		return ret;

	/* read chip id */
	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1391 1392 1393
	if (ret)
		return ret;
	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1394 1395 1396 1397 1398 1399
	if (ret)
		return ret;

	/* Number of ports can be reduced depending on chip. */
	dev->phy_port_cnt = 5;

1400 1401 1402
	/* Default capability is gigabit capable. */
	dev->features = GBIT_SUPPORT;

1403
	dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
1404 1405 1406 1407
	id_hi = (u8)(id32 >> 16);
	id_lo = (u8)(id32 >> 8);
	if ((id_lo & 0xf) == 3) {
		/* Chip is from KSZ9893 design. */
1408
		dev_info(dev->dev, "Found KSZ9893\n");
1409 1410 1411 1412 1413 1414 1415
		dev->features |= IS_9893;

		/* Chip does not support gigabit. */
		if (data8 & SW_QW_ABLE)
			dev->features &= ~GBIT_SUPPORT;
		dev->phy_port_cnt = 2;
	} else {
1416
		dev_info(dev->dev, "Found KSZ9477 or compatible\n");
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
		/* Chip uses new XMII register definitions. */
		dev->features |= NEW_XMII;

		/* Chip does not support gigabit. */
		if (!(data8 & SW_GIGABIT_ABLE))
			dev->features &= ~GBIT_SUPPORT;
	}

	/* Change chip id to known ones so it can be matched against them. */
	id32 = (id_hi << 16) | (id_lo << 8);

1428 1429 1430 1431 1432 1433 1434 1435 1436
	dev->chip_id = id32;

	return 0;
}

static int ksz9477_switch_init(struct ksz_device *dev)
{
	dev->ds->ops = &ksz9477_switch_ops;

1437
	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	return 0;
}

static void ksz9477_switch_exit(struct ksz_device *dev)
{
	ksz9477_reset_switch(dev);
}

static const struct ksz_dev_ops ksz9477_dev_ops = {
	.get_port_addr = ksz9477_get_port_addr,
	.cfg_port_member = ksz9477_cfg_port_member,
	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
	.port_setup = ksz9477_port_setup,
1452 1453
	.r_mib_cnt = ksz9477_r_mib_cnt,
	.r_mib_pkt = ksz9477_r_mib_pkt,
1454
	.r_mib_stat64 = ksz_r_mib_stats64,
1455 1456
	.freeze_mib = ksz9477_freeze_mib,
	.port_init_cnt = ksz9477_port_init_cnt,
1457 1458 1459 1460 1461 1462 1463 1464
	.shutdown = ksz9477_reset_switch,
	.detect = ksz9477_switch_detect,
	.init = ksz9477_switch_init,
	.exit = ksz9477_switch_exit,
};

int ksz9477_switch_register(struct ksz_device *dev)
{
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	int ret, i;
	struct phy_device *phydev;

	ret = ksz_switch_register(dev, &ksz9477_dev_ops);
	if (ret)
		return ret;

	for (i = 0; i < dev->phy_port_cnt; ++i) {
		if (!dsa_is_user_port(dev->ds, i))
			continue;

		phydev = dsa_to_port(dev->ds, i)->slave->phydev;

		/* The MAC actually cannot run in 1000 half-duplex mode. */
		phy_remove_link_mode(phydev,
				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);

		/* PHY does not support gigabit. */
		if (!(dev->features & GBIT_SUPPORT))
			phy_remove_link_mode(phydev,
					     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
	}
	return ret;
1488 1489 1490 1491 1492 1493
}
EXPORT_SYMBOL(ksz9477_switch_register);

MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
MODULE_LICENSE("GPL");