ice_txrx.c 62.6 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

/* The driver transmit and receive code */

#include <linux/prefetch.h>
#include <linux/mm.h>
M
Maciej Fijalkowski 已提交
8 9
#include <linux/bpf_trace.h>
#include <net/xdp.h>
10
#include "ice_txrx_lib.h"
M
Maciej Fijalkowski 已提交
11
#include "ice_lib.h"
12
#include "ice.h"
13
#include "ice_dcb_lib.h"
14
#include "ice_xsk.h"
15

16 17
#define ICE_RX_HDR_SIZE		256

18 19 20 21 22 23 24 25 26
/**
 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 * @ring: the ring that owns the buffer
 * @tx_buf: the buffer to free
 */
static void
ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
{
	if (tx_buf->skb) {
M
Maciej Fijalkowski 已提交
27 28 29 30
		if (ice_ring_is_xdp(ring))
			page_frag_free(tx_buf->raw_buf);
		else
			dev_kfree_skb_any(tx_buf->skb);
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
		if (dma_unmap_len(tx_buf, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buf, dma),
					 dma_unmap_len(tx_buf, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buf, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buf, dma),
			       dma_unmap_len(tx_buf, len),
			       DMA_TO_DEVICE);
	}

	tx_buf->next_to_watch = NULL;
	tx_buf->skb = NULL;
	dma_unmap_len_set(tx_buf, len, 0);
	/* tx_buf must be completely set up in the transmit path */
}

static struct netdev_queue *txring_txq(const struct ice_ring *ring)
{
	return netdev_get_tx_queue(ring->netdev, ring->q_index);
}

/**
 * ice_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 */
void ice_clean_tx_ring(struct ice_ring *tx_ring)
{
	u16 i;

62 63 64 65 66
	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
		ice_xsk_clean_xdp_ring(tx_ring);
		goto tx_skip_free;
	}

67 68 69 70
	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_buf)
		return;

71
	/* Free all the Tx ring sk_buffs */
72 73 74
	for (i = 0; i < tx_ring->count; i++)
		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);

75
tx_skip_free:
76
	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(txring_txq(tx_ring));
}

/**
 * ice_free_tx_ring - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 */
void ice_free_tx_ring(struct ice_ring *tx_ring)
{
	ice_clean_tx_ring(tx_ring);
	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
	tx_ring->tx_buf = NULL;

	if (tx_ring->desc) {
		dmam_free_coherent(tx_ring->dev, tx_ring->size,
				   tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

110 111 112 113 114 115 116
/**
 * ice_clean_tx_irq - Reclaim resources after transmit completes
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 */
J
Jesse Brandeburg 已提交
117
static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
118 119
{
	unsigned int total_bytes = 0, total_pkts = 0;
J
Jesse Brandeburg 已提交
120 121
	unsigned int budget = ICE_DFLT_IRQ_WORK;
	struct ice_vsi *vsi = tx_ring->vsi;
122 123 124 125 126 127 128 129
	s16 i = tx_ring->next_to_clean;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_buf;

	tx_buf = &tx_ring->tx_buf[i];
	tx_desc = ICE_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

J
Jesse Brandeburg 已提交
130 131
	prefetch(&vsi->state);

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
	do {
		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		smp_rmb();	/* prevent any other reads prior to eop_desc */

		/* if the descriptor isn't done, no work yet to do */
		if (!(eop_desc->cmd_type_offset_bsz &
		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_pkts += tx_buf->gso_segs;

M
Maciej Fijalkowski 已提交
153 154 155 156 157
		if (ice_ring_is_xdp(tx_ring))
			page_frag_free(tx_buf->raw_buf);
		else
			/* free the skb */
			napi_consume_skb(tx_buf->skb, napi_budget);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buf data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_buf;
				tx_desc = ICE_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_buf;
			tx_desc = ICE_TX_DESC(tx_ring, 0);
		}

		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
208 209

	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
210

M
Maciej Fijalkowski 已提交
211 212 213
	if (ice_ring_is_xdp(tx_ring))
		return !!budget;

214 215 216 217 218 219 220 221 222 223 224 225
	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
				  total_bytes);

#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->q_index) &&
J
Jesse Brandeburg 已提交
226
		    !test_bit(__ICE_DOWN, vsi->state)) {
227 228 229 230 231 232 233 234 235
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->q_index);
			++tx_ring->tx_stats.restart_q;
		}
	}

	return !!budget;
}

236 237
/**
 * ice_setup_tx_ring - Allocate the Tx descriptors
238
 * @tx_ring: the Tx ring to set up
239 240 241 242 243 244 245 246 247 248 249 250
 *
 * Return 0 on success, negative on error
 */
int ice_setup_tx_ring(struct ice_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;

	if (!dev)
		return -ENOMEM;

	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_buf);
251 252 253
	tx_ring->tx_buf =
		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
			     GFP_KERNEL);
254 255 256
	if (!tx_ring->tx_buf)
		return -ENOMEM;

257
	/* round up to nearest page */
258
	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
259
			      PAGE_SIZE);
260 261 262 263 264 265 266 267 268 269
	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
					    GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
270
	tx_ring->tx_stats.prev_pkt = -1;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	return 0;

err:
	devm_kfree(dev, tx_ring->tx_buf);
	tx_ring->tx_buf = NULL;
	return -ENOMEM;
}

/**
 * ice_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 */
void ice_clean_rx_ring(struct ice_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_buf)
		return;

292 293 294 295 296
	if (rx_ring->xsk_umem) {
		ice_xsk_clean_rx_ring(rx_ring);
		goto rx_skip_free;
	}

297 298 299 300 301 302 303 304 305 306 307
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];

		if (rx_buf->skb) {
			dev_kfree_skb(rx_buf->skb);
			rx_buf->skb = NULL;
		}
		if (!rx_buf->page)
			continue;

308 309 310 311 312
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
					      rx_buf->page_offset,
M
Maciej Fijalkowski 已提交
313 314
					      rx_ring->rx_buf_len,
					      DMA_FROM_DEVICE);
315 316

		/* free resources associated with mapping */
M
Maciej Fijalkowski 已提交
317
		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
318
				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
319
		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
320 321 322 323 324

		rx_buf->page = NULL;
		rx_buf->page_offset = 0;
	}

325
rx_skip_free:
326
	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_alloc = 0;
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * ice_free_rx_ring - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 */
void ice_free_rx_ring(struct ice_ring *rx_ring)
{
	ice_clean_rx_ring(rx_ring);
M
Maciej Fijalkowski 已提交
345 346 347 348
	if (rx_ring->vsi->type == ICE_VSI_PF)
		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
	rx_ring->xdp_prog = NULL;
349 350 351 352 353 354 355 356 357 358 359 360
	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
	rx_ring->rx_buf = NULL;

	if (rx_ring->desc) {
		dmam_free_coherent(rx_ring->dev, rx_ring->size,
				   rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * ice_setup_rx_ring - Allocate the Rx descriptors
361
 * @rx_ring: the Rx ring to set up
362 363 364 365 366 367 368 369 370 371 372 373
 *
 * Return 0 on success, negative on error
 */
int ice_setup_rx_ring(struct ice_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;

	if (!dev)
		return -ENOMEM;

	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_buf);
374 375 376
	rx_ring->rx_buf =
		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
			     GFP_KERNEL);
377 378 379
	if (!rx_ring->rx_buf)
		return -ENOMEM;

380 381 382
	/* round up to nearest page */
	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
			      PAGE_SIZE);
383 384 385 386 387 388 389 390 391 392
	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
					    GFP_KERNEL);
	if (!rx_ring->desc) {
		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			rx_ring->size);
		goto err;
	}

	rx_ring->next_to_use = 0;
	rx_ring->next_to_clean = 0;
M
Maciej Fijalkowski 已提交
393 394 395 396 397 398 399 400 401

	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);

	if (rx_ring->vsi->type == ICE_VSI_PF &&
	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
				     rx_ring->q_index))
			goto err;
402 403 404 405 406 407 408 409
	return 0;

err:
	devm_kfree(dev, rx_ring->rx_buf);
	rx_ring->rx_buf = NULL;
	return -ENOMEM;
}

M
Maciej Fijalkowski 已提交
410 411 412 413 414 415 416 417
/**
 * ice_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
{
418 419 420 421 422 423
	if (ice_ring_uses_build_skb(rx_ring))
		return ICE_SKB_PAD;
	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
		return XDP_PACKET_HEADROOM;

	return 0;
M
Maciej Fijalkowski 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
}

/**
 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 * @rx_ring: Rx ring
 * @xdp: xdp_buff used as input to the XDP program
 * @xdp_prog: XDP program to run
 *
 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 */
static int
ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
	    struct bpf_prog *xdp_prog)
{
	int err, result = ICE_XDP_PASS;
	struct ice_ring *xdp_ring;
	u32 act;

	act = bpf_prog_run_xdp(xdp_prog, xdp);
	switch (act) {
	case XDP_PASS:
		break;
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
		result = ice_xmit_xdp_buff(xdp, xdp_ring);
		break;
	case XDP_REDIRECT:
		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
		break;
	default:
		bpf_warn_invalid_xdp_action(act);
		/* fallthrough -- not supported action */
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
		/* fallthrough -- handle aborts by dropping frame */
	case XDP_DROP:
		result = ICE_XDP_CONSUMED;
		break;
	}

	return result;
}

/**
 * ice_xdp_xmit - submit packets to XDP ring for transmission
 * @dev: netdev
 * @n: number of XDP frames to be transmitted
 * @frames: XDP frames to be transmitted
 * @flags: transmit flags
 *
 * Returns number of frames successfully sent. Frames that fail are
 * free'ed via XDP return API.
 * For error cases, a negative errno code is returned and no-frames
 * are transmitted (caller must handle freeing frames).
 */
int
ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
	     u32 flags)
{
	struct ice_netdev_priv *np = netdev_priv(dev);
	unsigned int queue_index = smp_processor_id();
	struct ice_vsi *vsi = np->vsi;
	struct ice_ring *xdp_ring;
	int drops = 0, i;

	if (test_bit(__ICE_DOWN, vsi->state))
		return -ENETDOWN;

	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
		return -ENXIO;

	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
		return -EINVAL;

	xdp_ring = vsi->xdp_rings[queue_index];
	for (i = 0; i < n; i++) {
		struct xdp_frame *xdpf = frames[i];
		int err;

		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
		if (err != ICE_XDP_TX) {
			xdp_return_frame_rx_napi(xdpf);
			drops++;
		}
	}

	if (unlikely(flags & XDP_XMIT_FLUSH))
		ice_xdp_ring_update_tail(xdp_ring);

	return n - drops;
}

517 518 519 520 521 522 523 524
/**
 * ice_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buf struct to modify
 *
 * Returns true if the page was successfully allocated or
 * reused.
 */
525 526
static bool
ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
527 528 529 530 531
{
	struct page *page = bi->page;
	dma_addr_t dma;

	/* since we are recycling buffers we should seldom need to alloc */
532 533
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
534
		return true;
535
	}
536 537

	/* alloc new page for storage */
M
Maciej Fijalkowski 已提交
538
	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
539 540
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
541
		return false;
542
	}
543 544

	/* map page for use */
M
Maciej Fijalkowski 已提交
545
	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
546
				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
547 548 549 550 551

	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
	if (dma_mapping_error(rx_ring->dev, dma)) {
M
Maciej Fijalkowski 已提交
552
		__free_pages(page, ice_rx_pg_order(rx_ring));
553
		rx_ring->rx_stats.alloc_page_failed++;
554 555 556 557 558
		return false;
	}

	bi->dma = dma;
	bi->page = page;
M
Maciej Fijalkowski 已提交
559
	bi->page_offset = ice_rx_offset(rx_ring);
560 561
	page_ref_add(page, USHRT_MAX - 1);
	bi->pagecnt_bias = USHRT_MAX;
562 563 564 565 566 567 568 569 570

	return true;
}

/**
 * ice_alloc_rx_bufs - Replace used receive buffers
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
 *
571 572 573 574 575 576 577
 * Returns false if all allocations were successful, true if any fail. Returning
 * true signals to the caller that we didn't replace cleaned_count buffers and
 * there is more work to do.
 *
 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 * multiple tail writes per call.
578 579 580 581 582 583 584 585 586 587 588
 */
bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
{
	union ice_32b_rx_flex_desc *rx_desc;
	u16 ntu = rx_ring->next_to_use;
	struct ice_rx_buf *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
		return false;

589
	/* get the Rx descriptor and buffer based on next_to_use */
590 591 592 593
	rx_desc = ICE_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_buf[ntu];

	do {
594
		/* if we fail here, we have work remaining */
595
		if (!ice_alloc_mapped_page(rx_ring, bi))
596
			break;
597

598 599 600
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
M
Maciej Fijalkowski 已提交
601
						 rx_ring->rx_buf_len,
602 603
						 DMA_FROM_DEVICE);

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);

		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = ICE_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_buf;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.status_error0 = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		ice_release_rx_desc(rx_ring, ntu);

627
	return !!cleaned_count;
628
}
629 630 631 632 633 634 635 636 637 638 639

/**
 * ice_page_is_reserved - check if reuse is possible
 * @page: page struct to check
 */
static bool ice_page_is_reserved(struct page *page)
{
	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}

/**
640 641 642
 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 * @rx_buf: Rx buffer to adjust
 * @size: Size of adjustment
643
 *
644 645 646 647
 * Update the offset within page so that Rx buf will be ready to be reused.
 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 * so the second half of page assigned to Rx buffer will be used, otherwise
 * the offset is moved by the @size bytes
648
 */
649 650
static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
651 652
{
#if (PAGE_SIZE < 8192)
653 654
	/* flip page offset to other buffer */
	rx_buf->page_offset ^= size;
655
#else
656 657 658 659
	/* move offset up to the next cache line */
	rx_buf->page_offset += size;
#endif
}
660

661 662 663 664 665 666 667 668 669
/**
 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 * @rx_buf: buffer containing the page
 *
 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 * which will assign the current buffer to the buffer that next_to_alloc is
 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 * page freed
 */
670
static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
671
{
672
	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
673
	struct page *page = rx_buf->page;
674 675 676 677 678 679 680

	/* avoid re-using remote pages */
	if (unlikely(ice_page_is_reserved(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
681
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
682 683
		return false;
#else
M
Maciej Fijalkowski 已提交
684 685 686
#define ICE_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
	if (rx_buf->page_offset > ICE_LAST_OFFSET)
687 688 689
		return false;
#endif /* PAGE_SIZE < 8192) */

690 691 692
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
693
	 */
694 695 696 697
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX - 1);
		rx_buf->pagecnt_bias = USHRT_MAX;
	}
698 699 700 701 702

	return true;
}

/**
703
 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
M
Maciej Fijalkowski 已提交
704
 * @rx_ring: Rx descriptor ring to transact packets on
705
 * @rx_buf: buffer containing page to add
706 707
 * @skb: sk_buff to place the data into
 * @size: packet length from rx_desc
708 709
 *
 * This function will add the data contained in rx_buf->page to the skb.
710 711
 * It will just attach the page as a frag to the skb.
 * The function will then update the page offset.
712
 */
713
static void
M
Maciej Fijalkowski 已提交
714 715
ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
		struct sk_buff *skb, unsigned int size)
716
{
717
#if (PAGE_SIZE >= 8192)
718
	unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
719
#else
M
Maciej Fijalkowski 已提交
720
	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
721
#endif
722

M
Mitch Williams 已提交
723 724
	if (!size)
		return;
725 726
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
			rx_buf->page_offset, size, truesize);
727

728
	/* page is being used so we must update the page offset */
729
	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
730 731 732 733
}

/**
 * ice_reuse_rx_page - page flip buffer and store it back on the ring
734
 * @rx_ring: Rx descriptor ring to store buffers on
735 736 737 738
 * @old_buf: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 */
739 740
static void
ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
741 742 743 744 745 746 747 748 749 750
{
	u16 nta = rx_ring->next_to_alloc;
	struct ice_rx_buf *new_buf;

	new_buf = &rx_ring->rx_buf[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

751 752 753 754 755 756 757 758
	/* Transfer page from old buffer to new buffer.
	 * Move each member individually to avoid possible store
	 * forwarding stalls and unnecessary copy of skb.
	 */
	new_buf->dma = old_buf->dma;
	new_buf->page = old_buf->page;
	new_buf->page_offset = old_buf->page_offset;
	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
759 760 761
}

/**
762
 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
763
 * @rx_ring: Rx descriptor ring to transact packets on
764
 * @skb: skb to be used
765
 * @size: size of buffer to add to skb
766
 *
767 768
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
769
 */
770
static struct ice_rx_buf *
771 772
ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
	       const unsigned int size)
773 774 775 776
{
	struct ice_rx_buf *rx_buf;

	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
777
	prefetchw(rx_buf->page);
778
	*skb = rx_buf->skb;
779

M
Mitch Williams 已提交
780 781
	if (!size)
		return rx_buf;
782 783 784 785
	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
				      rx_buf->page_offset, size,
				      DMA_FROM_DEVICE);
786

787 788
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buf->pagecnt_bias--;
789

790 791
	return rx_buf;
}
792

M
Maciej Fijalkowski 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/**
 * ice_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buf: Rx buffer to pull data from
 * @xdp: xdp_buff pointing to the data
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *
ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
	      struct xdp_buff *xdp)
{
	unsigned int metasize = xdp->data - xdp->data_meta;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(xdp->data_end -
					       xdp->data_hard_start);
#endif
	struct sk_buff *skb;

	/* Prefetch first cache line of first page. If xdp->data_meta
	 * is unused, this points exactly as xdp->data, otherwise we
	 * likely have a consumer accessing first few bytes of meta
	 * data, and then actual data.
	 */
	prefetch(xdp->data_meta);
#if L1_CACHE_BYTES < 128
	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
#endif
	/* build an skb around the page buffer */
	skb = build_skb(xdp->data_hard_start, truesize);
	if (unlikely(!skb))
		return NULL;

	/* must to record Rx queue, otherwise OS features such as
	 * symmetric queue won't work
	 */
	skb_record_rx_queue(skb, rx_ring->q_index);

	/* update pointers within the skb to store the data */
	skb_reserve(skb, xdp->data - xdp->data_hard_start);
	__skb_put(skb, xdp->data_end - xdp->data);
	if (metasize)
		skb_metadata_set(skb, metasize);

	/* buffer is used by skb, update page_offset */
	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);

	return skb;
}

847
/**
848
 * ice_construct_skb - Allocate skb and populate it
849
 * @rx_ring: Rx descriptor ring to transact packets on
850
 * @rx_buf: Rx buffer to pull data from
M
Maciej Fijalkowski 已提交
851
 * @xdp: xdp_buff pointing to the data
852
 *
853 854 855
 * This function allocates an skb. It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
856
 */
857
static struct sk_buff *
858
ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
M
Maciej Fijalkowski 已提交
859
		  struct xdp_buff *xdp)
860
{
M
Maciej Fijalkowski 已提交
861
	unsigned int size = xdp->data_end - xdp->data;
862 863
	unsigned int headlen;
	struct sk_buff *skb;
864

865
	/* prefetch first cache line of first page */
M
Maciej Fijalkowski 已提交
866
	prefetch(xdp->data);
867
#if L1_CACHE_BYTES < 128
M
Maciej Fijalkowski 已提交
868
	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
869 870
#endif /* L1_CACHE_BYTES */

871 872 873 874 875
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;
876

877 878 879 880
	skb_record_rx_queue(skb, rx_ring->q_index);
	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > ICE_RX_HDR_SIZE)
M
Maciej Fijalkowski 已提交
881
		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
882

883
	/* align pull length to size of long to optimize memcpy performance */
M
Maciej Fijalkowski 已提交
884 885
	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
							 sizeof(long)));
886

887 888 889 890 891 892
	/* if we exhaust the linear part then add what is left as a frag */
	size -= headlen;
	if (size) {
#if (PAGE_SIZE >= 8192)
		unsigned int truesize = SKB_DATA_ALIGN(size);
#else
M
Maciej Fijalkowski 已提交
893
		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
894 895 896 897 898
#endif
		skb_add_rx_frag(skb, 0, rx_buf->page,
				rx_buf->page_offset + headlen, size, truesize);
		/* buffer is used by skb, update page_offset */
		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
899
	} else {
900 901 902 903 904
		/* buffer is unused, reset bias back to rx_buf; data was copied
		 * onto skb's linear part so there's no need for adjusting
		 * page offset and we can reuse this buffer as-is
		 */
		rx_buf->pagecnt_bias++;
905 906 907 908 909 910
	}

	return skb;
}

/**
911 912 913
 * ice_put_rx_buf - Clean up used buffer and either recycle or free
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buf: Rx buffer to pull data from
914
 *
M
Maciej Fijalkowski 已提交
915 916 917
 * This function will update next_to_clean and then clean up the contents
 * of the rx_buf. It will either recycle the buffer or unmap it and free
 * the associated resources.
918
 */
919
static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
920
{
M
Maciej Fijalkowski 已提交
921 922 923 924 925 926
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

M
Mitch Williams 已提交
927 928 929
	if (!rx_buf)
		return;

930
	if (ice_can_reuse_rx_page(rx_buf)) {
M
Mitch Williams 已提交
931
		/* hand second half of page back to the ring */
932 933 934 935
		ice_reuse_rx_page(rx_ring, rx_buf);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
M
Maciej Fijalkowski 已提交
936 937 938
		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
				     ICE_RX_DMA_ATTR);
939
		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
940 941 942 943
	}

	/* clear contents of buffer_info */
	rx_buf->page = NULL;
944
	rx_buf->skb = NULL;
945 946 947 948 949 950 951 952
}

/**
 * ice_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
M
Maciej Fijalkowski 已提交
953 954
 * If the buffer is an EOP buffer, this function exits returning false,
 * otherwise return true indicating that this is in fact a non-EOP buffer.
955
 */
956 957 958
static bool
ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
	       struct sk_buff *skb)
959 960 961 962 963 964 965
{
	/* if we are the last buffer then there is nothing else to do */
#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
		return false;

	/* place skb in next buffer to be received */
M
Maciej Fijalkowski 已提交
966
	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
967 968 969 970 971 972 973
	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
974
 * @rx_ring: Rx descriptor ring to transact packets on
975 976 977
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
978
 * processing. The advantage to this is that on systems that have
979 980 981 982 983 984 985 986 987
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 */
static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
M
Maciej Fijalkowski 已提交
988 989 990
	unsigned int xdp_res, xdp_xmit = 0;
	struct bpf_prog *xdp_prog = NULL;
	struct xdp_buff xdp;
991
	bool failure;
992

M
Maciej Fijalkowski 已提交
993 994
	xdp.rxq = &rx_ring->xdp_rxq;

995
	/* start the loop to process Rx packets bounded by 'budget' */
996 997
	while (likely(total_rx_pkts < (unsigned int)budget)) {
		union ice_32b_rx_flex_desc *rx_desc;
998
		struct ice_rx_buf *rx_buf;
999
		struct sk_buff *skb;
1000
		unsigned int size;
1001 1002
		u16 stat_err_bits;
		u16 vlan_tag = 0;
1003
		u8 rx_ptype;
1004

1005
		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
		if (!ice_test_staterr(rx_desc, stat_err_bits))
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
		dma_rmb();

1023 1024 1025
		size = le16_to_cpu(rx_desc->wb.pkt_len) &
			ICE_RX_FLX_DESC_PKT_LEN_M;

M
Mitch Williams 已提交
1026
		/* retrieve a buffer from the ring */
1027
		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
M
Mitch Williams 已提交
1028

M
Maciej Fijalkowski 已提交
1029 1030 1031
		if (!size) {
			xdp.data = NULL;
			xdp.data_end = NULL;
M
Maciej Fijalkowski 已提交
1032 1033
			xdp.data_hard_start = NULL;
			xdp.data_meta = NULL;
M
Maciej Fijalkowski 已提交
1034 1035 1036 1037 1038
			goto construct_skb;
		}

		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
M
Maciej Fijalkowski 已提交
1039
		xdp.data_meta = xdp.data;
M
Maciej Fijalkowski 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		xdp.data_end = xdp.data + size;

		rcu_read_lock();
		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
		if (!xdp_prog) {
			rcu_read_unlock();
			goto construct_skb;
		}

		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
		rcu_read_unlock();
1051 1052 1053 1054
		if (!xdp_res)
			goto construct_skb;
		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
			unsigned int truesize;
M
Maciej Fijalkowski 已提交
1055 1056

#if (PAGE_SIZE < 8192)
1057
			truesize = ice_rx_pg_size(rx_ring) / 2;
M
Maciej Fijalkowski 已提交
1058
#else
1059 1060
			truesize = SKB_DATA_ALIGN(ice_rx_offset(rx_ring) +
						  size);
M
Maciej Fijalkowski 已提交
1061
#endif
1062 1063 1064 1065
			xdp_xmit |= xdp_res;
			ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
		} else {
			rx_buf->pagecnt_bias++;
M
Maciej Fijalkowski 已提交
1066
		}
1067 1068 1069 1070 1071 1072
		total_rx_bytes += size;
		total_rx_pkts++;

		cleaned_count++;
		ice_put_rx_buf(rx_ring, rx_buf);
		continue;
M
Maciej Fijalkowski 已提交
1073
construct_skb:
1074
		if (skb)
M
Maciej Fijalkowski 已提交
1075
			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
M
Maciej Fijalkowski 已提交
1076 1077
		else if (ice_ring_uses_build_skb(rx_ring))
			skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1078
		else
M
Maciej Fijalkowski 已提交
1079
			skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1080 1081 1082 1083

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buf_failed++;
M
Mitch Williams 已提交
1084 1085
			if (rx_buf)
				rx_buf->pagecnt_bias++;
1086
			break;
1087
		}
1088

1089
		ice_put_rx_buf(rx_ring, rx_buf);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		cleaned_count++;

		/* skip if it is NOP desc */
		if (ice_is_non_eop(rx_ring, rx_desc, skb))
			continue;

		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
			dev_kfree_skb_any(skb);
			continue;
		}

		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
		if (ice_test_staterr(rx_desc, stat_err_bits))
			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);

1106 1107
		/* pad the skb if needed, to make a valid ethernet frame */
		if (eth_skb_pad(skb)) {
1108 1109 1110 1111 1112 1113 1114
			skb = NULL;
			continue;
		}

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1115
		/* populate checksum, VLAN, and protocol */
1116 1117 1118
		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
			ICE_RX_FLEX_DESC_PTYPE_M;

1119 1120
		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);

1121 1122 1123 1124 1125 1126 1127
		/* send completed skb up the stack */
		ice_receive_skb(rx_ring, skb, vlan_tag);

		/* update budget accounting */
		total_rx_pkts++;
	}

1128 1129 1130
	/* return up to cleaned_count buffers to hardware */
	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);

M
Maciej Fijalkowski 已提交
1131 1132 1133
	if (xdp_prog)
		ice_finalize_xdp_rx(rx_ring, xdp_xmit);

1134
	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1135 1136 1137 1138 1139

	/* guarantee a trip back through this routine if there was a failure */
	return failure ? budget : (int)total_rx_pkts;
}

1140 1141 1142 1143
/**
 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
 * @port_info: port_info structure containing the current link speed
 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1144
 * @itr: ITR value to update
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
 *
 * Calculate how big of an increment should be applied to the ITR value passed
 * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
 * link speed.
 *
 * The following is a calculation derived from:
 *  wmem_default / (size + overhead) = desired_pkts_per_int
 *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 *
 * Assuming wmem_default is 212992 and overhead is 640 bytes per
 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 * formula down to:
 *
 *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
 * ITR = -------------------------------------------- * --------------
 *			     rate			pkt_size + 640
 */
static unsigned int
ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
				 unsigned int avg_pkt_size,
				 unsigned int itr)
1167
{
1168 1169 1170 1171 1172 1173 1174 1175 1176
	switch (port_info->phy.link_info.link_speed) {
	case ICE_AQ_LINK_SPEED_100GB:
		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
	case ICE_AQ_LINK_SPEED_50GB:
		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
1177
	case ICE_AQ_LINK_SPEED_40GB:
1178 1179 1180
		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
1181
	case ICE_AQ_LINK_SPEED_25GB:
1182 1183 1184
		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
1185
	case ICE_AQ_LINK_SPEED_20GB:
1186 1187 1188 1189 1190
		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
	case ICE_AQ_LINK_SPEED_10GB:
		/* fall through */
1191
	default:
1192 1193 1194
		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
1195
	}
1196 1197 1198 1199 1200 1201 1202

	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
		itr &= ICE_ITR_ADAPTIVE_LATENCY;
		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
	}

	return itr;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
}

/**
 * ice_update_itr - update the adaptive ITR value based on statistics
 * @q_vector: structure containing interrupt and ring information
 * @rc: structure containing ring performance data
 *
 * Stores a new ITR value based on packets and byte
 * counts during the last interrupt.  The advantage of per interrupt
 * computation is faster updates and more accurate ITR for the current
 * traffic pattern.  Constants in this function were computed
 * based on theoretical maximum wire speed and thresholds were set based
 * on testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 */
static void
ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
{
	unsigned long next_update = jiffies;
1222
	unsigned int packets, bytes, itr;
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	bool container_is_rx;

	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
		return;

	/* If itr_countdown is set it means we programmed an ITR within
	 * the last 4 interrupt cycles. This has a side effect of us
	 * potentially firing an early interrupt. In order to work around
	 * this we need to throw out any data received for a few
	 * interrupts following the update.
	 */
	if (q_vector->itr_countdown) {
		itr = rc->target_itr;
		goto clear_counts;
	}

	container_is_rx = (&q_vector->rx == rc);
	/* For Rx we want to push the delay up and default to low latency.
	 * for Tx we want to pull the delay down and default to high latency.
	 */
	itr = container_is_rx ?
		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;

	/* If we didn't update within up to 1 - 2 jiffies we can assume
	 * that either packets are coming in so slow there hasn't been
	 * any work, or that there is so much work that NAPI is dealing
	 * with interrupt moderation and we don't need to do anything.
	 */
	if (time_after(next_update, rc->next_update))
		goto clear_counts;

J
Jesse Brandeburg 已提交
1255 1256
	prefetch(q_vector->vsi->port_info);

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	packets = rc->total_pkts;
	bytes = rc->total_bytes;

	if (container_is_rx) {
		/* If Rx there are 1 to 4 packets and bytes are less than
		 * 9000 assume insufficient data to use bulk rate limiting
		 * approach unless Tx is already in bulk rate limiting. We
		 * are likely latency driven.
		 */
		if (packets && packets < 4 && bytes < 9000 &&
		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
			itr = ICE_ITR_ADAPTIVE_LATENCY;
1269
			goto adjust_by_size_and_speed;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		}
	} else if (packets < 4) {
		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
		 * bulk mode and we are receiving 4 or fewer packets just
		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
		 * that the Rx can relax.
		 */
		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
		    ICE_ITR_ADAPTIVE_MAX_USECS)
			goto clear_counts;
	} else if (packets > 32) {
		/* If we have processed over 32 packets in a single interrupt
		 * for Tx assume we need to switch over to "bulk" mode.
		 */
		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
	}

	/* We have no packets to actually measure against. This means
	 * either one of the other queues on this vector is active or
	 * we are a Tx queue doing TSO with too high of an interrupt rate.
	 *
	 * Between 4 and 56 we can assume that our current interrupt delay
	 * is only slightly too low. As such we should increase it by a small
	 * fixed amount.
	 */
	if (packets < 56) {
		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
			itr &= ICE_ITR_ADAPTIVE_LATENCY;
			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
		}
		goto clear_counts;
	}

	if (packets <= 256) {
		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
		itr &= ICE_ITR_MASK;

		/* Between 56 and 112 is our "goldilocks" zone where we are
		 * working out "just right". Just report that our current
		 * ITR is good for us.
		 */
		if (packets <= 112)
			goto clear_counts;

		/* If packet count is 128 or greater we are likely looking
		 * at a slight overrun of the delay we want. Try halving
		 * our delay to see if that will cut the number of packets
		 * in half per interrupt.
		 */
		itr >>= 1;
		itr &= ICE_ITR_MASK;
		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
			itr = ICE_ITR_ADAPTIVE_MIN_USECS;

		goto clear_counts;
	}

	/* The paths below assume we are dealing with a bulk ITR since
	 * number of packets is greater than 256. We are just going to have
	 * to compute a value and try to bring the count under control,
	 * though for smaller packet sizes there isn't much we can do as
	 * NAPI polling will likely be kicking in sooner rather than later.
	 */
	itr = ICE_ITR_ADAPTIVE_BULK;

1337
adjust_by_size_and_speed:
1338

1339 1340 1341
	/* based on checks above packets cannot be 0 so division is safe */
	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
					       bytes / packets, itr);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

clear_counts:
	/* write back value */
	rc->target_itr = itr;

	/* next update should occur within next jiffy */
	rc->next_update = next_update + 1;

	rc->total_bytes = 0;
	rc->total_pkts = 0;
}

1354 1355 1356
/**
 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
 * @itr_idx: interrupt throttling index
1357
 * @itr: interrupt throttling value in usecs
1358
 */
1359
static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1360
{
1361
	/* The ITR value is reported in microseconds, and the register value is
1362 1363 1364 1365 1366 1367 1368 1369
	 * recorded in 2 microsecond units. For this reason we only need to
	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
	 * granularity as a shift instead of division. The mask makes sure the
	 * ITR value is never odd so we don't accidentally write into the field
	 * prior to the ITR field.
	 */
	itr &= ICE_ITR_MASK;

1370 1371
	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1372
		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1373 1374
}

1375 1376 1377 1378 1379 1380 1381 1382 1383
/* The act of updating the ITR will cause it to immediately trigger. In order
 * to prevent this from throwing off adaptive update statistics we defer the
 * update so that it can only happen so often. So after either Tx or Rx are
 * updated we make the adaptive scheme wait until either the ITR completely
 * expires via the next_update expiration or we have been through at least
 * 3 interrupts.
 */
#define ITR_COUNTDOWN_START 3

1384 1385 1386 1387
/**
 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
 */
J
Jesse Brandeburg 已提交
1388
static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1389
{
1390 1391
	struct ice_ring_container *tx = &q_vector->tx;
	struct ice_ring_container *rx = &q_vector->rx;
J
Jesse Brandeburg 已提交
1392
	struct ice_vsi *vsi = q_vector->vsi;
1393 1394
	u32 itr_val;

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
	 * interrupts to expire right away in case we have more work ready to go
	 * already
	 */
	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
		/* set target back to last user set value */
		rx->target_itr = rx->itr_setting;
		/* set current to what we just wrote and dynamic if needed */
		rx->current_itr = ICE_WB_ON_ITR_USECS |
			(rx->itr_setting & ICE_ITR_DYNAMIC);
		/* allow normal interrupt flow to start */
		q_vector->itr_countdown = 0;
		return;
	}

1412 1413 1414 1415
	/* This will do nothing if dynamic updates are not enabled */
	ice_update_itr(q_vector, tx);
	ice_update_itr(q_vector, rx);

1416 1417 1418 1419 1420 1421 1422 1423
	/* This block of logic allows us to get away with only updating
	 * one ITR value with each interrupt. The idea is to perform a
	 * pseudo-lazy update with the following criteria.
	 *
	 * 1. Rx is given higher priority than Tx if both are in same state
	 * 2. If we must reduce an ITR that is given highest priority.
	 * 3. We then give priority to increasing ITR based on amount.
	 */
1424
	if (rx->target_itr < rx->current_itr) {
1425
		/* Rx ITR needs to be reduced, this is highest priority */
1426 1427 1428 1429 1430 1431
		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
		rx->current_itr = rx->target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if ((tx->target_itr < tx->current_itr) ||
		   ((rx->target_itr - rx->current_itr) <
		    (tx->target_itr - tx->current_itr))) {
1432 1433 1434
		/* Tx ITR needs to be reduced, this is second priority
		 * Tx ITR needs to be increased more than Rx, fourth priority
		 */
1435 1436 1437 1438
		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
		tx->current_itr = tx->target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if (rx->current_itr != rx->target_itr) {
1439
		/* Rx ITR needs to be increased, third priority */
1440 1441 1442
		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
		rx->current_itr = rx->target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1443 1444 1445
	} else {
		/* Still have to re-enable the interrupts */
		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1446 1447
		if (q_vector->itr_countdown)
			q_vector->itr_countdown--;
1448 1449
	}

J
Jesse Brandeburg 已提交
1450 1451
	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
		wr32(&q_vector->vsi->back->hw,
1452
		     GLINT_DYN_CTL(q_vector->reg_idx),
1453
		     itr_val);
1454 1455
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
/**
 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
 * @q_vector: q_vector to set WB_ON_ITR on
 *
 * We need to tell hardware to write-back completed descriptors even when
 * interrupts are disabled. Descriptors will be written back on cache line
 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
 * descriptors may not be written back if they don't fill a cache line until the
 * next interrupt.
 *
 * This sets the write-back frequency to 2 microseconds as that is the minimum
 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
 * make sure hardware knows we aren't meddling with the INTENA_M bit.
 */
J
Jesse Brandeburg 已提交
1470
static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1471
{
J
Jesse Brandeburg 已提交
1472 1473
	struct ice_vsi *vsi = q_vector->vsi;

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	/* already in WB_ON_ITR mode no need to change it */
	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
		return;

	if (q_vector->num_ring_rx)
		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
						 ICE_RX_ITR));

	if (q_vector->num_ring_tx)
		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
						 ICE_TX_ITR));

	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/**
 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 */
int ice_napi_poll(struct napi_struct *napi, int budget)
{
	struct ice_q_vector *q_vector =
				container_of(napi, struct ice_q_vector, napi);
	bool clean_complete = true;
	struct ice_ring *ring;
1506
	int budget_per_ring;
1507 1508 1509 1510 1511
	int work_done = 0;

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1512 1513 1514 1515 1516 1517
	ice_for_each_ring(ring, q_vector->tx) {
		bool wd = ring->xsk_umem ?
			  ice_clean_tx_irq_zc(ring, budget) :
			  ice_clean_tx_irq(ring, budget);

		if (!wd)
1518
			clean_complete = false;
1519
	}
1520 1521

	/* Handle case where we are called by netpoll with a budget of 0 */
J
Jesse Brandeburg 已提交
1522
	if (unlikely(budget <= 0))
1523 1524
		return budget;

1525 1526 1527 1528 1529 1530
	/* normally we have 1 Rx ring per q_vector */
	if (unlikely(q_vector->num_ring_rx > 1))
		/* We attempt to distribute budget to each Rx queue fairly, but
		 * don't allow the budget to go below 1 because that would exit
		 * polling early.
		 */
1531
		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1532 1533 1534
	else
		/* Max of 1 Rx ring in this q_vector so give it the budget */
		budget_per_ring = budget;
1535 1536 1537 1538

	ice_for_each_ring(ring, q_vector->rx) {
		int cleaned;

1539 1540 1541 1542 1543 1544 1545
		/* A dedicated path for zero-copy allows making a single
		 * comparison in the irq context instead of many inside the
		 * ice_clean_rx_irq function and makes the codebase cleaner.
		 */
		cleaned = ring->xsk_umem ?
			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
			  ice_clean_rx_irq(ring, budget_per_ring);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		work_done += cleaned;
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
	}

	/* If work not completed, return budget and polling will return */
	if (!clean_complete)
		return budget;

1556 1557 1558 1559
	/* Exit the polling mode, but don't re-enable interrupts if stack might
	 * poll us due to busy-polling
	 */
	if (likely(napi_complete_done(napi, work_done)))
J
Jesse Brandeburg 已提交
1560
		ice_update_ena_itr(q_vector);
1561
	else
J
Jesse Brandeburg 已提交
1562
		ice_set_wb_on_itr(q_vector);
D
Dave Ertman 已提交
1563

B
Bruce Allan 已提交
1564
	return min_t(int, work_done, budget - 1);
1565 1566 1567
}

/**
1568
 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
 * @tx_ring: the ring to be checked
 * @size: the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 */
static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_subqueue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
	++tx_ring->tx_stats.restart_q;
	return 0;
}

/**
1591
 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1592 1593 1594 1595 1596 1597 1598 1599 1600
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns 0 if stop is not needed
 */
static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
		return 0;
1601

1602 1603 1604 1605 1606 1607 1608
	return __ice_maybe_stop_tx(tx_ring, size);
}

/**
 * ice_tx_map - Build the Tx descriptor
 * @tx_ring: ring to send buffer on
 * @first: first buffer info buffer to use
1609
 * @off: pointer to struct that holds offload parameters
1610 1611 1612 1613 1614
 *
 * This function loops over the skb data pointed to by *first
 * and gets a physical address for each memory location and programs
 * it and the length into the transmit descriptor.
 */
1615 1616 1617
static void
ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
	   struct ice_tx_offload_params *off)
1618
{
1619
	u64 td_offset, td_tag, td_cmd;
1620
	u16 i = tx_ring->next_to_use;
1621
	skb_frag_t *frag;
1622 1623 1624 1625 1626 1627
	unsigned int data_len, size;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_buf;
	struct sk_buff *skb;
	dma_addr_t dma;

1628 1629 1630
	td_tag = off->td_l2tag1;
	td_cmd = off->td_cmd;
	td_offset = off->td_offset;
1631 1632 1633 1634 1635 1636 1637
	skb = first->skb;

	data_len = skb->data_len;
	size = skb_headlen(skb);

	tx_desc = ICE_TX_DESC(tx_ring, i);

1638 1639 1640 1641 1642 1643
	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
			  ICE_TX_FLAGS_VLAN_S;
	}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_buf = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;

		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buf, len, size);
		dma_unmap_addr_set(tx_buf, dma, dma);

		/* align size to end of page */
		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
		tx_desc->buf_addr = cpu_to_le64(dma);

		/* account for data chunks larger than the hardware
		 * can handle
		 */
		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset, max_data, td_tag);

			tx_desc++;
			i++;

			if (i == tx_ring->count) {
				tx_desc = ICE_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += max_data;
			size -= max_data;

			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
			tx_desc->buf_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;

		if (i == tx_ring->count) {
			tx_desc = ICE_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_buf = &tx_ring->tx_buf[i];
	}

	/* record bytecount for BQL */
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

	/* record SW timestamp if HW timestamp is not available */
	skb_tx_timestamp(first->skb);

	i++;
	if (i == tx_ring->count)
		i = 0;

	/* write last descriptor with RS and EOP bits */
M
Maciej Fijalkowski 已提交
1718 1719 1720
	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
	tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size,
						  td_tag);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	tx_ring->next_to_use = i;

	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);

	/* notify HW of packet */
1738
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1739 1740 1741 1742 1743 1744
		writel(i, tx_ring->tail);
	}

	return;

dma_error:
1745
	/* clear DMA mappings for failed tx_buf map */
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	for (;;) {
		tx_buf = &tx_ring->tx_buf[i];
		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
		if (tx_buf == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
/**
 * ice_tx_csum - Enable Tx checksum offloads
 * @first: pointer to the first descriptor
 * @off: pointer to struct that holds offload parameters
 *
 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
 */
static
int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
	u32 l4_len = 0, l3_len = 0, l2_len = 0;
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	__be16 frag_off, protocol;
	unsigned char *exthdr;
	u32 offset, cmd = 0;
	u8 l4_proto = 0;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* compute outer L2 header size */
	l2_len = ip.hdr - skb->data;
	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;

	if (skb->encapsulation)
		return -1;

	/* Enable IP checksum offloads */
	protocol = vlan_get_protocol(skb);
	if (protocol == htons(ETH_P_IP)) {
		l4_proto = ip.v4->protocol;
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
		if (first->tx_flags & ICE_TX_FLAGS_TSO)
			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
		else
			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;

	} else if (protocol == htons(ETH_P_IPV6)) {
		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
					 &frag_off);
	} else {
		return -1;
	}

	/* compute inner L3 header size */
	l3_len = l4.hdr - ip.hdr;
	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;

	/* Enable L4 checksum offloads */
	switch (l4_proto) {
	case IPPROTO_TCP:
		/* enable checksum offloads */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
		l4_len = l4.tcp->doff;
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
		l4_len = (sizeof(struct udphdr) >> 2);
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case IPPROTO_SCTP:
1840 1841 1842 1843 1844 1845
		/* enable SCTP checksum offload */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
		l4_len = sizeof(struct sctphdr) >> 2;
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	default:
		if (first->tx_flags & ICE_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
	}

	off->td_cmd |= cmd;
	off->td_offset |= offset;
	return 1;
}

/**
1859
 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
 * @tx_ring: ring to send buffer on
 * @first: pointer to struct ice_tx_buf
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise returns 0 to indicate the flags has been set properly.
 */
static int
ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
{
	struct sk_buff *skb = first->skb;
	__be16 protocol = skb->protocol;

	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* when HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling. In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
1885
		return 0;
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	}

	/* if we have a HW VLAN tag being added, default to the HW one */
	if (skb_vlan_tag_present(skb)) {
		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;

		/* for SW VLAN, check the next protocol and store the tag */
		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
							     sizeof(_vhdr),
							     &_vhdr);
		if (!vhdr)
			return -EINVAL;

		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
				   ICE_TX_FLAGS_VLAN_S;
		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
	}

1907
	return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
}

/**
 * ice_tso - computes mss and TSO length to prepare for TSO
 * @first: pointer to struct ice_tx_buf
 * @off: pointer to struct that holds offload parameters
 *
 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
 */
static
int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	u64 cd_mss, cd_tso_len;
	u32 paylen, l4_start;
	int err;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	if (!skb_is_gso(skb))
		return 0;

	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;

1944
	/* cppcheck-suppress unreadVariable */
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
	} else {
		ip.v6->payload_len = 0;
	}

	/* determine offset of transport header */
	l4_start = l4.hdr - skb->data;

	/* remove payload length from checksum */
	paylen = skb->len - l4_start;
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));

	/* compute length of segmentation header */
	off->header_len = (l4.tcp->doff * 4) + l4_start;

	/* update gso_segs and bytecount */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
1968
	first->bytecount += (first->gso_segs - 1) * off->header_len;
1969 1970 1971 1972 1973

	cd_tso_len = skb->len - off->header_len;
	cd_mss = skb_shinfo(skb)->gso_size;

	/* record cdesc_qw1 with TSO parameters */
1974 1975 1976 1977
	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1978 1979 1980 1981
	first->tx_flags |= ICE_TX_FLAGS_TSO;
	return 1;
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
/**
 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
 * @size: transmit request size in bytes
 *
 * Due to hardware alignment restrictions (4K alignment), we need to
 * assume that we can have no more than 12K of data per descriptor, even
 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 * Thus, we need to divide by 12K. But division is slow! Instead,
 * we decompose the operation into shifts and one relatively cheap
 * multiply operation.
 *
 * To divide by 12K, we first divide by 4K, then divide by 3:
 *     To divide by 4K, shift right by 12 bits
 *     To divide by 3, multiply by 85, then divide by 256
 *     (Divide by 256 is done by shifting right by 8 bits)
 * Finally, we add one to round up. Because 256 isn't an exact multiple of
 * 3, we'll underestimate near each multiple of 12K. This is actually more
 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2000
 * segment. For our purposes this is accurate out to 1M which is orders of
2001 2002 2003
 * magnitude greater than our largest possible GSO size.
 *
 * This would then be implemented as:
B
Brett Creeley 已提交
2004
 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2005 2006 2007
 *
 * Since multiplication and division are commutative, we can reorder
 * operations into:
B
Brett Creeley 已提交
2008
 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2009 2010 2011
 */
static unsigned int ice_txd_use_count(unsigned int size)
{
B
Brett Creeley 已提交
2012
	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2013 2014 2015
}

/**
2016
 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2017 2018 2019 2020 2021 2022
 * @skb: send buffer
 *
 * Returns number of data descriptors needed for this skb.
 */
static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
{
2023
	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
	unsigned int count = 0, size = skb_headlen(skb);

	for (;;) {
		count += ice_txd_use_count(size);

		if (!nr_frags--)
			break;

		size = skb_frag_size(frag++);
	}

	return count;
}

/**
 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
 * @skb: send buffer
 *
 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
 */
static bool __ice_chk_linearize(struct sk_buff *skb)
{
2054
	const skb_frag_t *frag, *stale;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	int nr_frags, sum;

	/* no need to check if number of frags is less than 7 */
	nr_frags = skb_shinfo(skb)->nr_frags;
	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
		return false;

	/* We need to walk through the list and validate that each group
	 * of 6 fragments totals at least gso_size.
	 */
	nr_frags -= ICE_MAX_BUF_TXD - 2;
	frag = &skb_shinfo(skb)->frags[0];

2068
	/* Initialize size to the negative value of gso_size minus 1. We
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
	sum = 1 - skb_shinfo(skb)->gso_size;

	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
		sum += skb_frag_size(frag++);

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

		if (!nr_frags--)
			break;

		sum -= skb_frag_size(stale++);
	}

	return false;
}

/**
 * ice_chk_linearize - Check if there are more than 8 fragments per packet
 * @skb:      send buffer
 * @count:    number of buffers used
 *
 * Note: Our HW can't scatter-gather more than 8 fragments to build
 * a packet on the wire and so we need to figure out the cases where we
 * need to linearize the skb.
 */
static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
{
	/* Both TSO and single send will work if count is less than 8 */
	if (likely(count < ICE_MAX_BUF_TXD))
		return false;

	if (skb_is_gso(skb))
		return __ice_chk_linearize(skb);

	/* we can support up to 8 data buffers for a single send */
	return count != ICE_MAX_BUF_TXD;
}

/**
 * ice_xmit_frame_ring - Sends buffer on Tx ring
 * @skb: send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 */
static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
{
2135
	struct ice_tx_offload_params offload = { 0 };
2136
	struct ice_vsi *vsi = tx_ring->vsi;
2137 2138
	struct ice_tx_buf *first;
	unsigned int count;
2139
	int tso, csum;
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

	count = ice_xmit_desc_count(skb);
	if (ice_chk_linearize(skb, count)) {
		if (__skb_linearize(skb))
			goto out_drop;
		count = ice_txd_use_count(skb->len);
		tx_ring->tx_stats.tx_linearize++;
	}

	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
B
Brett Creeley 已提交
2155 2156
	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
			      ICE_DESCS_FOR_CTX_DESC)) {
2157 2158 2159 2160
		tx_ring->tx_stats.tx_busy++;
		return NETDEV_TX_BUSY;
	}

2161 2162
	offload.tx_ring = tx_ring;

2163 2164 2165 2166 2167
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buf[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
	first->gso_segs = 1;
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	first->tx_flags = 0;

	/* prepare the VLAN tagging flags for Tx */
	if (ice_tx_prepare_vlan_flags(tx_ring, first))
		goto out_drop;

	/* set up TSO offload */
	tso = ice_tso(first, &offload);
	if (tso < 0)
		goto out_drop;

	/* always set up Tx checksum offload */
	csum = ice_tx_csum(first, &offload);
	if (csum < 0)
		goto out_drop;

2184 2185 2186 2187 2188 2189 2190 2191 2192
	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
		     vsi->type == ICE_VSI_PF &&
		     vsi->port_info->is_sw_lldp))
		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
					ICE_TXD_CTX_QW1_CMD_S);

	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
		struct ice_tx_ctx_desc *cdesc;
		int i = tx_ring->next_to_use;

		/* grab the next descriptor */
		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
		i++;
		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

		/* setup context descriptor */
		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
		cdesc->rsvd = cpu_to_le16(0);
		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
	}
2207

2208
	ice_tx_map(tx_ring, first, &offload);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
 * @skb: send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 */
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_ring *tx_ring;

	tx_ring = vsi->tx_rings[skb->queue_mapping];

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
		return NETDEV_TX_OK;

	return ice_xmit_frame_ring(skb, tx_ring);
}