ice_txrx.c 60.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

/* The driver transmit and receive code */

#include <linux/prefetch.h>
#include <linux/mm.h>
#include "ice.h"

10 11
#define ICE_RX_HDR_SIZE		256

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/**
 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 * @ring: the ring that owns the buffer
 * @tx_buf: the buffer to free
 */
static void
ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
{
	if (tx_buf->skb) {
		dev_kfree_skb_any(tx_buf->skb);
		if (dma_unmap_len(tx_buf, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buf, dma),
					 dma_unmap_len(tx_buf, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buf, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buf, dma),
			       dma_unmap_len(tx_buf, len),
			       DMA_TO_DEVICE);
	}

	tx_buf->next_to_watch = NULL;
	tx_buf->skb = NULL;
	dma_unmap_len_set(tx_buf, len, 0);
	/* tx_buf must be completely set up in the transmit path */
}

static struct netdev_queue *txring_txq(const struct ice_ring *ring)
{
	return netdev_get_tx_queue(ring->netdev, ring->q_index);
}

/**
 * ice_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 */
void ice_clean_tx_ring(struct ice_ring *tx_ring)
{
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_buf)
		return;

	/* Free all the Tx ring sk_bufss */
	for (i = 0; i < tx_ring->count; i++)
		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);

61
	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(txring_txq(tx_ring));
}

/**
 * ice_free_tx_ring - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 */
void ice_free_tx_ring(struct ice_ring *tx_ring)
{
	ice_clean_tx_ring(tx_ring);
	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
	tx_ring->tx_buf = NULL;

	if (tx_ring->desc) {
		dmam_free_coherent(tx_ring->dev, tx_ring->size,
				   tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

95 96 97 98 99 100 101 102
/**
 * ice_clean_tx_irq - Reclaim resources after transmit completes
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 */
103 104
static bool
ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring, int napi_budget)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
{
	unsigned int total_bytes = 0, total_pkts = 0;
	unsigned int budget = vsi->work_lmt;
	s16 i = tx_ring->next_to_clean;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_buf;

	tx_buf = &tx_ring->tx_buf[i];
	tx_desc = ICE_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		smp_rmb();	/* prevent any other reads prior to eop_desc */

		/* if the descriptor isn't done, no work yet to do */
		if (!(eop_desc->cmd_type_offset_bsz &
		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_pkts += tx_buf->gso_segs;

		/* free the skb */
		napi_consume_skb(tx_buf->skb, napi_budget);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buf data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_buf;
				tx_desc = ICE_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_buf;
			tx_desc = ICE_TX_DESC(tx_ring, 0);
		}

		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.pkts += total_pkts;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_pkts += total_pkts;

	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
				  total_bytes);

#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->q_index) &&
		   !test_bit(__ICE_DOWN, vsi->state)) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->q_index);
			++tx_ring->tx_stats.restart_q;
		}
	}

	return !!budget;
}

218 219
/**
 * ice_setup_tx_ring - Allocate the Tx descriptors
220
 * @tx_ring: the Tx ring to set up
221 222 223 224 225 226 227 228 229 230 231 232
 *
 * Return 0 on success, negative on error
 */
int ice_setup_tx_ring(struct ice_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;

	if (!dev)
		return -ENOMEM;

	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_buf);
233 234 235
	tx_ring->tx_buf =
		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
			     GFP_KERNEL);
236 237 238
	if (!tx_ring->tx_buf)
		return -ENOMEM;

239
	/* round up to nearest page */
240
	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
241
			      PAGE_SIZE);
242 243 244 245 246 247 248 249 250 251
	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
					    GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
252
	tx_ring->tx_stats.prev_pkt = -1;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	return 0;

err:
	devm_kfree(dev, tx_ring->tx_buf);
	tx_ring->tx_buf = NULL;
	return -ENOMEM;
}

/**
 * ice_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 */
void ice_clean_rx_ring(struct ice_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_buf)
		return;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];

		if (rx_buf->skb) {
			dev_kfree_skb(rx_buf->skb);
			rx_buf->skb = NULL;
		}
		if (!rx_buf->page)
			continue;

285 286 287 288 289 290 291 292 293 294
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
					      rx_buf->page_offset,
					      ICE_RXBUF_2048, DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(dev, rx_buf->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
295
		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
296 297 298 299 300

		rx_buf->page = NULL;
		rx_buf->page_offset = 0;
	}

301
	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_alloc = 0;
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * ice_free_rx_ring - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 */
void ice_free_rx_ring(struct ice_ring *rx_ring)
{
	ice_clean_rx_ring(rx_ring);
	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
	rx_ring->rx_buf = NULL;

	if (rx_ring->desc) {
		dmam_free_coherent(rx_ring->dev, rx_ring->size,
				   rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * ice_setup_rx_ring - Allocate the Rx descriptors
332
 * @rx_ring: the Rx ring to set up
333 334 335 336 337 338 339 340 341 342 343 344
 *
 * Return 0 on success, negative on error
 */
int ice_setup_rx_ring(struct ice_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;

	if (!dev)
		return -ENOMEM;

	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_buf);
345 346 347
	rx_ring->rx_buf =
		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
			     GFP_KERNEL);
348 349 350
	if (!rx_ring->rx_buf)
		return -ENOMEM;

351 352 353
	/* round up to nearest page */
	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
			      PAGE_SIZE);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
					    GFP_KERNEL);
	if (!rx_ring->desc) {
		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			rx_ring->size);
		goto err;
	}

	rx_ring->next_to_use = 0;
	rx_ring->next_to_clean = 0;
	return 0;

err:
	devm_kfree(dev, rx_ring->rx_buf);
	rx_ring->rx_buf = NULL;
	return -ENOMEM;
}

/**
 * ice_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 */
static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

	/* Force memory writes to complete before letting h/w
385
	 * know there are new descriptors to fetch. (Only
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
 * ice_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buf struct to modify
 *
 * Returns true if the page was successfully allocated or
 * reused.
 */
401 402
static bool
ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
403 404 405 406 407
{
	struct page *page = bi->page;
	dma_addr_t dma;

	/* since we are recycling buffers we should seldom need to alloc */
408 409
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
410
		return true;
411
	}
412 413 414

	/* alloc new page for storage */
	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
415 416
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
417
		return false;
418
	}
419 420

	/* map page for use */
421 422
	dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
423 424 425 426 427 428

	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
429
		rx_ring->rx_stats.alloc_page_failed++;
430 431 432 433 434 435
		return false;
	}

	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
436 437
	page_ref_add(page, USHRT_MAX - 1);
	bi->pagecnt_bias = USHRT_MAX;
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

	return true;
}

/**
 * ice_alloc_rx_bufs - Replace used receive buffers
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
 *
 * Returns false if all allocations were successful, true if any fail
 */
bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
{
	union ice_32b_rx_flex_desc *rx_desc;
	u16 ntu = rx_ring->next_to_use;
	struct ice_rx_buf *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
		return false;

	/* get the RX descriptor and buffer based on next_to_use */
	rx_desc = ICE_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_buf[ntu];

	do {
		if (!ice_alloc_mapped_page(rx_ring, bi))
			goto no_bufs;

467 468 469 470 471 472
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
						 ICE_RXBUF_2048,
						 DMA_FROM_DEVICE);

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);

		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = ICE_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_buf;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.status_error0 = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		ice_release_rx_desc(rx_ring, ntu);

	return false;

no_bufs:
	if (rx_ring->next_to_use != ntu)
		ice_release_rx_desc(rx_ring, ntu);

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
}
507 508 509 510 511 512 513 514 515 516

/**
 * ice_page_is_reserved - check if reuse is possible
 * @page: page struct to check
 */
static bool ice_page_is_reserved(struct page *page)
{
	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
/**
 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 * @rx_buf: Rx buffer to adjust
 * @size: Size of adjustment
 *
 * Update the offset within page so that Rx buf will be ready to be reused.
 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 * so the second half of page assigned to Rx buffer will be used, otherwise
 * the offset is moved by the @size bytes
 */
static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
{
#if (PAGE_SIZE < 8192)
	/* flip page offset to other buffer */
	rx_buf->page_offset ^= size;
#else
	/* move offset up to the next cache line */
	rx_buf->page_offset += size;
#endif
}

539 540 541 542 543 544 545 546 547
/**
 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 * @rx_buf: buffer containing the page
 *
 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 * which will assign the current buffer to the buffer that next_to_alloc is
 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 * page freed
 */
548
static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
549
{
550 551 552
#if (PAGE_SIZE >= 8192)
	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
#endif
553
	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
554 555 556 557 558 559 560 561
	struct page *page = rx_buf->page;

	/* avoid re-using remote pages */
	if (unlikely(ice_page_is_reserved(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
562
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
563 564
		return false;
#else
565
	if (rx_buf->page_offset > last_offset)
566 567 568
		return false;
#endif /* PAGE_SIZE < 8192) */

569 570 571
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
572
	 */
573 574 575 576
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX - 1);
		rx_buf->pagecnt_bias = USHRT_MAX;
	}
577 578 579 580

	return true;
}

581
/**
582
 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
583
 * @rx_buf: buffer containing page to add
584 585
 * @skb: sk_buff to place the data into
 * @size: packet length from rx_desc
586 587
 *
 * This function will add the data contained in rx_buf->page to the skb.
588 589
 * It will just attach the page as a frag to the skb.
 * The function will then update the page offset.
590
 */
591
static void
592 593
ice_add_rx_frag(struct ice_rx_buf *rx_buf, struct sk_buff *skb,
		unsigned int size)
594
{
595 596
#if (PAGE_SIZE >= 8192)
	unsigned int truesize = SKB_DATA_ALIGN(size);
597
#else
598 599
	unsigned int truesize = ICE_RXBUF_2048;
#endif
600

601 602
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
			rx_buf->page_offset, size, truesize);
603

604
	/* page is being used so we must update the page offset */
605
	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
606 607 608 609
}

/**
 * ice_reuse_rx_page - page flip buffer and store it back on the ring
610
 * @rx_ring: Rx descriptor ring to store buffers on
611 612 613 614
 * @old_buf: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 */
615 616
static void
ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
617 618 619 620 621 622 623 624 625 626
{
	u16 nta = rx_ring->next_to_alloc;
	struct ice_rx_buf *new_buf;

	new_buf = &rx_ring->rx_buf[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

627 628 629 630 631 632 633 634
	/* Transfer page from old buffer to new buffer.
	 * Move each member individually to avoid possible store
	 * forwarding stalls and unnecessary copy of skb.
	 */
	new_buf->dma = old_buf->dma;
	new_buf->page = old_buf->page;
	new_buf->page_offset = old_buf->page_offset;
	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
635 636
}

637 638 639
/**
 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 * @rx_ring: Rx descriptor ring to transact packets on
640
 * @skb: skb to be used
641 642 643 644 645 646
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct ice_rx_buf *
647 648
ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
	       const unsigned int size)
649 650 651 652 653
{
	struct ice_rx_buf *rx_buf;

	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
	prefetchw(rx_buf->page);
654
	*skb = rx_buf->skb;
655 656 657 658 659 660

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
				      rx_buf->page_offset, size,
				      DMA_FROM_DEVICE);

661 662 663
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buf->pagecnt_bias--;

664 665 666
	return rx_buf;
}

667
/**
668
 * ice_construct_skb - Allocate skb and populate it
669
 * @rx_ring: Rx descriptor ring to transact packets on
670 671
 * @rx_buf: Rx buffer to pull data from
 * @size: the length of the packet
672
 *
673 674 675
 * This function allocates an skb. It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
676
 */
677
static struct sk_buff *
678 679
ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
		  unsigned int size)
680
{
681 682 683
	void *va = page_address(rx_buf->page) + rx_buf->page_offset;
	unsigned int headlen;
	struct sk_buff *skb;
684

685 686
	/* prefetch first cache line of first page */
	prefetch(va);
687
#if L1_CACHE_BYTES < 128
688
	prefetch((u8 *)va + L1_CACHE_BYTES);
689 690
#endif /* L1_CACHE_BYTES */

691 692 693 694 695 696 697 698 699 700 701
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	skb_record_rx_queue(skb, rx_ring->q_index);
	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > ICE_RX_HDR_SIZE)
		headlen = eth_get_headlen(va, ICE_RX_HDR_SIZE);
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));

	/* if we exhaust the linear part then add what is left as a frag */
	size -= headlen;
	if (size) {
#if (PAGE_SIZE >= 8192)
		unsigned int truesize = SKB_DATA_ALIGN(size);
#else
		unsigned int truesize = ICE_RXBUF_2048;
#endif
		skb_add_rx_frag(skb, 0, rx_buf->page,
				rx_buf->page_offset + headlen, size, truesize);
		/* buffer is used by skb, update page_offset */
		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
718
	} else {
719 720 721 722 723
		/* buffer is unused, reset bias back to rx_buf; data was copied
		 * onto skb's linear part so there's no need for adjusting
		 * page offset and we can reuse this buffer as-is
		 */
		rx_buf->pagecnt_bias++;
724 725
	}

726 727 728 729 730 731 732 733 734 735 736 737 738
	return skb;
}

/**
 * ice_put_rx_buf - Clean up used buffer and either recycle or free
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buf: Rx buffer to pull data from
 *
 * This function will  clean up the contents of the rx_buf. It will
 * either recycle the buffer or unmap it and free the associated resources.
 */
static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
{
739
		/* hand second half of page back to the ring */
740
	if (ice_can_reuse_rx_page(rx_buf)) {
741 742 743 744
		ice_reuse_rx_page(rx_ring, rx_buf);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
745 746
		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
747
		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
748 749 750 751
	}

	/* clear contents of buffer_info */
	rx_buf->page = NULL;
752
	rx_buf->skb = NULL;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
}

/**
 * ice_cleanup_headers - Correct empty headers
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 */
static bool ice_cleanup_headers(struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * ice_test_staterr - tests bits in Rx descriptor status and error fields
 * @rx_desc: pointer to receive descriptor (in le64 format)
 * @stat_err_bits: value to mask
 *
 * This function does some fast chicanery in order to return the
 * value of the mask which is really only used for boolean tests.
 * The status_error_len doesn't need to be shifted because it begins
 * at offset zero.
 */
786 787
static bool
ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, const u16 stat_err_bits)
788 789 790 791 792 793 794 795 796 797 798
{
	return !!(rx_desc->wb.status_error0 &
		  cpu_to_le16(stat_err_bits));
}

/**
 * ice_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
799
 * This function updates next to clean. If the buffer is an EOP buffer
800 801 802 803
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 */
804 805 806
static bool
ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
	       struct sk_buff *skb)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(ICE_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
		return false;

	/* place skb in next buffer to be received */
	rx_ring->rx_buf[ntc].skb = skb;
	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/**
 * ice_ptype_to_htype - get a hash type
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 */
static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
{
	return PKT_HASH_TYPE_NONE;
}

/**
 * ice_rx_hash - set the hash value in the skb
 * @rx_ring: descriptor ring
 * @rx_desc: specific descriptor
 * @skb: pointer to current skb
 * @rx_ptype: the ptype value from the descriptor
 */
static void
ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
	    struct sk_buff *skb, u8 rx_ptype)
{
	struct ice_32b_rx_flex_desc_nic *nic_mdid;
	u32 hash;

	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
		return;

	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
		return;

	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
	hash = le32_to_cpu(nic_mdid->rss_hash);
	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
}

/**
 * ice_rx_csum - Indicate in skb if checksum is good
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
 * @rx_desc: the receive descriptor
 * @ptype: the packet type decoded by hardware
 *
 * skb->protocol must be set before this function is called
 */
873 874 875
static void
ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
	    union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
{
	struct ice_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
	bool ipv4, ipv6;

	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
	rx_error = rx_status;

	decoded = ice_decode_rx_desc_ptype(ptype);

	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
	skb->ip_summed = CHECKSUM_NONE;
	skb_checksum_none_assert(skb);

	/* check if Rx checksum is enabled */
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* check if HW has decoded the packet and checksum */
	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
		return;

	if (!(decoded.known && decoded.outer_ip))
		return;

	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);

	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
		goto checksum_fail;
	else if (ipv6 && (rx_status &
		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
		goto checksum_fail;

	/* check for L4 errors and handle packets that were not able to be
	 * checksummed due to arrival speed
	 */
	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
		goto checksum_fail;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case ICE_RX_PTYPE_INNER_PROT_TCP:
	case ICE_RX_PTYPE_INNER_PROT_UDP:
	case ICE_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	default:
		break;
	}
	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
}

/**
 * ice_process_skb_fields - Populate skb header fields from Rx descriptor
936
 * @rx_ring: Rx descriptor ring packet is being transacted on
937 938 939 940 941 942 943 944
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 */
945 946 947 948
static void
ice_process_skb_fields(struct ice_ring *rx_ring,
		       union ice_32b_rx_flex_desc *rx_desc,
		       struct sk_buff *skb, u8 ptype)
949 950 951 952 953 954 955 956 957
{
	ice_rx_hash(rx_ring, rx_desc, skb, ptype);

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);

	ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
}

958 959
/**
 * ice_receive_skb - Send a completed packet up the stack
960
 * @rx_ring: Rx ring in play
961 962 963 964 965 966
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 *
 * This function sends the completed packet (via. skb) up the stack using
 * gro receive functions (with/without vlan tag)
 */
967 968
static void
ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag)
969 970
{
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
971
	    (vlan_tag & VLAN_VID_MASK))
972 973 974 975 976 977
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
	napi_gro_receive(&rx_ring->q_vector->napi, skb);
}

/**
 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
978
 * @rx_ring: Rx descriptor ring to transact packets on
979 980 981
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
982
 * processing. The advantage to this is that on systems that have
983 984 985 986 987 988 989 990 991 992 993 994 995 996
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 */
static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
	bool failure = false;

	/* start the loop to process RX packets bounded by 'budget' */
	while (likely(total_rx_pkts < (unsigned int)budget)) {
		union ice_32b_rx_flex_desc *rx_desc;
997
		struct ice_rx_buf *rx_buf;
998
		struct sk_buff *skb;
999
		unsigned int size;
1000 1001
		u16 stat_err_bits;
		u16 vlan_tag = 0;
1002
		u8 rx_ptype;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= ICE_RX_BUF_WRITE) {
			failure = failure ||
				  ice_alloc_rx_bufs(rx_ring, cleaned_count);
			cleaned_count = 0;
		}

		/* get the RX desc from RX ring based on 'next_to_clean' */
		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
		if (!ice_test_staterr(rx_desc, stat_err_bits))
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
		dma_rmb();

1029 1030 1031
		size = le16_to_cpu(rx_desc->wb.pkt_len) &
			ICE_RX_FLX_DESC_PKT_LEN_M;

1032
		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1033
		/* allocate (if needed) and populate skb */
1034 1035 1036 1037 1038 1039 1040 1041 1042
		if (skb)
			ice_add_rx_frag(rx_buf, skb, size);
		else
			skb = ice_construct_skb(rx_ring, rx_buf, size);

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buf_failed++;
			rx_buf->pagecnt_bias++;
1043
			break;
1044
		}
1045

1046
		ice_put_rx_buf(rx_ring, rx_buf);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		cleaned_count++;

		/* skip if it is NOP desc */
		if (ice_is_non_eop(rx_ring, rx_desc, skb))
			continue;

		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
			dev_kfree_skb_any(skb);
			continue;
		}

1059 1060 1061
		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
			ICE_RX_FLEX_DESC_PTYPE_M;

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
		if (ice_test_staterr(rx_desc, stat_err_bits))
			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);

		/* correct empty headers and pad skb if needed (to make valid
		 * ethernet frame
		 */
		if (ice_cleanup_headers(skb)) {
			skb = NULL;
			continue;
		}

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1077 1078 1079
		/* populate checksum, VLAN, and protocol */
		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		/* send completed skb up the stack */
		ice_receive_skb(rx_ring, skb, vlan_tag);

		/* update budget accounting */
		total_rx_pkts++;
	}

	/* update queue and vector specific stats */
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.pkts += total_rx_pkts;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

	/* guarantee a trip back through this routine if there was a failure */
	return failure ? budget : (int)total_rx_pkts;
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
static unsigned int ice_itr_divisor(struct ice_port_info *pi)
{
	switch (pi->phy.link_info.link_speed) {
	case ICE_AQ_LINK_SPEED_40GB:
		return ICE_ITR_ADAPTIVE_MIN_INC * 1024;
	case ICE_AQ_LINK_SPEED_25GB:
	case ICE_AQ_LINK_SPEED_20GB:
		return ICE_ITR_ADAPTIVE_MIN_INC * 512;
	case ICE_AQ_LINK_SPEED_100MB:
		return ICE_ITR_ADAPTIVE_MIN_INC * 32;
	default:
		return ICE_ITR_ADAPTIVE_MIN_INC * 256;
	}
}

/**
 * ice_update_itr - update the adaptive ITR value based on statistics
 * @q_vector: structure containing interrupt and ring information
 * @rc: structure containing ring performance data
 *
 * Stores a new ITR value based on packets and byte
 * counts during the last interrupt.  The advantage of per interrupt
 * computation is faster updates and more accurate ITR for the current
 * traffic pattern.  Constants in this function were computed
 * based on theoretical maximum wire speed and thresholds were set based
 * on testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 */
static void
ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
{
	unsigned int avg_wire_size, packets, bytes, itr;
	unsigned long next_update = jiffies;
	bool container_is_rx;

	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
		return;

	/* If itr_countdown is set it means we programmed an ITR within
	 * the last 4 interrupt cycles. This has a side effect of us
	 * potentially firing an early interrupt. In order to work around
	 * this we need to throw out any data received for a few
	 * interrupts following the update.
	 */
	if (q_vector->itr_countdown) {
		itr = rc->target_itr;
		goto clear_counts;
	}

	container_is_rx = (&q_vector->rx == rc);
	/* For Rx we want to push the delay up and default to low latency.
	 * for Tx we want to pull the delay down and default to high latency.
	 */
	itr = container_is_rx ?
		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;

	/* If we didn't update within up to 1 - 2 jiffies we can assume
	 * that either packets are coming in so slow there hasn't been
	 * any work, or that there is so much work that NAPI is dealing
	 * with interrupt moderation and we don't need to do anything.
	 */
	if (time_after(next_update, rc->next_update))
		goto clear_counts;

	packets = rc->total_pkts;
	bytes = rc->total_bytes;

	if (container_is_rx) {
		/* If Rx there are 1 to 4 packets and bytes are less than
		 * 9000 assume insufficient data to use bulk rate limiting
		 * approach unless Tx is already in bulk rate limiting. We
		 * are likely latency driven.
		 */
		if (packets && packets < 4 && bytes < 9000 &&
		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
			itr = ICE_ITR_ADAPTIVE_LATENCY;
			goto adjust_by_size;
		}
	} else if (packets < 4) {
		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
		 * bulk mode and we are receiving 4 or fewer packets just
		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
		 * that the Rx can relax.
		 */
		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
		    ICE_ITR_ADAPTIVE_MAX_USECS)
			goto clear_counts;
	} else if (packets > 32) {
		/* If we have processed over 32 packets in a single interrupt
		 * for Tx assume we need to switch over to "bulk" mode.
		 */
		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
	}

	/* We have no packets to actually measure against. This means
	 * either one of the other queues on this vector is active or
	 * we are a Tx queue doing TSO with too high of an interrupt rate.
	 *
	 * Between 4 and 56 we can assume that our current interrupt delay
	 * is only slightly too low. As such we should increase it by a small
	 * fixed amount.
	 */
	if (packets < 56) {
		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
			itr &= ICE_ITR_ADAPTIVE_LATENCY;
			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
		}
		goto clear_counts;
	}

	if (packets <= 256) {
		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
		itr &= ICE_ITR_MASK;

		/* Between 56 and 112 is our "goldilocks" zone where we are
		 * working out "just right". Just report that our current
		 * ITR is good for us.
		 */
		if (packets <= 112)
			goto clear_counts;

		/* If packet count is 128 or greater we are likely looking
		 * at a slight overrun of the delay we want. Try halving
		 * our delay to see if that will cut the number of packets
		 * in half per interrupt.
		 */
		itr >>= 1;
		itr &= ICE_ITR_MASK;
		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
			itr = ICE_ITR_ADAPTIVE_MIN_USECS;

		goto clear_counts;
	}

	/* The paths below assume we are dealing with a bulk ITR since
	 * number of packets is greater than 256. We are just going to have
	 * to compute a value and try to bring the count under control,
	 * though for smaller packet sizes there isn't much we can do as
	 * NAPI polling will likely be kicking in sooner rather than later.
	 */
	itr = ICE_ITR_ADAPTIVE_BULK;

adjust_by_size:
	/* If packet counts are 256 or greater we can assume we have a gross
	 * overestimation of what the rate should be. Instead of trying to fine
	 * tune it just use the formula below to try and dial in an exact value
	 * gives the current packet size of the frame.
	 */
	avg_wire_size = bytes / packets;

	/* The following is a crude approximation of:
	 *  wmem_default / (size + overhead) = desired_pkts_per_int
	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
	 *
	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
	 * formula down to
	 *
	 *  (170 * (size + 24)) / (size + 640) = ITR
	 *
	 * We first do some math on the packet size and then finally bitshift
	 * by 8 after rounding up. We also have to account for PCIe link speed
	 * difference as ITR scales based on this.
	 */
	if (avg_wire_size <= 60) {
		/* Start at 250k ints/sec */
		avg_wire_size = 4096;
	} else if (avg_wire_size <= 380) {
		/* 250K ints/sec to 60K ints/sec */
		avg_wire_size *= 40;
		avg_wire_size += 1696;
	} else if (avg_wire_size <= 1084) {
		/* 60K ints/sec to 36K ints/sec */
		avg_wire_size *= 15;
		avg_wire_size += 11452;
	} else if (avg_wire_size <= 1980) {
		/* 36K ints/sec to 30K ints/sec */
		avg_wire_size *= 5;
		avg_wire_size += 22420;
	} else {
		/* plateau at a limit of 30K ints/sec */
		avg_wire_size = 32256;
	}

	/* If we are in low latency mode halve our delay which doubles the
	 * rate to somewhere between 100K to 16K ints/sec
	 */
	if (itr & ICE_ITR_ADAPTIVE_LATENCY)
		avg_wire_size >>= 1;

	/* Resultant value is 256 times larger than it needs to be. This
	 * gives us room to adjust the value as needed to either increase
	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
	 *
	 * Use addition as we have already recorded the new latency flag
	 * for the ITR value.
	 */
	itr += DIV_ROUND_UP(avg_wire_size,
			    ice_itr_divisor(q_vector->vsi->port_info)) *
	       ICE_ITR_ADAPTIVE_MIN_INC;

	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
		itr &= ICE_ITR_ADAPTIVE_LATENCY;
		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
	}

clear_counts:
	/* write back value */
	rc->target_itr = itr;

	/* next update should occur within next jiffy */
	rc->next_update = next_update + 1;

	rc->total_bytes = 0;
	rc->total_pkts = 0;
}

1320 1321 1322
/**
 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
 * @itr_idx: interrupt throttling index
1323
 * @itr: interrupt throttling value in usecs
1324
 */
1325
static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1326
{
1327 1328 1329 1330 1331 1332 1333 1334 1335
	/* The itr value is reported in microseconds, and the register value is
	 * recorded in 2 microsecond units. For this reason we only need to
	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
	 * granularity as a shift instead of division. The mask makes sure the
	 * ITR value is never odd so we don't accidentally write into the field
	 * prior to the ITR field.
	 */
	itr &= ICE_ITR_MASK;

1336 1337
	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1338
		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1339 1340
}

1341 1342 1343 1344 1345 1346 1347 1348 1349
/* The act of updating the ITR will cause it to immediately trigger. In order
 * to prevent this from throwing off adaptive update statistics we defer the
 * update so that it can only happen so often. So after either Tx or Rx are
 * updated we make the adaptive scheme wait until either the ITR completely
 * expires via the next_update expiration or we have been through at least
 * 3 interrupts.
 */
#define ITR_COUNTDOWN_START 3

1350 1351 1352 1353 1354 1355 1356 1357
/**
 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
 * @vsi: the VSI associated with the q_vector
 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
 */
static void
ice_update_ena_itr(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
1358 1359
	struct ice_ring_container *tx = &q_vector->tx;
	struct ice_ring_container *rx = &q_vector->rx;
1360 1361
	u32 itr_val;

1362 1363 1364 1365
	/* This will do nothing if dynamic updates are not enabled */
	ice_update_itr(q_vector, tx);
	ice_update_itr(q_vector, rx);

1366 1367 1368 1369 1370 1371 1372 1373
	/* This block of logic allows us to get away with only updating
	 * one ITR value with each interrupt. The idea is to perform a
	 * pseudo-lazy update with the following criteria.
	 *
	 * 1. Rx is given higher priority than Tx if both are in same state
	 * 2. If we must reduce an ITR that is given highest priority.
	 * 3. We then give priority to increasing ITR based on amount.
	 */
1374
	if (rx->target_itr < rx->current_itr) {
1375
		/* Rx ITR needs to be reduced, this is highest priority */
1376 1377 1378 1379 1380 1381
		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
		rx->current_itr = rx->target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if ((tx->target_itr < tx->current_itr) ||
		   ((rx->target_itr - rx->current_itr) <
		    (tx->target_itr - tx->current_itr))) {
1382 1383 1384
		/* Tx ITR needs to be reduced, this is second priority
		 * Tx ITR needs to be increased more than Rx, fourth priority
		 */
1385 1386 1387 1388
		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
		tx->current_itr = tx->target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if (rx->current_itr != rx->target_itr) {
1389
		/* Rx ITR needs to be increased, third priority */
1390 1391 1392
		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
		rx->current_itr = rx->target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1393 1394 1395
	} else {
		/* Still have to re-enable the interrupts */
		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1396 1397
		if (q_vector->itr_countdown)
			q_vector->itr_countdown--;
1398 1399
	}

1400 1401 1402 1403
	if (!test_bit(__ICE_DOWN, vsi->state))
		wr32(&vsi->back->hw,
		     GLINT_DYN_CTL(vsi->hw_base_vector + q_vector->v_idx),
		     itr_val);
1404 1405
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
/**
 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 */
int ice_napi_poll(struct napi_struct *napi, int budget)
{
	struct ice_q_vector *q_vector =
				container_of(napi, struct ice_q_vector, napi);
	struct ice_vsi *vsi = q_vector->vsi;
	struct ice_pf *pf = vsi->back;
	bool clean_complete = true;
	int budget_per_ring = 0;
	struct ice_ring *ring;
	int work_done = 0;

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
	ice_for_each_ring(ring, q_vector->tx)
		if (!ice_clean_tx_irq(vsi, ring, budget))
			clean_complete = false;

	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		return budget;

	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	if (q_vector->num_ring_rx)
		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);

	ice_for_each_ring(ring, q_vector->rx) {
		int cleaned;

		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
		work_done += cleaned;
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
	}

	/* If work not completed, return budget and polling will return */
	if (!clean_complete)
		return budget;

1457 1458 1459 1460 1461
	/* Exit the polling mode, but don't re-enable interrupts if stack might
	 * poll us due to busy-polling
	 */
	if (likely(napi_complete_done(napi, work_done)))
		if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1462
			ice_update_ena_itr(vsi, q_vector);
D
Dave Ertman 已提交
1463

B
Bruce Allan 已提交
1464
	return min_t(int, work_done, budget - 1);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
}

/* helper function for building cmd/type/offset */
static __le64
build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
{
	return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
			   (td_cmd    << ICE_TXD_QW1_CMD_S) |
			   (td_offset << ICE_TXD_QW1_OFFSET_S) |
			   ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
			   (td_tag    << ICE_TXD_QW1_L2TAG1_S));
}

/**
1479
 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
 * @tx_ring: the ring to be checked
 * @size: the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 */
static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_subqueue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
	++tx_ring->tx_stats.restart_q;
	return 0;
}

/**
1502
 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1503 1504 1505 1506 1507 1508 1509 1510 1511
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns 0 if stop is not needed
 */
static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
		return 0;
1512

1513 1514 1515 1516 1517 1518 1519
	return __ice_maybe_stop_tx(tx_ring, size);
}

/**
 * ice_tx_map - Build the Tx descriptor
 * @tx_ring: ring to send buffer on
 * @first: first buffer info buffer to use
1520
 * @off: pointer to struct that holds offload parameters
1521 1522 1523 1524 1525
 *
 * This function loops over the skb data pointed to by *first
 * and gets a physical address for each memory location and programs
 * it and the length into the transmit descriptor.
 */
1526 1527 1528
static void
ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
	   struct ice_tx_offload_params *off)
1529
{
1530
	u64 td_offset, td_tag, td_cmd;
1531 1532 1533 1534 1535 1536 1537 1538
	u16 i = tx_ring->next_to_use;
	struct skb_frag_struct *frag;
	unsigned int data_len, size;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_buf;
	struct sk_buff *skb;
	dma_addr_t dma;

1539 1540 1541
	td_tag = off->td_l2tag1;
	td_cmd = off->td_cmd;
	td_offset = off->td_offset;
1542 1543 1544 1545 1546 1547 1548
	skb = first->skb;

	data_len = skb->data_len;
	size = skb_headlen(skb);

	tx_desc = ICE_TX_DESC(tx_ring, i);

1549 1550 1551 1552 1553 1554
	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
			  ICE_TX_FLAGS_VLAN_S;
	}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_buf = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;

		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buf, len, size);
		dma_unmap_addr_set(tx_buf, dma, dma);

		/* align size to end of page */
		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
		tx_desc->buf_addr = cpu_to_le64(dma);

		/* account for data chunks larger than the hardware
		 * can handle
		 */
		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset, max_data, td_tag);

			tx_desc++;
			i++;

			if (i == tx_ring->count) {
				tx_desc = ICE_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += max_data;
			size -= max_data;

			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
			tx_desc->buf_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;

		if (i == tx_ring->count) {
			tx_desc = ICE_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_buf = &tx_ring->tx_buf[i];
	}

	/* record bytecount for BQL */
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

	/* record SW timestamp if HW timestamp is not available */
	skb_tx_timestamp(first->skb);

	i++;
	if (i == tx_ring->count)
		i = 0;

	/* write last descriptor with RS and EOP bits */
	td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
	tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	tx_ring->next_to_use = i;

	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);

	/* notify HW of packet */
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
		writel(i, tx_ring->tail);

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
	}

	return;

dma_error:
	/* clear dma mappings for failed tx_buf map */
	for (;;) {
		tx_buf = &tx_ring->tx_buf[i];
		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
		if (tx_buf == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/**
 * ice_tx_csum - Enable Tx checksum offloads
 * @first: pointer to the first descriptor
 * @off: pointer to struct that holds offload parameters
 *
 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
 */
static
int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
	u32 l4_len = 0, l3_len = 0, l2_len = 0;
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	__be16 frag_off, protocol;
	unsigned char *exthdr;
	u32 offset, cmd = 0;
	u8 l4_proto = 0;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* compute outer L2 header size */
	l2_len = ip.hdr - skb->data;
	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;

	if (skb->encapsulation)
		return -1;

	/* Enable IP checksum offloads */
	protocol = vlan_get_protocol(skb);
	if (protocol == htons(ETH_P_IP)) {
		l4_proto = ip.v4->protocol;
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
		if (first->tx_flags & ICE_TX_FLAGS_TSO)
			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
		else
			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;

	} else if (protocol == htons(ETH_P_IPV6)) {
		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
					 &frag_off);
	} else {
		return -1;
	}

	/* compute inner L3 header size */
	l3_len = l4.hdr - ip.hdr;
	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;

	/* Enable L4 checksum offloads */
	switch (l4_proto) {
	case IPPROTO_TCP:
		/* enable checksum offloads */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
		l4_len = l4.tcp->doff;
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
		l4_len = (sizeof(struct udphdr) >> 2);
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case IPPROTO_SCTP:
1756 1757 1758 1759 1760 1761
		/* enable SCTP checksum offload */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
		l4_len = sizeof(struct sctphdr) >> 2;
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	default:
		if (first->tx_flags & ICE_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
	}

	off->td_cmd |= cmd;
	off->td_offset |= offset;
	return 1;
}

/**
 * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @tx_ring: ring to send buffer on
 * @first: pointer to struct ice_tx_buf
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise returns 0 to indicate the flags has been set properly.
 */
static int
ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
{
	struct sk_buff *skb = first->skb;
	__be16 protocol = skb->protocol;

	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* when HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling. In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

	/* if we have a HW VLAN tag being added, default to the HW one */
	if (skb_vlan_tag_present(skb)) {
		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;

		/* for SW VLAN, check the next protocol and store the tag */
		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
							     sizeof(_vhdr),
							     &_vhdr);
		if (!vhdr)
			return -EINVAL;

		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
				   ICE_TX_FLAGS_VLAN_S;
		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
	}

out:
	return 0;
}

/**
 * ice_tso - computes mss and TSO length to prepare for TSO
 * @first: pointer to struct ice_tx_buf
 * @off: pointer to struct that holds offload parameters
 *
 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
 */
static
int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	u64 cd_mss, cd_tso_len;
	u32 paylen, l4_start;
	int err;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	if (!skb_is_gso(skb))
		return 0;

	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;

	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
	} else {
		ip.v6->payload_len = 0;
	}

	/* determine offset of transport header */
	l4_start = l4.hdr - skb->data;

	/* remove payload length from checksum */
	paylen = skb->len - l4_start;
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));

	/* compute length of segmentation header */
	off->header_len = (l4.tcp->doff * 4) + l4_start;

	/* update gso_segs and bytecount */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
1884
	first->bytecount += (first->gso_segs - 1) * off->header_len;
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

	cd_tso_len = skb->len - off->header_len;
	cd_mss = skb_shinfo(skb)->gso_size;

	/* record cdesc_qw1 with TSO parameters */
	off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX |
			 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
			 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
			 (cd_mss << ICE_TXD_CTX_QW1_MSS_S);
	first->tx_flags |= ICE_TX_FLAGS_TSO;
	return 1;
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/**
 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
 * @size: transmit request size in bytes
 *
 * Due to hardware alignment restrictions (4K alignment), we need to
 * assume that we can have no more than 12K of data per descriptor, even
 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 * Thus, we need to divide by 12K. But division is slow! Instead,
 * we decompose the operation into shifts and one relatively cheap
 * multiply operation.
 *
 * To divide by 12K, we first divide by 4K, then divide by 3:
 *     To divide by 4K, shift right by 12 bits
 *     To divide by 3, multiply by 85, then divide by 256
 *     (Divide by 256 is done by shifting right by 8 bits)
 * Finally, we add one to round up. Because 256 isn't an exact multiple of
 * 3, we'll underestimate near each multiple of 12K. This is actually more
 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1916
 * segment. For our purposes this is accurate out to 1M which is orders of
1917 1918 1919
 * magnitude greater than our largest possible GSO size.
 *
 * This would then be implemented as:
B
Brett Creeley 已提交
1920
 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
1921 1922 1923
 *
 * Since multiplication and division are commutative, we can reorder
 * operations into:
B
Brett Creeley 已提交
1924
 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1925 1926 1927
 */
static unsigned int ice_txd_use_count(unsigned int size)
{
B
Brett Creeley 已提交
1928
	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1929 1930 1931
}

/**
1932
 * ice_xmit_desc_count - calculate number of Tx descriptors needed
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
 * @skb: send buffer
 *
 * Returns number of data descriptors needed for this skb.
 */
static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
{
	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
	unsigned int count = 0, size = skb_headlen(skb);

	for (;;) {
		count += ice_txd_use_count(size);

		if (!nr_frags--)
			break;

		size = skb_frag_size(frag++);
	}

	return count;
}

/**
 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
 * @skb: send buffer
 *
 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
 */
static bool __ice_chk_linearize(struct sk_buff *skb)
{
	const struct skb_frag_struct *frag, *stale;
	int nr_frags, sum;

	/* no need to check if number of frags is less than 7 */
	nr_frags = skb_shinfo(skb)->nr_frags;
	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
		return false;

	/* We need to walk through the list and validate that each group
	 * of 6 fragments totals at least gso_size.
	 */
	nr_frags -= ICE_MAX_BUF_TXD - 2;
	frag = &skb_shinfo(skb)->frags[0];

1984
	/* Initialize size to the negative value of gso_size minus 1. We
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
	sum = 1 - skb_shinfo(skb)->gso_size;

	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
		sum += skb_frag_size(frag++);

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

		if (!nr_frags--)
			break;

		sum -= skb_frag_size(stale++);
	}

	return false;
}

/**
 * ice_chk_linearize - Check if there are more than 8 fragments per packet
 * @skb:      send buffer
 * @count:    number of buffers used
 *
 * Note: Our HW can't scatter-gather more than 8 fragments to build
 * a packet on the wire and so we need to figure out the cases where we
 * need to linearize the skb.
 */
static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
{
	/* Both TSO and single send will work if count is less than 8 */
	if (likely(count < ICE_MAX_BUF_TXD))
		return false;

	if (skb_is_gso(skb))
		return __ice_chk_linearize(skb);

	/* we can support up to 8 data buffers for a single send */
	return count != ICE_MAX_BUF_TXD;
}

/**
 * ice_xmit_frame_ring - Sends buffer on Tx ring
 * @skb: send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 */
static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
{
2051
	struct ice_tx_offload_params offload = { 0 };
2052 2053
	struct ice_tx_buf *first;
	unsigned int count;
2054
	int tso, csum;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	count = ice_xmit_desc_count(skb);
	if (ice_chk_linearize(skb, count)) {
		if (__skb_linearize(skb))
			goto out_drop;
		count = ice_txd_use_count(skb->len);
		tx_ring->tx_stats.tx_linearize++;
	}

	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
B
Brett Creeley 已提交
2070 2071
	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
			      ICE_DESCS_FOR_CTX_DESC)) {
2072 2073 2074 2075
		tx_ring->tx_stats.tx_busy++;
		return NETDEV_TX_BUSY;
	}

2076 2077
	offload.tx_ring = tx_ring;

2078 2079 2080 2081 2082
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buf[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
	first->gso_segs = 1;
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	first->tx_flags = 0;

	/* prepare the VLAN tagging flags for Tx */
	if (ice_tx_prepare_vlan_flags(tx_ring, first))
		goto out_drop;

	/* set up TSO offload */
	tso = ice_tso(first, &offload);
	if (tso < 0)
		goto out_drop;

	/* always set up Tx checksum offload */
	csum = ice_tx_csum(first, &offload);
	if (csum < 0)
		goto out_drop;

	if (tso || offload.cd_tunnel_params) {
		struct ice_tx_ctx_desc *cdesc;
		int i = tx_ring->next_to_use;

		/* grab the next descriptor */
		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
		i++;
		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

		/* setup context descriptor */
		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
		cdesc->rsvd = cpu_to_le16(0);
		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
	}
2114

2115
	ice_tx_map(tx_ring, first, &offload);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
 * @skb: send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 */
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_ring *tx_ring;

	tx_ring = vsi->tx_rings[skb->queue_mapping];

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
		return NETDEV_TX_OK;

	return ice_xmit_frame_ring(skb, tx_ring);
}