ice_txrx.c 69.0 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

/* The driver transmit and receive code */

#include <linux/prefetch.h>
#include <linux/mm.h>
M
Maciej Fijalkowski 已提交
8 9 10
#include <linux/bpf_trace.h>
#include <net/xdp.h>
#include "ice_lib.h"
11
#include "ice.h"
12
#include "ice_dcb_lib.h"
13

14 15
#define ICE_RX_HDR_SIZE		256

16 17 18 19 20 21 22 23 24
/**
 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 * @ring: the ring that owns the buffer
 * @tx_buf: the buffer to free
 */
static void
ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
{
	if (tx_buf->skb) {
M
Maciej Fijalkowski 已提交
25 26 27 28
		if (ice_ring_is_xdp(ring))
			page_frag_free(tx_buf->raw_buf);
		else
			dev_kfree_skb_any(tx_buf->skb);
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
		if (dma_unmap_len(tx_buf, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buf, dma),
					 dma_unmap_len(tx_buf, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buf, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buf, dma),
			       dma_unmap_len(tx_buf, len),
			       DMA_TO_DEVICE);
	}

	tx_buf->next_to_watch = NULL;
	tx_buf->skb = NULL;
	dma_unmap_len_set(tx_buf, len, 0);
	/* tx_buf must be completely set up in the transmit path */
}

static struct netdev_queue *txring_txq(const struct ice_ring *ring)
{
	return netdev_get_tx_queue(ring->netdev, ring->q_index);
}

/**
 * ice_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 */
void ice_clean_tx_ring(struct ice_ring *tx_ring)
{
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_buf)
		return;

64
	/* Free all the Tx ring sk_buffs */
65 66 67
	for (i = 0; i < tx_ring->count; i++)
		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);

68
	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(txring_txq(tx_ring));
}

/**
 * ice_free_tx_ring - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 */
void ice_free_tx_ring(struct ice_ring *tx_ring)
{
	ice_clean_tx_ring(tx_ring);
	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
	tx_ring->tx_buf = NULL;

	if (tx_ring->desc) {
		dmam_free_coherent(tx_ring->dev, tx_ring->size,
				   tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

102 103 104 105 106 107 108
/**
 * ice_clean_tx_irq - Reclaim resources after transmit completes
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 */
J
Jesse Brandeburg 已提交
109
static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
110 111
{
	unsigned int total_bytes = 0, total_pkts = 0;
J
Jesse Brandeburg 已提交
112 113
	unsigned int budget = ICE_DFLT_IRQ_WORK;
	struct ice_vsi *vsi = tx_ring->vsi;
114 115 116 117 118 119 120 121
	s16 i = tx_ring->next_to_clean;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_buf;

	tx_buf = &tx_ring->tx_buf[i];
	tx_desc = ICE_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

J
Jesse Brandeburg 已提交
122 123
	prefetch(&vsi->state);

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	do {
		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		smp_rmb();	/* prevent any other reads prior to eop_desc */

		/* if the descriptor isn't done, no work yet to do */
		if (!(eop_desc->cmd_type_offset_bsz &
		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_pkts += tx_buf->gso_segs;

M
Maciej Fijalkowski 已提交
145 146 147 148 149
		if (ice_ring_is_xdp(tx_ring))
			page_frag_free(tx_buf->raw_buf);
		else
			/* free the skb */
			napi_consume_skb(tx_buf->skb, napi_budget);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buf data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_buf;
				tx_desc = ICE_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_buf;
			tx_desc = ICE_TX_DESC(tx_ring, 0);
		}

		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.pkts += total_pkts;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_pkts += total_pkts;

M
Maciej Fijalkowski 已提交
207 208 209
	if (ice_ring_is_xdp(tx_ring))
		return !!budget;

210 211 212 213 214 215 216 217 218 219 220 221
	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
				  total_bytes);

#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->q_index) &&
J
Jesse Brandeburg 已提交
222
		    !test_bit(__ICE_DOWN, vsi->state)) {
223 224 225 226 227 228 229 230 231
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->q_index);
			++tx_ring->tx_stats.restart_q;
		}
	}

	return !!budget;
}

232 233
/**
 * ice_setup_tx_ring - Allocate the Tx descriptors
234
 * @tx_ring: the Tx ring to set up
235 236 237 238 239 240 241 242 243 244 245 246
 *
 * Return 0 on success, negative on error
 */
int ice_setup_tx_ring(struct ice_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;

	if (!dev)
		return -ENOMEM;

	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_buf);
247 248 249
	tx_ring->tx_buf =
		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
			     GFP_KERNEL);
250 251 252
	if (!tx_ring->tx_buf)
		return -ENOMEM;

253
	/* round up to nearest page */
254
	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
255
			      PAGE_SIZE);
256 257 258 259 260 261 262 263 264 265
	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
					    GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
266
	tx_ring->tx_stats.prev_pkt = -1;
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	return 0;

err:
	devm_kfree(dev, tx_ring->tx_buf);
	tx_ring->tx_buf = NULL;
	return -ENOMEM;
}

/**
 * ice_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 */
void ice_clean_rx_ring(struct ice_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_buf)
		return;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];

		if (rx_buf->skb) {
			dev_kfree_skb(rx_buf->skb);
			rx_buf->skb = NULL;
		}
		if (!rx_buf->page)
			continue;

299 300 301 302 303 304 305 306 307 308
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
					      rx_buf->page_offset,
					      ICE_RXBUF_2048, DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(dev, rx_buf->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
309
		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
310 311 312 313 314

		rx_buf->page = NULL;
		rx_buf->page_offset = 0;
	}

315
	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_alloc = 0;
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * ice_free_rx_ring - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 */
void ice_free_rx_ring(struct ice_ring *rx_ring)
{
	ice_clean_rx_ring(rx_ring);
M
Maciej Fijalkowski 已提交
334 335 336 337
	if (rx_ring->vsi->type == ICE_VSI_PF)
		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
	rx_ring->xdp_prog = NULL;
338 339 340 341 342 343 344 345 346 347 348 349
	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
	rx_ring->rx_buf = NULL;

	if (rx_ring->desc) {
		dmam_free_coherent(rx_ring->dev, rx_ring->size,
				   rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * ice_setup_rx_ring - Allocate the Rx descriptors
350
 * @rx_ring: the Rx ring to set up
351 352 353 354 355 356 357 358 359 360 361 362
 *
 * Return 0 on success, negative on error
 */
int ice_setup_rx_ring(struct ice_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;

	if (!dev)
		return -ENOMEM;

	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_buf);
363 364 365
	rx_ring->rx_buf =
		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
			     GFP_KERNEL);
366 367 368
	if (!rx_ring->rx_buf)
		return -ENOMEM;

369 370 371
	/* round up to nearest page */
	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
			      PAGE_SIZE);
372 373 374 375 376 377 378 379 380 381
	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
					    GFP_KERNEL);
	if (!rx_ring->desc) {
		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			rx_ring->size);
		goto err;
	}

	rx_ring->next_to_use = 0;
	rx_ring->next_to_clean = 0;
M
Maciej Fijalkowski 已提交
382 383 384 385 386 387 388 389 390

	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);

	if (rx_ring->vsi->type == ICE_VSI_PF &&
	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
				     rx_ring->q_index))
			goto err;
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	return 0;

err:
	devm_kfree(dev, rx_ring->rx_buf);
	rx_ring->rx_buf = NULL;
	return -ENOMEM;
}

/**
 * ice_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 */
static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
{
406 407
	u16 prev_ntu = rx_ring->next_to_use;

408 409 410 411 412
	rx_ring->next_to_use = val;

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

413 414 415 416
	/* QRX_TAIL will be updated with any tail value, but hardware ignores
	 * the lower 3 bits. This makes it so we only bump tail on meaningful
	 * boundaries. Also, this allows us to bump tail on intervals of 8 up to
	 * the budget depending on the current traffic load.
417
	 */
418 419 420 421 422 423 424 425 426 427
	val &= ~0x7;
	if (prev_ntu != val) {
		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch. (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		wmb();
		writel(val, rx_ring->tail);
	}
428 429
}

M
Maciej Fijalkowski 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/**
 * ice_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
{
	return ice_is_xdp_ena_vsi(rx_ring->vsi) ? XDP_PACKET_HEADROOM : 0;
}

/**
 * ice_xdp_ring_update_tail - Updates the XDP Tx ring tail register
 * @xdp_ring: XDP Tx ring
 *
 * This function updates the XDP Tx ring tail register.
 */
static void ice_xdp_ring_update_tail(struct ice_ring *xdp_ring)
{
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.
	 */
	wmb();
	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
}

/**
 * ice_xmit_xdp_ring - submit single packet to XDP ring for transmission
 * @data: packet data pointer
 * @size: packet data size
 * @xdp_ring: XDP ring for transmission
 */
static int ice_xmit_xdp_ring(void *data, u16 size, struct ice_ring *xdp_ring)
{
	u16 i = xdp_ring->next_to_use;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_buf;
	dma_addr_t dma;

	if (!unlikely(ICE_DESC_UNUSED(xdp_ring))) {
		xdp_ring->tx_stats.tx_busy++;
		return ICE_XDP_CONSUMED;
	}

	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(xdp_ring->dev, dma))
		return ICE_XDP_CONSUMED;

	tx_buf = &xdp_ring->tx_buf[i];
	tx_buf->bytecount = size;
	tx_buf->gso_segs = 1;
	tx_buf->raw_buf = data;

	/* record length, and DMA address */
	dma_unmap_len_set(tx_buf, len, size);
	dma_unmap_addr_set(tx_buf, dma, dma);

	tx_desc = ICE_TX_DESC(xdp_ring, i);
	tx_desc->buf_addr = cpu_to_le64(dma);
	tx_desc->cmd_type_offset_bsz = build_ctob(ICE_TXD_LAST_DESC_CMD, 0,
						  size, 0);

	/* Make certain all of the status bits have been updated
	 * before next_to_watch is written.
	 */
	smp_wmb();

	i++;
	if (i == xdp_ring->count)
		i = 0;

	tx_buf->next_to_watch = tx_desc;
	xdp_ring->next_to_use = i;

	return ICE_XDP_TX;
}

/**
 * ice_xmit_xdp_buff - convert an XDP buffer to an XDP frame and send it
 * @xdp: XDP buffer
 * @xdp_ring: XDP Tx ring
 *
 * Returns negative on failure, 0 on success.
 */
static int ice_xmit_xdp_buff(struct xdp_buff *xdp, struct ice_ring *xdp_ring)
{
	struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);

	if (unlikely(!xdpf))
		return ICE_XDP_CONSUMED;

	return ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
}

/**
 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 * @rx_ring: Rx ring
 * @xdp: xdp_buff used as input to the XDP program
 * @xdp_prog: XDP program to run
 *
 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 */
static int
ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
	    struct bpf_prog *xdp_prog)
{
	int err, result = ICE_XDP_PASS;
	struct ice_ring *xdp_ring;
	u32 act;

	act = bpf_prog_run_xdp(xdp_prog, xdp);
	switch (act) {
	case XDP_PASS:
		break;
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
		result = ice_xmit_xdp_buff(xdp, xdp_ring);
		break;
	case XDP_REDIRECT:
		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
		break;
	default:
		bpf_warn_invalid_xdp_action(act);
		/* fallthrough -- not supported action */
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
		/* fallthrough -- handle aborts by dropping frame */
	case XDP_DROP:
		result = ICE_XDP_CONSUMED;
		break;
	}

	return result;
}

/**
 * ice_xdp_xmit - submit packets to XDP ring for transmission
 * @dev: netdev
 * @n: number of XDP frames to be transmitted
 * @frames: XDP frames to be transmitted
 * @flags: transmit flags
 *
 * Returns number of frames successfully sent. Frames that fail are
 * free'ed via XDP return API.
 * For error cases, a negative errno code is returned and no-frames
 * are transmitted (caller must handle freeing frames).
 */
int
ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
	     u32 flags)
{
	struct ice_netdev_priv *np = netdev_priv(dev);
	unsigned int queue_index = smp_processor_id();
	struct ice_vsi *vsi = np->vsi;
	struct ice_ring *xdp_ring;
	int drops = 0, i;

	if (test_bit(__ICE_DOWN, vsi->state))
		return -ENETDOWN;

	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
		return -ENXIO;

	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
		return -EINVAL;

	xdp_ring = vsi->xdp_rings[queue_index];
	for (i = 0; i < n; i++) {
		struct xdp_frame *xdpf = frames[i];
		int err;

		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
		if (err != ICE_XDP_TX) {
			xdp_return_frame_rx_napi(xdpf);
			drops++;
		}
	}

	if (unlikely(flags & XDP_XMIT_FLUSH))
		ice_xdp_ring_update_tail(xdp_ring);

	return n - drops;
}

/**
 * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
 * @rx_ring: Rx ring
 * @xdp_res: Result of the receive batch
 *
 * This function bumps XDP Tx tail and/or flush redirect map, and
 * should be called when a batch of packets has been processed in the
 * napi loop.
 */
static void
ice_finalize_xdp_rx(struct ice_ring *rx_ring, unsigned int xdp_res)
{
	if (xdp_res & ICE_XDP_REDIR)
		xdp_do_flush_map();

	if (xdp_res & ICE_XDP_TX) {
		struct ice_ring *xdp_ring =
			rx_ring->vsi->xdp_rings[rx_ring->q_index];

		ice_xdp_ring_update_tail(xdp_ring);
	}
}

638 639 640 641 642 643 644 645
/**
 * ice_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buf struct to modify
 *
 * Returns true if the page was successfully allocated or
 * reused.
 */
646 647
static bool
ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
648 649 650 651 652
{
	struct page *page = bi->page;
	dma_addr_t dma;

	/* since we are recycling buffers we should seldom need to alloc */
653 654
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
655
		return true;
656
	}
657 658 659

	/* alloc new page for storage */
	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
660 661
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
662
		return false;
663
	}
664 665

	/* map page for use */
666 667
	dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
668 669 670 671 672 673

	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
674
		rx_ring->rx_stats.alloc_page_failed++;
675 676 677 678 679
		return false;
	}

	bi->dma = dma;
	bi->page = page;
M
Maciej Fijalkowski 已提交
680
	bi->page_offset = ice_rx_offset(rx_ring);
681 682
	page_ref_add(page, USHRT_MAX - 1);
	bi->pagecnt_bias = USHRT_MAX;
683 684 685 686 687 688 689 690 691

	return true;
}

/**
 * ice_alloc_rx_bufs - Replace used receive buffers
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
 *
692 693 694 695 696 697 698
 * Returns false if all allocations were successful, true if any fail. Returning
 * true signals to the caller that we didn't replace cleaned_count buffers and
 * there is more work to do.
 *
 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 * multiple tail writes per call.
699 700 701 702 703 704 705 706 707 708 709
 */
bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
{
	union ice_32b_rx_flex_desc *rx_desc;
	u16 ntu = rx_ring->next_to_use;
	struct ice_rx_buf *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
		return false;

710
	/* get the Rx descriptor and buffer based on next_to_use */
711 712 713 714
	rx_desc = ICE_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_buf[ntu];

	do {
715
		/* if we fail here, we have work remaining */
716
		if (!ice_alloc_mapped_page(rx_ring, bi))
717
			break;
718

719 720 721 722 723 724
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
						 ICE_RXBUF_2048,
						 DMA_FROM_DEVICE);

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);

		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = ICE_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_buf;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.status_error0 = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		ice_release_rx_desc(rx_ring, ntu);

748
	return !!cleaned_count;
749
}
750 751 752 753 754 755 756 757 758 759 760

/**
 * ice_page_is_reserved - check if reuse is possible
 * @page: page struct to check
 */
static bool ice_page_is_reserved(struct page *page)
{
	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}

/**
761 762 763
 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 * @rx_buf: Rx buffer to adjust
 * @size: Size of adjustment
764
 *
765 766 767 768
 * Update the offset within page so that Rx buf will be ready to be reused.
 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 * so the second half of page assigned to Rx buffer will be used, otherwise
 * the offset is moved by the @size bytes
769
 */
770 771
static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
772 773
{
#if (PAGE_SIZE < 8192)
774 775
	/* flip page offset to other buffer */
	rx_buf->page_offset ^= size;
776
#else
777 778 779 780
	/* move offset up to the next cache line */
	rx_buf->page_offset += size;
#endif
}
781

782 783 784 785 786 787 788 789 790
/**
 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 * @rx_buf: buffer containing the page
 *
 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 * which will assign the current buffer to the buffer that next_to_alloc is
 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 * page freed
 */
791
static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
792
{
793
#if (PAGE_SIZE >= 8192)
794 795
	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
#endif
796
	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
797
	struct page *page = rx_buf->page;
798 799 800 801 802 803 804

	/* avoid re-using remote pages */
	if (unlikely(ice_page_is_reserved(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
805
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
806 807 808 809 810 811
		return false;
#else
	if (rx_buf->page_offset > last_offset)
		return false;
#endif /* PAGE_SIZE < 8192) */

812 813 814
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
815
	 */
816 817 818 819
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX - 1);
		rx_buf->pagecnt_bias = USHRT_MAX;
	}
820 821 822 823 824

	return true;
}

/**
825
 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
826
 * @rx_buf: buffer containing page to add
827 828
 * @skb: sk_buff to place the data into
 * @size: packet length from rx_desc
829 830
 *
 * This function will add the data contained in rx_buf->page to the skb.
831 832
 * It will just attach the page as a frag to the skb.
 * The function will then update the page offset.
833
 */
834
static void
835 836
ice_add_rx_frag(struct ice_rx_buf *rx_buf, struct sk_buff *skb,
		unsigned int size)
837
{
838 839
#if (PAGE_SIZE >= 8192)
	unsigned int truesize = SKB_DATA_ALIGN(size);
840
#else
841 842
	unsigned int truesize = ICE_RXBUF_2048;
#endif
843

M
Mitch Williams 已提交
844 845
	if (!size)
		return;
846 847
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
			rx_buf->page_offset, size, truesize);
848

849
	/* page is being used so we must update the page offset */
850
	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
851 852 853 854
}

/**
 * ice_reuse_rx_page - page flip buffer and store it back on the ring
855
 * @rx_ring: Rx descriptor ring to store buffers on
856 857 858 859
 * @old_buf: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 */
860 861
static void
ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
862 863 864 865 866 867 868 869 870 871
{
	u16 nta = rx_ring->next_to_alloc;
	struct ice_rx_buf *new_buf;

	new_buf = &rx_ring->rx_buf[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

872 873 874 875 876 877 878 879
	/* Transfer page from old buffer to new buffer.
	 * Move each member individually to avoid possible store
	 * forwarding stalls and unnecessary copy of skb.
	 */
	new_buf->dma = old_buf->dma;
	new_buf->page = old_buf->page;
	new_buf->page_offset = old_buf->page_offset;
	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
880 881 882
}

/**
883
 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
884
 * @rx_ring: Rx descriptor ring to transact packets on
885
 * @skb: skb to be used
886
 * @size: size of buffer to add to skb
887
 *
888 889
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
890
 */
891
static struct ice_rx_buf *
892 893
ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
	       const unsigned int size)
894 895 896 897
{
	struct ice_rx_buf *rx_buf;

	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
898
	prefetchw(rx_buf->page);
899
	*skb = rx_buf->skb;
900

M
Mitch Williams 已提交
901 902
	if (!size)
		return rx_buf;
903 904 905 906
	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
				      rx_buf->page_offset, size,
				      DMA_FROM_DEVICE);
907

908 909
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buf->pagecnt_bias--;
910

911 912
	return rx_buf;
}
913 914

/**
915
 * ice_construct_skb - Allocate skb and populate it
916
 * @rx_ring: Rx descriptor ring to transact packets on
917
 * @rx_buf: Rx buffer to pull data from
M
Maciej Fijalkowski 已提交
918
 * @xdp: xdp_buff pointing to the data
919
 *
920 921 922
 * This function allocates an skb. It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
923
 */
924
static struct sk_buff *
925
ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
M
Maciej Fijalkowski 已提交
926
		  struct xdp_buff *xdp)
927
{
M
Maciej Fijalkowski 已提交
928
	unsigned int size = xdp->data_end - xdp->data;
929 930
	unsigned int headlen;
	struct sk_buff *skb;
931

932
	/* prefetch first cache line of first page */
M
Maciej Fijalkowski 已提交
933
	prefetch(xdp->data);
934
#if L1_CACHE_BYTES < 128
M
Maciej Fijalkowski 已提交
935
	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
936 937
#endif /* L1_CACHE_BYTES */

938 939 940 941 942
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;
943

944 945 946 947
	skb_record_rx_queue(skb, rx_ring->q_index);
	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > ICE_RX_HDR_SIZE)
M
Maciej Fijalkowski 已提交
948
		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
949

950
	/* align pull length to size of long to optimize memcpy performance */
M
Maciej Fijalkowski 已提交
951 952
	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
							 sizeof(long)));
953

954 955 956 957 958 959 960 961 962 963 964 965
	/* if we exhaust the linear part then add what is left as a frag */
	size -= headlen;
	if (size) {
#if (PAGE_SIZE >= 8192)
		unsigned int truesize = SKB_DATA_ALIGN(size);
#else
		unsigned int truesize = ICE_RXBUF_2048;
#endif
		skb_add_rx_frag(skb, 0, rx_buf->page,
				rx_buf->page_offset + headlen, size, truesize);
		/* buffer is used by skb, update page_offset */
		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
966
	} else {
967 968 969 970 971
		/* buffer is unused, reset bias back to rx_buf; data was copied
		 * onto skb's linear part so there's no need for adjusting
		 * page offset and we can reuse this buffer as-is
		 */
		rx_buf->pagecnt_bias++;
972 973 974 975 976 977
	}

	return skb;
}

/**
978 979 980
 * ice_put_rx_buf - Clean up used buffer and either recycle or free
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buf: Rx buffer to pull data from
981
 *
M
Maciej Fijalkowski 已提交
982 983 984
 * This function will update next_to_clean and then clean up the contents
 * of the rx_buf. It will either recycle the buffer or unmap it and free
 * the associated resources.
985
 */
986
static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
987
{
M
Maciej Fijalkowski 已提交
988 989 990 991 992 993
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

M
Mitch Williams 已提交
994 995 996
	if (!rx_buf)
		return;

997
	if (ice_can_reuse_rx_page(rx_buf)) {
M
Mitch Williams 已提交
998
		/* hand second half of page back to the ring */
999 1000 1001 1002
		ice_reuse_rx_page(rx_ring, rx_buf);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1003 1004
		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
1005
		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1006 1007 1008 1009
	}

	/* clear contents of buffer_info */
	rx_buf->page = NULL;
1010
	rx_buf->skb = NULL;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

/**
 * ice_cleanup_headers - Correct empty headers
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 */
static bool ice_cleanup_headers(struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * ice_test_staterr - tests bits in Rx descriptor status and error fields
 * @rx_desc: pointer to receive descriptor (in le64 format)
 * @stat_err_bits: value to mask
 *
 * This function does some fast chicanery in order to return the
 * value of the mask which is really only used for boolean tests.
 * The status_error_len doesn't need to be shifted because it begins
 * at offset zero.
 */
1044 1045
static bool
ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, const u16 stat_err_bits)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
{
	return !!(rx_desc->wb.status_error0 &
		  cpu_to_le16(stat_err_bits));
}

/**
 * ice_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
M
Maciej Fijalkowski 已提交
1057 1058
 * If the buffer is an EOP buffer, this function exits returning false,
 * otherwise return true indicating that this is in fact a non-EOP buffer.
1059
 */
1060 1061 1062
static bool
ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
	       struct sk_buff *skb)
1063 1064 1065 1066 1067 1068 1069
{
	/* if we are the last buffer then there is nothing else to do */
#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
		return false;

	/* place skb in next buffer to be received */
M
Maciej Fijalkowski 已提交
1070
	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
1071 1072 1073 1074 1075
	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
/**
 * ice_ptype_to_htype - get a hash type
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 */
static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
{
	return PKT_HASH_TYPE_NONE;
}

/**
 * ice_rx_hash - set the hash value in the skb
 * @rx_ring: descriptor ring
 * @rx_desc: specific descriptor
 * @skb: pointer to current skb
 * @rx_ptype: the ptype value from the descriptor
 */
static void
ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
	    struct sk_buff *skb, u8 rx_ptype)
{
	struct ice_32b_rx_flex_desc_nic *nic_mdid;
	u32 hash;

	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
		return;

	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
		return;

	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
	hash = le32_to_cpu(nic_mdid->rss_hash);
	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
}

/**
 * ice_rx_csum - Indicate in skb if checksum is good
J
Jesse Brandeburg 已提交
1114
 * @ring: the ring we care about
1115 1116 1117 1118 1119 1120
 * @skb: skb currently being received and modified
 * @rx_desc: the receive descriptor
 * @ptype: the packet type decoded by hardware
 *
 * skb->protocol must be set before this function is called
 */
1121
static void
J
Jesse Brandeburg 已提交
1122
ice_rx_csum(struct ice_ring *ring, struct sk_buff *skb,
1123
	    union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
{
	struct ice_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
	bool ipv4, ipv6;

	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
	rx_error = rx_status;

	decoded = ice_decode_rx_desc_ptype(ptype);

	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
	skb->ip_summed = CHECKSUM_NONE;
	skb_checksum_none_assert(skb);

	/* check if Rx checksum is enabled */
J
Jesse Brandeburg 已提交
1139
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		return;

	/* check if HW has decoded the packet and checksum */
	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
		return;

	if (!(decoded.known && decoded.outer_ip))
		return;

	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);

	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
		goto checksum_fail;
	else if (ipv6 && (rx_status &
		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
		goto checksum_fail;

	/* check for L4 errors and handle packets that were not able to be
	 * checksummed due to arrival speed
	 */
	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
		goto checksum_fail;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case ICE_RX_PTYPE_INNER_PROT_TCP:
	case ICE_RX_PTYPE_INNER_PROT_UDP:
	case ICE_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	default:
		break;
	}
	return;

checksum_fail:
J
Jesse Brandeburg 已提交
1179
	ring->vsi->back->hw_csum_rx_error++;
1180 1181 1182 1183
}

/**
 * ice_process_skb_fields - Populate skb header fields from Rx descriptor
1184
 * @rx_ring: Rx descriptor ring packet is being transacted on
1185 1186 1187 1188 1189 1190 1191 1192
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 */
1193 1194 1195 1196
static void
ice_process_skb_fields(struct ice_ring *rx_ring,
		       union ice_32b_rx_flex_desc *rx_desc,
		       struct sk_buff *skb, u8 ptype)
1197 1198 1199 1200 1201 1202
{
	ice_rx_hash(rx_ring, rx_desc, skb, ptype);

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);

J
Jesse Brandeburg 已提交
1203
	ice_rx_csum(rx_ring, skb, rx_desc, ptype);
1204 1205
}

1206 1207
/**
 * ice_receive_skb - Send a completed packet up the stack
1208
 * @rx_ring: Rx ring in play
1209
 * @skb: packet to send up
1210
 * @vlan_tag: VLAN tag for packet
1211 1212
 *
 * This function sends the completed packet (via. skb) up the stack using
1213
 * gro receive functions (with/without VLAN tag)
1214
 */
1215 1216
static void
ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag)
1217 1218
{
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1219
	    (vlan_tag & VLAN_VID_MASK))
1220 1221 1222 1223 1224 1225
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
	napi_gro_receive(&rx_ring->q_vector->napi, skb);
}

/**
 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1226
 * @rx_ring: Rx descriptor ring to transact packets on
1227 1228 1229
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
1230
 * processing. The advantage to this is that on systems that have
1231 1232 1233 1234 1235 1236 1237 1238 1239
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 */
static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
M
Maciej Fijalkowski 已提交
1240 1241 1242
	unsigned int xdp_res, xdp_xmit = 0;
	struct bpf_prog *xdp_prog = NULL;
	struct xdp_buff xdp;
1243
	bool failure;
1244

M
Maciej Fijalkowski 已提交
1245 1246
	xdp.rxq = &rx_ring->xdp_rxq;

1247
	/* start the loop to process Rx packets bounded by 'budget' */
1248 1249
	while (likely(total_rx_pkts < (unsigned int)budget)) {
		union ice_32b_rx_flex_desc *rx_desc;
1250
		struct ice_rx_buf *rx_buf;
1251
		struct sk_buff *skb;
1252
		unsigned int size;
1253 1254
		u16 stat_err_bits;
		u16 vlan_tag = 0;
1255
		u8 rx_ptype;
1256

1257
		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
		if (!ice_test_staterr(rx_desc, stat_err_bits))
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
		dma_rmb();

1275 1276 1277
		size = le16_to_cpu(rx_desc->wb.pkt_len) &
			ICE_RX_FLX_DESC_PKT_LEN_M;

M
Mitch Williams 已提交
1278
		/* retrieve a buffer from the ring */
1279
		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
M
Mitch Williams 已提交
1280

M
Maciej Fijalkowski 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		if (!size) {
			xdp.data = NULL;
			xdp.data_end = NULL;
			goto construct_skb;
		}

		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
		xdp_set_data_meta_invalid(&xdp);
		xdp.data_end = xdp.data + size;

		rcu_read_lock();
		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
		if (!xdp_prog) {
			rcu_read_unlock();
			goto construct_skb;
		}

		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
		rcu_read_unlock();
		if (xdp_res) {
			if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
				xdp_xmit |= xdp_res;
				ice_rx_buf_adjust_pg_offset(rx_buf,
							    ICE_RXBUF_2048);
			} else {
				rx_buf->pagecnt_bias++;
			}
			total_rx_bytes += size;
			total_rx_pkts++;

			cleaned_count++;
			ice_put_rx_buf(rx_ring, rx_buf);
			continue;
		}
construct_skb:
1317 1318 1319
		if (skb)
			ice_add_rx_frag(rx_buf, skb, size);
		else
M
Maciej Fijalkowski 已提交
1320
			skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1321 1322 1323 1324

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buf_failed++;
M
Mitch Williams 已提交
1325 1326
			if (rx_buf)
				rx_buf->pagecnt_bias++;
1327
			break;
1328
		}
1329

1330
		ice_put_rx_buf(rx_ring, rx_buf);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		cleaned_count++;

		/* skip if it is NOP desc */
		if (ice_is_non_eop(rx_ring, rx_desc, skb))
			continue;

		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
			dev_kfree_skb_any(skb);
			continue;
		}

		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
		if (ice_test_staterr(rx_desc, stat_err_bits))
			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);

		/* correct empty headers and pad skb if needed (to make valid
		 * ethernet frame
		 */
		if (ice_cleanup_headers(skb)) {
			skb = NULL;
			continue;
		}

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1358
		/* populate checksum, VLAN, and protocol */
1359 1360 1361
		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
			ICE_RX_FLEX_DESC_PTYPE_M;

1362 1363
		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);

1364 1365 1366 1367 1368 1369 1370
		/* send completed skb up the stack */
		ice_receive_skb(rx_ring, skb, vlan_tag);

		/* update budget accounting */
		total_rx_pkts++;
	}

1371 1372 1373
	/* return up to cleaned_count buffers to hardware */
	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);

M
Maciej Fijalkowski 已提交
1374 1375 1376
	if (xdp_prog)
		ice_finalize_xdp_rx(rx_ring, xdp_xmit);

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	/* update queue and vector specific stats */
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.pkts += total_rx_pkts;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

	/* guarantee a trip back through this routine if there was a failure */
	return failure ? budget : (int)total_rx_pkts;
}

1389 1390 1391 1392
/**
 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
 * @port_info: port_info structure containing the current link speed
 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1393
 * @itr: ITR value to update
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
 *
 * Calculate how big of an increment should be applied to the ITR value passed
 * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
 * link speed.
 *
 * The following is a calculation derived from:
 *  wmem_default / (size + overhead) = desired_pkts_per_int
 *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 *
 * Assuming wmem_default is 212992 and overhead is 640 bytes per
 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 * formula down to:
 *
 *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
 * ITR = -------------------------------------------- * --------------
 *			     rate			pkt_size + 640
 */
static unsigned int
ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
				 unsigned int avg_pkt_size,
				 unsigned int itr)
1416
{
1417 1418 1419 1420 1421 1422 1423 1424 1425
	switch (port_info->phy.link_info.link_speed) {
	case ICE_AQ_LINK_SPEED_100GB:
		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
	case ICE_AQ_LINK_SPEED_50GB:
		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
1426
	case ICE_AQ_LINK_SPEED_40GB:
1427 1428 1429
		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
1430
	case ICE_AQ_LINK_SPEED_25GB:
1431 1432 1433
		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
1434
	case ICE_AQ_LINK_SPEED_20GB:
1435 1436 1437 1438 1439
		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
	case ICE_AQ_LINK_SPEED_10GB:
		/* fall through */
1440
	default:
1441 1442 1443
		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
				    avg_pkt_size + 640);
		break;
1444
	}
1445 1446 1447 1448 1449 1450 1451

	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
		itr &= ICE_ITR_ADAPTIVE_LATENCY;
		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
	}

	return itr;
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
}

/**
 * ice_update_itr - update the adaptive ITR value based on statistics
 * @q_vector: structure containing interrupt and ring information
 * @rc: structure containing ring performance data
 *
 * Stores a new ITR value based on packets and byte
 * counts during the last interrupt.  The advantage of per interrupt
 * computation is faster updates and more accurate ITR for the current
 * traffic pattern.  Constants in this function were computed
 * based on theoretical maximum wire speed and thresholds were set based
 * on testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 */
static void
ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
{
	unsigned long next_update = jiffies;
1471
	unsigned int packets, bytes, itr;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	bool container_is_rx;

	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
		return;

	/* If itr_countdown is set it means we programmed an ITR within
	 * the last 4 interrupt cycles. This has a side effect of us
	 * potentially firing an early interrupt. In order to work around
	 * this we need to throw out any data received for a few
	 * interrupts following the update.
	 */
	if (q_vector->itr_countdown) {
		itr = rc->target_itr;
		goto clear_counts;
	}

	container_is_rx = (&q_vector->rx == rc);
	/* For Rx we want to push the delay up and default to low latency.
	 * for Tx we want to pull the delay down and default to high latency.
	 */
	itr = container_is_rx ?
		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;

	/* If we didn't update within up to 1 - 2 jiffies we can assume
	 * that either packets are coming in so slow there hasn't been
	 * any work, or that there is so much work that NAPI is dealing
	 * with interrupt moderation and we don't need to do anything.
	 */
	if (time_after(next_update, rc->next_update))
		goto clear_counts;

J
Jesse Brandeburg 已提交
1504 1505
	prefetch(q_vector->vsi->port_info);

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	packets = rc->total_pkts;
	bytes = rc->total_bytes;

	if (container_is_rx) {
		/* If Rx there are 1 to 4 packets and bytes are less than
		 * 9000 assume insufficient data to use bulk rate limiting
		 * approach unless Tx is already in bulk rate limiting. We
		 * are likely latency driven.
		 */
		if (packets && packets < 4 && bytes < 9000 &&
		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
			itr = ICE_ITR_ADAPTIVE_LATENCY;
1518
			goto adjust_by_size_and_speed;
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		}
	} else if (packets < 4) {
		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
		 * bulk mode and we are receiving 4 or fewer packets just
		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
		 * that the Rx can relax.
		 */
		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
		    ICE_ITR_ADAPTIVE_MAX_USECS)
			goto clear_counts;
	} else if (packets > 32) {
		/* If we have processed over 32 packets in a single interrupt
		 * for Tx assume we need to switch over to "bulk" mode.
		 */
		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
	}

	/* We have no packets to actually measure against. This means
	 * either one of the other queues on this vector is active or
	 * we are a Tx queue doing TSO with too high of an interrupt rate.
	 *
	 * Between 4 and 56 we can assume that our current interrupt delay
	 * is only slightly too low. As such we should increase it by a small
	 * fixed amount.
	 */
	if (packets < 56) {
		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
			itr &= ICE_ITR_ADAPTIVE_LATENCY;
			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
		}
		goto clear_counts;
	}

	if (packets <= 256) {
		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
		itr &= ICE_ITR_MASK;

		/* Between 56 and 112 is our "goldilocks" zone where we are
		 * working out "just right". Just report that our current
		 * ITR is good for us.
		 */
		if (packets <= 112)
			goto clear_counts;

		/* If packet count is 128 or greater we are likely looking
		 * at a slight overrun of the delay we want. Try halving
		 * our delay to see if that will cut the number of packets
		 * in half per interrupt.
		 */
		itr >>= 1;
		itr &= ICE_ITR_MASK;
		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
			itr = ICE_ITR_ADAPTIVE_MIN_USECS;

		goto clear_counts;
	}

	/* The paths below assume we are dealing with a bulk ITR since
	 * number of packets is greater than 256. We are just going to have
	 * to compute a value and try to bring the count under control,
	 * though for smaller packet sizes there isn't much we can do as
	 * NAPI polling will likely be kicking in sooner rather than later.
	 */
	itr = ICE_ITR_ADAPTIVE_BULK;

1586
adjust_by_size_and_speed:
1587

1588 1589 1590
	/* based on checks above packets cannot be 0 so division is safe */
	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
					       bytes / packets, itr);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

clear_counts:
	/* write back value */
	rc->target_itr = itr;

	/* next update should occur within next jiffy */
	rc->next_update = next_update + 1;

	rc->total_bytes = 0;
	rc->total_pkts = 0;
}

1603 1604 1605
/**
 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
 * @itr_idx: interrupt throttling index
1606
 * @itr: interrupt throttling value in usecs
1607
 */
1608
static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1609
{
1610
	/* The ITR value is reported in microseconds, and the register value is
1611 1612 1613 1614 1615 1616 1617 1618
	 * recorded in 2 microsecond units. For this reason we only need to
	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
	 * granularity as a shift instead of division. The mask makes sure the
	 * ITR value is never odd so we don't accidentally write into the field
	 * prior to the ITR field.
	 */
	itr &= ICE_ITR_MASK;

1619 1620
	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1621
		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1622 1623
}

1624 1625 1626 1627 1628 1629 1630 1631 1632
/* The act of updating the ITR will cause it to immediately trigger. In order
 * to prevent this from throwing off adaptive update statistics we defer the
 * update so that it can only happen so often. So after either Tx or Rx are
 * updated we make the adaptive scheme wait until either the ITR completely
 * expires via the next_update expiration or we have been through at least
 * 3 interrupts.
 */
#define ITR_COUNTDOWN_START 3

1633 1634 1635 1636
/**
 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
 */
J
Jesse Brandeburg 已提交
1637
static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1638
{
1639 1640
	struct ice_ring_container *tx = &q_vector->tx;
	struct ice_ring_container *rx = &q_vector->rx;
J
Jesse Brandeburg 已提交
1641
	struct ice_vsi *vsi = q_vector->vsi;
1642 1643
	u32 itr_val;

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
	 * interrupts to expire right away in case we have more work ready to go
	 * already
	 */
	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
		/* set target back to last user set value */
		rx->target_itr = rx->itr_setting;
		/* set current to what we just wrote and dynamic if needed */
		rx->current_itr = ICE_WB_ON_ITR_USECS |
			(rx->itr_setting & ICE_ITR_DYNAMIC);
		/* allow normal interrupt flow to start */
		q_vector->itr_countdown = 0;
		return;
	}

1661 1662 1663 1664
	/* This will do nothing if dynamic updates are not enabled */
	ice_update_itr(q_vector, tx);
	ice_update_itr(q_vector, rx);

1665 1666 1667 1668 1669 1670 1671 1672
	/* This block of logic allows us to get away with only updating
	 * one ITR value with each interrupt. The idea is to perform a
	 * pseudo-lazy update with the following criteria.
	 *
	 * 1. Rx is given higher priority than Tx if both are in same state
	 * 2. If we must reduce an ITR that is given highest priority.
	 * 3. We then give priority to increasing ITR based on amount.
	 */
1673
	if (rx->target_itr < rx->current_itr) {
1674
		/* Rx ITR needs to be reduced, this is highest priority */
1675 1676 1677 1678 1679 1680
		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
		rx->current_itr = rx->target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if ((tx->target_itr < tx->current_itr) ||
		   ((rx->target_itr - rx->current_itr) <
		    (tx->target_itr - tx->current_itr))) {
1681 1682 1683
		/* Tx ITR needs to be reduced, this is second priority
		 * Tx ITR needs to be increased more than Rx, fourth priority
		 */
1684 1685 1686 1687
		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
		tx->current_itr = tx->target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if (rx->current_itr != rx->target_itr) {
1688
		/* Rx ITR needs to be increased, third priority */
1689 1690 1691
		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
		rx->current_itr = rx->target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1692 1693 1694
	} else {
		/* Still have to re-enable the interrupts */
		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1695 1696
		if (q_vector->itr_countdown)
			q_vector->itr_countdown--;
1697 1698
	}

J
Jesse Brandeburg 已提交
1699 1700
	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
		wr32(&q_vector->vsi->back->hw,
1701
		     GLINT_DYN_CTL(q_vector->reg_idx),
1702
		     itr_val);
1703 1704
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
/**
 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
 * @q_vector: q_vector to set WB_ON_ITR on
 *
 * We need to tell hardware to write-back completed descriptors even when
 * interrupts are disabled. Descriptors will be written back on cache line
 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
 * descriptors may not be written back if they don't fill a cache line until the
 * next interrupt.
 *
 * This sets the write-back frequency to 2 microseconds as that is the minimum
 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
 * make sure hardware knows we aren't meddling with the INTENA_M bit.
 */
J
Jesse Brandeburg 已提交
1719
static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1720
{
J
Jesse Brandeburg 已提交
1721 1722
	struct ice_vsi *vsi = q_vector->vsi;

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	/* already in WB_ON_ITR mode no need to change it */
	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
		return;

	if (q_vector->num_ring_rx)
		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
						 ICE_RX_ITR));

	if (q_vector->num_ring_tx)
		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
						 ICE_TX_ITR));

	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
/**
 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 */
int ice_napi_poll(struct napi_struct *napi, int budget)
{
	struct ice_q_vector *q_vector =
				container_of(napi, struct ice_q_vector, napi);
	bool clean_complete = true;
	struct ice_ring *ring;
1755
	int budget_per_ring;
1756 1757 1758 1759 1760 1761
	int work_done = 0;

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
	ice_for_each_ring(ring, q_vector->tx)
J
Jesse Brandeburg 已提交
1762
		if (!ice_clean_tx_irq(ring, budget))
1763 1764 1765
			clean_complete = false;

	/* Handle case where we are called by netpoll with a budget of 0 */
J
Jesse Brandeburg 已提交
1766
	if (unlikely(budget <= 0))
1767 1768
		return budget;

1769 1770 1771 1772 1773 1774
	/* normally we have 1 Rx ring per q_vector */
	if (unlikely(q_vector->num_ring_rx > 1))
		/* We attempt to distribute budget to each Rx queue fairly, but
		 * don't allow the budget to go below 1 because that would exit
		 * polling early.
		 */
1775
		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1776 1777 1778
	else
		/* Max of 1 Rx ring in this q_vector so give it the budget */
		budget_per_ring = budget;
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

	ice_for_each_ring(ring, q_vector->rx) {
		int cleaned;

		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
		work_done += cleaned;
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
	}

	/* If work not completed, return budget and polling will return */
	if (!clean_complete)
		return budget;

1794 1795 1796 1797
	/* Exit the polling mode, but don't re-enable interrupts if stack might
	 * poll us due to busy-polling
	 */
	if (likely(napi_complete_done(napi, work_done)))
J
Jesse Brandeburg 已提交
1798
		ice_update_ena_itr(q_vector);
1799
	else
J
Jesse Brandeburg 已提交
1800
		ice_set_wb_on_itr(q_vector);
D
Dave Ertman 已提交
1801

B
Bruce Allan 已提交
1802
	return min_t(int, work_done, budget - 1);
1803 1804 1805
}

/**
1806
 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
 * @tx_ring: the ring to be checked
 * @size: the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 */
static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_subqueue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
	++tx_ring->tx_stats.restart_q;
	return 0;
}

/**
1829
 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1830 1831 1832 1833 1834 1835 1836 1837 1838
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns 0 if stop is not needed
 */
static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
		return 0;
1839

1840 1841 1842 1843 1844 1845 1846
	return __ice_maybe_stop_tx(tx_ring, size);
}

/**
 * ice_tx_map - Build the Tx descriptor
 * @tx_ring: ring to send buffer on
 * @first: first buffer info buffer to use
1847
 * @off: pointer to struct that holds offload parameters
1848 1849 1850 1851 1852
 *
 * This function loops over the skb data pointed to by *first
 * and gets a physical address for each memory location and programs
 * it and the length into the transmit descriptor.
 */
1853 1854 1855
static void
ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
	   struct ice_tx_offload_params *off)
1856
{
1857
	u64 td_offset, td_tag, td_cmd;
1858
	u16 i = tx_ring->next_to_use;
1859
	skb_frag_t *frag;
1860 1861 1862 1863 1864 1865
	unsigned int data_len, size;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_buf;
	struct sk_buff *skb;
	dma_addr_t dma;

1866 1867 1868
	td_tag = off->td_l2tag1;
	td_cmd = off->td_cmd;
	td_offset = off->td_offset;
1869 1870 1871 1872 1873 1874 1875
	skb = first->skb;

	data_len = skb->data_len;
	size = skb_headlen(skb);

	tx_desc = ICE_TX_DESC(tx_ring, i);

1876 1877 1878 1879 1880 1881
	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
			  ICE_TX_FLAGS_VLAN_S;
	}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_buf = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;

		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buf, len, size);
		dma_unmap_addr_set(tx_buf, dma, dma);

		/* align size to end of page */
		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
		tx_desc->buf_addr = cpu_to_le64(dma);

		/* account for data chunks larger than the hardware
		 * can handle
		 */
		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset, max_data, td_tag);

			tx_desc++;
			i++;

			if (i == tx_ring->count) {
				tx_desc = ICE_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += max_data;
			size -= max_data;

			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
			tx_desc->buf_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;

		if (i == tx_ring->count) {
			tx_desc = ICE_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_buf = &tx_ring->tx_buf[i];
	}

	/* record bytecount for BQL */
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

	/* record SW timestamp if HW timestamp is not available */
	skb_tx_timestamp(first->skb);

	i++;
	if (i == tx_ring->count)
		i = 0;

	/* write last descriptor with RS and EOP bits */
M
Maciej Fijalkowski 已提交
1956 1957 1958
	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
	tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size,
						  td_tag);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	tx_ring->next_to_use = i;

	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);

	/* notify HW of packet */
1976
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1977 1978 1979 1980 1981 1982
		writel(i, tx_ring->tail);
	}

	return;

dma_error:
1983
	/* clear DMA mappings for failed tx_buf map */
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	for (;;) {
		tx_buf = &tx_ring->tx_buf[i];
		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
		if (tx_buf == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/**
 * ice_tx_csum - Enable Tx checksum offloads
 * @first: pointer to the first descriptor
 * @off: pointer to struct that holds offload parameters
 *
 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
 */
static
int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
	u32 l4_len = 0, l3_len = 0, l2_len = 0;
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	__be16 frag_off, protocol;
	unsigned char *exthdr;
	u32 offset, cmd = 0;
	u8 l4_proto = 0;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* compute outer L2 header size */
	l2_len = ip.hdr - skb->data;
	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;

	if (skb->encapsulation)
		return -1;

	/* Enable IP checksum offloads */
	protocol = vlan_get_protocol(skb);
	if (protocol == htons(ETH_P_IP)) {
		l4_proto = ip.v4->protocol;
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
		if (first->tx_flags & ICE_TX_FLAGS_TSO)
			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
		else
			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;

	} else if (protocol == htons(ETH_P_IPV6)) {
		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
					 &frag_off);
	} else {
		return -1;
	}

	/* compute inner L3 header size */
	l3_len = l4.hdr - ip.hdr;
	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;

	/* Enable L4 checksum offloads */
	switch (l4_proto) {
	case IPPROTO_TCP:
		/* enable checksum offloads */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
		l4_len = l4.tcp->doff;
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
		l4_len = (sizeof(struct udphdr) >> 2);
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case IPPROTO_SCTP:
2078 2079 2080 2081 2082 2083
		/* enable SCTP checksum offload */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
		l4_len = sizeof(struct sctphdr) >> 2;
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	default:
		if (first->tx_flags & ICE_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
	}

	off->td_cmd |= cmd;
	off->td_offset |= offset;
	return 1;
}

/**
2097
 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
 * @tx_ring: ring to send buffer on
 * @first: pointer to struct ice_tx_buf
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise returns 0 to indicate the flags has been set properly.
 */
static int
ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
{
	struct sk_buff *skb = first->skb;
	__be16 protocol = skb->protocol;

	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* when HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling. In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
2123
		return 0;
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	}

	/* if we have a HW VLAN tag being added, default to the HW one */
	if (skb_vlan_tag_present(skb)) {
		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;

		/* for SW VLAN, check the next protocol and store the tag */
		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
							     sizeof(_vhdr),
							     &_vhdr);
		if (!vhdr)
			return -EINVAL;

		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
				   ICE_TX_FLAGS_VLAN_S;
		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
	}

2145
	return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
}

/**
 * ice_tso - computes mss and TSO length to prepare for TSO
 * @first: pointer to struct ice_tx_buf
 * @off: pointer to struct that holds offload parameters
 *
 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
 */
static
int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	u64 cd_mss, cd_tso_len;
	u32 paylen, l4_start;
	int err;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	if (!skb_is_gso(skb))
		return 0;

	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;

2182
	/* cppcheck-suppress unreadVariable */
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
	} else {
		ip.v6->payload_len = 0;
	}

	/* determine offset of transport header */
	l4_start = l4.hdr - skb->data;

	/* remove payload length from checksum */
	paylen = skb->len - l4_start;
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));

	/* compute length of segmentation header */
	off->header_len = (l4.tcp->doff * 4) + l4_start;

	/* update gso_segs and bytecount */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
2206
	first->bytecount += (first->gso_segs - 1) * off->header_len;
2207 2208 2209 2210 2211

	cd_tso_len = skb->len - off->header_len;
	cd_mss = skb_shinfo(skb)->gso_size;

	/* record cdesc_qw1 with TSO parameters */
2212 2213 2214 2215
	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2216 2217 2218 2219
	first->tx_flags |= ICE_TX_FLAGS_TSO;
	return 1;
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
/**
 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
 * @size: transmit request size in bytes
 *
 * Due to hardware alignment restrictions (4K alignment), we need to
 * assume that we can have no more than 12K of data per descriptor, even
 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 * Thus, we need to divide by 12K. But division is slow! Instead,
 * we decompose the operation into shifts and one relatively cheap
 * multiply operation.
 *
 * To divide by 12K, we first divide by 4K, then divide by 3:
 *     To divide by 4K, shift right by 12 bits
 *     To divide by 3, multiply by 85, then divide by 256
 *     (Divide by 256 is done by shifting right by 8 bits)
 * Finally, we add one to round up. Because 256 isn't an exact multiple of
 * 3, we'll underestimate near each multiple of 12K. This is actually more
 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2238
 * segment. For our purposes this is accurate out to 1M which is orders of
2239 2240 2241
 * magnitude greater than our largest possible GSO size.
 *
 * This would then be implemented as:
B
Brett Creeley 已提交
2242
 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2243 2244 2245
 *
 * Since multiplication and division are commutative, we can reorder
 * operations into:
B
Brett Creeley 已提交
2246
 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2247 2248 2249
 */
static unsigned int ice_txd_use_count(unsigned int size)
{
B
Brett Creeley 已提交
2250
	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2251 2252 2253
}

/**
2254
 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2255 2256 2257 2258 2259 2260
 * @skb: send buffer
 *
 * Returns number of data descriptors needed for this skb.
 */
static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
{
2261
	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
	unsigned int count = 0, size = skb_headlen(skb);

	for (;;) {
		count += ice_txd_use_count(size);

		if (!nr_frags--)
			break;

		size = skb_frag_size(frag++);
	}

	return count;
}

/**
 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
 * @skb: send buffer
 *
 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
 */
static bool __ice_chk_linearize(struct sk_buff *skb)
{
2292
	const skb_frag_t *frag, *stale;
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	int nr_frags, sum;

	/* no need to check if number of frags is less than 7 */
	nr_frags = skb_shinfo(skb)->nr_frags;
	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
		return false;

	/* We need to walk through the list and validate that each group
	 * of 6 fragments totals at least gso_size.
	 */
	nr_frags -= ICE_MAX_BUF_TXD - 2;
	frag = &skb_shinfo(skb)->frags[0];

2306
	/* Initialize size to the negative value of gso_size minus 1. We
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
	sum = 1 - skb_shinfo(skb)->gso_size;

	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
		sum += skb_frag_size(frag++);

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

		if (!nr_frags--)
			break;

		sum -= skb_frag_size(stale++);
	}

	return false;
}

/**
 * ice_chk_linearize - Check if there are more than 8 fragments per packet
 * @skb:      send buffer
 * @count:    number of buffers used
 *
 * Note: Our HW can't scatter-gather more than 8 fragments to build
 * a packet on the wire and so we need to figure out the cases where we
 * need to linearize the skb.
 */
static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
{
	/* Both TSO and single send will work if count is less than 8 */
	if (likely(count < ICE_MAX_BUF_TXD))
		return false;

	if (skb_is_gso(skb))
		return __ice_chk_linearize(skb);

	/* we can support up to 8 data buffers for a single send */
	return count != ICE_MAX_BUF_TXD;
}

/**
 * ice_xmit_frame_ring - Sends buffer on Tx ring
 * @skb: send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 */
static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
{
2373
	struct ice_tx_offload_params offload = { 0 };
2374
	struct ice_vsi *vsi = tx_ring->vsi;
2375 2376
	struct ice_tx_buf *first;
	unsigned int count;
2377
	int tso, csum;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	count = ice_xmit_desc_count(skb);
	if (ice_chk_linearize(skb, count)) {
		if (__skb_linearize(skb))
			goto out_drop;
		count = ice_txd_use_count(skb->len);
		tx_ring->tx_stats.tx_linearize++;
	}

	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
B
Brett Creeley 已提交
2393 2394
	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
			      ICE_DESCS_FOR_CTX_DESC)) {
2395 2396 2397 2398
		tx_ring->tx_stats.tx_busy++;
		return NETDEV_TX_BUSY;
	}

2399 2400
	offload.tx_ring = tx_ring;

2401 2402 2403 2404 2405
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buf[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
	first->gso_segs = 1;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	first->tx_flags = 0;

	/* prepare the VLAN tagging flags for Tx */
	if (ice_tx_prepare_vlan_flags(tx_ring, first))
		goto out_drop;

	/* set up TSO offload */
	tso = ice_tso(first, &offload);
	if (tso < 0)
		goto out_drop;

	/* always set up Tx checksum offload */
	csum = ice_tx_csum(first, &offload);
	if (csum < 0)
		goto out_drop;

2422 2423 2424 2425 2426 2427 2428 2429 2430
	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
		     vsi->type == ICE_VSI_PF &&
		     vsi->port_info->is_sw_lldp))
		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
					ICE_TXD_CTX_QW1_CMD_S);

	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
		struct ice_tx_ctx_desc *cdesc;
		int i = tx_ring->next_to_use;

		/* grab the next descriptor */
		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
		i++;
		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

		/* setup context descriptor */
		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
		cdesc->rsvd = cpu_to_le16(0);
		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
	}
2445

2446
	ice_tx_map(tx_ring, first, &offload);
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
 * @skb: send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 */
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_ring *tx_ring;

	tx_ring = vsi->tx_rings[skb->queue_mapping];

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
		return NETDEV_TX_OK;

	return ice_xmit_frame_ring(skb, tx_ring);
}