onenand_base.c 63.5 KB
Newer Older
1 2 3
/*
 *  linux/drivers/mtd/onenand/onenand_base.c
 *
4
 *  Copyright (C) 2005-2007 Samsung Electronics
5 6
 *  Kyungmin Park <kyungmin.park@samsung.com>
 *
7 8 9 10 11
 *  Credits:
 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
 *	auto-placement support, read-while load support, various fixes
 *	Copyright (C) Nokia Corporation, 2007
 *
12 13 14 15 16 17 18 19
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/sched.h>
21
#include <linux/interrupt.h>
22
#include <linux/jiffies.h>
23 24 25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>

/**
 * onenand_oob_64 - oob info for large (2KB) page
 */
32
static struct nand_ecclayout onenand_oob_64 = {
33 34 35 36 37 38 39 40 41
	.eccbytes	= 20,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		40, 41, 42, 43, 44,
		56, 57, 58, 59, 60,
		},
	.oobfree	= {
		{2, 3}, {14, 2}, {18, 3}, {30, 2},
42 43
		{34, 3}, {46, 2}, {50, 3}, {62, 2}
	}
44 45 46 47 48
};

/**
 * onenand_oob_32 - oob info for middle (1KB) page
 */
49
static struct nand_ecclayout onenand_oob_32 = {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	.eccbytes	= 10,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		},
	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
};

static const unsigned char ffchars[] = {
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
};

/**
 * onenand_readw - [OneNAND Interface] Read OneNAND register
 * @param addr		address to read
 *
 * Read OneNAND register
 */
static unsigned short onenand_readw(void __iomem *addr)
{
	return readw(addr);
}

/**
 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 * @param value		value to write
 * @param addr		address to write
 *
 * Write OneNAND register with value
 */
static void onenand_writew(unsigned short value, void __iomem *addr)
{
	writew(value, addr);
}

/**
 * onenand_block_address - [DEFAULT] Get block address
94
 * @param this		onenand chip data structure
95 96 97 98 99
 * @param block		the block
 * @return		translated block address if DDP, otherwise same
 *
 * Setup Start Address 1 Register (F100h)
 */
100
static int onenand_block_address(struct onenand_chip *this, int block)
101
{
102 103 104
	/* Device Flash Core select, NAND Flash Block Address */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
105 106 107 108 109 110

	return block;
}

/**
 * onenand_bufferram_address - [DEFAULT] Get bufferram address
111
 * @param this		onenand chip data structure
112 113 114 115 116
 * @param block		the block
 * @return		set DBS value if DDP, otherwise 0
 *
 * Setup Start Address 2 Register (F101h) for DDP
 */
117
static int onenand_bufferram_address(struct onenand_chip *this, int block)
118
{
119 120 121
	/* Device BufferRAM Select */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1;
122

123
	return ONENAND_DDP_CHIP0;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}

/**
 * onenand_page_address - [DEFAULT] Get page address
 * @param page		the page address
 * @param sector	the sector address
 * @return		combined page and sector address
 *
 * Setup Start Address 8 Register (F107h)
 */
static int onenand_page_address(int page, int sector)
{
	/* Flash Page Address, Flash Sector Address */
	int fpa, fsa;

	fpa = page & ONENAND_FPA_MASK;
	fsa = sector & ONENAND_FSA_MASK;

	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
}

/**
 * onenand_buffer_address - [DEFAULT] Get buffer address
 * @param dataram1	DataRAM index
 * @param sectors	the sector address
 * @param count		the number of sectors
 * @return		the start buffer value
 *
 * Setup Start Buffer Register (F200h)
 */
static int onenand_buffer_address(int dataram1, int sectors, int count)
{
	int bsa, bsc;

	/* BufferRAM Sector Address */
	bsa = sectors & ONENAND_BSA_MASK;

	if (dataram1)
		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
	else
		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */

	/* BufferRAM Sector Count */
	bsc = count & ONENAND_BSC_MASK;

	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
}

/**
 * onenand_command - [DEFAULT] Send command to OneNAND device
 * @param mtd		MTD device structure
 * @param cmd		the command to be sent
 * @param addr		offset to read from or write to
 * @param len		number of bytes to read or write
 *
 * Send command to OneNAND device. This function is used for middle/large page
 * devices (1KB/2KB Bytes per page)
 */
static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
{
	struct onenand_chip *this = mtd->priv;
185
	int value, readcmd = 0, block_cmd = 0;
186 187 188 189 190 191 192
	int block, page;

	/* Address translation */
	switch (cmd) {
	case ONENAND_CMD_UNLOCK:
	case ONENAND_CMD_LOCK:
	case ONENAND_CMD_LOCK_TIGHT:
193
	case ONENAND_CMD_UNLOCK_ALL:
194 195 196 197 198 199
		block = -1;
		page = -1;
		break;

	case ONENAND_CMD_ERASE:
	case ONENAND_CMD_BUFFERRAM:
200 201
	case ONENAND_CMD_OTP_ACCESS:
		block_cmd = 1;
202 203 204 205 206 207 208 209 210 211 212 213 214 215
		block = (int) (addr >> this->erase_shift);
		page = -1;
		break;

	default:
		block = (int) (addr >> this->erase_shift);
		page = (int) (addr >> this->page_shift);
		page &= this->page_mask;
		break;
	}

	/* NOTE: The setting order of the registers is very important! */
	if (cmd == ONENAND_CMD_BUFFERRAM) {
		/* Select DataRAM for DDP */
216
		value = onenand_bufferram_address(this, block);
217 218 219 220 221 222 223 224 225 226
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);

		/* Switch to the next data buffer */
		ONENAND_SET_NEXT_BUFFERRAM(this);

		return 0;
	}

	if (block != -1) {
		/* Write 'DFS, FBA' of Flash */
227
		value = onenand_block_address(this, block);
228
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
229

K
Kyungmin Park 已提交
230
		if (block_cmd) {
231 232 233 234
			/* Select DataRAM for DDP */
			value = onenand_bufferram_address(this, block);
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
235 236 237
	}

	if (page != -1) {
238 239
		/* Now we use page size operation */
		int sectors = 4, count = 4;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
		int dataram;

		switch (cmd) {
		case ONENAND_CMD_READ:
		case ONENAND_CMD_READOOB:
			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
			readcmd = 1;
			break;

		default:
			dataram = ONENAND_CURRENT_BUFFERRAM(this);
			break;
		}

		/* Write 'FPA, FSA' of Flash */
		value = onenand_page_address(page, sectors);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);

		/* Write 'BSA, BSC' of DataRAM */
		value = onenand_buffer_address(dataram, sectors, count);
		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
261

262 263
		if (readcmd) {
			/* Select DataRAM for DDP */
264
			value = onenand_bufferram_address(this, block);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
	}

	/* Interrupt clear */
	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);

	/* Write command */
	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);

	return 0;
}

/**
 * onenand_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done. This applies to all OneNAND command
 * Read can take up to 30us, erase up to 2ms and program up to 350us
 * according to general OneNAND specs
 */
static int onenand_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip * this = mtd->priv;
	unsigned long timeout;
	unsigned int flags = ONENAND_INT_MASTER;
	unsigned int interrupt = 0;
293
	unsigned int ctrl;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

		if (interrupt & flags)
			break;

		if (state != FL_READING)
			cond_resched();
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
312
		printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
313
		if (ctrl & ONENAND_CTRL_LOCK)
314
			printk(KERN_ERR "onenand_wait: it's locked error.\n");
315
		return ctrl;
316 317 318
	}

	if (interrupt & ONENAND_INT_READ) {
319
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
320
		if (ecc) {
321
			printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
322
			if (ecc & ONENAND_ECC_2BIT_ALL) {
323
				mtd->ecc_stats.failed++;
324 325
				return ecc;
			} else if (ecc & ONENAND_ECC_1BIT_ALL)
326
				mtd->ecc_stats.corrected++;
327
		}
328 329 330
	} else if (state == FL_READING) {
		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return -EIO;
331 332 333 334 335
	}

	return 0;
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
/*
 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 * @param irq		onenand interrupt number
 * @param dev_id	interrupt data
 *
 * complete the work
 */
static irqreturn_t onenand_interrupt(int irq, void *data)
{
	struct onenand_chip *this = (struct onenand_chip *) data;

	/* To handle shared interrupt */
	if (!this->complete.done)
		complete(&this->complete);

	return IRQ_HANDLED;
}

/*
 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;

	wait_for_completion(&this->complete);

	return onenand_wait(mtd, state);
}

/*
 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Try interrupt based wait (It is used one-time)
 */
static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long remain, timeout;

	/* We use interrupt wait first */
	this->wait = onenand_interrupt_wait;

	timeout = msecs_to_jiffies(100);
	remain = wait_for_completion_timeout(&this->complete, timeout);
	if (!remain) {
		printk(KERN_INFO "OneNAND: There's no interrupt. "
				"We use the normal wait\n");

		/* Release the irq */
		free_irq(this->irq, this);
D
David Woodhouse 已提交
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		this->wait = onenand_wait;
	}

	return onenand_wait(mtd, state);
}

/*
 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 * @param mtd		MTD device structure
 *
 * There's two method to wait onenand work
 * 1. polling - read interrupt status register
 * 2. interrupt - use the kernel interrupt method
 */
static void onenand_setup_wait(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
	int syscfg;

	init_completion(&this->complete);

	if (this->irq <= 0) {
		this->wait = onenand_wait;
		return;
	}

	if (request_irq(this->irq, &onenand_interrupt,
				IRQF_SHARED, "onenand", this)) {
		/* If we can't get irq, use the normal wait */
		this->wait = onenand_wait;
		return;
	}

	/* Enable interrupt */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	syscfg |= ONENAND_SYS_CFG1_IOBE;
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

	this->wait = onenand_try_interrupt_wait;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448
/**
 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @return		offset given area
 *
 * Return BufferRAM offset given area
 */
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
	struct onenand_chip *this = mtd->priv;

	if (ONENAND_CURRENT_BUFFERRAM(this)) {
		if (area == ONENAND_DATARAM)
J
Joern Engel 已提交
449
			return mtd->writesize;
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		if (area == ONENAND_SPARERAM)
			return mtd->oobsize;
	}

	return 0;
}

/**
 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area
 */
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

477 478 479 480 481 482 483 484 485 486 487
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

488 489 490 491 492
	memcpy(buffer, bufferram + offset, count);

	return 0;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/**
 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area with Sync. Burst Mode
 */
static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);

515 516 517 518 519 520 521 522 523 524 525
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

526 527 528 529 530 531 532
	memcpy(buffer, bufferram + offset, count);

	this->mmcontrol(mtd, 0);

	return 0;
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
/**
 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Write the BufferRAM area
 */
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
		const unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;
		int byte_offset;

		/* Align with word(16-bit) size */
		count--;

		/* Calculate byte access offset */
		byte_offset = offset + count;

		/* Read word and save byte */
		word = this->read_word(bufferram + byte_offset);
		word = (word & ~0xff) | buffer[count];
		this->write_word(word, bufferram + byte_offset);
	}

569 570 571 572 573 574 575 576 577
	memcpy(bufferram + offset, buffer, count);

	return 0;
}

/**
 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to check
578
 * @return		1 if there are valid data, otherwise 0
579 580 581 582 583 584
 *
 * Check bufferram if there is data we required
 */
static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
585
	int blockpage, found = 0;
586
	unsigned int i;
587

588
	blockpage = (int) (addr >> this->page_shift);
589

590
	/* Is there valid data? */
591
	i = ONENAND_CURRENT_BUFFERRAM(this);
592
	if (this->bufferram[i].blockpage == blockpage)
593 594 595 596 597 598 599 600 601
		found = 1;
	else {
		/* Check another BufferRAM */
		i = ONENAND_NEXT_BUFFERRAM(this);
		if (this->bufferram[i].blockpage == blockpage) {
			ONENAND_SET_NEXT_BUFFERRAM(this);
			found = 1;
		}
	}
602

603 604 605 606 607
	if (found && ONENAND_IS_DDP(this)) {
		/* Select DataRAM for DDP */
		int block = (int) (addr >> this->erase_shift);
		int value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
608
	}
609

610
	return found;
611 612 613 614 615 616 617 618 619 620
}

/**
 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to update
 * @param valid		valid flag
 *
 * Update BufferRAM information
 */
621
static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
622 623 624
		int valid)
{
	struct onenand_chip *this = mtd->priv;
625 626
	int blockpage;
	unsigned int i;
627

628
	blockpage = (int) (addr >> this->page_shift);
629

630 631
	/* Invalidate another BufferRAM */
	i = ONENAND_NEXT_BUFFERRAM(this);
632
	if (this->bufferram[i].blockpage == blockpage)
633
		this->bufferram[i].blockpage = -1;
634 635 636

	/* Update BufferRAM */
	i = ONENAND_CURRENT_BUFFERRAM(this);
637 638 639 640
	if (valid)
		this->bufferram[i].blockpage = blockpage;
	else
		this->bufferram[i].blockpage = -1;
641 642
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/**
 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		start address to invalidate
 * @param len		length to invalidate
 *
 * Invalidate BufferRAM information
 */
static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
		unsigned int len)
{
	struct onenand_chip *this = mtd->priv;
	int i;
	loff_t end_addr = addr + len;

	/* Invalidate BufferRAM */
	for (i = 0; i < MAX_BUFFERRAM; i++) {
		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
		if (buf_addr >= addr && buf_addr < end_addr)
			this->bufferram[i].blockpage = -1;
	}
}

666 667 668 669 670 671 672
/**
 * onenand_get_device - [GENERIC] Get chip for selected access
 * @param mtd		MTD device structure
 * @param new_state	the state which is requested
 *
 * Get the device and lock it for exclusive access
 */
673
static int onenand_get_device(struct mtd_info *mtd, int new_state)
674 675 676 677 678 679 680 681 682 683 684 685 686 687
{
	struct onenand_chip *this = mtd->priv;
	DECLARE_WAITQUEUE(wait, current);

	/*
	 * Grab the lock and see if the device is available
	 */
	while (1) {
		spin_lock(&this->chip_lock);
		if (this->state == FL_READY) {
			this->state = new_state;
			spin_unlock(&this->chip_lock);
			break;
		}
688 689 690 691
		if (new_state == FL_PM_SUSPENDED) {
			spin_unlock(&this->chip_lock);
			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
		}
692 693 694 695 696 697
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&this->wq, &wait);
		spin_unlock(&this->chip_lock);
		schedule();
		remove_wait_queue(&this->wq, &wait);
	}
698 699

	return 0;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
}

/**
 * onenand_release_device - [GENERIC] release chip
 * @param mtd		MTD device structure
 *
 * Deselect, release chip lock and wake up anyone waiting on the device
 */
static void onenand_release_device(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	/* Release the chip */
	spin_lock(&this->chip_lock);
	this->state = FL_READY;
	wake_up(&this->wq);
	spin_unlock(&this->chip_lock);
}

/**
720
 * onenand_read - [MTD Interface] Read data from flash
721 722 723 724 725 726
 * @param mtd		MTD device structure
 * @param from		offset to read from
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put data
 *
727 728 729 730
 * Read with ecc
*/
static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
731 732
{
	struct onenand_chip *this = mtd->priv;
733
	struct mtd_ecc_stats stats;
734 735
	int read = 0, column;
	int thislen;
736
	int ret = 0, boundary = 0;
737

738
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
739 740 741

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
742
		printk(KERN_ERR "onenand_read: Attempt read beyond end of device\n");
743 744 745 746 747 748 749
		*retlen = 0;
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

750
	stats = mtd->ecc_stats;
751

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
 	/* Read-while-load method */

 	/* Do first load to bufferRAM */
 	if (read < len) {
 		if (!onenand_check_bufferram(mtd, from)) {
 			this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
 			ret = this->wait(mtd, FL_READING);
 			onenand_update_bufferram(mtd, from, !ret);
 		}
 	}

 	thislen = min_t(int, mtd->writesize, len - read);
 	column = from & (mtd->writesize - 1);
 	if (column + thislen > mtd->writesize)
 		thislen = mtd->writesize - column;

 	while (!ret) {
 		/* If there is more to load then start next load */
 		from += thislen;
 		if (read + thislen < len) {
 			this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
773 774 775 776 777
 			/*
 			 * Chip boundary handling in DDP
 			 * Now we issued chip 1 read and pointed chip 1
 			 * bufferam so we have to point chip 0 bufferam.
 			 */
778 779 780
 			if (ONENAND_IS_DDP(this) &&
 			    unlikely(from == (this->chipsize >> 1))) {
 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
781 782 783
 				boundary = 1;
 			} else
 				boundary = 0;
784 785 786 787 788 789 790 791 792
 			ONENAND_SET_PREV_BUFFERRAM(this);
 		}
 		/* While load is going, read from last bufferRAM */
 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
 		/* See if we are done */
 		read += thislen;
 		if (read == len)
 			break;
 		/* Set up for next read from bufferRAM */
793
 		if (unlikely(boundary))
794
 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
795 796 797 798 799 800 801 802 803
 		ONENAND_SET_NEXT_BUFFERRAM(this);
 		buf += thislen;
 		thislen = min_t(int, mtd->writesize, len - read);
 		column = 0;
 		cond_resched();
 		/* Now wait for load */
 		ret = this->wait(mtd, FL_READING);
 		onenand_update_bufferram(mtd, from, !ret);
 	}
804 805 806 807 808 809 810 811 812 813

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	/*
	 * Return success, if no ECC failures, else -EBADMSG
	 * fs driver will take care of that, because
	 * retlen == desired len and result == -EBADMSG
	 */
	*retlen = read;
814 815 816 817

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

818 819 820
	if (ret)
		return ret;

821
	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
822 823
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param buf		destination address
 * @param column	oob offset to read from
 * @param thislen	oob length to read
 */
static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
				int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int readcol = column;
	int readend = column + thislen;
	int lastgap = 0;
	uint8_t *oob_buf = this->page_buf + mtd->writesize;

	for (free = this->ecclayout->oobfree; free->length; ++free) {
		if (readcol >= lastgap)
			readcol += free->offset - lastgap;
		if (readend >= lastgap)
			readend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
848
	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
849 850 851 852 853 854 855 856 857 858 859 860 861
	for (free = this->ecclayout->oobfree; free->length; ++free) {
		int free_end = free->offset + free->length;
		if (free->offset < readend && free_end > readcol) {
			int st = max_t(int,free->offset,readcol);
			int ed = min_t(int,free_end,readend);
			int n = ed - st;
			memcpy(buf, oob_buf + st, n);
			buf += n;
		}
	}
	return 0;
}

862
/**
863
 * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
864 865 866 867 868
 * @param mtd		MTD device structure
 * @param from		offset to read from
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put data
869
 * @param mode		operation mode
870 871 872
 *
 * OneNAND read out-of-band data from the spare area
 */
873
static int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
874
			size_t *retlen, u_char *buf, mtd_oob_mode_t mode)
875 876
{
	struct onenand_chip *this = mtd->priv;
877
	int read = 0, thislen, column, oobsize;
878 879 880 881 882 883 884
	int ret = 0;

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);

	/* Initialize return length value */
	*retlen = 0;

885 886 887 888 889 890 891 892
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = from & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
893
		printk(KERN_ERR "onenand_read_oob: Attempted to start read outside oob\n");
894 895 896
		return -EINVAL;
	}

897
	/* Do not allow reads past end of device */
898 899 900
	if (unlikely(from >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (from >> this->page_shift)) * oobsize)) {
901
		printk(KERN_ERR "onenand_read_oob: Attempted to read beyond end of device\n");
902 903 904 905 906 907 908
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

	while (read < len) {
909 910
		cond_resched();

911
		thislen = oobsize - column;
912 913 914 915 916 917 918 919 920
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = this->wait(mtd, FL_READING);
		/* First copy data and check return value for ECC handling */

921 922 923 924
		if (mode == MTD_OOB_AUTO)
			onenand_transfer_auto_oob(mtd, buf, column, thislen);
		else
			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
925

926
		if (ret) {
927
			printk(KERN_ERR "onenand_read_oob: read failed = 0x%x\n", ret);
928
			break;
929 930
		}

931 932 933 934 935 936 937 938 939 940
		read += thislen;

		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Page size */
J
Joern Engel 已提交
941
			from += mtd->writesize;
942 943 944 945 946 947 948 949 950 951 952
			column = 0;
		}
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	*retlen = read;
	return ret;
}

953 954
/**
 * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
955 956 957
 * @param mtd:		MTD device structure
 * @param from:		offset to read from
 * @param ops:		oob operation description structure
958 959 960 961
 */
static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
{
962
	switch (ops->mode) {
963 964 965 966
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
967
		/* Not implemented yet */
968 969 970
	default:
		return -EINVAL;
	}
971
	return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
972
				   &ops->oobretlen, ops->oobbuf, ops->mode);
973 974
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/**
 * onenand_bbt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_bbt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long timeout;
	unsigned int interrupt;
	unsigned int ctrl;

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
		if (interrupt & ONENAND_INT_MASTER)
			break;
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
		/* Initial bad block case */
		if (ctrl & ONENAND_CTRL_LOAD)
			return ONENAND_BBT_READ_ERROR;
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	if (interrupt & ONENAND_INT_READ) {
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
		if (ecc & ONENAND_ECC_2BIT_ALL)
			return ONENAND_BBT_READ_ERROR;
	} else {
		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
			"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	return 0;
}

/**
 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
 * @param mtd		MTD device structure
 * @param from		offset to read from
1025
 * @param ops		oob operation description structure
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
 *
 * OneNAND read out-of-band data from the spare area for bbt scan
 */
int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
			    struct mtd_oob_ops *ops)
{
	struct onenand_chip *this = mtd->priv;
	int read = 0, thislen, column;
	int ret = 0;
	size_t len = ops->ooblen;
	u_char *buf = ops->oobbuf;

1038
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	/* Initialize return value */
	ops->oobretlen = 0;

	/* Do not allow reads past end of device */
	if (unlikely((from + len) > mtd->size)) {
		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

	column = from & (mtd->oobsize - 1);

	while (read < len) {
		cond_resched();

		thislen = mtd->oobsize - column;
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = onenand_bbt_wait(mtd, FL_READING);
		if (ret)
			break;

		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
		read += thislen;
		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Update Page size */
			from += mtd->writesize;
			column = 0;
		}
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	ops->oobretlen = read;
	return ret;
}

1090
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1091 1092 1093 1094 1095 1096 1097
/**
 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
 * @param mtd		MTD device structure
 * @param buf		the databuffer to verify
 * @param to		offset to read from
 *
 */
1098
static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1099 1100
{
	struct onenand_chip *this = mtd->priv;
1101
	char oobbuf[64];
1102 1103 1104 1105 1106 1107 1108 1109
	int status, i;

	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
	onenand_update_bufferram(mtd, to, 0);
	status = this->wait(mtd, FL_READING);
	if (status)
		return status;

1110 1111 1112
	this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
	for (i = 0; i < mtd->oobsize; i++)
		if (buf[i] != 0xFF && buf[i] != oobbuf[i])
1113 1114 1115 1116 1117
			return -EBADMSG;

	return 0;
}

1118
/**
1119 1120 1121 1122 1123
 * onenand_verify - [GENERIC] verify the chip contents after a write
 * @param mtd          MTD device structure
 * @param buf          the databuffer to verify
 * @param addr         offset to read from
 * @param len          number of bytes to read and compare
1124 1125
 *
 */
1126
static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1127 1128
{
	struct onenand_chip *this = mtd->priv;
1129
	void __iomem *dataram;
1130
	int ret = 0;
1131
	int thislen, column;
1132

1133 1134 1135 1136 1137
	while (len != 0) {
		thislen = min_t(int, mtd->writesize, len);
		column = addr & (mtd->writesize - 1);
		if (column + thislen > mtd->writesize)
			thislen = mtd->writesize - column;
1138

1139
		this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
1140

1141 1142 1143 1144 1145
		onenand_update_bufferram(mtd, addr, 0);

		ret = this->wait(mtd, FL_READING);
		if (ret)
			return ret;
1146

1147
		onenand_update_bufferram(mtd, addr, 1);
1148

1149 1150
		dataram = this->base + ONENAND_DATARAM;
		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1151

1152 1153 1154 1155 1156 1157 1158
		if (memcmp(buf, dataram + column, thislen))
			return -EBADMSG;

		len -= thislen;
		buf += thislen;
		addr += thislen;
	}
1159

1160 1161 1162
	return 0;
}
#else
1163
#define onenand_verify(...)		(0)
1164
#define onenand_verify_oob(...)		(0)
1165 1166
#endif

1167
#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1168 1169

/**
1170
 * onenand_write - [MTD Interface] write buffer to FLASH
1171 1172 1173 1174 1175 1176
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
 *
1177
 * Write with ECC
1178
 */
1179 1180
static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
1181 1182 1183 1184
{
	struct onenand_chip *this = mtd->priv;
	int written = 0;
	int ret = 0;
1185
	int column, subpage;
1186

1187
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1188 1189 1190 1191 1192 1193

	/* Initialize retlen, in case of early exit */
	*retlen = 0;

	/* Do not allow writes past end of device */
	if (unlikely((to + len) > mtd->size)) {
1194
		printk(KERN_ERR "onenand_write: Attempt write to past end of device\n");
1195 1196 1197 1198 1199
		return -EINVAL;
	}

	/* Reject writes, which are not page aligned */
        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1200
                printk(KERN_ERR "onenand_write: Attempt to write not page aligned data\n");
1201 1202 1203
                return -EINVAL;
        }

1204 1205
	column = to & (mtd->writesize - 1);

1206 1207 1208 1209 1210
	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_WRITING);

	/* Loop until all data write */
	while (written < len) {
1211
		int thislen = min_t(int, mtd->writesize - column, len - written);
1212 1213
		u_char *wbuf = (u_char *) buf;

1214 1215
		cond_resched();

1216
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1217 1218

		/* Partial page write */
1219
		subpage = thislen < mtd->writesize;
1220 1221
		if (subpage) {
			memset(this->page_buf, 0xff, mtd->writesize);
1222
			memcpy(this->page_buf + column, buf, thislen);
1223 1224
			wbuf = this->page_buf;
		}
1225

1226
		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1227 1228
		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);

J
Joern Engel 已提交
1229
		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1230

1231 1232
		ret = this->wait(mtd, FL_WRITING);

1233
		/* In partial page write we don't update bufferram */
1234
		onenand_update_bufferram(mtd, to, !ret && !subpage);
1235 1236

		if (ret) {
1237
			printk(KERN_ERR "onenand_write: write filaed %d\n", ret);
1238
			break;
1239 1240 1241
		}

		/* Only check verify write turn on */
1242
		ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
1243
		if (ret) {
1244
			printk(KERN_ERR "onenand_write: verify failed %d\n", ret);
1245
			break;
1246 1247
		}

1248
		written += thislen;
1249

1250 1251 1252
		if (written == len)
			break;

1253
		column = 0;
1254 1255 1256 1257 1258 1259 1260 1261
		to += thislen;
		buf += thislen;
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	*retlen = written;
1262

1263 1264 1265
	return ret;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/**
 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param oob_buf	oob buffer
 * @param buf		source address
 * @param column	oob offset to write to
 * @param thislen	oob length to write
 */
static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
				  const u_char *buf, int column, int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int writecol = column;
	int writeend = column + thislen;
	int lastgap = 0;

	for (free = this->ecclayout->oobfree; free->length; ++free) {
		if (writecol >= lastgap)
			writecol += free->offset - lastgap;
		if (writeend >= lastgap)
			writeend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
	for (free = this->ecclayout->oobfree; free->length; ++free) {
		int free_end = free->offset + free->length;
		if (free->offset < writeend && free_end > writecol) {
			int st = max_t(int,free->offset,writecol);
			int ed = min_t(int,free_end,writeend);
			int n = ed - st;
			memcpy(oob_buf + st, buf, n);
			buf += n;
		}
	}
	return 0;
}

1303
/**
1304
 * onenand_do_write_oob - [Internal] OneNAND write out-of-band
1305 1306 1307 1308 1309
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
1310
 * @param mode		operation mode
1311 1312 1313
 *
 * OneNAND write out-of-band
 */
1314
static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
1315
				size_t *retlen, const u_char *buf, mtd_oob_mode_t mode)
1316 1317
{
	struct onenand_chip *this = mtd->priv;
1318
	int column, ret = 0, oobsize;
1319
	int written = 0;
1320
	u_char *oobbuf;
1321 1322 1323 1324 1325 1326

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);

	/* Initialize retlen, in case of early exit */
	*retlen = 0;

1327 1328 1329 1330 1331 1332 1333 1334
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = to & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
1335
		printk(KERN_ERR "onenand_write_oob: Attempted to start write outside oob\n");
1336 1337 1338
		return -EINVAL;
	}

1339
	/* For compatibility with NAND: Do not allow write past end of page */
1340
	if (unlikely(column + len > oobsize)) {
1341
		printk(KERN_ERR "onenand_write_oob: "
1342 1343 1344 1345
		      "Attempt to write past end of page\n");
		return -EINVAL;
	}

1346 1347 1348 1349
	/* Do not allow reads past end of device */
	if (unlikely(to >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (to >> this->page_shift)) * oobsize)) {
1350
		printk(KERN_ERR "onenand_write_oob: Attempted to write past end of device\n");
1351 1352 1353 1354 1355 1356
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_WRITING);

1357 1358
	oobbuf = this->page_buf + mtd->writesize;

1359 1360
	/* Loop until all data write */
	while (written < len) {
1361
		int thislen = min_t(int, oobsize, len - written);
1362

1363 1364
		cond_resched();

1365 1366
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);

1367 1368
		/* We send data to spare ram with oobsize
		 * to prevent byte access */
1369
		memset(oobbuf, 0xff, mtd->oobsize);
1370
		if (mode == MTD_OOB_AUTO)
1371
			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1372
		else
1373 1374
			memcpy(oobbuf + column, buf, thislen);
		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1375 1376 1377 1378 1379

		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);

		onenand_update_bufferram(mtd, to, 0);

1380 1381
		ret = this->wait(mtd, FL_WRITING);
		if (ret) {
1382
			printk(KERN_ERR "onenand_write_oob: write failed %d\n", ret);
1383
			break;
1384 1385
		}

1386
		ret = onenand_verify_oob(mtd, oobbuf, to);
1387
		if (ret) {
1388
			printk(KERN_ERR "onenand_write_oob: verify failed %d\n", ret);
1389
			break;
1390
		}
1391 1392 1393 1394 1395

		written += thislen;
		if (written == len)
			break;

1396
		to += mtd->writesize;
1397
		buf += thislen;
1398
		column = 0;
1399 1400 1401 1402 1403 1404
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	*retlen = written;
1405

1406
	return ret;
1407 1408
}

1409 1410
/**
 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1411 1412 1413
 * @param mtd:		MTD device structure
 * @param to:		offset to write
 * @param ops:		oob operation description structure
1414 1415 1416 1417
 */
static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
{
1418
	switch (ops->mode) {
1419 1420 1421 1422
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
1423
		/* Not implemented yet */
1424 1425 1426
	default:
		return -EINVAL;
	}
1427
	return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
1428
				    &ops->oobretlen, ops->oobbuf, ops->mode);
1429 1430
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/**
 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 * @param getchip	0, if the chip is already selected
 * @param allowbbt	1, if its allowed to access the bbt area
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;

	/* Return info from the table */
	return bbm->isbad_bbt(mtd, ofs, allowbbt);
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
/**
 * onenand_erase - [MTD Interface] erase block(s)
 * @param mtd		MTD device structure
 * @param instr		erase instruction
 *
 * Erase one ore more blocks
 */
static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct onenand_chip *this = mtd->priv;
	unsigned int block_size;
	loff_t addr;
	int len;
	int ret = 0;

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);

	block_size = (1 << this->erase_shift);

	/* Start address must align on block boundary */
	if (unlikely(instr->addr & (block_size - 1))) {
1471
		printk(KERN_ERR "onenand_erase: Unaligned address\n");
1472 1473 1474 1475 1476
		return -EINVAL;
	}

	/* Length must align on block boundary */
	if (unlikely(instr->len & (block_size - 1))) {
1477
		printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1478 1479 1480 1481 1482
		return -EINVAL;
	}

	/* Do not allow erase past end of device */
	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1483
		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		return -EINVAL;
	}

	instr->fail_addr = 0xffffffff;

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_ERASING);

	/* Loop throught the pages */
	len = instr->len;
	addr = instr->addr;

	instr->state = MTD_ERASING;

	while (len) {
1499
		cond_resched();
1500

1501 1502 1503 1504 1505 1506
		/* Check if we have a bad block, we do not erase bad blocks */
		if (onenand_block_checkbad(mtd, addr, 0, 0)) {
			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
1507 1508 1509

		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);

1510 1511
		onenand_invalidate_bufferram(mtd, addr, block_size);

1512 1513 1514
		ret = this->wait(mtd, FL_ERASING);
		/* Check, if it is write protected */
		if (ret) {
1515
			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
			instr->state = MTD_ERASE_FAILED;
			instr->fail_addr = addr;
			goto erase_exit;
		}

		len -= block_size;
		addr += block_size;
	}

	instr->state = MTD_ERASE_DONE;

erase_exit:

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	return ret;
}

/**
 * onenand_sync - [MTD Interface] sync
 * @param mtd		MTD device structure
 *
 * Sync is actually a wait for chip ready function
 */
static void onenand_sync(struct mtd_info *mtd)
{
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_SYNCING);

	/* Release it and go back */
	onenand_release_device(mtd);
}

/**
 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1561 1562
 *
 * Check whether the block is bad
1563 1564 1565
 */
static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	/* Check for invalid offset */
	if (ofs > mtd->size)
		return -EINVAL;

	return onenand_block_checkbad(mtd, ofs, 1, 0);
}

/**
 * onenand_default_block_markbad - [DEFAULT] mark a block bad
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 *
 * This is the default implementation, which can be overridden by
 * a hardware specific driver.
 */
static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;
	u_char buf[2] = {0, 0};
	size_t retlen;
	int block;

	/* Get block number */
	block = ((int) ofs) >> bbm->bbt_erase_shift;
        if (bbm->bbt)
                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);

        /* We write two bytes, so we dont have to mess with 16 bit access */
        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1596
        return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf, MTD_OOB_PLACE);
1597 1598 1599 1600 1601 1602
}

/**
 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1603 1604
 *
 * Mark the block as bad
1605 1606 1607
 */
static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	struct onenand_chip *this = mtd->priv;
	int ret;

	ret = onenand_block_isbad(mtd, ofs);
	if (ret) {
		/* If it was bad already, return success and do nothing */
		if (ret > 0)
			return 0;
		return ret;
	}

	return this->block_markbad(mtd, ofs);
1620 1621 1622
}

/**
K
Kyungmin Park 已提交
1623
 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1624 1625
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
K
Kyungmin Park 已提交
1626
 * @param len		number of bytes to lock or unlock
1627
 * @param cmd		lock or unlock command
1628
 *
K
Kyungmin Park 已提交
1629
 * Lock or unlock one or more blocks
1630
 */
K
Kyungmin Park 已提交
1631
static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1632 1633 1634
{
	struct onenand_chip *this = mtd->priv;
	int start, end, block, value, status;
K
Kyungmin Park 已提交
1635
	int wp_status_mask;
1636 1637 1638 1639

	start = ofs >> this->erase_shift;
	end = len >> this->erase_shift;

K
Kyungmin Park 已提交
1640 1641 1642 1643 1644
	if (cmd == ONENAND_CMD_LOCK)
		wp_status_mask = ONENAND_WP_LS;
	else
		wp_status_mask = ONENAND_WP_US;

1645
	/* Continuous lock scheme */
1646
	if (this->options & ONENAND_HAS_CONT_LOCK) {
1647 1648 1649
		/* Set start block address */
		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
		/* Set end block address */
1650
		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1651 1652
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1653 1654

		/* There's no return value */
K
Kyungmin Park 已提交
1655
		this->wait(mtd, FL_LOCKING);
1656 1657 1658 1659 1660 1661 1662 1663

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1664
		if (!(status & wp_status_mask))
1665 1666 1667 1668 1669 1670
			printk(KERN_ERR "wp status = 0x%x\n", status);

		return 0;
	}

	/* Block lock scheme */
1671
	for (block = start; block < start + end; block++) {
1672 1673 1674 1675 1676 1677
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1678 1679
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1680 1681
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1682 1683

		/* There's no return value */
K
Kyungmin Park 已提交
1684
		this->wait(mtd, FL_LOCKING);
1685 1686 1687 1688 1689 1690 1691 1692

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1693
		if (!(status & wp_status_mask))
1694 1695
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
1696

1697 1698 1699
	return 0;
}

K
Kyungmin Park 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/**
 * onenand_lock - [MTD Interface] Lock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Lock one or more blocks
 */
static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
}

/**
 * onenand_unlock - [MTD Interface] Unlock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Unlock one or more blocks
 */
static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
/**
 * onenand_check_lock_status - [OneNAND Interface] Check lock status
 * @param this		onenand chip data structure
 *
 * Check lock status
 */
static void onenand_check_lock_status(struct onenand_chip *this)
{
	unsigned int value, block, status;
	unsigned int end;

	end = this->chipsize >> this->erase_shift;
	for (block = 0; block < end; block++) {
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
		if (!(status & ONENAND_WP_US))
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
}

/**
 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
 * @param mtd		MTD device structure
 *
 * Unlock all blocks
 */
static int onenand_unlock_all(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1766 1767
		/* Set start block address */
		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1768 1769 1770 1771
		/* Write unlock command */
		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);

		/* There's no return value */
K
Kyungmin Park 已提交
1772
		this->wait(mtd, FL_LOCKING);
1773 1774 1775 1776 1777 1778 1779

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Workaround for all block unlock in DDP */
1780
		if (ONENAND_IS_DDP(this)) {
1781
			/* 1st block on another chip */
1782 1783
			loff_t ofs = this->chipsize >> 1;
			size_t len = mtd->erasesize;
1784 1785 1786 1787 1788 1789 1790 1791 1792

			onenand_unlock(mtd, ofs, len);
		}

		onenand_check_lock_status(this);

		return 0;
	}

K
Kyungmin Park 已提交
1793
	onenand_unlock(mtd, 0x0, this->chipsize);
1794 1795 1796 1797

	return 0;
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
#ifdef CONFIG_MTD_ONENAND_OTP

/* Interal OTP operation */
typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
		size_t *retlen, u_char *buf);

/**
 * do_otp_read - [DEFAULT] Read OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of readbytes
 * @param buf		the databuffer to put/get data
 *
 * Read OTP block area.
 */
static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

	ret = mtd->read(mtd, from, len, retlen, buf);

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_write - [DEFAULT] Write OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to write
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write OTP block area.
 */
static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	unsigned char *pbuf = buf;
	int ret;

	/* Force buffer page aligned */
J
Joern Engel 已提交
1851
	if (len < mtd->writesize) {
1852
		memcpy(this->page_buf, buf, len);
J
Joern Engel 已提交
1853
		memset(this->page_buf + len, 0xff, mtd->writesize - len);
1854
		pbuf = this->page_buf;
J
Joern Engel 已提交
1855
		len = mtd->writesize;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	}

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

	ret = mtd->write(mtd, from, len, retlen, pbuf);

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_lock - [DEFAULT] Lock OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to lock
 * @param retlen	pointer to variable to store the number of lock bytes
 * @param buf		the databuffer to put/get data
 *
 * Lock OTP block area.
 */
static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

1891
	ret = onenand_do_write_oob(mtd, from, len, retlen, buf, MTD_OOB_PLACE);
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * onenand_otp_walk - [DEFAULT] Handle OTP operation
 * @param mtd		MTD device structure
 * @param from		The offset to read/write
 * @param len		number of bytes to read/write
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 * @param action	do given action
 * @param mode		specify user and factory
 *
 * Handle OTP operation.
 */
static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf,
			otp_op_t action, int mode)
{
	struct onenand_chip *this = mtd->priv;
	int otp_pages;
	int density;
	int ret = 0;

	*retlen = 0;

	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	if (density < ONENAND_DEVICE_DENSITY_512Mb)
		otp_pages = 20;
	else
		otp_pages = 10;

	if (mode == MTD_OTP_FACTORY) {
J
Joern Engel 已提交
1930
		from += mtd->writesize * otp_pages;
1931 1932 1933 1934
		otp_pages = 64 - otp_pages;
	}

	/* Check User/Factory boundary */
J
Joern Engel 已提交
1935
	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		return 0;

	while (len > 0 && otp_pages > 0) {
		if (!action) {	/* OTP Info functions */
			struct otp_info *otpinfo;

			len -= sizeof(struct otp_info);
			if (len <= 0)
				return -ENOSPC;

			otpinfo = (struct otp_info *) buf;
			otpinfo->start = from;
J
Joern Engel 已提交
1948
			otpinfo->length = mtd->writesize;
1949 1950
			otpinfo->locked = 0;

J
Joern Engel 已提交
1951
			from += mtd->writesize;
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
			buf += sizeof(struct otp_info);
			*retlen += sizeof(struct otp_info);
		} else {
			size_t tmp_retlen;
			int size = len;

			ret = action(mtd, from, len, &tmp_retlen, buf);

			buf += size;
			len -= size;
			*retlen += size;

			if (ret < 0)
				return ret;
		}
		otp_pages--;
	}

	return 0;
}

/**
 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read factory OTP info.
 */
static int onenand_get_fact_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);

	return ret ? : retlen;
}

/**
 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read factory OTP area.
 */
static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
}

/**
 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read user OTP info.
 */
static int onenand_get_user_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);

	return ret ? : retlen;
}

/**
 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read user OTP area.
 */
static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
}

/**
 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to write
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write user OTP area.
 */
static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
}

/**
 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to unlock
 *
 * Write lock mark on spare area in page 0 in OTP block
 */
static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len)
{
	unsigned char oob_buf[64];
	size_t retlen;
	int ret;

	memset(oob_buf, 0xff, mtd->oobsize);
	/*
	 * Note: OTP lock operation
	 *       OTP block : 0xXXFC
	 *       1st block : 0xXXF3 (If chip support)
	 *       Both      : 0xXXF0 (If chip support)
	 */
	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;

	/*
	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
	 * We write 16 bytes spare area instead of 2 bytes.
	 */
	from = 0;
	len = 16;

	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);

	return ret ? : retlen;
}
#endif	/* CONFIG_MTD_ONENAND_OTP */

2096
/**
2097
 * onenand_check_features - Check and set OneNAND features
2098 2099
 * @param mtd		MTD data structure
 *
2100 2101
 * Check and set OneNAND features
 * - lock scheme
2102
 */
2103
static void onenand_check_features(struct mtd_info *mtd)
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
{
	struct onenand_chip *this = mtd->priv;
	unsigned int density, process;

	/* Lock scheme depends on density and process */
	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;

	/* Lock scheme */
	if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
		/* A-Die has all block unlock */
		if (process) {
			printk(KERN_DEBUG "Chip support all block unlock\n");
			this->options |= ONENAND_HAS_UNLOCK_ALL;
		}
	} else {
		/* Some OneNAND has continues lock scheme */
		if (!process) {
			printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
			this->options |= ONENAND_HAS_CONT_LOCK;
		}
	}
}

2128
/**
2129
 * onenand_print_device_info - Print device & version ID
2130
 * @param device        device ID
2131
 * @param version	version ID
2132
 *
2133
 * Print device & version ID
2134
 */
2135
static void onenand_print_device_info(int device, int version)
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
{
        int vcc, demuxed, ddp, density;

        vcc = device & ONENAND_DEVICE_VCC_MASK;
        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
        ddp = device & ONENAND_DEVICE_IS_DDP;
        density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
                demuxed ? "" : "Muxed ",
                ddp ? "(DDP)" : "",
                (16 << density),
                vcc ? "2.65/3.3" : "1.8",
                device);
2149
	printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
}

static const struct onenand_manufacturers onenand_manuf_ids[] = {
        {ONENAND_MFR_SAMSUNG, "Samsung"},
};

/**
 * onenand_check_maf - Check manufacturer ID
 * @param manuf         manufacturer ID
 *
 * Check manufacturer ID
 */
static int onenand_check_maf(int manuf)
{
2164 2165
	int size = ARRAY_SIZE(onenand_manuf_ids);
	char *name;
2166 2167
        int i;

2168
	for (i = 0; i < size; i++)
2169 2170 2171
                if (manuf == onenand_manuf_ids[i].id)
                        break;

2172 2173 2174 2175 2176 2177
	if (i < size)
		name = onenand_manuf_ids[i].name;
	else
		name = "Unknown";

	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2178

2179
	return (i == size);
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
}

/**
 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
 * @param mtd		MTD device structure
 *
 * OneNAND detection method:
 *   Compare the the values from command with ones from register
 */
static int onenand_probe(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
2192
	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2193
	int density;
K
Kyungmin Park 已提交
2194 2195 2196 2197 2198 2199
	int syscfg;

	/* Save system configuration 1 */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	/* Clear Sync. Burst Read mode to read BootRAM */
	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2200 2201 2202 2203 2204 2205 2206 2207

	/* Send the command for reading device ID from BootRAM */
	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);

	/* Read manufacturer and device IDs from BootRAM */
	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);

K
Kyungmin Park 已提交
2208 2209 2210 2211 2212 2213 2214 2215
	/* Reset OneNAND to read default register values */
	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
	/* Wait reset */
	this->wait(mtd, FL_RESETING);

	/* Restore system configuration 1 */
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

2216 2217 2218 2219 2220 2221 2222
	/* Check manufacturer ID */
	if (onenand_check_maf(bram_maf_id))
		return -ENXIO;

	/* Read manufacturer and device IDs from Register */
	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2223
	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2224 2225 2226 2227 2228 2229

	/* Check OneNAND device */
	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
		return -ENXIO;

	/* Flash device information */
2230
	onenand_print_device_info(dev_id, ver_id);
2231
	this->device_id = dev_id;
2232
	this->version_id = ver_id;
2233 2234 2235

	density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	this->chipsize = (16 << density) << 20;
2236
	/* Set density mask. it is used for DDP */
2237 2238 2239 2240
	if (ONENAND_IS_DDP(this))
		this->density_mask = (1 << (density + 6));
	else
		this->density_mask = 0;
2241 2242 2243

	/* OneNAND page size & block size */
	/* The data buffer size is equal to page size */
J
Joern Engel 已提交
2244 2245
	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
	mtd->oobsize = mtd->writesize >> 5;
2246
	/* Pages per a block are always 64 in OneNAND */
J
Joern Engel 已提交
2247
	mtd->erasesize = mtd->writesize << 6;
2248 2249

	this->erase_shift = ffs(mtd->erasesize) - 1;
J
Joern Engel 已提交
2250
	this->page_shift = ffs(mtd->writesize) - 1;
2251
	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2252 2253 2254 2255 2256

	/* REVIST: Multichip handling */

	mtd->size = this->chipsize;

2257 2258
	/* Check OneNAND features */
	onenand_check_features(mtd);
2259

2260 2261 2262
	return 0;
}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/**
 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
 * @param mtd		MTD device structure
 */
static int onenand_suspend(struct mtd_info *mtd)
{
	return onenand_get_device(mtd, FL_PM_SUSPENDED);
}

/**
 * onenand_resume - [MTD Interface] Resume the OneNAND flash
 * @param mtd		MTD device structure
 */
static void onenand_resume(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->state == FL_PM_SUSPENDED)
		onenand_release_device(mtd);
	else
		printk(KERN_ERR "resume() called for the chip which is not"
				"in suspended state\n");
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
/**
 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
 * @param mtd		MTD device structure
 * @param maxchips	Number of chips to scan for
 *
 * This fills out all the not initialized function pointers
 * with the defaults.
 * The flash ID is read and the mtd/chip structures are
 * filled with the appropriate values.
 */
int onenand_scan(struct mtd_info *mtd, int maxchips)
{
2299
	int i;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	struct onenand_chip *this = mtd->priv;

	if (!this->read_word)
		this->read_word = onenand_readw;
	if (!this->write_word)
		this->write_word = onenand_writew;

	if (!this->command)
		this->command = onenand_command;
	if (!this->wait)
2310
		onenand_setup_wait(mtd);
2311 2312 2313 2314 2315 2316

	if (!this->read_bufferram)
		this->read_bufferram = onenand_read_bufferram;
	if (!this->write_bufferram)
		this->write_bufferram = onenand_write_bufferram;

2317 2318 2319 2320 2321
	if (!this->block_markbad)
		this->block_markbad = onenand_default_block_markbad;
	if (!this->scan_bbt)
		this->scan_bbt = onenand_default_bbt;

2322 2323 2324
	if (onenand_probe(mtd))
		return -ENXIO;

2325 2326 2327 2328 2329 2330
	/* Set Sync. Burst Read after probing */
	if (this->mmcontrol) {
		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
		this->read_bufferram = onenand_sync_read_bufferram;
	}

2331 2332 2333
	/* Allocate buffers, if necessary */
	if (!this->page_buf) {
		size_t len;
J
Joern Engel 已提交
2334
		len = mtd->writesize + mtd->oobsize;
2335 2336 2337 2338 2339 2340 2341 2342
		this->page_buf = kmalloc(len, GFP_KERNEL);
		if (!this->page_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
			return -ENOMEM;
		}
		this->options |= ONENAND_PAGEBUF_ALLOC;
	}

2343 2344 2345 2346
	this->state = FL_READY;
	init_waitqueue_head(&this->wq);
	spin_lock_init(&this->chip_lock);

2347 2348 2349
	/*
	 * Allow subpage writes up to oobsize.
	 */
2350 2351
	switch (mtd->oobsize) {
	case 64:
2352
		this->ecclayout = &onenand_oob_64;
2353
		mtd->subpage_sft = 2;
2354 2355 2356
		break;

	case 32:
2357
		this->ecclayout = &onenand_oob_32;
2358
		mtd->subpage_sft = 1;
2359 2360 2361 2362 2363
		break;

	default:
		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
			mtd->oobsize);
2364
		mtd->subpage_sft = 0;
2365
		/* To prevent kernel oops */
2366
		this->ecclayout = &onenand_oob_32;
2367 2368 2369
		break;
	}

2370
	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2371 2372 2373 2374 2375 2376 2377 2378 2379

	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area
	 */
	this->ecclayout->oobavail = 0;
	for (i = 0; this->ecclayout->oobfree[i].length; i++)
		this->ecclayout->oobavail +=
			this->ecclayout->oobfree[i].length;
V
Vitaly Wool 已提交
2380
	mtd->oobavail = this->ecclayout->oobavail;
2381

2382
	mtd->ecclayout = this->ecclayout;
2383

2384 2385
	/* Fill in remaining MTD driver data */
	mtd->type = MTD_NANDFLASH;
J
Joern Engel 已提交
2386
	mtd->flags = MTD_CAP_NANDFLASH;
2387 2388 2389 2390 2391 2392 2393
	mtd->erase = onenand_erase;
	mtd->point = NULL;
	mtd->unpoint = NULL;
	mtd->read = onenand_read;
	mtd->write = onenand_write;
	mtd->read_oob = onenand_read_oob;
	mtd->write_oob = onenand_write_oob;
2394 2395 2396 2397 2398 2399 2400 2401
#ifdef CONFIG_MTD_ONENAND_OTP
	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
	mtd->get_user_prot_info = onenand_get_user_prot_info;
	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
#endif
2402
	mtd->sync = onenand_sync;
K
Kyungmin Park 已提交
2403
	mtd->lock = onenand_lock;
2404
	mtd->unlock = onenand_unlock;
2405 2406
	mtd->suspend = onenand_suspend;
	mtd->resume = onenand_resume;
2407 2408 2409 2410 2411
	mtd->block_isbad = onenand_block_isbad;
	mtd->block_markbad = onenand_block_markbad;
	mtd->owner = THIS_MODULE;

	/* Unlock whole block */
2412
	onenand_unlock_all(mtd);
2413

2414
	return this->scan_bbt(mtd);
2415 2416 2417 2418 2419 2420 2421 2422
}

/**
 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
 * @param mtd		MTD device structure
 */
void onenand_release(struct mtd_info *mtd)
{
2423 2424
	struct onenand_chip *this = mtd->priv;

2425 2426 2427 2428 2429 2430
#ifdef CONFIG_MTD_PARTITIONS
	/* Deregister partitions */
	del_mtd_partitions (mtd);
#endif
	/* Deregister the device */
	del_mtd_device (mtd);
2431 2432

	/* Free bad block table memory, if allocated */
2433 2434 2435
	if (this->bbm) {
		struct bbm_info *bbm = this->bbm;
		kfree(bbm->bbt);
2436
		kfree(this->bbm);
2437
	}
2438 2439 2440
	/* Buffer allocated by onenand_scan */
	if (this->options & ONENAND_PAGEBUF_ALLOC)
		kfree(this->page_buf);
2441 2442 2443 2444 2445 2446 2447 2448
}

EXPORT_SYMBOL_GPL(onenand_scan);
EXPORT_SYMBOL_GPL(onenand_release);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
MODULE_DESCRIPTION("Generic OneNAND flash driver code");