scrub.c 110.3 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		ref_count;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114 115
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127 128 129
	};
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

	atomic_t		ref_count;

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

163 164 165 166 167 168 169 170
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

171
struct scrub_ctx {
172
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
173
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
174 175
	int			first_free;
	int			curr;
176 177
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
178 179 180 181 182
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
183
	int			readonly;
184
	int			pages_per_rd_bio;
185 186
	u32			sectorsize;
	u32			nodesize;
187 188

	int			is_dev_replace;
189
	struct scrub_wr_ctx	wr_ctx;
190

A
Arne Jansen 已提交
191 192 193 194 195 196 197
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

198
struct scrub_fixup_nodatasum {
199
	struct scrub_ctx	*sctx;
200
	struct btrfs_device	*dev;
201 202 203 204 205 206
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

207 208 209 210 211 212 213
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

214 215 216 217 218 219
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
220
	struct list_head	inodes;
221 222 223
	struct btrfs_work	work;
};

224 225 226 227 228 229 230 231 232
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

233 234 235 236
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
239
				     struct btrfs_fs_info *fs_info,
240
				     struct scrub_block *original_sblock,
241
				     u64 length, u64 logical,
242
				     struct scrub_block *sblocks_for_recheck);
243 244 245
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
246
				u16 csum_size, int retry_failed_mirror);
247 248 249 250 251 252
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
253
					     struct scrub_block *sblock_good);
254 255 256
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
257 258 259
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
260 261 262 263 264
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
265 266
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
267 268
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
269 270
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
271
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
272
		       u64 physical, struct btrfs_device *dev, u64 flags,
273 274
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
275
static void scrub_bio_end_io(struct bio *bio, int err);
276 277
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
297
				      struct scrub_copy_nocow_ctx *ctx);
298 299 300
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
301
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
303 304


305 306 307 308 309 310 311 312 313 314 315
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

316
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
317 318 319 320 321 322 323 324 325
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

326 327 328 329 330 331 332 333 334 335 336 337 338
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
360 361 362 363 364 365 366 367 368 369

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

391
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
392
{
393
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
394
		struct btrfs_ordered_sum *sum;
395
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
396 397 398 399 400 401
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

402
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
403 404 405
{
	int i;

406
	if (!sctx)
A
Arne Jansen 已提交
407 408
		return;

409 410
	scrub_free_wr_ctx(&sctx->wr_ctx);

411
	/* this can happen when scrub is cancelled */
412 413
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
414 415

		for (i = 0; i < sbio->page_count; i++) {
416
			WARN_ON(!sbio->pagev[i]->page);
417 418 419 420 421
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

422
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
423
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
424 425 426 427 428 429

		if (!sbio)
			break;
		kfree(sbio);
	}

430 431
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
432 433 434
}

static noinline_for_stack
435
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
436
{
437
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
438 439
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
440 441
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
442

443 444 445 446 447 448 449 450 451 452 453 454
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
455 456
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
457
		goto nomem;
458
	sctx->is_dev_replace = is_dev_replace;
459
	sctx->pages_per_rd_bio = pages_per_rd_bio;
460
	sctx->curr = -1;
461
	sctx->dev_root = dev->dev_root;
462
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
463 464 465 466 467
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
468
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
469 470

		sbio->index = i;
471
		sbio->sctx = sctx;
472
		sbio->page_count = 0;
473 474
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
475

476
		if (i != SCRUB_BIOS_PER_SCTX - 1)
477
			sctx->bios[i]->next_free = i + 1;
478
		else
479 480 481 482 483
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
484 485
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
486 487 488 489 490 491 492
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
493 494 495 496 497 498 499

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
500
	return sctx;
A
Arne Jansen 已提交
501 502

nomem:
503
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
504 505 506
	return ERR_PTR(-ENOMEM);
}

507 508
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
509 510 511 512 513 514 515
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
516
	struct scrub_warning *swarn = warn_ctx;
517 518 519 520
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
521
	struct btrfs_key key;
522 523 524 525 526 527 528 529 530 531

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

532 533 534
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
535 536 537 538 539
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
540 541 542 543 544 545 546 547 548 549 550 551 552
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
553 554 555 556 557
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
558 559 560 561 562 563 564 565 566 567
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
568
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
569 570
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
571
			swarn->logical, rcu_str_deref(swarn->dev->name),
572 573
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
574
			(char *)(unsigned long)ipath->fspath->val[i]);
575 576 577 578 579

	free_ipath(ipath);
	return 0;

err:
580
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
581 582
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
583
		swarn->logical, rcu_str_deref(swarn->dev->name),
584 585 586 587 588 589
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

590
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
591
{
592 593
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
594 595 596 597 598
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
599 600 601
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
602
	u64 ref_root;
603
	u32 item_size;
604
	u8 ref_level;
605
	int ret;
606

607
	WARN_ON(sblock->page_count < 1);
608
	dev = sblock->pagev[0]->dev;
609 610
	fs_info = sblock->sctx->dev_root->fs_info;

611
	path = btrfs_alloc_path();
612 613
	if (!path)
		return;
614

615 616
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
617
	swarn.errstr = errstr;
618
	swarn.dev = NULL;
619

620 621
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
622 623 624
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
625
	extent_item_pos = swarn.logical - found_key.objectid;
626 627 628 629 630 631
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

632
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
633
		do {
634 635 636
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
637
			printk_in_rcu(KERN_WARNING
638
				"BTRFS: %s at logical %llu on dev %s, "
639
				"sector %llu: metadata %s (level %d) in tree "
640 641
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
642 643 644 645 646
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
647
		btrfs_release_path(path);
648
	} else {
649
		btrfs_release_path(path);
650
		swarn.path = path;
651
		swarn.dev = dev;
652 653
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
654 655 656 657 658 659 660
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

661
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
662
{
663
	struct page *page = NULL;
664
	unsigned long index;
665
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
666
	int ret;
667
	int corrected = 0;
668
	struct btrfs_key key;
669
	struct inode *inode = NULL;
670
	struct btrfs_fs_info *fs_info;
671 672
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
673
	int srcu_index;
674 675 676 677

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
678 679 680 681 682 683 684

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
685
		return PTR_ERR(local_root);
686
	}
687 688 689 690

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
691 692
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
693 694 695 696 697 698
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
725
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
726
					fixup->logical, page,
727
					offset - page_offset(page),
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
762 763

	iput(inode);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
783
	struct scrub_ctx *sctx;
784 785 786 787 788
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
789
	sctx = fixup->sctx;
790 791 792

	path = btrfs_alloc_path();
	if (!path) {
793 794 795
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

824 825 826
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
827 828 829 830 831

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
832 833 834
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
835 836 837
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
838 839
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
840
			fixup->logical, rcu_str_deref(fixup->dev->name));
841 842 843 844 845
	}

	btrfs_free_path(path);
	kfree(fixup);

846
	scrub_pending_trans_workers_dec(sctx);
847 848
}

849 850 851 852 853 854 855 856
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
857
		btrfs_put_bbio(recover->bbio);
858 859 860 861
		kfree(recover);
	}
}

A
Arne Jansen 已提交
862
/*
863 864 865 866 867 868
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
869
 */
870
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
871
{
872
	struct scrub_ctx *sctx = sblock_to_check->sctx;
873
	struct btrfs_device *dev;
874 875 876 877 878 879 880 881 882 883 884 885 886 887
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
888
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
889 890 891
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
892
	fs_info = sctx->dev_root->fs_info;
893 894 895 896 897 898 899 900 901 902 903
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
904
	length = sblock_to_check->page_count * PAGE_SIZE;
905 906 907 908 909
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
910
			BTRFS_EXTENT_FLAG_DATA);
911 912 913
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
914

915 916 917 918 919
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
953 954 955 956 957
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
958
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
959
		goto out;
A
Arne Jansen 已提交
960 961
	}

962
	/* setup the context, map the logical blocks and alloc the pages */
963
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
964 965
					logical, sblocks_for_recheck);
	if (ret) {
966 967 968 969
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
970
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
971 972 973 974
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
975

976
	/* build and submit the bios for the failed mirror, check checksums */
977
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
978
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
979

980 981 982 983 984 985 986 987 988 989
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
990 991
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
992
		sblock_to_check->data_corrected = 1;
993
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
994

995 996
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
997
		goto out;
A
Arne Jansen 已提交
998 999
	}

1000
	if (!sblock_bad->no_io_error_seen) {
1001 1002 1003
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1004 1005
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1006
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1007
	} else if (sblock_bad->checksum_error) {
1008 1009 1010
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1011 1012
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1013
		btrfs_dev_stat_inc_and_print(dev,
1014
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1015
	} else if (sblock_bad->header_error) {
1016 1017 1018
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1019 1020 1021
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1022
		if (sblock_bad->generation_error)
1023
			btrfs_dev_stat_inc_and_print(dev,
1024 1025
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1026
			btrfs_dev_stat_inc_and_print(dev,
1027
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1028
	}
A
Arne Jansen 已提交
1029

1030 1031 1032 1033
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1034

1035 1036
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1037

1038 1039
		WARN_ON(sctx->is_dev_replace);

1040 1041
nodatasum_case:

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1052
		fixup_nodatasum->sctx = sctx;
1053
		fixup_nodatasum->dev = dev;
1054 1055 1056
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1057
		scrub_pending_trans_workers_inc(sctx);
1058 1059
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1060 1061
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1062
		goto out;
A
Arne Jansen 已提交
1063 1064
	}

1065 1066
	/*
	 * now build and submit the bios for the other mirrors, check
1067 1068
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1084
		struct scrub_block *sblock_other;
1085

1086 1087 1088 1089 1090
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1091 1092
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1093
				    sctx->csum_size, 0);
1094 1095

		if (!sblock_other->header_error &&
1096 1097
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1098 1099
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1100
				goto corrected_error;
1101 1102
			} else {
				ret = scrub_repair_block_from_good_copy(
1103 1104 1105
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1106
			}
1107 1108
		}
	}
A
Arne Jansen 已提交
1109 1110

	/*
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
			int sub_success;

			sub_success = 0;
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				struct scrub_block *sblock_other =
					sblocks_for_recheck + mirror_index;
				struct scrub_page *page_other =
					sblock_other->pagev[page_num];

				if (!page_other->io_error) {
					ret = scrub_write_page_to_dev_replace(
							sblock_other, page_num);
					if (ret == 0) {
						/* succeeded for this page */
						sub_success = 1;
						break;
					} else {
						btrfs_dev_replace_stats_inc(
							&sctx->dev_root->
							fs_info->dev_replace.
							num_write_errors);
					}
				}
			}

			if (!sub_success) {
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
				success = 0;
				ret = scrub_write_page_to_dev_replace(
						sblock_bad, page_num);
				if (ret)
					btrfs_dev_replace_stats_inc(
						&sctx->dev_root->fs_info->
						dev_replace.num_write_errors);
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1190 1191
	 */

1192 1193 1194 1195 1196 1197
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1198
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1199 1200

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1201
			continue;
1202 1203 1204 1205 1206 1207 1208

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1209 1210
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1211 1212 1213 1214 1215 1216 1217 1218 1219

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1220
		}
A
Arne Jansen 已提交
1221

1222 1223 1224 1225
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1226 1227
	}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1239 1240
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1241
					    generation, sctx->csum_size, 1);
1242
			if (!sblock_bad->header_error &&
1243 1244 1245 1246 1247 1248 1249
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1250 1251
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1252
			sblock_to_check->data_corrected = 1;
1253
			spin_unlock(&sctx->stat_lock);
1254
			printk_ratelimited_in_rcu(KERN_ERR
1255
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1256
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1257
		}
1258 1259
	} else {
did_not_correct_error:
1260 1261 1262
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1263
		printk_ratelimited_in_rcu(KERN_ERR
1264
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1265
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1266
	}
A
Arne Jansen 已提交
1267

1268 1269 1270 1271 1272 1273
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1274
			struct scrub_recover *recover;
1275 1276
			int page_index;

1277 1278 1279
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1280 1281 1282 1283 1284 1285
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1286 1287
				scrub_page_put(sblock->pagev[page_index]);
			}
1288 1289 1290
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1291

1292 1293
	return 0;
}
A
Arne Jansen 已提交
1294

1295
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1296
{
1297
	if (bbio->raid_map) {
1298 1299
		int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;

1300
		if (bbio->raid_map[real_stripes - 1] == RAID6_Q_STRIPE)
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
			return 3;
		else
			return 2;
	} else {
		return (int)bbio->num_stripes;
	}
}

static inline void scrub_stripe_index_and_offset(u64 logical, u64 *raid_map,
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

	if (raid_map) {
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1338
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1339
				     struct btrfs_fs_info *fs_info,
1340
				     struct scrub_block *original_sblock,
1341 1342 1343
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
1344 1345 1346 1347 1348 1349
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1350 1351
	int page_index;
	int mirror_index;
1352
	int nmirrors;
1353 1354 1355
	int ret;

	/*
1356
	 * note: the two members ref_count and outstanding_pages
1357 1358 1359 1360 1361 1362
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
1363 1364 1365
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1366

1367 1368 1369 1370
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1371
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1372
				       &mapped_length, &bbio, 0, 1);
1373
		if (ret || !bbio || mapped_length < sublen) {
1374
			btrfs_put_bbio(bbio);
1375 1376
			return -EIO;
		}
A
Arne Jansen 已提交
1377

1378 1379
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1380
			btrfs_put_bbio(bbio);
1381 1382 1383 1384 1385 1386 1387
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1388
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1389

1390
		nmirrors = scrub_nr_raid_mirrors(bbio);
1391
		for (mirror_index = 0; mirror_index < nmirrors;
1392 1393 1394 1395 1396 1397 1398 1399
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
1400 1401 1402 1403
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1404 1405 1406
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1407
				scrub_put_recover(recover);
1408 1409
				return -ENOMEM;
			}
1410 1411 1412
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1413

1414
			scrub_stripe_index_and_offset(logical, bbio->raid_map,
1415
						      mapped_length,
1416 1417
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1418 1419 1420 1421 1422 1423 1424
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1425 1426 1427 1428
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1429 1430
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1431
			sblock->page_count++;
1432 1433 1434
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1435 1436 1437

			scrub_get_recover(recover);
			page->recover = recover;
1438
		}
1439
		scrub_put_recover(recover);
1440 1441 1442 1443 1444 1445
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1446 1447
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
1463
	return page->recover && page->recover->bbio->raid_map;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1481
				    page->mirror_num, 0);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1492 1493 1494 1495 1496 1497 1498
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1499 1500 1501
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1502
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1503
{
1504
	int page_num;
I
Ilya Dryomov 已提交
1505

1506 1507 1508
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1509

1510 1511
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1512
		struct scrub_page *page = sblock->pagev[page_num];
1513

1514
		if (page->dev->bdev == NULL) {
1515 1516 1517 1518 1519
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1520
		WARN_ON(!page->page);
1521
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1522 1523 1524 1525 1526
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1527
		bio->bi_bdev = page->dev->bdev;
1528

1529
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1530 1531 1532 1533 1534 1535 1536 1537 1538
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1539

1540 1541
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1542

1543 1544 1545 1546 1547
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1548
	return;
A
Arne Jansen 已提交
1549 1550
}

M
Miao Xie 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1561 1562 1563 1564 1565
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1566
{
1567 1568 1569 1570 1571
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1572
	WARN_ON(!sblock->pagev[0]->page);
1573 1574 1575
	if (is_metadata) {
		struct btrfs_header *h;

1576
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1577 1578
		h = (struct btrfs_header *)mapped_buffer;

1579
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1580
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1581
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1582
			   BTRFS_UUID_SIZE)) {
1583
			sblock->header_error = 1;
1584
		} else if (generation != btrfs_stack_header_generation(h)) {
1585 1586 1587
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1588 1589 1590 1591
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1592

1593
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1594
	}
A
Arne Jansen 已提交
1595

1596 1597
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1598
			crc = btrfs_csum_data(
1599 1600 1601
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1602
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1603

1604
		kunmap_atomic(mapped_buffer);
1605 1606 1607
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1608
		WARN_ON(!sblock->pagev[page_num]->page);
1609

1610
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1611 1612 1613 1614 1615
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1616 1617
}

1618
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1619
					     struct scrub_block *sblock_good)
1620 1621 1622
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1623

1624 1625
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1626

1627 1628
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1629
							   page_num, 1);
1630 1631
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1632
	}
1633 1634 1635 1636 1637 1638 1639 1640

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1641 1642
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1643

1644 1645
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1646 1647 1648 1649 1650
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1651
		if (!page_bad->dev->bdev) {
1652 1653 1654
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1655 1656 1657
			return -EIO;
		}

1658
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1659 1660
		if (!bio)
			return -EIO;
1661
		bio->bi_bdev = page_bad->dev->bdev;
1662
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1663 1664 1665 1666 1667

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1668
		}
1669

1670
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1671 1672
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1673 1674 1675
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1676 1677 1678
			bio_put(bio);
			return -EIO;
		}
1679
		bio_put(bio);
A
Arne Jansen 已提交
1680 1681
	}

1682 1683 1684
	return 0;
}

1685 1686 1687 1688
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1689 1690 1691 1692 1693 1694 1695
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1751
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1762
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1821 1822
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1823
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1855 1856 1857 1858
{
	u64 flags;
	int ret;

1859 1860
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1872 1873

	return ret;
A
Arne Jansen 已提交
1874 1875
}

1876
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1877
{
1878
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1879
	u8 csum[BTRFS_CSUM_SIZE];
1880 1881 1882
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1883 1884
	u32 crc = ~(u32)0;
	int fail = 0;
1885 1886
	u64 len;
	int index;
A
Arne Jansen 已提交
1887

1888
	BUG_ON(sblock->page_count < 1);
1889
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1890 1891
		return 0;

1892 1893
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1894
	buffer = kmap_atomic(page);
1895

1896
	len = sctx->sectorsize;
1897 1898 1899 1900
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1901
		crc = btrfs_csum_data(buffer, crc, l);
1902
		kunmap_atomic(buffer);
1903 1904 1905 1906 1907
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1908 1909
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1910
		buffer = kmap_atomic(page);
1911 1912
	}

A
Arne Jansen 已提交
1913
	btrfs_csum_final(crc, csum);
1914
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1915 1916 1917 1918 1919
		fail = 1;

	return fail;
}

1920
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1921
{
1922
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1923
	struct btrfs_header *h;
1924
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1925
	struct btrfs_fs_info *fs_info = root->fs_info;
1926 1927 1928 1929 1930 1931
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1932 1933 1934
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1935 1936 1937 1938
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1939
	page = sblock->pagev[0]->page;
1940
	mapped_buffer = kmap_atomic(page);
1941
	h = (struct btrfs_header *)mapped_buffer;
1942
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1943 1944 1945 1946 1947 1948 1949

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1950
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1951 1952
		++fail;

1953
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1954 1955
		++fail;

M
Miao Xie 已提交
1956
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1957 1958 1959 1960 1961 1962
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1963
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1964 1965 1966 1967 1968 1969
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1970
		crc = btrfs_csum_data(p, crc, l);
1971
		kunmap_atomic(mapped_buffer);
1972 1973 1974 1975 1976
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1977 1978
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1979
		mapped_buffer = kmap_atomic(page);
1980 1981 1982 1983 1984
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1985
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1986 1987 1988 1989 1990
		++crc_fail;

	return fail || crc_fail;
}

1991
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1992 1993
{
	struct btrfs_super_block *s;
1994
	struct scrub_ctx *sctx = sblock->sctx;
1995 1996 1997 1998 1999 2000
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2001
	u32 crc = ~(u32)0;
2002 2003
	int fail_gen = 0;
	int fail_cor = 0;
2004 2005
	u64 len;
	int index;
A
Arne Jansen 已提交
2006

2007
	BUG_ON(sblock->page_count < 1);
2008
	page = sblock->pagev[0]->page;
2009
	mapped_buffer = kmap_atomic(page);
2010
	s = (struct btrfs_super_block *)mapped_buffer;
2011
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2012

2013
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2014
		++fail_cor;
A
Arne Jansen 已提交
2015

2016
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2017
		++fail_gen;
A
Arne Jansen 已提交
2018

M
Miao Xie 已提交
2019
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2020
		++fail_cor;
A
Arne Jansen 已提交
2021

2022 2023 2024 2025 2026 2027 2028
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2029
		crc = btrfs_csum_data(p, crc, l);
2030
		kunmap_atomic(mapped_buffer);
2031 2032 2033 2034 2035
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2036 2037
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2038
		mapped_buffer = kmap_atomic(page);
2039 2040 2041 2042 2043
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2044
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2045
		++fail_cor;
A
Arne Jansen 已提交
2046

2047
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2048 2049 2050 2051 2052
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2053 2054 2055
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2056
		if (fail_cor)
2057
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2058 2059
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2060
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2061
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2062 2063
	}

2064
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2065 2066
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

2077 2078 2079
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2080
		for (i = 0; i < sblock->page_count; i++)
2081
			scrub_page_put(sblock->pagev[i]);
2082 2083 2084 2085
		kfree(sblock);
	}
}

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2100
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2101 2102 2103
{
	struct scrub_bio *sbio;

2104
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2105
		return;
A
Arne Jansen 已提交
2106

2107 2108
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2109
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
2120
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2121 2122 2123 2124
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
2125 2126
}

2127 2128
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2129
{
2130
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2131
	struct scrub_bio *sbio;
2132
	int ret;
A
Arne Jansen 已提交
2133 2134 2135 2136 2137

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2138 2139 2140 2141 2142 2143 2144 2145
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2146
		} else {
2147 2148
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2149 2150
		}
	}
2151
	sbio = sctx->bios[sctx->curr];
2152
	if (sbio->page_count == 0) {
2153 2154
		struct bio *bio;

2155 2156
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2157
		sbio->dev = spage->dev;
2158 2159
		bio = sbio->bio;
		if (!bio) {
2160
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2161 2162 2163 2164
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2165 2166 2167

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2168
		bio->bi_bdev = sbio->dev->bdev;
2169
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2170
		sbio->err = 0;
2171 2172 2173
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2174 2175
		   spage->logical ||
		   sbio->dev != spage->dev) {
2176
		scrub_submit(sctx);
A
Arne Jansen 已提交
2177 2178
		goto again;
	}
2179

2180 2181 2182 2183 2184 2185 2186 2187
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2188
		scrub_submit(sctx);
2189 2190 2191
		goto again;
	}

2192
	scrub_block_get(sblock); /* one for the page added to the bio */
2193 2194
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2195
	if (sbio->page_count == sctx->pages_per_rd_bio)
2196
		scrub_submit(sctx);
2197 2198 2199 2200

	return 0;
}

2201
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2202
		       u64 physical, struct btrfs_device *dev, u64 flags,
2203 2204
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2205 2206 2207 2208 2209 2210
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2211 2212 2213
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2214
		return -ENOMEM;
A
Arne Jansen 已提交
2215
	}
2216

2217 2218
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2219
	atomic_set(&sblock->ref_count, 1);
2220
	sblock->sctx = sctx;
2221 2222 2223
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2224
		struct scrub_page *spage;
2225 2226
		u64 l = min_t(u64, len, PAGE_SIZE);

2227 2228 2229
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2230 2231 2232
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2233
			scrub_block_put(sblock);
2234 2235
			return -ENOMEM;
		}
2236 2237 2238
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2239
		spage->sblock = sblock;
2240
		spage->dev = dev;
2241 2242 2243 2244
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2245
		spage->physical_for_dev_replace = physical_for_dev_replace;
2246 2247 2248
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2249
			memcpy(spage->csum, csum, sctx->csum_size);
2250 2251 2252 2253
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2254 2255 2256
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2257 2258 2259
		len -= l;
		logical += l;
		physical += l;
2260
		physical_for_dev_replace += l;
2261 2262
	}

2263
	WARN_ON(sblock->page_count == 0);
2264
	for (index = 0; index < sblock->page_count; index++) {
2265
		struct scrub_page *spage = sblock->pagev[index];
2266 2267
		int ret;

2268
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2269 2270
		if (ret) {
			scrub_block_put(sblock);
2271
			return ret;
2272
		}
2273
	}
A
Arne Jansen 已提交
2274

2275
	if (force)
2276
		scrub_submit(sctx);
A
Arne Jansen 已提交
2277

2278 2279
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2280 2281 2282
	return 0;
}

2283 2284 2285
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2286
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2287 2288 2289 2290

	sbio->err = err;
	sbio->bio = bio;

2291
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2292 2293 2294 2295 2296
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2297
	struct scrub_ctx *sctx = sbio->sctx;
2298 2299
	int i;

2300
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2322 2323 2324 2325
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2326 2327 2328 2329 2330 2331 2332 2333

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2334
	scrub_pending_bio_dec(sctx);
2335 2336
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
	int offset;
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
	offset = (int)do_div(start, sparity->stripe_len);
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2376 2377
static void scrub_block_complete(struct scrub_block *sblock)
{
2378 2379
	int corrupted = 0;

2380
	if (!sblock->no_io_error_seen) {
2381
		corrupted = 1;
2382
		scrub_handle_errored_block(sblock);
2383 2384 2385 2386 2387 2388
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2389 2390
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2391 2392
			scrub_write_block_to_dev_replace(sblock);
	}
2393 2394 2395 2396 2397 2398 2399 2400 2401

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2402 2403
}

2404
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2405 2406 2407
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2408
	unsigned long index;
A
Arne Jansen 已提交
2409 2410
	unsigned long num_sectors;

2411 2412
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2413 2414 2415 2416 2417 2418
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2419
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2420 2421 2422 2423 2424 2425 2426
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2427
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2428
	num_sectors = sum->len / sctx->sectorsize;
2429 2430
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2431 2432 2433
		list_del(&sum->list);
		kfree(sum);
	}
2434
	return 1;
A
Arne Jansen 已提交
2435 2436 2437
}

/* scrub extent tries to collect up to 64 kB for each bio */
2438
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2439
			u64 physical, struct btrfs_device *dev, u64 flags,
2440
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2441 2442 2443
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2444 2445 2446
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2447 2448 2449 2450 2451
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2452
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2453 2454 2455 2456 2457
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2458
	} else {
2459
		blocksize = sctx->sectorsize;
2460
		WARN_ON(1);
2461
	}
A
Arne Jansen 已提交
2462 2463

	while (len) {
2464
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2465 2466 2467 2468
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2469
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2470
			if (have_csum == 0)
2471
				++sctx->stat.no_csum;
2472 2473 2474 2475 2476 2477
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2478
		}
2479
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2480 2481 2482
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2483 2484 2485 2486 2487
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2488
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2489 2490 2491 2492
	}
	return 0;
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
	atomic_set(&sblock->ref_count, 1);
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2611
skip:
2612 2613 2614 2615 2616 2617 2618
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2619 2620 2621 2622 2623 2624 2625 2626
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2627 2628
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2639 2640 2641
	if (stripe_start)
		*stripe_start = last_offset;

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2654
		stripe_index = rot % map->num_stripes;
2655 2656 2657 2658 2659 2660 2661 2662 2663
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
	struct scrub_ctx *sctx = sparity->sctx;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
	bio_put(bio);
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

	length = sparity->logic_end - sparity->logic_start + 1;
2715
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2716
			       sparity->logic_start,
2717 2718
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2730
					      length, sparity->scrub_dev,
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
		raid56_parity_add_scrub_pages(rbio, spage->page,
					      spage->logical);

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2747
	btrfs_put_bbio(bbio);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
	atomic_inc(&sparity->ref_count);
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
	if (!atomic_dec_and_test(&sparity->ref_count))
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
	atomic_set(&sparity->ref_count, 1);
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

			if (key.objectid > logic_end) {
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logic_start &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					   key.objectid, logic_start);
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

			scrub_remap_extent(fs_info, extent_logical,
					   extent_len, &extent_physical,
					   &extent_dev,
					   &extent_mirror_num);

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
			if (ret)
				goto out;

			scrub_free_csums(sctx);
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
						logic_end - logic_start + 1);
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2978
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2979 2980
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2981 2982
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2983
{
2984
	struct btrfs_path *path, *ppath;
2985
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2986 2987 2988
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2989
	struct blk_plug plug;
A
Arne Jansen 已提交
2990 2991 2992 2993 2994 2995 2996 2997
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2998
	u64 logic_end;
2999
	u64 physical_end;
A
Arne Jansen 已提交
3000
	u64 generation;
3001
	int mirror_num;
A
Arne Jansen 已提交
3002 3003 3004 3005
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3006 3007
	u64 increment = map->stripe_len;
	u64 offset;
3008 3009 3010
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3011 3012
	u64 stripe_logical;
	u64 stripe_end;
3013 3014
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3015
	int stop_loop = 0;
D
David Woodhouse 已提交
3016

A
Arne Jansen 已提交
3017
	nstripes = length;
3018
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3019 3020 3021 3022 3023
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3024
		mirror_num = 1;
A
Arne Jansen 已提交
3025 3026 3027 3028
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3029
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3030 3031
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3032
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3033 3034
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3035
		mirror_num = num % map->num_stripes + 1;
3036 3037
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
3038
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3039 3040
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3041 3042
	} else {
		increment = map->stripe_len;
3043
		mirror_num = 1;
A
Arne Jansen 已提交
3044 3045 3046 3047 3048 3049
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3050 3051 3052 3053 3054 3055
	ppath = btrfs_alloc_path();
	if (!ppath) {
		btrfs_free_path(ppath);
		return -ENOMEM;
	}

3056 3057 3058 3059 3060
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3061 3062 3063 3064
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
3065 3066 3067
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3068 3069
	 */
	logical = base + offset;
3070 3071 3072 3073
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
3074
					map, &logic_end, NULL);
3075 3076 3077 3078
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3079
	wait_event(sctx->list_wait,
3080
		   atomic_read(&sctx->bios_in_flight) == 0);
3081
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3082 3083 3084 3085 3086

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3087
	key_end.objectid = logic_end;
3088 3089
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3090 3091 3092 3093 3094 3095 3096
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3097
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3098 3099 3100 3101 3102 3103 3104
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3105 3106 3107 3108 3109

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3110
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3111 3112 3113 3114 3115

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3116 3117 3118 3119 3120
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
3121
					map, &logical, &stripe_logical);
3122
			logical += base;
3123 3124 3125 3126 3127 3128 3129 3130
			if (ret) {
				stripe_logical += base;
				stripe_end = stripe_logical + increment - 1;
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
						ppath, stripe_logical,
						stripe_end);
				if (ret)
					goto out;
3131
				goto skip;
3132
			}
3133
		}
A
Arne Jansen 已提交
3134 3135 3136 3137
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3138
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3139 3140 3141 3142 3143 3144 3145 3146
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3147
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3148
			scrub_submit(sctx);
3149 3150 3151
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3152
			wait_event(sctx->list_wait,
3153
				   atomic_read(&sctx->bios_in_flight) == 0);
3154
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3155
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3156 3157
		}

3158 3159 3160 3161
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3162
		key.objectid = logical;
L
Liu Bo 已提交
3163
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3164 3165 3166 3167

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3168

3169
		if (ret > 0) {
3170
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3171 3172
			if (ret < 0)
				goto out;
3173 3174 3175 3176 3177 3178 3179 3180 3181
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3182 3183
		}

L
Liu Bo 已提交
3184
		stop_loop = 0;
A
Arne Jansen 已提交
3185
		while (1) {
3186 3187
			u64 bytes;

A
Arne Jansen 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3197
				stop_loop = 1;
A
Arne Jansen 已提交
3198 3199 3200 3201
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3202
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3203
				bytes = root->nodesize;
3204 3205 3206 3207
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3208 3209
				goto next;

L
Liu Bo 已提交
3210 3211 3212
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
3213

L
Liu Bo 已提交
3214 3215 3216 3217 3218 3219
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3220 3221 3222 3223 3224 3225 3226 3227

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3228 3229 3230
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3231
				       key.objectid, logical);
A
Arne Jansen 已提交
3232 3233 3234
				goto next;
			}

L
Liu Bo 已提交
3235 3236 3237 3238
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3239 3240 3241
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3242 3243 3244
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3245
			}
L
Liu Bo 已提交
3246
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3247
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3248 3249
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3250 3251
			}

L
Liu Bo 已提交
3252
			extent_physical = extent_logical - logical + physical;
3253 3254 3255 3256 3257 3258 3259
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3260 3261 3262 3263 3264 3265 3266

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

3267 3268 3269
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3270
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
3271 3272 3273
			if (ret)
				goto out;

3274
			scrub_free_csums(sctx);
L
Liu Bo 已提交
3275 3276
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3277 3278 3279 3280 3281 3282
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
								increment - 1;
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3302 3303 3304 3305
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3306 3307 3308 3309 3310
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3311
				if (physical >= physical_end) {
L
Liu Bo 已提交
3312 3313 3314 3315
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3316 3317 3318
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3319
		btrfs_release_path(path);
3320
skip:
A
Arne Jansen 已提交
3321 3322
		logical += increment;
		physical += map->stripe_len;
3323
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3324 3325 3326 3327 3328
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3329
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3330 3331
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3332
	}
3333
out:
A
Arne Jansen 已提交
3334
	/* push queued extents */
3335
	scrub_submit(sctx);
3336 3337 3338
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3339

3340
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3341
	btrfs_free_path(path);
3342
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3343 3344 3345
	return ret < 0 ? ret : 0;
}

3346
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3347 3348 3349
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3350
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3351 3352
{
	struct btrfs_mapping_tree *map_tree =
3353
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3354 3355 3356
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3357
	int ret = 0;
A
Arne Jansen 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3374
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3375
		    map->stripes[i].physical == dev_offset) {
3376
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3377 3378
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3390
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3391 3392
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3393 3394 3395
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3396
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3408
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3418
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3419 3420 3421 3422 3423 3424
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3425 3426 3427 3428 3429 3430 3431 3432 3433
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
3434 3435 3436 3437 3438 3439

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3440
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3441 3442
			break;

3443
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3455 3456
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3467 3468 3469 3470 3471 3472

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3473 3474 3475
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3476
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3498 3499 3500 3501 3502 3503 3504 3505
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3506 3507
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3508 3509 3510 3511 3512 3513 3514
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
3515

A
Arne Jansen 已提交
3516 3517 3518
		btrfs_put_block_group(cache);
		if (ret)
			break;
3519 3520
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3521 3522 3523 3524 3525 3526 3527
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3528

3529 3530
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3531
skip:
A
Arne Jansen 已提交
3532
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3533
		btrfs_release_path(path);
A
Arne Jansen 已提交
3534 3535 3536
	}

	btrfs_free_path(path);
3537 3538 3539 3540 3541 3542

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
3543 3544
}

3545 3546
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3547 3548 3549 3550 3551
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3552
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3553

3554
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3555 3556
		return -EIO;

3557 3558 3559 3560 3561
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3562 3563 3564

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3565 3566
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3567 3568
			break;

3569
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3570
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3571
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3572 3573 3574
		if (ret)
			return ret;
	}
3575
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3576 3577 3578 3579 3580 3581 3582

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3583 3584
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3585
{
3586
	int ret = 0;
3587 3588
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3589

A
Arne Jansen 已提交
3590
	if (fs_info->scrub_workers_refcnt == 0) {
3591
		if (is_dev_replace)
3592 3593 3594
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3595
		else
3596 3597 3598 3599 3600
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
3601
			goto out;
3602 3603 3604 3605 3606 3607
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
3608
			goto out;
3609 3610 3611 3612 3613
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
3614
			goto out;
3615
		}
A
Arne Jansen 已提交
3616
	}
A
Arne Jansen 已提交
3617
	++fs_info->scrub_workers_refcnt;
3618 3619
out:
	return ret;
A
Arne Jansen 已提交
3620 3621
}

3622
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3623
{
3624
	if (--fs_info->scrub_workers_refcnt == 0) {
3625 3626 3627
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3628
	}
A
Arne Jansen 已提交
3629 3630 3631
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3632 3633
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3634
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3635
{
3636
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3637 3638
	int ret;
	struct btrfs_device *dev;
3639
	struct rcu_string *name;
A
Arne Jansen 已提交
3640

3641
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3642 3643
		return -EINVAL;

3644
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3645 3646 3647 3648 3649
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3650 3651
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3652
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3653 3654 3655
		return -EINVAL;
	}

3656
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3657
		/* not supported for data w/o checksums */
3658 3659 3660
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3661
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3662 3663 3664
		return -EINVAL;
	}

3665 3666 3667 3668 3669 3670 3671 3672
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3673 3674
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3675 3676 3677 3678 3679 3680 3681
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3682

3683 3684
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3685
	if (!dev || (dev->missing && !is_dev_replace)) {
3686
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3687 3688 3689
		return -ENODEV;
	}

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3700
	mutex_lock(&fs_info->scrub_lock);
3701
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3702
		mutex_unlock(&fs_info->scrub_lock);
3703 3704
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3705 3706
	}

3707 3708 3709 3710 3711
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3712
		mutex_unlock(&fs_info->scrub_lock);
3713
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3714 3715
		return -EINPROGRESS;
	}
3716
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3717 3718 3719 3720 3721 3722 3723 3724

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3725
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3726
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3727
		mutex_unlock(&fs_info->scrub_lock);
3728 3729
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3730
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3731
	}
3732 3733
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3734
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3735

3736 3737 3738 3739
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3740
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3741 3742 3743
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3744
	if (!is_dev_replace) {
3745 3746 3747 3748
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3749
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3750
		ret = scrub_supers(sctx, dev);
3751
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3752
	}
A
Arne Jansen 已提交
3753 3754

	if (!ret)
3755 3756
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3757

3758
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3759 3760 3761
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3762
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3763

A
Arne Jansen 已提交
3764
	if (progress)
3765
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3766 3767 3768

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3769
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3770 3771
	mutex_unlock(&fs_info->scrub_lock);

3772
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3773 3774 3775 3776

	return ret;
}

3777
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3794
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3795 3796 3797 3798 3799 3800 3801
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3802
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3823 3824
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3825
{
3826
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3827 3828

	mutex_lock(&fs_info->scrub_lock);
3829 3830
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3831 3832 3833
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3834
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3845

A
Arne Jansen 已提交
3846 3847 3848 3849
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3850
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3851 3852

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3853
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3854
	if (dev)
3855 3856 3857
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3858 3859
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3860
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3861
}
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
3878
		btrfs_put_bbio(bbio);
3879 3880 3881 3882 3883 3884
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
3885
	btrfs_put_bbio(bbio);
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3938 3939
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3940
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3941 3942
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3943 3944 3945 3946

	return 0;
}

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3999
					  record_inode_for_nocow, nocow_ctx);
4000
	if (ret != 0 && ret != -ENOENT) {
4001 4002
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
4003 4004
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
4005 4006 4007 4008
		not_written = 1;
		goto out;
	}

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4027
out:
4028 4029 4030 4031 4032 4033 4034 4035
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4092 4093
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4094
{
4095
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4096
	struct btrfs_key key;
4097 4098
	struct inode *inode;
	struct page *page;
4099
	struct btrfs_root *local_root;
4100
	struct extent_io_tree *io_tree;
4101
	u64 physical_for_dev_replace;
4102
	u64 nocow_ctx_logical;
4103
	u64 len = nocow_ctx->len;
4104
	unsigned long index;
4105
	int srcu_index;
4106 4107
	int ret = 0;
	int err = 0;
4108 4109 4110 4111

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4112 4113 4114

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4115
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4116 4117
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4118
		return PTR_ERR(local_root);
4119
	}
4120 4121 4122 4123 4124

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4125
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4126 4127 4128
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4129 4130 4131 4132
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4133
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4134
	io_tree = &BTRFS_I(inode)->io_tree;
4135
	nocow_ctx_logical = nocow_ctx->logical;
4136

4137 4138 4139 4140
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4141 4142
	}

4143 4144
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4145
again:
4146 4147
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4148
			btrfs_err(fs_info, "find_or_create_page() failed");
4149
			ret = -ENOMEM;
4150
			goto out;
4151 4152 4153 4154 4155 4156 4157
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4158
			err = extent_read_full_page(io_tree, page,
4159 4160
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4161 4162
			if (err) {
				ret = err;
4163 4164
				goto next_page;
			}
4165

4166
			lock_page(page);
4167 4168 4169 4170 4171 4172 4173
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4174
				unlock_page(page);
4175 4176 4177
				page_cache_release(page);
				goto again;
			}
4178 4179 4180 4181 4182
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4183 4184 4185 4186 4187 4188 4189 4190

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4191 4192 4193 4194
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4195
next_page:
4196 4197 4198 4199 4200 4201
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4202 4203
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4204
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4205 4206
		len -= PAGE_CACHE_SIZE;
	}
4207
	ret = COPY_COMPLETE;
4208
out:
4209
	mutex_unlock(&inode->i_mutex);
4210
	iput(inode);
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4226
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4227 4228
		return -EIO;
	}
4229
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4230 4231 4232 4233 4234 4235
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4236 4237
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4238 4239 4240 4241 4242 4243 4244 4245 4246
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4247
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4248 4249 4250 4251 4252
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}