sch_pie.c 14.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8
/* Copyright (C) 2013 Cisco Systems, Inc, 2013.
 *
 * Author: Vijay Subramanian <vijaynsu@cisco.com>
 * Author: Mythili Prabhu <mysuryan@cisco.com>
 *
 * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
 * University of Oslo, Norway.
9 10
 *
 * References:
11
 * RFC 8033: https://tools.ietf.org/html/rfc8033
12 13 14 15 16 17 18 19 20 21
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>
22
#include <net/pie.h>
23 24 25 26

/* private data for the Qdisc */
struct pie_sched_data {
	struct pie_vars vars;
27
	struct pie_params params;
28 29
	struct pie_stats stats;
	struct timer_list adapt_timer;
30
	struct Qdisc *sch;
31 32
};

33
bool pie_drop_early(struct Qdisc *sch, struct pie_params *params,
34
		    struct pie_vars *vars, u32 backlog, u32 packet_size)
35
{
36
	u64 rnd;
37
	u64 local_prob = vars->prob;
38 39 40
	u32 mtu = psched_mtu(qdisc_dev(sch));

	/* If there is still burst allowance left skip random early drop */
41
	if (vars->burst_time > 0)
42 43 44 45 46
		return false;

	/* If current delay is less than half of target, and
	 * if drop prob is low already, disable early_drop
	 */
47 48
	if ((vars->qdelay < params->target / 2) &&
	    (vars->prob < MAX_PROB / 5))
49 50
		return false;

51
	/* If we have fewer than 2 mtu-sized packets, disable pie_drop_early,
52 53
	 * similar to min_th in RED
	 */
54
	if (backlog < 2 * mtu)
55 56 57 58 59
		return false;

	/* If bytemode is turned on, use packet size to compute new
	 * probablity. Smaller packets will have lower drop prob in this case
	 */
60
	if (params->bytemode && packet_size <= mtu)
61
		local_prob = (u64)packet_size * div_u64(local_prob, mtu);
62
	else
63
		local_prob = vars->prob;
64

65
	if (local_prob == 0)
66
		vars->accu_prob = 0;
67 68
	else
		vars->accu_prob += local_prob;
69

70
	if (vars->accu_prob < (MAX_PROB / 100) * 85)
71
		return false;
72
	if (vars->accu_prob >= (MAX_PROB / 2) * 17)
73 74
		return true;

75
	prandom_bytes(&rnd, 8);
76
	if ((rnd >> BITS_PER_BYTE) < local_prob) {
77
		vars->accu_prob = 0;
78
		return true;
79
	}
80 81 82

	return false;
}
83
EXPORT_SYMBOL_GPL(pie_drop_early);
84

85 86
static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
			     struct sk_buff **to_free)
87 88 89 90 91 92 93 94 95
{
	struct pie_sched_data *q = qdisc_priv(sch);
	bool enqueue = false;

	if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
		q->stats.overlimit++;
		goto out;
	}

96 97
	if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog,
			    skb->len)) {
98 99 100 101 102 103 104 105 106 107 108 109
		enqueue = true;
	} else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
		   INET_ECN_set_ce(skb)) {
		/* If packet is ecn capable, mark it if drop probability
		 * is lower than 10%, else drop it.
		 */
		q->stats.ecn_mark++;
		enqueue = true;
	}

	/* we can enqueue the packet */
	if (enqueue) {
110 111 112 113
		/* Set enqueue time only when dq_rate_estimator is disabled. */
		if (!q->params.dq_rate_estimator)
			pie_set_enqueue_time(skb);

114 115 116 117 118 119 120 121 122
		q->stats.packets_in++;
		if (qdisc_qlen(sch) > q->stats.maxq)
			q->stats.maxq = qdisc_qlen(sch);

		return qdisc_enqueue_tail(skb, sch);
	}

out:
	q->stats.dropped++;
123
	q->vars.accu_prob = 0;
124
	return qdisc_drop(skb, sch, to_free);
125 126 127
}

static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
128 129 130 131 132 133 134 135
	[TCA_PIE_TARGET]		= {.type = NLA_U32},
	[TCA_PIE_LIMIT]			= {.type = NLA_U32},
	[TCA_PIE_TUPDATE]		= {.type = NLA_U32},
	[TCA_PIE_ALPHA]			= {.type = NLA_U32},
	[TCA_PIE_BETA]			= {.type = NLA_U32},
	[TCA_PIE_ECN]			= {.type = NLA_U32},
	[TCA_PIE_BYTEMODE]		= {.type = NLA_U32},
	[TCA_PIE_DQ_RATE_ESTIMATOR]	= {.type = NLA_U32},
136 137
};

138 139
static int pie_change(struct Qdisc *sch, struct nlattr *opt,
		      struct netlink_ext_ack *extack)
140 141 142
{
	struct pie_sched_data *q = qdisc_priv(sch);
	struct nlattr *tb[TCA_PIE_MAX + 1];
143
	unsigned int qlen, dropped = 0;
144 145 146 147 148
	int err;

	if (!opt)
		return -EINVAL;

149 150
	err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy,
					  NULL);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	if (err < 0)
		return err;

	sch_tree_lock(sch);

	/* convert from microseconds to pschedtime */
	if (tb[TCA_PIE_TARGET]) {
		/* target is in us */
		u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);

		/* convert to pschedtime */
		q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
	}

	/* tupdate is in jiffies */
	if (tb[TCA_PIE_TUPDATE])
167 168
		q->params.tupdate =
			usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

	if (tb[TCA_PIE_LIMIT]) {
		u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);

		q->params.limit = limit;
		sch->limit = limit;
	}

	if (tb[TCA_PIE_ALPHA])
		q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);

	if (tb[TCA_PIE_BETA])
		q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);

	if (tb[TCA_PIE_ECN])
		q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);

	if (tb[TCA_PIE_BYTEMODE])
		q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);

189 190 191 192
	if (tb[TCA_PIE_DQ_RATE_ESTIMATOR])
		q->params.dq_rate_estimator =
				nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR]);

193 194 195
	/* Drop excess packets if new limit is lower */
	qlen = sch->q.qlen;
	while (sch->q.qlen > sch->limit) {
196
		struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
197

198
		dropped += qdisc_pkt_len(skb);
199
		qdisc_qstats_backlog_dec(sch, skb);
200
		rtnl_qdisc_drop(skb, sch);
201
	}
202
	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
203 204 205 206 207

	sch_tree_unlock(sch);
	return 0;
}

208
void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params,
209
			 struct pie_vars *vars, u32 backlog)
210
{
211 212 213 214 215 216
	psched_time_t now = psched_get_time();
	u32 dtime = 0;

	/* If dq_rate_estimator is disabled, calculate qdelay using the
	 * packet timestamp.
	 */
217 218
	if (!params->dq_rate_estimator) {
		vars->qdelay = now - pie_get_enqueue_time(skb);
219

220 221
		if (vars->dq_tstamp != DTIME_INVALID)
			dtime = now - vars->dq_tstamp;
222

223
		vars->dq_tstamp = now;
224

225
		if (backlog == 0)
226
			vars->qdelay = 0;
227 228 229 230 231 232

		if (dtime == 0)
			return;

		goto burst_allowance_reduction;
	}
233 234 235 236 237

	/* If current queue is about 10 packets or more and dq_count is unset
	 * we have enough packets to calculate the drain rate. Save
	 * current time as dq_tstamp and start measurement cycle.
	 */
238
	if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) {
239 240
		vars->dq_tstamp = psched_get_time();
		vars->dq_count = 0;
241 242
	}

243 244
	/* Calculate the average drain rate from this value. If queue length
	 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset
245
	 * the dq_count to -1 as we don't have enough packets to calculate the
246
	 * drain rate anymore. The following if block is entered only when we
247 248 249 250 251
	 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
	 * and we calculate the drain rate for the threshold here.  dq_count is
	 * in bytes, time difference in psched_time, hence rate is in
	 * bytes/psched_time.
	 */
252 253
	if (vars->dq_count != DQCOUNT_INVALID) {
		vars->dq_count += skb->len;
254

255 256
		if (vars->dq_count >= QUEUE_THRESHOLD) {
			u32 count = vars->dq_count << PIE_SCALE;
257

258
			dtime = now - vars->dq_tstamp;
259

260 261 262 263 264
			if (dtime == 0)
				return;

			count = count / dtime;

265 266
			if (vars->avg_dq_rate == 0)
				vars->avg_dq_rate = count;
267
			else
268 269 270
				vars->avg_dq_rate =
				    (vars->avg_dq_rate -
				     (vars->avg_dq_rate >> 3)) + (count >> 3);
271 272 273 274 275 276

			/* If the queue has receded below the threshold, we hold
			 * on to the last drain rate calculated, else we reset
			 * dq_count to 0 to re-enter the if block when the next
			 * packet is dequeued
			 */
277
			if (backlog < QUEUE_THRESHOLD) {
278
				vars->dq_count = DQCOUNT_INVALID;
279
			} else {
280 281
				vars->dq_count = 0;
				vars->dq_tstamp = psched_get_time();
282 283
			}

284
			goto burst_allowance_reduction;
285 286
		}
	}
287 288 289 290

	return;

burst_allowance_reduction:
291 292 293
	if (vars->burst_time > 0) {
		if (vars->burst_time > dtime)
			vars->burst_time -= dtime;
294
		else
295
			vars->burst_time = 0;
296
	}
297
}
298
EXPORT_SYMBOL_GPL(pie_process_dequeue);
299

300
void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars,
301
			       u32 backlog)
302 303
{
	psched_time_t qdelay = 0;	/* in pschedtime */
304
	psched_time_t qdelay_old = 0;	/* in pschedtime */
305 306 307 308
	s64 delta = 0;		/* determines the change in probability */
	u64 oldprob;
	u64 alpha, beta;
	u32 power;
309 310
	bool update_prob = true;

311 312 313
	if (params->dq_rate_estimator) {
		qdelay_old = vars->qdelay;
		vars->qdelay_old = vars->qdelay;
314

315
		if (vars->avg_dq_rate > 0)
316
			qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate;
317 318 319
		else
			qdelay = 0;
	} else {
320 321
		qdelay = vars->qdelay;
		qdelay_old = vars->qdelay_old;
322
	}
323

324
	/* If qdelay is zero and backlog is not, it means backlog is very small,
325
	 * so we do not update probabilty in this round.
326
	 */
327
	if (qdelay == 0 && backlog != 0)
328 329
		update_prob = false;

330 331 332 333
	/* In the algorithm, alpha and beta are between 0 and 2 with typical
	 * value for alpha as 0.125. In this implementation, we use values 0-32
	 * passed from user space to represent this. Also, alpha and beta have
	 * unit of HZ and need to be scaled before they can used to update
334 335
	 * probability. alpha/beta are updated locally below by scaling down
	 * by 16 to come to 0-2 range.
336
	 */
337 338
	alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
	beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
339 340 341 342

	/* We scale alpha and beta differently depending on how heavy the
	 * congestion is. Please see RFC 8033 for details.
	 */
343
	if (vars->prob < MAX_PROB / 10) {
344 345 346 347
		alpha >>= 1;
		beta >>= 1;

		power = 100;
348
		while (vars->prob < div_u64(MAX_PROB, power) &&
349 350 351 352 353
		       power <= 1000000) {
			alpha >>= 2;
			beta >>= 2;
			power *= 10;
		}
354 355 356
	}

	/* alpha and beta should be between 0 and 32, in multiples of 1/16 */
357 358
	delta += alpha * (qdelay - params->target);
	delta += beta * (qdelay - qdelay_old);
359

360
	oldprob = vars->prob;
361 362

	/* to ensure we increase probability in steps of no more than 2% */
363
	if (delta > (s64)(MAX_PROB / (100 / 2)) &&
364
	    vars->prob >= MAX_PROB / 10)
365 366 367 368 369 370 371 372 373 374
		delta = (MAX_PROB / 100) * 2;

	/* Non-linear drop:
	 * Tune drop probability to increase quickly for high delays(>= 250ms)
	 * 250ms is derived through experiments and provides error protection
	 */

	if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
		delta += MAX_PROB / (100 / 2);

375
	vars->prob += delta;
376 377 378

	if (delta > 0) {
		/* prevent overflow */
379 380
		if (vars->prob < oldprob) {
			vars->prob = MAX_PROB;
381 382 383 384 385 386 387 388 389
			/* Prevent normalization error. If probability is at
			 * maximum value already, we normalize it here, and
			 * skip the check to do a non-linear drop in the next
			 * section.
			 */
			update_prob = false;
		}
	} else {
		/* prevent underflow */
390 391
		if (vars->prob > oldprob)
			vars->prob = 0;
392 393 394 395 396 397
	}

	/* Non-linear drop in probability: Reduce drop probability quickly if
	 * delay is 0 for 2 consecutive Tupdate periods.
	 */

398
	if (qdelay == 0 && qdelay_old == 0 && update_prob)
399
		/* Reduce drop probability to 98.4% */
400
		vars->prob -= vars->prob / 64;
401

402
	vars->qdelay = qdelay;
403
	vars->backlog_old = backlog;
404 405 406 407

	/* We restart the measurement cycle if the following conditions are met
	 * 1. If the delay has been low for 2 consecutive Tupdate periods
	 * 2. Calculated drop probability is zero
408 409
	 * 3. If average dq_rate_estimator is enabled, we have atleast one
	 *    estimate for the avg_dq_rate ie., is a non-zero value
410
	 */
411 412 413 414 415
	if ((vars->qdelay < params->target / 2) &&
	    (vars->qdelay_old < params->target / 2) &&
	    vars->prob == 0 &&
	    (!params->dq_rate_estimator || vars->avg_dq_rate > 0)) {
		pie_vars_init(vars);
416 417
	}

418 419
	if (!params->dq_rate_estimator)
		vars->qdelay_old = qdelay;
420
}
421
EXPORT_SYMBOL_GPL(pie_calculate_probability);
422

423
static void pie_timer(struct timer_list *t)
424
{
425 426
	struct pie_sched_data *q = from_timer(q, t, adapt_timer);
	struct Qdisc *sch = q->sch;
427 428 429
	spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));

	spin_lock(root_lock);
430
	pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog);
431 432 433 434 435 436 437

	/* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
	if (q->params.tupdate)
		mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
	spin_unlock(root_lock);
}

438 439
static int pie_init(struct Qdisc *sch, struct nlattr *opt,
		    struct netlink_ext_ack *extack)
440 441 442 443 444 445 446
{
	struct pie_sched_data *q = qdisc_priv(sch);

	pie_params_init(&q->params);
	pie_vars_init(&q->vars);
	sch->limit = q->params.limit;

447 448
	q->sch = sch;
	timer_setup(&q->adapt_timer, pie_timer, 0);
449 450

	if (opt) {
451
		int err = pie_change(sch, opt, extack);
452 453 454 455 456

		if (err)
			return err;
	}

457
	mod_timer(&q->adapt_timer, jiffies + HZ / 2);
458 459 460 461 462 463 464 465
	return 0;
}

static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	struct nlattr *opts;

466
	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
467
	if (!opts)
468 469 470 471
		goto nla_put_failure;

	/* convert target from pschedtime to us */
	if (nla_put_u32(skb, TCA_PIE_TARGET,
472
			((u32)PSCHED_TICKS2NS(q->params.target)) /
473 474
			NSEC_PER_USEC) ||
	    nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
475 476
	    nla_put_u32(skb, TCA_PIE_TUPDATE,
			jiffies_to_usecs(q->params.tupdate)) ||
477 478 479
	    nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
	    nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
	    nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
480 481 482
	    nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode) ||
	    nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR,
			q->params.dq_rate_estimator))
483 484 485 486 487 488 489 490 491 492 493 494 495 496
		goto nla_put_failure;

	return nla_nest_end(skb, opts);

nla_put_failure:
	nla_nest_cancel(skb, opts);
	return -1;
}

static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	struct tc_pie_xstats st = {
		.prob		= q->vars.prob,
497
		.delay		= ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) /
498 499 500 501 502 503 504 505
				   NSEC_PER_USEC,
		.packets_in	= q->stats.packets_in,
		.overlimit	= q->stats.overlimit,
		.maxq		= q->stats.maxq,
		.dropped	= q->stats.dropped,
		.ecn_mark	= q->stats.ecn_mark,
	};

506 507 508 509 510 511 512 513
	/* avg_dq_rate is only valid if dq_rate_estimator is enabled */
	st.dq_rate_estimating = q->params.dq_rate_estimator;

	/* unscale and return dq_rate in bytes per sec */
	if (q->params.dq_rate_estimator)
		st.avg_dq_rate = q->vars.avg_dq_rate *
				 (PSCHED_TICKS_PER_SEC) >> PIE_SCALE;

514 515 516 517 518
	return gnet_stats_copy_app(d, &st, sizeof(st));
}

static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
{
519
	struct pie_sched_data *q = qdisc_priv(sch);
520
	struct sk_buff *skb = qdisc_dequeue_head(sch);
521 522 523 524

	if (!skb)
		return NULL;

525
	pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog);
526 527 528 529 530 531
	return skb;
}

static void pie_reset(struct Qdisc *sch)
{
	struct pie_sched_data *q = qdisc_priv(sch);
532

533 534 535 536 537 538 539
	qdisc_reset_queue(sch);
	pie_vars_init(&q->vars);
}

static void pie_destroy(struct Qdisc *sch)
{
	struct pie_sched_data *q = qdisc_priv(sch);
540

541 542 543 544 545
	q->params.tupdate = 0;
	del_timer_sync(&q->adapt_timer);
}

static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
546
	.id		= "pie",
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	.priv_size	= sizeof(struct pie_sched_data),
	.enqueue	= pie_qdisc_enqueue,
	.dequeue	= pie_qdisc_dequeue,
	.peek		= qdisc_peek_dequeued,
	.init		= pie_init,
	.destroy	= pie_destroy,
	.reset		= pie_reset,
	.change		= pie_change,
	.dump		= pie_dump,
	.dump_stats	= pie_dump_stats,
	.owner		= THIS_MODULE,
};

static int __init pie_module_init(void)
{
	return register_qdisc(&pie_qdisc_ops);
}

static void __exit pie_module_exit(void)
{
	unregister_qdisc(&pie_qdisc_ops);
}

module_init(pie_module_init);
module_exit(pie_module_exit);

MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
MODULE_AUTHOR("Vijay Subramanian");
MODULE_AUTHOR("Mythili Prabhu");
MODULE_LICENSE("GPL");