sch_pie.c 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (C) 2013 Cisco Systems, Inc, 2013.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * Author: Vijay Subramanian <vijaynsu@cisco.com>
 * Author: Mythili Prabhu <mysuryan@cisco.com>
 *
 * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
 * University of Oslo, Norway.
18 19
 *
 * References:
20
 * RFC 8033: https://tools.ietf.org/html/rfc8033
21 22 23 24 25 26 27 28 29 30 31
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>

32
#define QUEUE_THRESHOLD 16384
33
#define DQCOUNT_INVALID -1
34
#define MAX_PROB 0xffffffffffffffff
35 36 37 38 39 40 41
#define PIE_SCALE 8

/* parameters used */
struct pie_params {
	psched_time_t target;	/* user specified target delay in pschedtime */
	u32 tupdate;		/* timer frequency (in jiffies) */
	u32 limit;		/* number of packets that can be enqueued */
42
	u32 alpha;		/* alpha and beta are between 0 and 32 */
43 44 45 46 47 48 49
	u32 beta;		/* and are used for shift relative to 1 */
	bool ecn;		/* true if ecn is enabled */
	bool bytemode;		/* to scale drop early prob based on pkt size */
};

/* variables used */
struct pie_vars {
50
	u64 prob;		/* probability but scaled by u64 limit. */
51 52 53 54 55
	psched_time_t burst_time;
	psched_time_t qdelay;
	psched_time_t qdelay_old;
	u64 dq_count;		/* measured in bytes */
	psched_time_t dq_tstamp;	/* drain rate */
56
	u64 accu_prob;		/* accumulated drop probability */
57 58
	u32 avg_dq_rate;	/* bytes per pschedtime tick,scaled */
	u32 qlen_old;		/* in bytes */
59
	u8 accu_prob_overflows;	/* overflows of accu_prob */
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
};

/* statistics gathering */
struct pie_stats {
	u32 packets_in;		/* total number of packets enqueued */
	u32 dropped;		/* packets dropped due to pie_action */
	u32 overlimit;		/* dropped due to lack of space in queue */
	u32 maxq;		/* maximum queue size */
	u32 ecn_mark;		/* packets marked with ECN */
};

/* private data for the Qdisc */
struct pie_sched_data {
	struct pie_params params;
	struct pie_vars vars;
	struct pie_stats stats;
	struct timer_list adapt_timer;
77
	struct Qdisc *sch;
78 79 80 81 82 83
};

static void pie_params_init(struct pie_params *params)
{
	params->alpha = 2;
	params->beta = 20;
84
	params->tupdate = usecs_to_jiffies(15 * USEC_PER_MSEC);	/* 15 ms */
85
	params->limit = 1000;	/* default of 1000 packets */
86
	params->target = PSCHED_NS2TICKS(15 * NSEC_PER_MSEC);	/* 15 ms */
87 88 89 90 91 92 93
	params->ecn = false;
	params->bytemode = false;
}

static void pie_vars_init(struct pie_vars *vars)
{
	vars->dq_count = DQCOUNT_INVALID;
94
	vars->accu_prob = 0;
95
	vars->avg_dq_rate = 0;
96 97
	/* default of 150 ms in pschedtime */
	vars->burst_time = PSCHED_NS2TICKS(150 * NSEC_PER_MSEC);
98
	vars->accu_prob_overflows = 0;
99 100 101 102 103
}

static bool drop_early(struct Qdisc *sch, u32 packet_size)
{
	struct pie_sched_data *q = qdisc_priv(sch);
104 105
	u64 rnd;
	u64 local_prob = q->vars.prob;
106 107 108 109 110 111 112 113 114
	u32 mtu = psched_mtu(qdisc_dev(sch));

	/* If there is still burst allowance left skip random early drop */
	if (q->vars.burst_time > 0)
		return false;

	/* If current delay is less than half of target, and
	 * if drop prob is low already, disable early_drop
	 */
115 116
	if ((q->vars.qdelay < q->params.target / 2) &&
	    (q->vars.prob < MAX_PROB / 5))
117 118 119 120 121 122 123 124 125 126 127 128
		return false;

	/* If we have fewer than 2 mtu-sized packets, disable drop_early,
	 * similar to min_th in RED
	 */
	if (sch->qstats.backlog < 2 * mtu)
		return false;

	/* If bytemode is turned on, use packet size to compute new
	 * probablity. Smaller packets will have lower drop prob in this case
	 */
	if (q->params.bytemode && packet_size <= mtu)
129
		local_prob = (u64)packet_size * div_u64(local_prob, mtu);
130 131 132
	else
		local_prob = q->vars.prob;

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
	if (local_prob == 0) {
		q->vars.accu_prob = 0;
		q->vars.accu_prob_overflows = 0;
	}

	if (local_prob > MAX_PROB - q->vars.accu_prob)
		q->vars.accu_prob_overflows++;

	q->vars.accu_prob += local_prob;

	if (q->vars.accu_prob_overflows == 0 &&
	    q->vars.accu_prob < (MAX_PROB / 100) * 85)
		return false;
	if (q->vars.accu_prob_overflows == 8 &&
	    q->vars.accu_prob >= MAX_PROB / 2)
		return true;

150
	prandom_bytes(&rnd, 8);
151 152 153
	if (rnd < local_prob) {
		q->vars.accu_prob = 0;
		q->vars.accu_prob_overflows = 0;
154
		return true;
155
	}
156 157 158 159

	return false;
}

160 161
static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
			     struct sk_buff **to_free)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
{
	struct pie_sched_data *q = qdisc_priv(sch);
	bool enqueue = false;

	if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
		q->stats.overlimit++;
		goto out;
	}

	if (!drop_early(sch, skb->len)) {
		enqueue = true;
	} else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
		   INET_ECN_set_ce(skb)) {
		/* If packet is ecn capable, mark it if drop probability
		 * is lower than 10%, else drop it.
		 */
		q->stats.ecn_mark++;
		enqueue = true;
	}

	/* we can enqueue the packet */
	if (enqueue) {
		q->stats.packets_in++;
		if (qdisc_qlen(sch) > q->stats.maxq)
			q->stats.maxq = qdisc_qlen(sch);

		return qdisc_enqueue_tail(skb, sch);
	}

out:
	q->stats.dropped++;
193 194
	q->vars.accu_prob = 0;
	q->vars.accu_prob_overflows = 0;
195
	return qdisc_drop(skb, sch, to_free);
196 197 198 199 200 201 202 203 204 205 206 207
}

static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
	[TCA_PIE_TARGET] = {.type = NLA_U32},
	[TCA_PIE_LIMIT] = {.type = NLA_U32},
	[TCA_PIE_TUPDATE] = {.type = NLA_U32},
	[TCA_PIE_ALPHA] = {.type = NLA_U32},
	[TCA_PIE_BETA] = {.type = NLA_U32},
	[TCA_PIE_ECN] = {.type = NLA_U32},
	[TCA_PIE_BYTEMODE] = {.type = NLA_U32},
};

208 209
static int pie_change(struct Qdisc *sch, struct nlattr *opt,
		      struct netlink_ext_ack *extack)
210 211 212
{
	struct pie_sched_data *q = qdisc_priv(sch);
	struct nlattr *tb[TCA_PIE_MAX + 1];
213
	unsigned int qlen, dropped = 0;
214 215 216 217 218
	int err;

	if (!opt)
		return -EINVAL;

219
	err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy, NULL);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	if (err < 0)
		return err;

	sch_tree_lock(sch);

	/* convert from microseconds to pschedtime */
	if (tb[TCA_PIE_TARGET]) {
		/* target is in us */
		u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);

		/* convert to pschedtime */
		q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
	}

	/* tupdate is in jiffies */
	if (tb[TCA_PIE_TUPDATE])
236 237
		q->params.tupdate =
			usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	if (tb[TCA_PIE_LIMIT]) {
		u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);

		q->params.limit = limit;
		sch->limit = limit;
	}

	if (tb[TCA_PIE_ALPHA])
		q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);

	if (tb[TCA_PIE_BETA])
		q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);

	if (tb[TCA_PIE_ECN])
		q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);

	if (tb[TCA_PIE_BYTEMODE])
		q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);

	/* Drop excess packets if new limit is lower */
	qlen = sch->q.qlen;
	while (sch->q.qlen > sch->limit) {
261
		struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
262

263
		dropped += qdisc_pkt_len(skb);
264
		qdisc_qstats_backlog_dec(sch, skb);
265
		rtnl_qdisc_drop(skb, sch);
266
	}
267
	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

	sch_tree_unlock(sch);
	return 0;
}

static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	int qlen = sch->qstats.backlog;	/* current queue size in bytes */

	/* If current queue is about 10 packets or more and dq_count is unset
	 * we have enough packets to calculate the drain rate. Save
	 * current time as dq_tstamp and start measurement cycle.
	 */
	if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) {
		q->vars.dq_tstamp = psched_get_time();
		q->vars.dq_count = 0;
	}

	/* Calculate the average drain rate from this value.  If queue length
	 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset
	 * the dq_count to -1 as we don't have enough packets to calculate the
	 * drain rate anymore The following if block is entered only when we
	 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
	 * and we calculate the drain rate for the threshold here.  dq_count is
	 * in bytes, time difference in psched_time, hence rate is in
	 * bytes/psched_time.
	 */
	if (q->vars.dq_count != DQCOUNT_INVALID) {
		q->vars.dq_count += skb->len;

		if (q->vars.dq_count >= QUEUE_THRESHOLD) {
			psched_time_t now = psched_get_time();
			u32 dtime = now - q->vars.dq_tstamp;
			u32 count = q->vars.dq_count << PIE_SCALE;

			if (dtime == 0)
				return;

			count = count / dtime;

			if (q->vars.avg_dq_rate == 0)
				q->vars.avg_dq_rate = count;
			else
				q->vars.avg_dq_rate =
				    (q->vars.avg_dq_rate -
				     (q->vars.avg_dq_rate >> 3)) + (count >> 3);

			/* If the queue has receded below the threshold, we hold
			 * on to the last drain rate calculated, else we reset
			 * dq_count to 0 to re-enter the if block when the next
			 * packet is dequeued
			 */
321
			if (qlen < QUEUE_THRESHOLD) {
322
				q->vars.dq_count = DQCOUNT_INVALID;
323
			} else {
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
				q->vars.dq_count = 0;
				q->vars.dq_tstamp = psched_get_time();
			}

			if (q->vars.burst_time > 0) {
				if (q->vars.burst_time > dtime)
					q->vars.burst_time -= dtime;
				else
					q->vars.burst_time = 0;
			}
		}
	}
}

static void calculate_probability(struct Qdisc *sch)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	u32 qlen = sch->qstats.backlog;	/* queue size in bytes */
	psched_time_t qdelay = 0;	/* in pschedtime */
	psched_time_t qdelay_old = q->vars.qdelay;	/* in pschedtime */
344 345 346 347
	s64 delta = 0;		/* determines the change in probability */
	u64 oldprob;
	u64 alpha, beta;
	u32 power;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	bool update_prob = true;

	q->vars.qdelay_old = q->vars.qdelay;

	if (q->vars.avg_dq_rate > 0)
		qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate;
	else
		qdelay = 0;

	/* If qdelay is zero and qlen is not, it means qlen is very small, less
	 * than dequeue_rate, so we do not update probabilty in this round
	 */
	if (qdelay == 0 && qlen != 0)
		update_prob = false;

363 364 365 366
	/* In the algorithm, alpha and beta are between 0 and 2 with typical
	 * value for alpha as 0.125. In this implementation, we use values 0-32
	 * passed from user space to represent this. Also, alpha and beta have
	 * unit of HZ and need to be scaled before they can used to update
367 368
	 * probability. alpha/beta are updated locally below by scaling down
	 * by 16 to come to 0-2 range.
369
	 */
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	alpha = ((u64)q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
	beta = ((u64)q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;

	/* We scale alpha and beta differently depending on how heavy the
	 * congestion is. Please see RFC 8033 for details.
	 */
	if (q->vars.prob < MAX_PROB / 10) {
		alpha >>= 1;
		beta >>= 1;

		power = 100;
		while (q->vars.prob < div_u64(MAX_PROB, power) &&
		       power <= 1000000) {
			alpha >>= 2;
			beta >>= 2;
			power *= 10;
		}
387 388 389
	}

	/* alpha and beta should be between 0 and 32, in multiples of 1/16 */
390 391
	delta += alpha * (u64)(qdelay - q->params.target);
	delta += beta * (u64)(qdelay - qdelay_old);
392 393 394 395

	oldprob = q->vars.prob;

	/* to ensure we increase probability in steps of no more than 2% */
396
	if (delta > (s64)(MAX_PROB / (100 / 2)) &&
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	    q->vars.prob >= MAX_PROB / 10)
		delta = (MAX_PROB / 100) * 2;

	/* Non-linear drop:
	 * Tune drop probability to increase quickly for high delays(>= 250ms)
	 * 250ms is derived through experiments and provides error protection
	 */

	if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
		delta += MAX_PROB / (100 / 2);

	q->vars.prob += delta;

	if (delta > 0) {
		/* prevent overflow */
		if (q->vars.prob < oldprob) {
			q->vars.prob = MAX_PROB;
			/* Prevent normalization error. If probability is at
			 * maximum value already, we normalize it here, and
			 * skip the check to do a non-linear drop in the next
			 * section.
			 */
			update_prob = false;
		}
	} else {
		/* prevent underflow */
		if (q->vars.prob > oldprob)
			q->vars.prob = 0;
	}

	/* Non-linear drop in probability: Reduce drop probability quickly if
	 * delay is 0 for 2 consecutive Tupdate periods.
	 */

431
	if (qdelay == 0 && qdelay_old == 0 && update_prob)
432 433
		/* Reduce drop probability to 98.4% */
		q->vars.prob -= q->vars.prob / 64u;
434 435 436 437 438 439 440 441 442 443 444 445

	q->vars.qdelay = qdelay;
	q->vars.qlen_old = qlen;

	/* We restart the measurement cycle if the following conditions are met
	 * 1. If the delay has been low for 2 consecutive Tupdate periods
	 * 2. Calculated drop probability is zero
	 * 3. We have atleast one estimate for the avg_dq_rate ie.,
	 *    is a non-zero value
	 */
	if ((q->vars.qdelay < q->params.target / 2) &&
	    (q->vars.qdelay_old < q->params.target / 2) &&
446 447
	    q->vars.prob == 0 &&
	    q->vars.avg_dq_rate > 0)
448 449 450
		pie_vars_init(&q->vars);
}

451
static void pie_timer(struct timer_list *t)
452
{
453 454
	struct pie_sched_data *q = from_timer(q, t, adapt_timer);
	struct Qdisc *sch = q->sch;
455 456 457 458 459 460 461 462 463 464 465
	spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));

	spin_lock(root_lock);
	calculate_probability(sch);

	/* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
	if (q->params.tupdate)
		mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
	spin_unlock(root_lock);
}

466 467
static int pie_init(struct Qdisc *sch, struct nlattr *opt,
		    struct netlink_ext_ack *extack)
468 469 470 471 472 473 474
{
	struct pie_sched_data *q = qdisc_priv(sch);

	pie_params_init(&q->params);
	pie_vars_init(&q->vars);
	sch->limit = q->params.limit;

475 476
	q->sch = sch;
	timer_setup(&q->adapt_timer, pie_timer, 0);
477 478

	if (opt) {
479
		int err = pie_change(sch, opt, extack);
480 481 482 483 484

		if (err)
			return err;
	}

485
	mod_timer(&q->adapt_timer, jiffies + HZ / 2);
486 487 488 489 490 491 492 493 494
	return 0;
}

static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	struct nlattr *opts;

	opts = nla_nest_start(skb, TCA_OPTIONS);
495
	if (!opts)
496 497 498 499
		goto nla_put_failure;

	/* convert target from pschedtime to us */
	if (nla_put_u32(skb, TCA_PIE_TARGET,
500
			((u32)PSCHED_TICKS2NS(q->params.target)) /
501 502
			NSEC_PER_USEC) ||
	    nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
503 504
	    nla_put_u32(skb, TCA_PIE_TUPDATE,
			jiffies_to_usecs(q->params.tupdate)) ||
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
	    nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
	    nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
	    nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
	    nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode))
		goto nla_put_failure;

	return nla_nest_end(skb, opts);

nla_put_failure:
	nla_nest_cancel(skb, opts);
	return -1;
}

static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	struct tc_pie_xstats st = {
		.prob		= q->vars.prob,
523
		.delay		= ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) /
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
				   NSEC_PER_USEC,
		/* unscale and return dq_rate in bytes per sec */
		.avg_dq_rate	= q->vars.avg_dq_rate *
				  (PSCHED_TICKS_PER_SEC) >> PIE_SCALE,
		.packets_in	= q->stats.packets_in,
		.overlimit	= q->stats.overlimit,
		.maxq		= q->stats.maxq,
		.dropped	= q->stats.dropped,
		.ecn_mark	= q->stats.ecn_mark,
	};

	return gnet_stats_copy_app(d, &st, sizeof(st));
}

static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
{
540
	struct sk_buff *skb = qdisc_dequeue_head(sch);
541 542 543 544 545 546 547 548 549 550 551

	if (!skb)
		return NULL;

	pie_process_dequeue(sch, skb);
	return skb;
}

static void pie_reset(struct Qdisc *sch)
{
	struct pie_sched_data *q = qdisc_priv(sch);
552

553 554 555 556 557 558 559
	qdisc_reset_queue(sch);
	pie_vars_init(&q->vars);
}

static void pie_destroy(struct Qdisc *sch)
{
	struct pie_sched_data *q = qdisc_priv(sch);
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	q->params.tupdate = 0;
	del_timer_sync(&q->adapt_timer);
}

static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
	.id = "pie",
	.priv_size	= sizeof(struct pie_sched_data),
	.enqueue	= pie_qdisc_enqueue,
	.dequeue	= pie_qdisc_dequeue,
	.peek		= qdisc_peek_dequeued,
	.init		= pie_init,
	.destroy	= pie_destroy,
	.reset		= pie_reset,
	.change		= pie_change,
	.dump		= pie_dump,
	.dump_stats	= pie_dump_stats,
	.owner		= THIS_MODULE,
};

static int __init pie_module_init(void)
{
	return register_qdisc(&pie_qdisc_ops);
}

static void __exit pie_module_exit(void)
{
	unregister_qdisc(&pie_qdisc_ops);
}

module_init(pie_module_init);
module_exit(pie_module_exit);

MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
MODULE_AUTHOR("Vijay Subramanian");
MODULE_AUTHOR("Mythili Prabhu");
MODULE_LICENSE("GPL");