sch_pie.c 15.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8
/* Copyright (C) 2013 Cisco Systems, Inc, 2013.
 *
 * Author: Vijay Subramanian <vijaynsu@cisco.com>
 * Author: Mythili Prabhu <mysuryan@cisco.com>
 *
 * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
 * University of Oslo, Norway.
9 10
 *
 * References:
11
 * RFC 8033: https://tools.ietf.org/html/rfc8033
12 13 14 15 16 17 18 19 20 21
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>
22
#include <net/pie.h>
23 24 25 26 27 28 29

/* private data for the Qdisc */
struct pie_sched_data {
	struct pie_params params;
	struct pie_vars vars;
	struct pie_stats stats;
	struct timer_list adapt_timer;
30
	struct Qdisc *sch;
31 32 33 34 35
};

static bool drop_early(struct Qdisc *sch, u32 packet_size)
{
	struct pie_sched_data *q = qdisc_priv(sch);
36 37
	u64 rnd;
	u64 local_prob = q->vars.prob;
38 39 40 41 42 43 44 45 46
	u32 mtu = psched_mtu(qdisc_dev(sch));

	/* If there is still burst allowance left skip random early drop */
	if (q->vars.burst_time > 0)
		return false;

	/* If current delay is less than half of target, and
	 * if drop prob is low already, disable early_drop
	 */
47 48
	if ((q->vars.qdelay < q->params.target / 2) &&
	    (q->vars.prob < MAX_PROB / 5))
49 50 51 52 53 54 55 56 57 58 59 60
		return false;

	/* If we have fewer than 2 mtu-sized packets, disable drop_early,
	 * similar to min_th in RED
	 */
	if (sch->qstats.backlog < 2 * mtu)
		return false;

	/* If bytemode is turned on, use packet size to compute new
	 * probablity. Smaller packets will have lower drop prob in this case
	 */
	if (q->params.bytemode && packet_size <= mtu)
61
		local_prob = (u64)packet_size * div_u64(local_prob, mtu);
62 63 64
	else
		local_prob = q->vars.prob;

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
	if (local_prob == 0) {
		q->vars.accu_prob = 0;
		q->vars.accu_prob_overflows = 0;
	}

	if (local_prob > MAX_PROB - q->vars.accu_prob)
		q->vars.accu_prob_overflows++;

	q->vars.accu_prob += local_prob;

	if (q->vars.accu_prob_overflows == 0 &&
	    q->vars.accu_prob < (MAX_PROB / 100) * 85)
		return false;
	if (q->vars.accu_prob_overflows == 8 &&
	    q->vars.accu_prob >= MAX_PROB / 2)
		return true;

82
	prandom_bytes(&rnd, 8);
83 84 85
	if (rnd < local_prob) {
		q->vars.accu_prob = 0;
		q->vars.accu_prob_overflows = 0;
86
		return true;
87
	}
88 89 90 91

	return false;
}

92 93
static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
			     struct sk_buff **to_free)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
{
	struct pie_sched_data *q = qdisc_priv(sch);
	bool enqueue = false;

	if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
		q->stats.overlimit++;
		goto out;
	}

	if (!drop_early(sch, skb->len)) {
		enqueue = true;
	} else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
		   INET_ECN_set_ce(skb)) {
		/* If packet is ecn capable, mark it if drop probability
		 * is lower than 10%, else drop it.
		 */
		q->stats.ecn_mark++;
		enqueue = true;
	}

	/* we can enqueue the packet */
	if (enqueue) {
116 117 118 119
		/* Set enqueue time only when dq_rate_estimator is disabled. */
		if (!q->params.dq_rate_estimator)
			pie_set_enqueue_time(skb);

120 121 122 123 124 125 126 127 128
		q->stats.packets_in++;
		if (qdisc_qlen(sch) > q->stats.maxq)
			q->stats.maxq = qdisc_qlen(sch);

		return qdisc_enqueue_tail(skb, sch);
	}

out:
	q->stats.dropped++;
129 130
	q->vars.accu_prob = 0;
	q->vars.accu_prob_overflows = 0;
131
	return qdisc_drop(skb, sch, to_free);
132 133 134 135 136 137 138 139 140 141
}

static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
	[TCA_PIE_TARGET] = {.type = NLA_U32},
	[TCA_PIE_LIMIT] = {.type = NLA_U32},
	[TCA_PIE_TUPDATE] = {.type = NLA_U32},
	[TCA_PIE_ALPHA] = {.type = NLA_U32},
	[TCA_PIE_BETA] = {.type = NLA_U32},
	[TCA_PIE_ECN] = {.type = NLA_U32},
	[TCA_PIE_BYTEMODE] = {.type = NLA_U32},
142
	[TCA_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32},
143 144
};

145 146
static int pie_change(struct Qdisc *sch, struct nlattr *opt,
		      struct netlink_ext_ack *extack)
147 148 149
{
	struct pie_sched_data *q = qdisc_priv(sch);
	struct nlattr *tb[TCA_PIE_MAX + 1];
150
	unsigned int qlen, dropped = 0;
151 152 153 154 155
	int err;

	if (!opt)
		return -EINVAL;

156 157
	err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy,
					  NULL);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	if (err < 0)
		return err;

	sch_tree_lock(sch);

	/* convert from microseconds to pschedtime */
	if (tb[TCA_PIE_TARGET]) {
		/* target is in us */
		u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);

		/* convert to pschedtime */
		q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
	}

	/* tupdate is in jiffies */
	if (tb[TCA_PIE_TUPDATE])
174 175
		q->params.tupdate =
			usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

	if (tb[TCA_PIE_LIMIT]) {
		u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);

		q->params.limit = limit;
		sch->limit = limit;
	}

	if (tb[TCA_PIE_ALPHA])
		q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);

	if (tb[TCA_PIE_BETA])
		q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);

	if (tb[TCA_PIE_ECN])
		q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);

	if (tb[TCA_PIE_BYTEMODE])
		q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);

196 197 198 199
	if (tb[TCA_PIE_DQ_RATE_ESTIMATOR])
		q->params.dq_rate_estimator =
				nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR]);

200 201 202
	/* Drop excess packets if new limit is lower */
	qlen = sch->q.qlen;
	while (sch->q.qlen > sch->limit) {
203
		struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
204

205
		dropped += qdisc_pkt_len(skb);
206
		qdisc_qstats_backlog_dec(sch, skb);
207
		rtnl_qdisc_drop(skb, sch);
208
	}
209
	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
210 211 212 213 214 215 216 217 218

	sch_tree_unlock(sch);
	return 0;
}

static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	int qlen = sch->qstats.backlog;	/* current queue size in bytes */
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	psched_time_t now = psched_get_time();
	u32 dtime = 0;

	/* If dq_rate_estimator is disabled, calculate qdelay using the
	 * packet timestamp.
	 */
	if (!q->params.dq_rate_estimator) {
		q->vars.qdelay = now - pie_get_enqueue_time(skb);

		if (q->vars.dq_tstamp != DTIME_INVALID)
			dtime = now - q->vars.dq_tstamp;

		q->vars.dq_tstamp = now;

		if (qlen == 0)
			q->vars.qdelay = 0;

		if (dtime == 0)
			return;

		goto burst_allowance_reduction;
	}
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

	/* If current queue is about 10 packets or more and dq_count is unset
	 * we have enough packets to calculate the drain rate. Save
	 * current time as dq_tstamp and start measurement cycle.
	 */
	if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) {
		q->vars.dq_tstamp = psched_get_time();
		q->vars.dq_count = 0;
	}

	/* Calculate the average drain rate from this value.  If queue length
	 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset
	 * the dq_count to -1 as we don't have enough packets to calculate the
	 * drain rate anymore The following if block is entered only when we
	 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
	 * and we calculate the drain rate for the threshold here.  dq_count is
	 * in bytes, time difference in psched_time, hence rate is in
	 * bytes/psched_time.
	 */
	if (q->vars.dq_count != DQCOUNT_INVALID) {
		q->vars.dq_count += skb->len;

		if (q->vars.dq_count >= QUEUE_THRESHOLD) {
			u32 count = q->vars.dq_count << PIE_SCALE;

266 267
			dtime = now - q->vars.dq_tstamp;

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
			if (dtime == 0)
				return;

			count = count / dtime;

			if (q->vars.avg_dq_rate == 0)
				q->vars.avg_dq_rate = count;
			else
				q->vars.avg_dq_rate =
				    (q->vars.avg_dq_rate -
				     (q->vars.avg_dq_rate >> 3)) + (count >> 3);

			/* If the queue has receded below the threshold, we hold
			 * on to the last drain rate calculated, else we reset
			 * dq_count to 0 to re-enter the if block when the next
			 * packet is dequeued
			 */
285
			if (qlen < QUEUE_THRESHOLD) {
286
				q->vars.dq_count = DQCOUNT_INVALID;
287
			} else {
288 289 290 291
				q->vars.dq_count = 0;
				q->vars.dq_tstamp = psched_get_time();
			}

292
			goto burst_allowance_reduction;
293 294
		}
	}
295 296 297 298 299 300 301 302 303 304

	return;

burst_allowance_reduction:
	if (q->vars.burst_time > 0) {
		if (q->vars.burst_time > dtime)
			q->vars.burst_time -= dtime;
		else
			q->vars.burst_time = 0;
	}
305 306 307 308 309 310 311
}

static void calculate_probability(struct Qdisc *sch)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	u32 qlen = sch->qstats.backlog;	/* queue size in bytes */
	psched_time_t qdelay = 0;	/* in pschedtime */
312
	psched_time_t qdelay_old = 0;	/* in pschedtime */
313 314 315 316
	s64 delta = 0;		/* determines the change in probability */
	u64 oldprob;
	u64 alpha, beta;
	u32 power;
317 318
	bool update_prob = true;

319 320 321
	if (q->params.dq_rate_estimator) {
		qdelay_old = q->vars.qdelay;
		q->vars.qdelay_old = q->vars.qdelay;
322

323 324 325 326 327 328 329 330
		if (q->vars.avg_dq_rate > 0)
			qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate;
		else
			qdelay = 0;
	} else {
		qdelay = q->vars.qdelay;
		qdelay_old = q->vars.qdelay_old;
	}
331 332 333 334 335 336 337

	/* If qdelay is zero and qlen is not, it means qlen is very small, less
	 * than dequeue_rate, so we do not update probabilty in this round
	 */
	if (qdelay == 0 && qlen != 0)
		update_prob = false;

338 339 340 341
	/* In the algorithm, alpha and beta are between 0 and 2 with typical
	 * value for alpha as 0.125. In this implementation, we use values 0-32
	 * passed from user space to represent this. Also, alpha and beta have
	 * unit of HZ and need to be scaled before they can used to update
342 343
	 * probability. alpha/beta are updated locally below by scaling down
	 * by 16 to come to 0-2 range.
344
	 */
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	alpha = ((u64)q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
	beta = ((u64)q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;

	/* We scale alpha and beta differently depending on how heavy the
	 * congestion is. Please see RFC 8033 for details.
	 */
	if (q->vars.prob < MAX_PROB / 10) {
		alpha >>= 1;
		beta >>= 1;

		power = 100;
		while (q->vars.prob < div_u64(MAX_PROB, power) &&
		       power <= 1000000) {
			alpha >>= 2;
			beta >>= 2;
			power *= 10;
		}
362 363 364
	}

	/* alpha and beta should be between 0 and 32, in multiples of 1/16 */
365 366
	delta += alpha * (u64)(qdelay - q->params.target);
	delta += beta * (u64)(qdelay - qdelay_old);
367 368 369 370

	oldprob = q->vars.prob;

	/* to ensure we increase probability in steps of no more than 2% */
371
	if (delta > (s64)(MAX_PROB / (100 / 2)) &&
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	    q->vars.prob >= MAX_PROB / 10)
		delta = (MAX_PROB / 100) * 2;

	/* Non-linear drop:
	 * Tune drop probability to increase quickly for high delays(>= 250ms)
	 * 250ms is derived through experiments and provides error protection
	 */

	if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
		delta += MAX_PROB / (100 / 2);

	q->vars.prob += delta;

	if (delta > 0) {
		/* prevent overflow */
		if (q->vars.prob < oldprob) {
			q->vars.prob = MAX_PROB;
			/* Prevent normalization error. If probability is at
			 * maximum value already, we normalize it here, and
			 * skip the check to do a non-linear drop in the next
			 * section.
			 */
			update_prob = false;
		}
	} else {
		/* prevent underflow */
		if (q->vars.prob > oldprob)
			q->vars.prob = 0;
	}

	/* Non-linear drop in probability: Reduce drop probability quickly if
	 * delay is 0 for 2 consecutive Tupdate periods.
	 */

406
	if (qdelay == 0 && qdelay_old == 0 && update_prob)
407 408
		/* Reduce drop probability to 98.4% */
		q->vars.prob -= q->vars.prob / 64u;
409 410 411 412 413 414 415

	q->vars.qdelay = qdelay;
	q->vars.qlen_old = qlen;

	/* We restart the measurement cycle if the following conditions are met
	 * 1. If the delay has been low for 2 consecutive Tupdate periods
	 * 2. Calculated drop probability is zero
416 417
	 * 3. If average dq_rate_estimator is enabled, we have atleast one
	 *    estimate for the avg_dq_rate ie., is a non-zero value
418 419 420
	 */
	if ((q->vars.qdelay < q->params.target / 2) &&
	    (q->vars.qdelay_old < q->params.target / 2) &&
421
	    q->vars.prob == 0 &&
422
	    (!q->params.dq_rate_estimator || q->vars.avg_dq_rate > 0)) {
423
		pie_vars_init(&q->vars);
424 425 426 427
	}

	if (!q->params.dq_rate_estimator)
		q->vars.qdelay_old = qdelay;
428 429
}

430
static void pie_timer(struct timer_list *t)
431
{
432 433
	struct pie_sched_data *q = from_timer(q, t, adapt_timer);
	struct Qdisc *sch = q->sch;
434 435 436 437 438 439 440 441 442 443 444
	spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));

	spin_lock(root_lock);
	calculate_probability(sch);

	/* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
	if (q->params.tupdate)
		mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
	spin_unlock(root_lock);
}

445 446
static int pie_init(struct Qdisc *sch, struct nlattr *opt,
		    struct netlink_ext_ack *extack)
447 448 449 450 451 452 453
{
	struct pie_sched_data *q = qdisc_priv(sch);

	pie_params_init(&q->params);
	pie_vars_init(&q->vars);
	sch->limit = q->params.limit;

454 455
	q->sch = sch;
	timer_setup(&q->adapt_timer, pie_timer, 0);
456 457

	if (opt) {
458
		int err = pie_change(sch, opt, extack);
459 460 461 462 463

		if (err)
			return err;
	}

464
	mod_timer(&q->adapt_timer, jiffies + HZ / 2);
465 466 467 468 469 470 471 472
	return 0;
}

static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	struct nlattr *opts;

473
	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
474
	if (!opts)
475 476 477 478
		goto nla_put_failure;

	/* convert target from pschedtime to us */
	if (nla_put_u32(skb, TCA_PIE_TARGET,
479
			((u32)PSCHED_TICKS2NS(q->params.target)) /
480 481
			NSEC_PER_USEC) ||
	    nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
482 483
	    nla_put_u32(skb, TCA_PIE_TUPDATE,
			jiffies_to_usecs(q->params.tupdate)) ||
484 485 486
	    nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
	    nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
	    nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
487 488 489
	    nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode) ||
	    nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR,
			q->params.dq_rate_estimator))
490 491 492 493 494 495 496 497 498 499 500 501 502 503
		goto nla_put_failure;

	return nla_nest_end(skb, opts);

nla_put_failure:
	nla_nest_cancel(skb, opts);
	return -1;
}

static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
	struct pie_sched_data *q = qdisc_priv(sch);
	struct tc_pie_xstats st = {
		.prob		= q->vars.prob,
504
		.delay		= ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) /
505 506 507 508 509 510 511 512
				   NSEC_PER_USEC,
		.packets_in	= q->stats.packets_in,
		.overlimit	= q->stats.overlimit,
		.maxq		= q->stats.maxq,
		.dropped	= q->stats.dropped,
		.ecn_mark	= q->stats.ecn_mark,
	};

513 514 515 516 517 518 519 520
	/* avg_dq_rate is only valid if dq_rate_estimator is enabled */
	st.dq_rate_estimating = q->params.dq_rate_estimator;

	/* unscale and return dq_rate in bytes per sec */
	if (q->params.dq_rate_estimator)
		st.avg_dq_rate = q->vars.avg_dq_rate *
				 (PSCHED_TICKS_PER_SEC) >> PIE_SCALE;

521 522 523 524 525
	return gnet_stats_copy_app(d, &st, sizeof(st));
}

static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
{
526
	struct sk_buff *skb = qdisc_dequeue_head(sch);
527 528 529 530 531 532 533 534 535 536 537

	if (!skb)
		return NULL;

	pie_process_dequeue(sch, skb);
	return skb;
}

static void pie_reset(struct Qdisc *sch)
{
	struct pie_sched_data *q = qdisc_priv(sch);
538

539 540 541 542 543 544 545
	qdisc_reset_queue(sch);
	pie_vars_init(&q->vars);
}

static void pie_destroy(struct Qdisc *sch)
{
	struct pie_sched_data *q = qdisc_priv(sch);
546

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	q->params.tupdate = 0;
	del_timer_sync(&q->adapt_timer);
}

static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
	.id = "pie",
	.priv_size	= sizeof(struct pie_sched_data),
	.enqueue	= pie_qdisc_enqueue,
	.dequeue	= pie_qdisc_dequeue,
	.peek		= qdisc_peek_dequeued,
	.init		= pie_init,
	.destroy	= pie_destroy,
	.reset		= pie_reset,
	.change		= pie_change,
	.dump		= pie_dump,
	.dump_stats	= pie_dump_stats,
	.owner		= THIS_MODULE,
};

static int __init pie_module_init(void)
{
	return register_qdisc(&pie_qdisc_ops);
}

static void __exit pie_module_exit(void)
{
	unregister_qdisc(&pie_qdisc_ops);
}

module_init(pie_module_init);
module_exit(pie_module_exit);

MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
MODULE_AUTHOR("Vijay Subramanian");
MODULE_AUTHOR("Mythili Prabhu");
MODULE_LICENSE("GPL");