arm_arch_timer.c 42.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 */
8

9
#define pr_fmt(fmt) 	"arch_timer: " fmt
10

11 12 13 14 15
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/clockchips.h>
18
#include <linux/clocksource.h>
19
#include <linux/clocksource_ids.h>
20 21
#include <linux/interrupt.h>
#include <linux/of_irq.h>
22
#include <linux/of_address.h>
23
#include <linux/io.h>
24
#include <linux/slab.h>
25
#include <linux/sched/clock.h>
26
#include <linux/sched_clock.h>
27
#include <linux/acpi.h>
28 29

#include <asm/arch_timer.h>
30
#include <asm/virt.h>
31 32 33

#include <clocksource/arm_arch_timer.h>

34 35 36
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

37 38 39 40 41 42 43 44
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

64
static u32 arch_timer_rate;
65
static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
66 67 68

static struct clock_event_device __percpu *arch_timer_evt;

69
static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
70
static bool arch_timer_c3stop;
71
static bool arch_timer_mem_use_virtual;
72
static bool arch_counter_suspend_stop;
73
#ifdef CONFIG_GENERIC_GETTIMEOFDAY
74
static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
75 76 77
#else
static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
78

79
static cpumask_t evtstrm_available = CPU_MASK_NONE;
80 81 82 83 84 85 86 87
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

88 89 90 91
/*
 * Architected system timer support.
 */

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
			  struct clock_event_device *clk)
{
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
			struct clock_event_device *clk)
{
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
}

154
static notrace u64 arch_counter_get_cntpct_stable(void)
155 156 157 158
{
	return __arch_counter_get_cntpct_stable();
}

159
static notrace u64 arch_counter_get_cntpct(void)
160 161 162 163
{
	return __arch_counter_get_cntpct();
}

164
static notrace u64 arch_counter_get_cntvct_stable(void)
165 166 167 168
{
	return __arch_counter_get_cntvct_stable();
}

169
static notrace u64 arch_counter_get_cntvct(void)
170 171 172 173
{
	return __arch_counter_get_cntvct();
}

174 175 176 177 178 179 180
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
181
EXPORT_SYMBOL_GPL(arch_timer_read_counter);
182 183 184 185 186 187 188 189 190 191 192 193 194

static u64 arch_counter_read(struct clocksource *cs)
{
	return arch_timer_read_counter();
}

static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
	return arch_timer_read_counter();
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
195
	.id	= CSID_ARM_ARCH_COUNTER,
196 197 198 199 200 201 202 203 204 205 206
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct cyclecounter cyclecounter __ro_after_init = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

207 208 209 210 211 212
struct ate_acpi_oem_info {
	char oem_id[ACPI_OEM_ID_SIZE + 1];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
	u32 oem_revision;
};

213
#ifdef CONFIG_FSL_ERRATUM_A008585
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
233 234 235 236
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

237
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
238 239 240 241
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

242 243 244 245 246
static u64 notrace fsl_a008585_read_cntpct_el0(void)
{
	return __fsl_a008585_read_reg(cntpct_el0);
}

247
static u64 notrace fsl_a008585_read_cntvct_el0(void)
248 249 250
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
251 252
#endif

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

288 289 290 291 292
static u64 notrace hisi_161010101_read_cntpct_el0(void)
{
	return __hisi_161010101_read_reg(cntpct_el0);
}

293 294 295 296
static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
	/*
	 * Note that trailing spaces are required to properly match
	 * the OEM table information.
	 */
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP05   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP06   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP07   ",
		.oem_revision	= 0,
	},
	{ /* Sentinel indicating the end of the OEM array */ },
};
320 321
#endif

322
#ifdef CONFIG_ARM64_ERRATUM_858921
323 324 325 326 327 328 329 330 331
static u64 notrace arm64_858921_read_cntpct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntpct_el0);
	new = read_sysreg(cntpct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}

332 333 334 335 336 337 338 339 340 341
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntvct_el0);
	new = read_sysreg(cntvct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}
#endif

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
/*
 * The low bits of the counter registers are indeterminate while bit 10 or
 * greater is rolling over. Since the counter value can jump both backward
 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 */
#define __sun50i_a64_read_reg(reg) ({					\
	u64 _val;							\
	int _retries = 150;						\
									\
	do {								\
		_val = read_sysreg(reg);				\
		_retries--;						\
	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
									\
	WARN_ON_ONCE(!_retries);					\
	_val;								\
})

static u64 notrace sun50i_a64_read_cntpct_el0(void)
{
	return __sun50i_a64_read_reg(cntpct_el0);
}

static u64 notrace sun50i_a64_read_cntvct_el0(void)
{
	return __sun50i_a64_read_reg(cntvct_el0);
}

static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
{
	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
}

static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
{
	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
}
#endif

384
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
385
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
386 387
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

388
static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
389

390 391 392 393
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
						struct clock_event_device *clk)
{
	unsigned long ctrl;
394
	u64 cval;
395 396 397 398 399

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

400
	if (access == ARCH_TIMER_PHYS_ACCESS) {
401
		cval = evt + arch_counter_get_cntpct_stable();
402
		write_sysreg(cval, cntp_cval_el0);
403
	} else {
404
		cval = evt + arch_counter_get_cntvct_stable();
405
		write_sysreg(cval, cntv_cval_el0);
406
	}
407 408 409 410

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

411
static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
412 413 414 415 416 417
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

418
static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
419 420 421 422 423 424
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}

425 426 427
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
428
		.match_type = ate_match_dt,
429
		.id = "fsl,erratum-a008585",
430
		.desc = "Freescale erratum a005858",
431 432
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
433
		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
434
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
435 436
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
437 438
	},
#endif
439 440
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
441
		.match_type = ate_match_dt,
442
		.id = "hisilicon,erratum-161010101",
443
		.desc = "HiSilicon erratum 161010101",
444 445
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
446
		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
447
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
448 449
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
450 451 452 453 454 455 456
	},
	{
		.match_type = ate_match_acpi_oem_info,
		.id = hisi_161010101_oem_info,
		.desc = "HiSilicon erratum 161010101",
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
457
		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
458 459 460
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
461 462
	},
#endif
463 464 465 466 467
#ifdef CONFIG_ARM64_ERRATUM_858921
	{
		.match_type = ate_match_local_cap_id,
		.id = (void *)ARM64_WORKAROUND_858921,
		.desc = "ARM erratum 858921",
468
		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
469 470 471
		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
	},
#endif
472 473 474 475 476 477 478 479 480 481 482 483 484
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
	{
		.match_type = ate_match_dt,
		.id = "allwinner,erratum-unknown1",
		.desc = "Allwinner erratum UNKNOWN1",
		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
	},
#endif
485 486 487 488 489 490 491 492
#ifdef CONFIG_ARM64_ERRATUM_1418040
	{
		.match_type = ate_match_local_cap_id,
		.id = (void *)ARM64_WORKAROUND_1418040,
		.desc = "ARM erratum 1418040",
		.disable_compat_vdso = true,
	},
#endif
493
};
494 495 496 497 498 499 500 501 502 503 504 505 506

typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
			       const void *);

static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
				 const void *arg)
{
	const struct device_node *np = arg;

	return of_property_read_bool(np, wa->id);
}

507 508 509 510 511 512 513
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
					const void *arg)
{
	return this_cpu_has_cap((uintptr_t)wa->id);
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

static
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
				       const void *arg)
{
	static const struct ate_acpi_oem_info empty_oem_info = {};
	const struct ate_acpi_oem_info *info = wa->id;
	const struct acpi_table_header *table = arg;

	/* Iterate over the ACPI OEM info array, looking for a match */
	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
		    info->oem_revision == table->oem_revision)
			return true;

		info++;
	}

	return false;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
			  ate_match_fn_t match_fn,
			  void *arg)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (ool_workarounds[i].match_type != type)
			continue;

		if (match_fn(&ool_workarounds[i], arg))
			return &ool_workarounds[i];
	}

	return NULL;
}

static
555 556
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
				  bool local)
557
{
558 559 560 561 562 563 564 565 566
	int i;

	if (local) {
		__this_cpu_write(timer_unstable_counter_workaround, wa);
	} else {
		for_each_possible_cpu(i)
			per_cpu(timer_unstable_counter_workaround, i) = wa;
	}

567 568
	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
569 570 571 572 573 574 575 576

	/*
	 * Don't use the vdso fastpath if errata require using the
	 * out-of-line counter accessor. We may change our mind pretty
	 * late in the game (with a per-CPU erratum, for example), so
	 * change both the default value and the vdso itself.
	 */
	if (wa->read_cntvct_el0) {
577 578
		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
		vdso_default = VDSO_CLOCKMODE_NONE;
579 580 581
	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
		clocksource_counter.vdso_clock_mode = vdso_default;
582
	}
583 584 585 586 587
}

static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
					    void *arg)
{
588
	const struct arch_timer_erratum_workaround *wa, *__wa;
589
	ate_match_fn_t match_fn = NULL;
590
	bool local = false;
591 592 593 594 595

	switch (type) {
	case ate_match_dt:
		match_fn = arch_timer_check_dt_erratum;
		break;
596 597 598 599
	case ate_match_local_cap_id:
		match_fn = arch_timer_check_local_cap_erratum;
		local = true;
		break;
600 601 602
	case ate_match_acpi_oem_info:
		match_fn = arch_timer_check_acpi_oem_erratum;
		break;
603 604 605 606 607 608 609 610 611
	default:
		WARN_ON(1);
		return;
	}

	wa = arch_timer_iterate_errata(type, match_fn, arg);
	if (!wa)
		return;

612 613 614 615
	__wa = __this_cpu_read(timer_unstable_counter_workaround);
	if (__wa && wa != __wa)
		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
			wa->desc, __wa->desc);
616

617 618
	if (__wa)
		return;
619

620
	arch_timer_enable_workaround(wa, local);
621 622
	pr_info("Enabling %s workaround for %s\n",
		local ? "local" : "global", wa->desc);
623 624
}

625 626
static bool arch_timer_this_cpu_has_cntvct_wa(void)
{
627
	return has_erratum_handler(read_cntvct_el0);
628 629
}

630 631 632
static bool arch_timer_counter_has_wa(void)
{
	return atomic_read(&timer_unstable_counter_workaround_in_use);
633
}
634 635
#else
#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
636
#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
637
#define arch_timer_counter_has_wa()			({false;})
638
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
639

640
static __always_inline irqreturn_t timer_handler(const int access,
641 642 643
					struct clock_event_device *evt)
{
	unsigned long ctrl;
644

645
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
646 647
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
648
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

684 685
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
686 687
{
	unsigned long ctrl;
688 689 690 691 692 693

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
694 695
}

696
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
697
{
698
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
699 700
}

701
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
702
{
703
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
704 705
}

706
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
707
{
708
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
709 710
}

711
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
712
{
713
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
714 715
}

716
static __always_inline void set_next_event(const int access, unsigned long evt,
717
					   struct clock_event_device *clk)
718 719
{
	unsigned long ctrl;
720
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
721 722
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
723 724
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
725 726 727
}

static int arch_timer_set_next_event_virt(unsigned long evt,
728
					  struct clock_event_device *clk)
729
{
730
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
731 732 733 734
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
735
					  struct clock_event_device *clk)
736
{
737
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
738 739 740
	return 0;
}

741 742
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
743
{
744 745 746 747 748 749 750 751 752 753 754
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

755 756
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
757 758 759
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

760
	if (type == ARCH_TIMER_TYPE_CP15) {
761 762 763 764
		typeof(clk->set_next_event) sne;

		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);

765 766
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
767 768 769
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
770 771
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
772
		case ARCH_TIMER_VIRT_PPI:
773
			clk->set_state_shutdown = arch_timer_shutdown_virt;
774
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
775
			sne = erratum_handler(set_next_event_virt);
776
			break;
777 778 779
		case ARCH_TIMER_PHYS_SECURE_PPI:
		case ARCH_TIMER_PHYS_NONSECURE_PPI:
		case ARCH_TIMER_HYP_PPI:
780
			clk->set_state_shutdown = arch_timer_shutdown_phys;
781
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
782
			sne = erratum_handler(set_next_event_phys);
783 784 785
			break;
		default:
			BUG();
786
		}
787

788
		clk->set_next_event = sne;
789
	} else {
790
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
791 792
		clk->name = "arch_mem_timer";
		clk->rating = 400;
793
		clk->cpumask = cpu_possible_mask;
794
		if (arch_timer_mem_use_virtual) {
795
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
796
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
797 798 799
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
800
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
801
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
802 803 804
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
805 806
	}

807
	clk->set_state_shutdown(clk);
808

809 810
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
811

812 813 814 815 816 817 818 819 820
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
821
	arch_timer_set_evtstrm_feature();
822
	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
823 824
}

825 826
static void arch_timer_configure_evtstream(void)
{
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	int evt_stream_div, lsb;

	/*
	 * As the event stream can at most be generated at half the frequency
	 * of the counter, use half the frequency when computing the divider.
	 */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;

	/*
	 * Find the closest power of two to the divisor. If the adjacent bit
	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
	 */
	lsb = fls(evt_stream_div) - 1;
	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
		lsb++;
842 843

	/* enable event stream */
844
	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
845 846
}

847 848 849 850
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

851
	/* Disable user access to the timers and both counters */
852 853 854
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
855
		        | ARCH_TIMER_USR_VCT_ACCESS_EN
856 857 858
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

859 860 861 862 863 864 865 866 867
	/*
	 * Enable user access to the virtual counter if it doesn't
	 * need to be workaround. The vdso may have been already
	 * disabled though.
	 */
	if (arch_timer_this_cpu_has_cntvct_wa())
		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
	else
		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
868 869 870 871

	arch_timer_set_cntkctl(cntkctl);
}

872 873
static bool arch_timer_has_nonsecure_ppi(void)
{
874 875
	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
876 877
}

878 879 880 881 882 883 884 885 886 887 888 889 890
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

891
static int arch_timer_starting_cpu(unsigned int cpu)
892
{
893
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
894
	u32 flags;
895

896
	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
897

898 899
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
900

901
	if (arch_timer_has_nonsecure_ppi()) {
902 903 904
		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
				  flags);
905
	}
906 907

	arch_counter_set_user_access();
908
	if (evtstrm_enable)
909
		arch_timer_configure_evtstream();
910 911 912 913

	return 0;
}

914 915 916 917 918 919 920 921 922 923 924
static int validate_timer_rate(void)
{
	if (!arch_timer_rate)
		return -EINVAL;

	/* Arch timer frequency < 1MHz can cause trouble */
	WARN_ON(arch_timer_rate < 1000000);

	return 0;
}

925 926 927 928 929 930
/*
 * For historical reasons, when probing with DT we use whichever (non-zero)
 * rate was probed first, and don't verify that others match. If the first node
 * probed has a clock-frequency property, this overrides the HW register.
 */
static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
931
{
932 933 934
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
935

936 937
	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
		arch_timer_rate = rate;
938

939
	/* Check the timer frequency. */
940
	if (validate_timer_rate())
941
		pr_warn("frequency not available\n");
942 943 944 945
}

static void arch_timer_banner(unsigned type)
{
946
	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
947 948 949 950
		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
			" and " : "",
		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
951 952
		(unsigned long)arch_timer_rate / 1000000,
		(unsigned long)(arch_timer_rate / 10000) % 100,
953
		type & ARCH_TIMER_TYPE_CP15 ?
954
			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
955
			"",
956 957
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
		type & ARCH_TIMER_TYPE_MEM ?
958 959
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
960 961 962 963 964 965 966
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

967 968 969 970 971 972 973 974 975 976
bool arch_timer_evtstrm_available(void)
{
	/*
	 * We might get called from a preemptible context. This is fine
	 * because availability of the event stream should be always the same
	 * for a preemptible context and context where we might resume a task.
	 */
	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
}

977
static u64 arch_counter_get_cntvct_mem(void)
978
{
979 980 981 982 983 984 985 986 987
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
988 989
}

990 991 992 993 994 995
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
996

997 998 999 1000 1001
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
1002
	if (type & ARCH_TIMER_TYPE_CP15) {
1003 1004
		u64 (*rd)(void);

1005
		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
			if (arch_timer_counter_has_wa())
				rd = arch_counter_get_cntvct_stable;
			else
				rd = arch_counter_get_cntvct;
		} else {
			if (arch_timer_counter_has_wa())
				rd = arch_counter_get_cntpct_stable;
			else
				rd = arch_counter_get_cntpct;
		}
1017

1018
		arch_timer_read_counter = rd;
1019
		clocksource_counter.vdso_clock_mode = vdso_default;
1020
	} else {
1021
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1022 1023
	}

1024 1025
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1026 1027 1028 1029
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
1030 1031
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
1032 1033 1034

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1035 1036
}

1037
static void arch_timer_stop(struct clock_event_device *clk)
1038
{
1039
	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1040

1041 1042
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
1043
		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1044

1045
	clk->set_state_shutdown(clk);
1046 1047
}

1048
static int arch_timer_dying_cpu(unsigned int cpu)
1049
{
1050
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1051

1052 1053
	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);

1054 1055
	arch_timer_stop(clk);
	return 0;
1056 1057
}

1058
#ifdef CONFIG_CPU_PM
1059
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1060 1061 1062
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
1063
	if (action == CPU_PM_ENTER) {
1064
		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1065 1066 1067

		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1068
		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1069

1070
		if (arch_timer_have_evtstrm_feature())
1071 1072
			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
	}
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
1084 1085 1086 1087 1088 1089

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

1090 1091 1092 1093 1094
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
1095 1096 1097 1098

static void __init arch_timer_cpu_pm_deinit(void)
{
}
1099 1100
#endif

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

1112 1113
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
1114
	case ARCH_TIMER_VIRT_PPI:
1115 1116
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
1117
		break;
1118 1119
	case ARCH_TIMER_PHYS_SECURE_PPI:
	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1120 1121
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
1122
		if (!err && arch_timer_has_nonsecure_ppi()) {
1123
			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1124 1125 1126
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
1127
				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1128 1129
						arch_timer_evt);
		}
1130
		break;
1131
	case ARCH_TIMER_HYP_PPI:
1132 1133 1134 1135 1136
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
1137 1138 1139
	}

	if (err) {
1140
		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1141 1142 1143
		goto out_free;
	}

1144 1145 1146 1147
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

1148 1149
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
1150
				"clockevents/arm/arch_timer:starting",
1151 1152 1153
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
1154 1155
	return 0;

1156 1157 1158
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

1159
out_unreg_notify:
1160 1161
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
1162
		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1163 1164 1165 1166 1167 1168 1169 1170
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
1183
	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1184 1185 1186 1187 1188 1189 1190 1191

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
1192
		pr_err("Failed to request mem timer irq\n");
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

1210
static bool __init arch_timer_needs_of_probing(void)
1211 1212
{
	struct device_node *dn;
1213
	bool needs_probing = false;
1214
	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	/* We have two timers, and both device-tree nodes are probed. */
	if ((arch_timers_present & mask) == mask)
		return false;

	/*
	 * Only one type of timer is probed,
	 * check if we have another type of timer node in device-tree.
	 */
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
	else
		dn = of_find_matching_node(NULL, arch_timer_of_match);

	if (dn && of_device_is_available(dn))
1230
		needs_probing = true;
1231

1232 1233
	of_node_put(dn);

1234
	return needs_probing;
1235 1236
}

1237
static int __init arch_timer_common_init(void)
1238 1239 1240
{
	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
1241
	return arch_timer_arch_init();
1242 1243
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
/**
 * arch_timer_select_ppi() - Select suitable PPI for the current system.
 *
 * If HYP mode is available, we know that the physical timer
 * has been configured to be accessible from PL1. Use it, so
 * that a guest can use the virtual timer instead.
 *
 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
 * accesses to CNTP_*_EL1 registers are silently redirected to
 * their CNTHP_*_EL2 counterparts, and use a different PPI
 * number.
 *
 * If no interrupt provided for virtual timer, we'll have to
 * stick to the physical timer. It'd better be accessible...
 * For arm64 we never use the secure interrupt.
 *
 * Return: a suitable PPI type for the current system.
 */
static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1263
{
1264 1265
	if (is_kernel_in_hyp_mode())
		return ARCH_TIMER_HYP_PPI;
1266

1267 1268
	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
		return ARCH_TIMER_VIRT_PPI;
1269

1270 1271 1272 1273 1274 1275
	if (IS_ENABLED(CONFIG_ARM64))
		return ARCH_TIMER_PHYS_NONSECURE_PPI;

	return ARCH_TIMER_PHYS_SECURE_PPI;
}

1276 1277 1278 1279 1280 1281 1282
static void __init arch_timer_populate_kvm_info(void)
{
	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
	if (is_kernel_in_hyp_mode())
		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
}

1283
static int __init arch_timer_of_init(struct device_node *np)
1284
{
1285
	int i, ret;
1286
	u32 rate;
1287

1288
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1289
		pr_warn("multiple nodes in dt, skipping\n");
1290
		return 0;
1291 1292
	}

1293
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1294
	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1295 1296
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

1297
	arch_timer_populate_kvm_info();
1298

1299
	rate = arch_timer_get_cntfrq();
1300
	arch_timer_of_configure_rate(rate, np);
1301 1302 1303

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

1304 1305
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_dt, np);
1306

1307 1308 1309 1310 1311 1312
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1313
		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1314 1315 1316 1317 1318 1319 1320
	else
		arch_timer_uses_ppi = arch_timer_select_ppi();

	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}
1321

1322 1323 1324 1325
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

1326 1327 1328 1329 1330 1331 1332 1333
	ret = arch_timer_register();
	if (ret)
		return ret;

	if (arch_timer_needs_of_probing())
		return 0;

	return arch_timer_common_init();
1334
}
1335 1336
TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1337

1338 1339
static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1340
{
1341 1342
	void __iomem *base;
	u32 rate;
1343

1344 1345 1346 1347 1348 1349
	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
		return 0;
	}

1350
	rate = readl_relaxed(base + CNTFRQ);
1351

1352
	iounmap(base);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

	return rate;
}

static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame, *best_frame = NULL;
	void __iomem *cntctlbase;
	u32 cnttidr;
	int i;

	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1366
	if (!cntctlbase) {
1367 1368 1369
		pr_err("Can't map CNTCTLBase @ %pa\n",
			&timer_mem->cntctlbase);
		return NULL;
1370 1371 1372 1373 1374 1375 1376 1377
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
1378 1379 1380
	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1381

1382 1383 1384
		frame = &timer_mem->frame[i];
		if (!frame->valid)
			continue;
1385

1386
		/* Try enabling everything, and see what sticks */
1387 1388
		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1389

1390
		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1391
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1392 1393 1394 1395
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1396 1397 1398 1399

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1400
		best_frame = frame;
1401 1402
	}

1403 1404
	iounmap(cntctlbase);

1405
	return best_frame;
1406 1407 1408 1409 1410 1411 1412
}

static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
{
	void __iomem *base;
	int ret, irq = 0;
1413 1414

	if (arch_timer_mem_use_virtual)
1415
		irq = frame->virt_irq;
1416
	else
1417
		irq = frame->phys_irq;
1418

1419
	if (!irq) {
1420
		pr_err("Frame missing %s irq.\n",
1421
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		return -EINVAL;
	}

	if (!request_mem_region(frame->cntbase, frame->size,
				"arch_mem_timer"))
		return -EBUSY;

	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Can't map frame's registers\n");
		return -ENXIO;
1433 1434
	}

1435
	ret = arch_timer_mem_register(base, irq);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	if (ret) {
		iounmap(base);
		return ret;
	}

	arch_counter_base = base;
	arch_timers_present |= ARCH_TIMER_TYPE_MEM;

	return 0;
}

static int __init arch_timer_mem_of_init(struct device_node *np)
{
	struct arch_timer_mem *timer_mem;
	struct arch_timer_mem_frame *frame;
	struct device_node *frame_node;
	struct resource res;
	int ret = -EINVAL;
	u32 rate;

	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
	if (!timer_mem)
		return -ENOMEM;

	if (of_address_to_resource(np, 0, &res))
1461
		goto out;
1462 1463
	timer_mem->cntctlbase = res.start;
	timer_mem->size = resource_size(&res);
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	for_each_available_child_of_node(np, frame_node) {
		u32 n;
		struct arch_timer_mem_frame *frame;

		if (of_property_read_u32(frame_node, "frame-number", &n)) {
			pr_err(FW_BUG "Missing frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}
		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
			of_node_put(frame_node);
			goto out;
		}
		frame = &timer_mem->frame[n];

		if (frame->valid) {
			pr_err(FW_BUG "Duplicated frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}

		if (of_address_to_resource(frame_node, 0, &res)) {
			of_node_put(frame_node);
			goto out;
		}
		frame->cntbase = res.start;
		frame->size = resource_size(&res);

		frame->virt_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_VIRT_SPI);
		frame->phys_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_PHYS_SPI);

		frame->valid = true;
	}

	frame = arch_timer_mem_find_best_frame(timer_mem);
	if (!frame) {
1505 1506
		pr_err("Unable to find a suitable frame in timer @ %pa\n",
			&timer_mem->cntctlbase);
1507 1508 1509 1510 1511 1512 1513 1514 1515
		ret = -EINVAL;
		goto out;
	}

	rate = arch_timer_mem_frame_get_cntfrq(frame);
	arch_timer_of_configure_rate(rate, np);

	ret = arch_timer_mem_frame_register(frame);
	if (!ret && !arch_timer_needs_of_probing())
1516
		ret = arch_timer_common_init();
1517
out:
1518
	kfree(timer_mem);
1519
	return ret;
1520
}
1521
TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1522
		       arch_timer_mem_of_init);
1523

1524
#ifdef CONFIG_ACPI_GTDT
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame;
	u32 rate;
	int i;

	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		frame = &timer_mem->frame[i];

		if (!frame->valid)
			continue;

		rate = arch_timer_mem_frame_get_cntfrq(frame);
		if (rate == arch_timer_rate)
			continue;

		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
			&frame->cntbase,
			(unsigned long)rate, (unsigned long)arch_timer_rate);

		return -EINVAL;
	}

	return 0;
}

static int __init arch_timer_mem_acpi_init(int platform_timer_count)
{
	struct arch_timer_mem *timers, *timer;
1555
	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	int timer_count, i, ret = 0;

	timers = kcalloc(platform_timer_count, sizeof(*timers),
			    GFP_KERNEL);
	if (!timers)
		return -ENOMEM;

	ret = acpi_arch_timer_mem_init(timers, &timer_count);
	if (ret || !timer_count)
		goto out;

	/*
	 * While unlikely, it's theoretically possible that none of the frames
	 * in a timer expose the combination of feature we want.
	 */
1571
	for (i = 0; i < timer_count; i++) {
1572 1573 1574
		timer = &timers[i];

		frame = arch_timer_mem_find_best_frame(timer);
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		if (!best_frame)
			best_frame = frame;

		ret = arch_timer_mem_verify_cntfrq(timer);
		if (ret) {
			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
			goto out;
		}

		if (!best_frame) /* implies !frame */
			/*
			 * Only complain about missing suitable frames if we
			 * haven't already found one in a previous iteration.
			 */
			pr_err("Unable to find a suitable frame in timer @ %pa\n",
				&timer->cntctlbase);
1591 1592
	}

1593 1594
	if (best_frame)
		ret = arch_timer_mem_frame_register(best_frame);
1595 1596 1597 1598 1599 1600
out:
	kfree(timers);
	return ret;
}

/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1601 1602
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
1603
	int ret, platform_timer_count;
1604

1605
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1606
		pr_warn("already initialized, skipping\n");
1607 1608 1609
		return -EINVAL;
	}

1610
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1611

1612
	ret = acpi_gtdt_init(table, &platform_timer_count);
1613
	if (ret)
1614
		return ret;
1615

1616
	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1617
		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1618

1619
	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1620
		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1621

1622
	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1623
		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1624

1625
	arch_timer_populate_kvm_info();
1626

1627 1628 1629 1630 1631
	/*
	 * When probing via ACPI, we have no mechanism to override the sysreg
	 * CNTFRQ value. This *must* be correct.
	 */
	arch_timer_rate = arch_timer_get_cntfrq();
1632 1633
	ret = validate_timer_rate();
	if (ret) {
1634
		pr_err(FW_BUG "frequency not available.\n");
1635
		return ret;
1636
	}
1637

1638 1639 1640 1641 1642 1643
	arch_timer_uses_ppi = arch_timer_select_ppi();
	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}

1644
	/* Always-on capability */
1645
	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1646

1647 1648 1649
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);

1650 1651 1652 1653
	ret = arch_timer_register();
	if (ret)
		return ret;

1654 1655 1656 1657
	if (platform_timer_count &&
	    arch_timer_mem_acpi_init(platform_timer_count))
		pr_err("Failed to initialize memory-mapped timer.\n");

1658
	return arch_timer_common_init();
1659
}
1660
TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1661
#endif