arm_arch_timer.c 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/clockchips.h>
18
#include <linux/clocksource.h>
19 20
#include <linux/interrupt.h>
#include <linux/of_irq.h>
21
#include <linux/of_address.h>
22
#include <linux/io.h>
23
#include <linux/slab.h>
24
#include <linux/sched_clock.h>
25 26

#include <asm/arch_timer.h>
27
#include <asm/virt.h>
28 29 30

#include <clocksource/arm_arch_timer.h>

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

static bool arch_timer_use_virtual = true;
70
static bool arch_timer_c3stop;
71
static bool arch_timer_mem_use_virtual;
72 73 74 75 76

/*
 * Architected system timer support.
 */

77 78
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
79
			  struct clock_event_device *clk)
80
{
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
104 105 106 107
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
108
			struct clock_event_device *clk)
109
{
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
137 138
}

139
static __always_inline irqreturn_t timer_handler(const int access,
140 141 142
					struct clock_event_device *evt)
{
	unsigned long ctrl;
143

144
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
145 146
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
147
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

183 184
static __always_inline void timer_set_mode(const int access, int mode,
				  struct clock_event_device *clk)
185 186 187 188 189
{
	unsigned long ctrl;
	switch (mode) {
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
190
		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
191
		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
192
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
193 194 195 196 197 198 199 200 201
		break;
	default:
		break;
	}
}

static void arch_timer_set_mode_virt(enum clock_event_mode mode,
				     struct clock_event_device *clk)
{
202
	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
203 204 205 206 207
}

static void arch_timer_set_mode_phys(enum clock_event_mode mode,
				     struct clock_event_device *clk)
{
208
	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
209 210
}

211 212 213 214
static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
					 struct clock_event_device *clk)
{
	timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
215 216
}

217 218 219 220 221 222
static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
					 struct clock_event_device *clk)
{
	timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
}

223
static __always_inline void set_next_event(const int access, unsigned long evt,
224
					   struct clock_event_device *clk)
225 226
{
	unsigned long ctrl;
227
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
228 229
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
230 231
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
232 233 234
}

static int arch_timer_set_next_event_virt(unsigned long evt,
235
					  struct clock_event_device *clk)
236
{
237
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
238 239 240 241
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
242
					  struct clock_event_device *clk)
243
{
244
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
245 246 247
	return 0;
}

248 249
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
250
{
251 252 253 254 255 256 257 258 259 260 261
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

262 263
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
264 265 266 267
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
268 269
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
270 271 272 273 274 275 276 277 278 279 280 281
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
		if (arch_timer_use_virtual) {
			clk->irq = arch_timer_ppi[VIRT_PPI];
			clk->set_mode = arch_timer_set_mode_virt;
			clk->set_next_event = arch_timer_set_next_event_virt;
		} else {
			clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
			clk->set_mode = arch_timer_set_mode_phys;
			clk->set_next_event = arch_timer_set_next_event_phys;
		}
282
	} else {
283
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
284 285 286 287 288 289 290 291 292 293 294 295
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
			clk->set_mode = arch_timer_set_mode_virt_mem;
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
			clk->set_mode = arch_timer_set_mode_phys_mem;
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
296 297
	}

298
	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
299

300 301
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

318 319 320 321 322 323 324 325 326 327 328 329 330
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

348
static int arch_timer_setup(struct clock_event_device *clk)
349 350
{
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
351 352 353 354 355 356 357 358 359 360

	if (arch_timer_use_virtual)
		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
	else {
		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
	}

	arch_counter_set_user_access();
361 362
	if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
		arch_timer_configure_evtstream();
363 364 365 366

	return 0;
}

367 368
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
369
{
370 371 372
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
373

374 375 376 377 378 379
	/* Try to determine the frequency from the device tree or CNTFRQ */
	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
380 381
	}

382 383 384 385 386 387 388 389 390 391 392
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
393 394
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
395 396 397 398 399 400 401
		     type & ARCH_CP15_TIMER ?
			arch_timer_use_virtual ? "virt" : "phys" :
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
402 403 404 405 406 407 408
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

409
static u64 arch_counter_get_cntvct_mem(void)
410
{
411 412 413 414 415 416 417 418 419
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
420 421
}

422 423 424 425 426 427 428 429
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

430 431
static cycle_t arch_counter_read(struct clocksource *cs)
{
432
	return arch_timer_read_counter();
433 434 435 436
}

static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
437
	return arch_timer_read_counter();
438 439 440 441 442 443 444
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
445
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
446 447 448 449 450 451 452 453 454 455 456 457 458 459
};

static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

static struct timecounter timecounter;

struct timecounter *arch_timer_get_timecounter(void)
{
	return &timecounter;
}

460 461 462 463 464
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
465
	if (type & ARCH_CP15_TIMER) {
466
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
467 468 469
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
470
	} else {
471 472
		arch_timer_read_counter = arch_counter_get_cntvct_mem;

473 474 475 476 477 478 479 480
		/* If the clocksource name is "arch_sys_counter" the
		 * VDSO will attempt to read the CP15-based counter.
		 * Ensure this does not happen when CP15-based
		 * counter is not available.
		 */
		clocksource_counter.name = "arch_mem_counter";
	}

481 482 483 484 485
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
	timecounter_init(&timecounter, &cyclecounter, start_count);
486 487 488

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
489 490
}

491
static void arch_timer_stop(struct clock_event_device *clk)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

	if (arch_timer_use_virtual)
		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
	else {
		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
	}

	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
}

507
static int arch_timer_cpu_notify(struct notifier_block *self,
508 509
					   unsigned long action, void *hcpu)
{
510 511 512 513
	/*
	 * Grab cpu pointer in each case to avoid spurious
	 * preemptible warnings
	 */
514 515
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_STARTING:
516
		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
517 518
		break;
	case CPU_DYING:
519
		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
520 521 522 523 524 525
		break;
	}

	return NOTIFY_OK;
}

526
static struct notifier_block arch_timer_cpu_nb = {
527 528 529
	.notifier_call = arch_timer_cpu_notify,
};

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
#endif

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

	if (arch_timer_use_virtual) {
		ppi = arch_timer_ppi[VIRT_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
	} else {
		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

	err = register_cpu_notifier(&arch_timer_cpu_nb);
	if (err)
		goto out_free_irq;

596 597 598 599
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

600 601 602 603 604
	/* Immediately configure the timer on the boot CPU */
	arch_timer_setup(this_cpu_ptr(arch_timer_evt));

	return 0;

605 606
out_unreg_notify:
	unregister_cpu_notifier(&arch_timer_cpu_nb);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
out_free_irq:
	if (arch_timer_use_virtual)
		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
	else {
		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
				arch_timer_evt);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
					arch_timer_evt);
	}

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

663 664 665 666
static bool __init
arch_timer_probed(int type, const struct of_device_id *matches)
{
	struct device_node *dn;
667
	bool probed = true;
668 669

	dn = of_find_matching_node(NULL, matches);
670 671
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
		probed = false;
672 673 674 675 676
	of_node_put(dn);

	return probed;
}

677 678 679 680 681 682
static void __init arch_timer_common_init(void)
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
683
		if (!arch_timer_probed(ARCH_MEM_TIMER, arch_timer_mem_of_match))
684
			return;
685
		if (!arch_timer_probed(ARCH_CP15_TIMER, arch_timer_of_match))
686 687 688 689 690 691 692 693
			return;
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
	arch_timer_arch_init();
}

694
static void __init arch_timer_init(struct device_node *np)
695 696 697
{
	int i;

698
	if (arch_timers_present & ARCH_CP15_TIMER) {
699 700
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
		return;
701 702
	}

703
	arch_timers_present |= ARCH_CP15_TIMER;
704 705
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
706
	arch_timer_detect_rate(NULL, np);
707

708 709 710 711 712 713 714 715
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
			arch_timer_use_virtual = false;

716
	/*
717 718 719 720
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
721 722 723
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
	 */
724
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
725 726 727 728 729
		arch_timer_use_virtual = false;

		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			pr_warn("arch_timer: No interrupt available, giving up\n");
730
			return;
731 732 733
		}
	}

734 735
	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

736
	arch_timer_register();
737
	arch_timer_common_init();
738
}
739 740
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

static void __init arch_timer_mem_init(struct device_node *np)
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
	unsigned int irq;
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
		return;
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
	iounmap(cntctlbase);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(best_frame);
			of_node_put(frame);
			return;
		}

		if (cnttidr & CNTTIDR_VIRT(n)) {
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

	base = arch_counter_base = of_iomap(best_frame, 0);
	if (!base) {
		pr_err("arch_timer: Can't map frame's registers\n");
		of_node_put(best_frame);
		return;
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
	of_node_put(best_frame);
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
797
		       arch_timer_mem_use_virtual ? "virt" : "phys");
798 799 800 801 802 803 804 805 806
		return;
	}

	arch_timer_detect_rate(base, np);
	arch_timer_mem_register(base, irq);
	arch_timer_common_init();
}
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
		       arch_timer_mem_init);