arm_arch_timer.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched/clock.h>
28
#include <linux/sched_clock.h>
29
#include <linux/acpi.h>
30 31

#include <asm/arch_timer.h>
32
#include <asm/virt.h>
33 34 35

#include <clocksource/arm_arch_timer.h>

36 37 38
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

39 40 41 42 43 44 45 46
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

68 69 70 71 72 73 74 75 76 77 78 79 80 81
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

82
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
83
static bool arch_timer_c3stop;
84
static bool arch_timer_mem_use_virtual;
85
static bool arch_counter_suspend_stop;
86

87 88 89 90 91 92 93 94
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

95 96 97 98
/*
 * Architected system timer support.
 */

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
			  struct clock_event_device *clk)
{
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
			struct clock_event_device *clk)
{
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

static u64 arch_counter_read(struct clocksource *cs)
{
	return arch_timer_read_counter();
}

static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
	return arch_timer_read_counter();
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct cyclecounter cyclecounter __ro_after_init = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

192
#ifdef CONFIG_FSL_ERRATUM_A008585
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
212 213 214 215
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

216
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
217 218 219 220
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

221
static u64 notrace fsl_a008585_read_cntvct_el0(void)
222 223 224
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
225 226
#endif

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
#endif

268
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
269 270
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
	       timer_unstable_counter_workaround);
271 272 273 274 275
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
						struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

static int erratum_set_next_event_tval_virt(unsigned long evt,
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

static int erratum_set_next_event_tval_phys(unsigned long evt,
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}

308 309 310
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
311
		.match_type = ate_match_dt,
312
		.id = "fsl,erratum-a008585",
313
		.desc = "Freescale erratum a005858",
314 315 316
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
317 318
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
319 320
	},
#endif
321 322
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
323
		.match_type = ate_match_dt,
324
		.id = "hisilicon,erratum-161010101",
325
		.desc = "HiSilicon erratum 161010101",
326 327 328
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
329 330
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
331 332
	},
#endif
333
};
334 335 336 337 338 339 340 341 342 343 344 345 346

typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
			       const void *);

static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
				 const void *arg)
{
	const struct device_node *np = arg;

	return of_property_read_bool(np, wa->id);
}

347 348 349 350 351 352 353
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
					const void *arg)
{
	return this_cpu_has_cap((uintptr_t)wa->id);
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
			  ate_match_fn_t match_fn,
			  void *arg)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (ool_workarounds[i].match_type != type)
			continue;

		if (match_fn(&ool_workarounds[i], arg))
			return &ool_workarounds[i];
	}

	return NULL;
}

static
373 374
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
				  bool local)
375
{
376 377 378 379 380 381 382 383 384
	int i;

	if (local) {
		__this_cpu_write(timer_unstable_counter_workaround, wa);
	} else {
		for_each_possible_cpu(i)
			per_cpu(timer_unstable_counter_workaround, i) = wa;
	}

385 386 387 388 389 390 391 392
	static_branch_enable(&arch_timer_read_ool_enabled);
}

static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
					    void *arg)
{
	const struct arch_timer_erratum_workaround *wa;
	ate_match_fn_t match_fn = NULL;
393
	bool local = false;
394 395 396 397 398

	switch (type) {
	case ate_match_dt:
		match_fn = arch_timer_check_dt_erratum;
		break;
399 400 401 402
	case ate_match_local_cap_id:
		match_fn = arch_timer_check_local_cap_erratum;
		local = true;
		break;
403 404 405 406 407 408 409 410 411
	default:
		WARN_ON(1);
		return;
	}

	wa = arch_timer_iterate_errata(type, match_fn, arg);
	if (!wa)
		return;

412
	if (needs_unstable_timer_counter_workaround()) {
413 414 415
		const struct arch_timer_erratum_workaround *__wa;
		__wa = __this_cpu_read(timer_unstable_counter_workaround);
		if (__wa && wa != __wa)
416
			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
417 418 419 420
				wa->desc, __wa->desc);

		if (__wa)
			return;
421 422
	}

423
	arch_timer_enable_workaround(wa, local);
424 425
	pr_info("Enabling %s workaround for %s\n",
		local ? "local" : "global", wa->desc);
426 427
}

428 429 430
#define erratum_handler(fn, r, ...)					\
({									\
	bool __val;							\
431 432 433 434 435 436 437 438 439
	if (needs_unstable_timer_counter_workaround()) {		\
		const struct arch_timer_erratum_workaround *__wa;	\
		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
		if (__wa && __wa->fn) {					\
			r = __wa->fn(__VA_ARGS__);			\
			__val = true;					\
		} else {						\
			__val = false;					\
		}							\
440 441 442 443 444 445
	} else {							\
		__val = false;						\
	}								\
	__val;								\
})

446 447
#else
#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
448 449
#define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
#define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
450
#define erratum_handler(fn, r, ...)			({false;})
451
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
452

453
static __always_inline irqreturn_t timer_handler(const int access,
454 455 456
					struct clock_event_device *evt)
{
	unsigned long ctrl;
457

458
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
459 460
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
461
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

483 484 485 486 487 488 489 490 491 492 493 494 495 496
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

497 498
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
499 500
{
	unsigned long ctrl;
501 502 503 504 505 506

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
507 508
}

509
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
510
{
511
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
512 513
}

514
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
515
{
516
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
517 518
}

519
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
520
{
521
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
522 523
}

524
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
525
{
526
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
527 528
}

529
static __always_inline void set_next_event(const int access, unsigned long evt,
530
					   struct clock_event_device *clk)
531 532
{
	unsigned long ctrl;
533
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
534 535
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
536 537
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
538 539 540
}

static int arch_timer_set_next_event_virt(unsigned long evt,
541
					  struct clock_event_device *clk)
542
{
543 544 545 546
	int ret;

	if (erratum_handler(set_next_event_virt, ret, evt, clk))
		return ret;
547

548
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
549 550 551 552
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
553
					  struct clock_event_device *clk)
554
{
555 556 557 558
	int ret;

	if (erratum_handler(set_next_event_phys, ret, evt, clk))
		return ret;
559

560
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
561 562 563
	return 0;
}

564 565
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
566
{
567 568 569 570 571 572 573 574 575 576 577
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

578 579
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
580 581 582 583
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
584 585
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
586 587 588
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
589 590 591
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
592
			clk->set_state_shutdown = arch_timer_shutdown_virt;
593
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
594
			clk->set_next_event = arch_timer_set_next_event_virt;
595 596 597 598
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
599
			clk->set_state_shutdown = arch_timer_shutdown_phys;
600
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
601
			clk->set_next_event = arch_timer_set_next_event_phys;
602 603 604
			break;
		default:
			BUG();
605
		}
606

607
		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
608
	} else {
609
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
610 611 612 613
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
614
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
615
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
616 617 618
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
619
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
620
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
621 622 623
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
624 625
	}

626
	clk->set_state_shutdown(clk);
627

628 629
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

646 647 648 649 650 651 652 653 654 655 656 657 658
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

676 677 678 679 680 681
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

682 683 684 685 686 687 688 689 690 691 692 693 694
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

695
static int arch_timer_starting_cpu(unsigned int cpu)
696
{
697
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
698
	u32 flags;
699

700
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
701

702 703
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
704

705 706 707 708
	if (arch_timer_has_nonsecure_ppi()) {
		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
	}
709 710

	arch_counter_set_user_access();
711
	if (evtstrm_enable)
712
		arch_timer_configure_evtstream();
713 714 715 716

	return 0;
}

717 718
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
719
{
720 721 722
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
723

724 725 726 727 728 729
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
730 731 732 733
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
734 735
	}

736 737 738 739 740 741 742 743 744 745 746
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
747 748
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
749
		     type & ARCH_CP15_TIMER ?
750
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
751 752 753 754 755
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
756 757 758 759 760 761 762
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

763
static u64 arch_counter_get_cntvct_mem(void)
764
{
765 766 767 768 769 770 771 772 773
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
774 775
}

776 777 778 779 780 781
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
782

783 784 785 786 787
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
788
	if (type & ARCH_CP15_TIMER) {
789
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
790 791 792
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
793

794 795
		clocksource_counter.archdata.vdso_direct = true;

796
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
797 798 799 800 801
		/*
		 * Don't use the vdso fastpath if errata require using
		 * the out-of-line counter accessor.
		 */
		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
802
			clocksource_counter.archdata.vdso_direct = false;
803
#endif
804
	} else {
805
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
806 807
	}

808 809
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
810 811 812 813
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
814 815
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
816 817 818

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
819 820
}

821
static void arch_timer_stop(struct clock_event_device *clk)
822 823 824 825
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

826 827 828
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
829

830
	clk->set_state_shutdown(clk);
831 832
}

833
static int arch_timer_dying_cpu(unsigned int cpu)
834
{
835
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
836

837 838
	arch_timer_stop(clk);
	return 0;
839 840
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
861 862 863 864 865 866

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

867 868 869 870 871
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
872 873 874 875

static void __init arch_timer_cpu_pm_deinit(void)
{
}
876 877
#endif

878 879 880 881 882 883 884 885 886 887 888
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

889 890 891
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
892 893
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
894 895 896
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
897 898 899 900 901 902 903 904 905 906
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
907 908 909 910 911 912 913
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
914 915 916 917 918 919 920 921
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

922 923 924 925
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

926

927 928
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
929
				"clockevents/arm/arch_timer:starting",
930 931 932
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
933 934
	return 0;

935 936 937
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

938
out_unreg_notify:
939 940 941
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
942 943 944 945 946 947 948 949
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

989
static bool __init
990
arch_timer_needs_probing(int type, const struct of_device_id *matches)
991 992
{
	struct device_node *dn;
993
	bool needs_probing = false;
994 995

	dn = of_find_matching_node(NULL, matches);
996
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
997
		needs_probing = true;
998 999
	of_node_put(dn);

1000
	return needs_probing;
1001 1002
}

1003
static int __init arch_timer_common_init(void)
1004 1005 1006 1007 1008
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
1009
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
1010
			return 0;
1011
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
1012
			return 0;
1013 1014 1015 1016
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
1017
	return arch_timer_arch_init();
1018 1019
}

1020
static int __init arch_timer_init(void)
1021
{
1022
	int ret;
1023
	/*
1024 1025 1026 1027
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
1028 1029
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
1030 1031 1032 1033 1034
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
1035
	 */
1036
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
1047

1048
		if (!has_ppi) {
1049
			pr_warn("arch_timer: No interrupt available, giving up\n");
1050
			return -EINVAL;
1051 1052 1053
		}
	}

1054 1055 1056 1057 1058 1059 1060
	ret = arch_timer_register();
	if (ret)
		return ret;

	ret = arch_timer_common_init();
	if (ret)
		return ret;
1061 1062

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
1063 1064
	
	return 0;
1065
}
1066

1067
static int __init arch_timer_of_init(struct device_node *np)
1068 1069 1070 1071 1072
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
1073
		return 0;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

1084 1085
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_dt, np);
1086

1087 1088 1089 1090 1091 1092
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1093
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
1094

1095 1096 1097 1098
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

1099
	return arch_timer_init();
1100
}
1101 1102
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1103

1104
static int __init arch_timer_mem_init(struct device_node *np)
1105 1106 1107
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
1108
	unsigned int irq, ret = -EINVAL;
1109 1110 1111 1112 1113 1114
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
1115
		return -ENXIO;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
1126
		u32 cntacr;
1127 1128 1129 1130

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
1131
			goto out;
1132 1133
		}

1134 1135 1136 1137 1138 1139 1140 1141
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1142 1143 1144 1145 1146
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1147 1148 1149 1150

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1151 1152 1153 1154
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

1155
	ret= -ENXIO;
1156 1157 1158
	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
							 "arch_mem_timer");
	if (IS_ERR(base)) {
1159
		pr_err("arch_timer: Can't map frame's registers\n");
1160
		goto out;
1161 1162 1163 1164 1165 1166
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
1167

1168
	ret = -EINVAL;
1169 1170
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
1171
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1172
		goto out;
1173 1174 1175
	}

	arch_timer_detect_rate(base, np);
1176 1177 1178 1179 1180
	ret = arch_timer_mem_register(base, irq);
	if (ret)
		goto out;

	return arch_timer_common_init();
1181 1182 1183
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
1184
	return ret;
1185
}
1186
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1187
		       arch_timer_mem_init);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

	arch_timer_init();
	return 0;
}
1245
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1246
#endif