sonixb.c 47.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 *		sonix sn9c102 (bayer) library
 *		Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
 * Add Pas106 Stefano Mozzi (C) 2004
 *
 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

23 24 25
/* Some documentation on known sonixb registers:

Reg	Use
26
sn9c101 / sn9c102:
27 28
0x10	high nibble red gain low nibble blue gain
0x11	low nibble green gain
29 30 31 32 33 34
sn9c103:
0x05	red gain 0-127
0x06	blue gain 0-127
0x07	green gain 0-127
all:
0x08-0x0f i2c / 3wire registers
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
0x12	hstart
0x13	vstart
0x15	hsize (hsize = register-value * 16)
0x16	vsize (vsize = register-value * 16)
0x17	bit 0 toggle compression quality (according to sn9c102 driver)
0x18	bit 7 enables compression, bit 4-5 set image down scaling:
	00 scale 1, 01 scale 1/2, 10, scale 1/4
0x19	high-nibble is sensor clock divider, changes exposure on sensors which
	use a clock generated by the bridge. Some sensors have their own clock.
0x1c	auto_exposure area (for avg_lum) startx (startx = register-value * 32)
0x1d	auto_exposure area (for avg_lum) starty (starty = register-value * 32)
0x1e	auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
0x1f	auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
*/

50 51
#define MODULE_NAME "sonixb"

52
#include <linux/input.h>
53 54 55 56 57 58 59 60 61
#include "gspca.h"

MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
MODULE_LICENSE("GPL");

/* specific webcam descriptor */
struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */
62
	atomic_t avg_lum;
63
	int prev_avg_lum;
64 65
	int exp_too_low_cnt;
	int exp_too_high_cnt;
66 67
	int header_read;
	u8 header[12]; /* Header without sof marker */
68

69
	unsigned short exposure;
70
	unsigned char gain;
71
	unsigned char brightness;
72 73
	unsigned char autogain;
	unsigned char autogain_ignore_frames;
74
	unsigned char frames_to_drop;
75
	unsigned char freq;		/* light freq filter setting */
76

77 78 79 80 81 82
	__u8 bridge;			/* Type of bridge */
#define BRIDGE_101 0
#define BRIDGE_102 0 /* We make no difference between 101 and 102 */
#define BRIDGE_103 1

	__u8 sensor;			/* Type of image sensor chip */
83 84 85 86 87 88 89 90 91
#define SENSOR_HV7131D 0
#define SENSOR_HV7131R 1
#define SENSOR_OV6650 2
#define SENSOR_OV7630 3
#define SENSOR_PAS106 4
#define SENSOR_PAS202 5
#define SENSOR_TAS5110C 6
#define SENSOR_TAS5110D 7
#define SENSOR_TAS5130CXX 8
92
	__u8 reg11;
93 94
};

95 96 97
typedef const __u8 sensor_init_t[8];

struct sensor_data {
98
	const __u8 *bridge_init;
99 100 101 102 103 104 105 106
	sensor_init_t *sensor_init;
	int sensor_init_size;
	int flags;
	unsigned ctrl_dis;
	__u8 sensor_addr;
};

/* sensor_data flags */
107
#define F_GAIN 0x01		/* has gain */
108
#define F_SIF  0x02		/* sif or vga */
109
#define F_COARSE_EXPO 0x04	/* exposure control is coarse */
110 111 112

/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
#define MODE_RAW 0x10		/* raw bayer mode */
113
#define MODE_REDUCED_SIF 0x20	/* vga mode (320x240 / 160x120) on sif cam */
114 115

/* ctrl_dis helper macros */
116 117
#define NO_EXPO ((1 << EXPOSURE_IDX) | (1 << COARSE_EXPOSURE_IDX) | \
		 (1 << AUTOGAIN_IDX))
118 119
#define NO_FREQ (1 << FREQ_IDX)
#define NO_BRIGHTNESS (1 << BRIGHTNESS_IDX)
120

121 122 123 124 125 126 127 128
#define COMP 0xc7		/* 0x87 //0x07 */
#define COMP1 0xc9		/* 0x89 //0x09 */

#define MCK_INIT 0x63
#define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/

#define SYS_CLK 0x04

129
#define SENS(bridge, sensor, _flags, _ctrl_dis, _sensor_addr) \
130
{ \
131
	.bridge_init = bridge, \
132 133 134 135 136
	.sensor_init = sensor, \
	.sensor_init_size = sizeof(sensor), \
	.flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
}

137
/* We calculate the autogain at the end of the transfer of a frame, at this
138 139 140 141
   moment a frame with the old settings is being captured and transmitted. So
   if we adjust the gain or exposure we must ignore atleast the next frame for
   the new settings to come into effect before doing any other adjustments. */
#define AUTOGAIN_IGNORE_FRAMES 1
142

143 144 145
/* V4L2 controls supported by the driver */
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
146 147 148 149 150 151
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
152 153
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
154

155
static const struct ctrl sd_ctrls[] = {
156
#define BRIGHTNESS_IDX 0
157 158 159 160 161 162 163 164
	{
	    {
		.id      = V4L2_CID_BRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Brightness",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
165 166
#define BRIGHTNESS_DEF 127
		.default_value = BRIGHTNESS_DEF,
167 168 169 170
	    },
	    .set = sd_setbrightness,
	    .get = sd_getbrightness,
	},
171
#define GAIN_IDX 1
172 173
	{
	    {
174
		.id      = V4L2_CID_GAIN,
175
		.type    = V4L2_CTRL_TYPE_INTEGER,
176
		.name    = "Gain",
177
		.minimum = 0,
178
		.maximum = 255,
179
		.step    = 1,
180
#define GAIN_DEF 127
181
#define GAIN_KNEE 230
182
		.default_value = GAIN_DEF,
183
	    },
184 185 186
	    .set = sd_setgain,
	    .get = sd_getgain,
	},
187
#define EXPOSURE_IDX 2
188 189 190 191 192
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
193 194
#define EXPOSURE_DEF  66 /*  33 ms / 30 fps (except on PASXXX) */
#define EXPOSURE_KNEE 200 /* 100 ms / 10 fps (except on PASXXX) */
195
			.minimum = 0,
196
			.maximum = 1023,
197 198 199 200 201 202 203
			.step = 1,
			.default_value = EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define COARSE_EXPOSURE_IDX 3
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
#define COARSE_EXPOSURE_DEF  2 /* 30 fps */
			.minimum = 2,
			.maximum = 15,
			.step = 1,
			.default_value = COARSE_EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
#define AUTOGAIN_IDX 4
221 222 223 224 225 226 227 228
	{
		{
			.id = V4L2_CID_AUTOGAIN,
			.type = V4L2_CTRL_TYPE_BOOLEAN,
			.name = "Automatic Gain (and Exposure)",
			.minimum = 0,
			.maximum = 1,
			.step = 1,
229 230
#define AUTOGAIN_DEF 1
			.default_value = AUTOGAIN_DEF,
231 232 233 234
			.flags = 0,
		},
		.set = sd_setautogain,
		.get = sd_getautogain,
235
	},
236
#define FREQ_IDX 5
237 238 239 240 241 242 243 244
	{
		{
			.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
			.type    = V4L2_CTRL_TYPE_MENU,
			.name    = "Light frequency filter",
			.minimum = 0,
			.maximum = 2,	/* 0: 0, 1: 50Hz, 2:60Hz */
			.step    = 1,
245
#define FREQ_DEF 0
246 247 248 249 250
			.default_value = FREQ_DEF,
		},
		.set = sd_setfreq,
		.get = sd_getfreq,
	},
251 252
};

253
static const struct v4l2_pix_format vga_mode[] = {
254 255
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
256
		.sizeimage = 160 * 120,
257 258
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2 | MODE_RAW},
259 260
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
261
		.sizeimage = 160 * 120 * 5 / 4,
262 263 264 265
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
266
		.sizeimage = 320 * 240 * 5 / 4,
267 268 269 270
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 640,
271
		.sizeimage = 640 * 480 * 5 / 4,
272 273
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
274
};
275
static const struct v4l2_pix_format sif_mode[] = {
276 277 278 279 280 281 282 283 284 285
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_REDUCED_SIF},
286 287
	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 176,
288
		.sizeimage = 176 * 144,
289 290
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW},
291 292
	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 176,
293
		.sizeimage = 176 * 144 * 5 / 4,
294 295
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
296 297 298 299 300
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0 | MODE_REDUCED_SIF},
301 302
	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 352,
303
		.sizeimage = 352 * 288 * 5 / 4,
304 305
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
306 307
};

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static const __u8 initHv7131d[] = {
	0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
	0x28, 0x1e, 0x60, 0x8e, 0x42,
};
static const __u8 hv7131d_sensor_init[][8] = {
	{0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
	{0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
};

static const __u8 initHv7131r[] = {
323 324
	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
325
	0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
326 327
	0x28, 0x1e, 0x60, 0x8a, 0x20,
};
328
static const __u8 hv7131r_sensor_init[][8] = {
329 330 331 332 333 334 335 336 337
	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
};
static const __u8 initOv6650[] = {
	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
338
	0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
339
	0x10,
340
};
341
static const __u8 ov6650_sensor_init[][8] = {
342
	/* Bright, contrast, etc are set through SCBB interface.
343
	 * AVCAP on win2 do not send any data on this controls. */
344
	/* Anyway, some registers appears to alter bright and constrat */
345 346

	/* Reset sensor */
347
	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
348
	/* Set clock register 0x11 low nibble is clock divider */
349
	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
350
	/* Next some unknown stuff */
351 352 353 354 355 356 357
	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
/*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
		 * THIS SET GREEN SCREEN
		 * (pixels could be innverted in decode kind of "brg",
		 * but blue wont be there. Avoid this data ... */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
358
	{0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
359 360 361 362 363 364 365 366 367
	/* Enable rgb brightness control */
	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
	/* HDG: Note windows uses the line below, which sets both register 0x60
	   and 0x61 I believe these registers of the ov6650 are identical as
	   those of the ov7630, because if this is true the windows settings
	   add a bit additional red gain and a lot additional blue gain, which
	   matches my findings that the windows settings make blue much too
	   blue and red a little too red.
	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
368
	/* Some more unknown stuff */
369 370 371
	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
};
372

373 374 375
static const __u8 initOv7630[] = {
	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
376
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
377
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
378
	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
379
};
380
static const __u8 ov7630_sensor_init[][8] = {
381 382 383
	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
/*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
384
	{0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
385 386 387 388 389 390 391
	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
392 393
	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
/*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
394 395 396 397 398 399 400 401 402 403 404
	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
};

static const __u8 initPas106[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
405
	0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
406
	0x16, 0x12, 0x24, COMP1, MCK_INIT1,
407 408
};
/* compression 0x86 mckinit1 0x2b */
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

/* "Known" PAS106B registers:
  0x02 clock divider
  0x03 Variable framerate bits 4-11
  0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
       The variable framerate control must never be set lower then 300,
       which sets the framerate at 90 / reg02, otherwise vsync is lost.
  0x05 Shutter Time Line Offset, this can be used as an exposure control:
       0 = use full frame time, 255 = no exposure at all
       Note this may never be larger then "var-framerate control" / 2 - 2.
       When var-framerate control is < 514, no exposure is reached at the max
       allowed value for the framerate control value, rather then at 255.
  0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
       only a very little bit, leave at 0xcd
  0x07 offset sign bit (bit0 1 > negative offset)
  0x08 offset
  0x09 Blue Gain
  0x0a Green1 Gain
  0x0b Green2 Gain
  0x0c Red Gain
  0x0e Global gain
  0x13 Write 1 to commit settings to sensor
*/

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static const __u8 pas106_sensor_init[][8] = {
	/* Pixel Clock Divider 6 */
	{ 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time MSB (also seen as 0x12) */
	{ 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time LSB (also seen as 0x05) */
	{ 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Line Offset (also seen as 0x6d) */
	{ 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Pixel Offset (also seen as 0xb1) */
	{ 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Sign (also seen 0x00) */
	{ 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Level (also seen 0x01) */
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain B Pixel 5 a */
	{ 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G1 Pixel 1 5 */
	{ 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G2 Pixel 1 0 5 */
	{ 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain R Pixel 3 1 */
	{ 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color GainH  Pixel */
	{ 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* Global Gain */
	{ 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
	/* Contrast */
	{ 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* H&V synchro polarity */
	{ 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* DAC scale */
	{ 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
	/* Validate Settings */
	{ 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
473
};
474

475 476 477
static const __u8 initPas202[] = {
	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
478
	0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
479
	0x28, 0x1e, 0x20, 0x89, 0x20,
480
};
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

/* "Known" PAS202BCB registers:
  0x02 clock divider
  0x04 Variable framerate bits 6-11 (*)
  0x05 Var framerate  bits 0-5, one must leave the 2 msb's at 0 !!
  0x07 Blue Gain
  0x08 Green Gain
  0x09 Red Gain
  0x0b offset sign bit (bit0 1 > negative offset)
  0x0c offset
  0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
       leave at 1 otherwise we get a jump in our exposure control
  0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
  0x10 Master gain 0 - 31
  0x11 write 1 to apply changes
  (*) The variable framerate control must never be set lower then 500
      which sets the framerate at 30 / reg02, otherwise vsync is lost.
*/
499
static const __u8 pas202_sensor_init[][8] = {
500 501 502 503
	/* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
	   to set it lower, but for some reason the bridge starts missing
	   vsync's then */
	{0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
504 505
	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
506
	{0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
507 508 509 510 511 512 513 514
	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
};

515
static const __u8 initTas5110c[] = {
516 517
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
518
	0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
519 520
	0x16, 0x12, 0x60, 0x86, 0x2b,
};
521 522 523 524
/* Same as above, except a different hstart */
static const __u8 initTas5110d[] = {
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
525
	0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
526 527
	0x16, 0x12, 0x60, 0x86, 0x2b,
};
528 529
/* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */
static const __u8 tas5110c_sensor_init[][8] = {
530 531
	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
532 533 534 535 536 537 538 539
};
/* Known TAS5110D registers
 * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain
 * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted)
 *        Note: writing reg03 seems to only work when written together with 02
 */
static const __u8 tas5110d_sensor_init[][8] = {
	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */
540 541 542 543 544
};

static const __u8 initTas5130[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
545
	0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
546 547 548
	0x28, 0x1e, 0x60, COMP, MCK_INIT,
};
static const __u8 tas5130_sensor_init[][8] = {
549
/*	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
550 551 552 553 554 555
					* shutter 0x47 short exposure? */
	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
					/* shutter 0x01 long exposure */
	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
};

556
static struct sensor_data sensor_data[] = {
557 558 559 560 561 562
SENS(initHv7131d, hv7131d_sensor_init, F_GAIN, NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initHv7131r, hv7131r_sensor_init, 0, NO_BRIGHTNESS|NO_EXPO|NO_FREQ, 0),
SENS(initOv6650, ov6650_sensor_init, F_GAIN|F_SIF, 0, 0x60),
SENS(initOv7630, ov7630_sensor_init, F_GAIN, 0, 0x21),
SENS(initPas106, pas106_sensor_init, F_GAIN|F_SIF, NO_FREQ, 0),
SENS(initPas202, pas202_sensor_init, F_GAIN, NO_FREQ, 0),
563
SENS(initTas5110c, tas5110c_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
564
	NO_BRIGHTNESS|NO_FREQ, 0),
565
SENS(initTas5110d, tas5110d_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
566 567
	NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initTas5130, tas5130_sensor_init, 0, NO_EXPO|NO_FREQ, 0),
568 569
};

570 571 572
/* get one byte in gspca_dev->usb_buf */
static void reg_r(struct gspca_dev *gspca_dev,
		  __u16 value)
573
{
574 575
	usb_control_msg(gspca_dev->dev,
			usb_rcvctrlpipe(gspca_dev->dev, 0),
576 577 578 579
			0,			/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
580
			gspca_dev->usb_buf, 1,
581 582 583
			500);
}

584 585 586 587
static void reg_w(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
588
{
589
#ifdef GSPCA_DEBUG
590
	if (len > USB_BUF_SZ) {
591 592 593 594
		PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
		return;
	}
#endif
595 596 597 598 599 600 601 602 603 604 605 606
	memcpy(gspca_dev->usb_buf, buffer, len);
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
			gspca_dev->usb_buf, len,
			500);
}

static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
607 608 609 610
{
	int retry = 60;

	/* is i2c ready */
611
	reg_w(gspca_dev, 0x08, buffer, 8);
612 613
	while (retry--) {
		msleep(10);
614
		reg_r(gspca_dev, 0x08);
615 616 617
		if (gspca_dev->usb_buf[0] & 0x04) {
			if (gspca_dev->usb_buf[0] & 0x08)
				return -1;
618
			return 0;
619
		}
620 621 622 623
	}
	return -1;
}

624
static void i2c_w_vector(struct gspca_dev *gspca_dev,
625 626 627
			const __u8 buffer[][8], int len)
{
	for (;;) {
628
		reg_w(gspca_dev, 0x08, *buffer, 8);
629 630 631 632 633 634 635 636 637 638 639 640 641
		len -= 8;
		if (len <= 0)
			break;
		buffer++;
	}
}

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 value;

	switch (sd->sensor) {
642
	case  SENSOR_OV6650:
643 644
	case  SENSOR_OV7630: {
		__u8 i2cOV[] =
645
			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
646 647

		/* change reg 0x06 */
648
		i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
649
		i2cOV[3] = sd->brightness;
650
		if (i2c_w(gspca_dev, i2cOV) < 0)
651 652 653
			goto err;
		break;
	    }
654
	case SENSOR_PAS106:
655
	case SENSOR_PAS202: {
656 657
		__u8 i2cpbright[] =
			{0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
658
		__u8 i2cpdoit[] =
659 660
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

661 662 663 664 665 666
		/* PAS106 uses reg 7 and 8 instead of b and c */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpbright[2] = 7;
			i2cpdoit[2] = 0x13;
		}

667 668 669 670 671 672 673 674 675
		if (sd->brightness < 127) {
			/* change reg 0x0b, signreg */
			i2cpbright[3] = 0x01;
			/* set reg 0x0c, offset */
			i2cpbright[4] = 127 - sd->brightness;
		} else
			i2cpbright[4] = sd->brightness - 127;

		if (i2c_w(gspca_dev, i2cpbright) < 0)
676
			goto err;
677
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
678 679 680
			goto err;
		break;
	    }
681
	case SENSOR_TAS5130CXX: {
682 683 684 685 686 687
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

		value = 0xff - sd->brightness;
		i2c[4] = value;
		PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
688
		if (i2c_w(gspca_dev, i2c) < 0)
689 690 691 692 693 694 695 696
			goto err;
		break;
	    }
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error brightness");
}
697 698 699 700

static void setsensorgain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
701
	unsigned char gain = sd->gain;
702 703

	switch (sd->sensor) {
704 705 706 707 708 709 710
	case SENSOR_HV7131D: {
		__u8 i2c[] =
			{0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};

		i2c[3] = 0x3f - (sd->gain / 4);
		i2c[4] = 0x3f - (sd->gain / 4);
		i2c[5] = 0x3f - (sd->gain / 4);
711

712 713 714 715
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
716
	case SENSOR_TAS5110C: {
717 718 719
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

720
		i2c[4] = 255 - gain;
721
		if (i2c_w(gspca_dev, i2c) < 0)
722
			goto err;
723 724
		break;
	    }
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	case SENSOR_TAS5110D: {
		__u8 i2c[] = {
			0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 };
		gain = 255 - gain;
		/* The bits in the register are the wrong way around!! */
		i2c[3] |= (gain & 0x80) >> 7;
		i2c[3] |= (gain & 0x40) >> 5;
		i2c[3] |= (gain & 0x20) >> 3;
		i2c[3] |= (gain & 0x10) >> 1;
		i2c[3] |= (gain & 0x08) << 1;
		i2c[3] |= (gain & 0x04) << 3;
		i2c[3] |= (gain & 0x02) << 5;
		i2c[3] |= (gain & 0x01) << 7;
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
742

743 744 745
	case SENSOR_OV6650:
		gain >>= 1;
		/* fall thru */
746
	case SENSOR_OV7630: {
747
		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
748

749
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
750
		i2c[3] = gain >> 2;
751 752 753 754
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
755
	case SENSOR_PAS106:
756 757
	case SENSOR_PAS202: {
		__u8 i2cpgain[] =
758
			{0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
759 760
		__u8 i2cpcolorgain[] =
			{0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
761 762 763 764 765 766 767 768 769 770
		__u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

		/* PAS106 uses different regs (and has split green gains) */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpgain[2] = 0x0e;
			i2cpcolorgain[0] = 0xd0;
			i2cpcolorgain[2] = 0x09;
			i2cpdoit[2] = 0x13;
		}
771 772 773 774 775

		i2cpgain[3] = sd->gain >> 3;
		i2cpcolorgain[3] = sd->gain >> 4;
		i2cpcolorgain[4] = sd->gain >> 4;
		i2cpcolorgain[5] = sd->gain >> 4;
776
		i2cpcolorgain[6] = sd->gain >> 4;
777 778 779 780 781 782 783 784 785

		if (i2c_w(gspca_dev, i2cpgain) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpcolorgain) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
		break;
	    }
786 787 788 789 790 791 792
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error gain");
}

static void setgain(struct gspca_dev *gspca_dev)
793 794 795
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 gain;
796
	__u8 buf[3] = { 0, 0, 0 };
797 798 799 800 801 802

	if (sensor_data[sd->sensor].flags & F_GAIN) {
		/* Use the sensor gain to do the actual gain */
		setsensorgain(gspca_dev);
		return;
	}
803

804 805 806 807 808 809 810 811 812 813 814 815
	if (sd->bridge == BRIDGE_103) {
		gain = sd->gain >> 1;
		buf[0] = gain; /* Red */
		buf[1] = gain; /* Green */
		buf[2] = gain; /* Blue */
		reg_w(gspca_dev, 0x05, buf, 3);
	} else {
		gain = sd->gain >> 4;
		buf[0] = gain << 4 | gain; /* Red and blue */
		buf[1] = gain; /* Green */
		reg_w(gspca_dev, 0x10, buf, 2);
	}
816 817 818 819 820 821 822
}

static void setexposure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	case SENSOR_HV7131D: {
		/* Note the datasheet wrongly says line mode exposure uses reg
		   0x26 and 0x27, testing has shown 0x25 + 0x26 */
		__u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
		/* The HV7131D's exposure goes from 0 - 65535, we scale our
		   exposure of 0-1023 to 0-6138. There are 2 reasons for this:
		   1) This puts our exposure knee of 200 at approx the point
		      where the framerate starts dropping
		   2) At 6138 the framerate has already dropped to 2 fps,
		      going any lower makes little sense */
		__u16 reg = sd->exposure * 6;
		i2c[3] = reg >> 8;
		i2c[4] = reg & 0xff;
		if (i2c_w(gspca_dev, i2c) != 0)
			goto err;
		break;
	    }
840 841
	case SENSOR_TAS5110C:
	case SENSOR_TAS5110D: {
842 843 844
		/* register 19's high nibble contains the sn9c10x clock divider
		   The high nibble configures the no fps according to the
		   formula: 60 / high_nibble. With a maximum of 30 fps */
845
		__u8 reg = sd->exposure;
846
		reg = (reg << 4) | 0x0b;
847
		reg_w(gspca_dev, 0x19, &reg, 1);
848 849
		break;
	    }
850
	case SENSOR_OV6650:
851
	case SENSOR_OV7630: {
852 853
		/* The ov6650 / ov7630 have 2 registers which both influence
		   exposure, register 11, whose low nibble sets the nr off fps
854 855 856 857 858 859 860 861 862 863 864 865
		   according to: fps = 30 / (low_nibble + 1)

		   The fps configures the maximum exposure setting, but it is
		   possible to use less exposure then what the fps maximum
		   allows by setting register 10. register 10 configures the
		   actual exposure as quotient of the full exposure, with 0
		   being no exposure at all (not very usefull) and reg10_max
		   being max exposure possible at that framerate.

		   The code maps our 0 - 510 ms exposure ctrl to these 2
		   registers, trying to keep fps as high as possible.
		*/
866 867 868
		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
		int reg10, reg11, reg10_max;

869 870 871 872 873
		/* ov6645 datasheet says reg10_max is 9a, but that uses
		   tline * 2 * reg10 as formula for calculating texpo, the
		   ov6650 probably uses the same formula as the 7730 which uses
		   tline * 4 * reg10, which explains why the reg10max we've
		   found experimentally for the ov6650 is exactly half that of
874
		   the ov6645. The ov7630 datasheet says the max is 0x41. */
875 876 877 878 879
		if (sd->sensor == SENSOR_OV6650) {
			reg10_max = 0x4d;
			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
		} else
			reg10_max = 0x41;
880

881
		reg11 = (15 * sd->exposure + 999) / 1000;
882 883 884 885 886
		if (reg11 < 1)
			reg11 = 1;
		else if (reg11 > 16)
			reg11 = 16;

887 888 889 890 891
		/* In 640x480, if the reg11 has less than 4, the image is
		   unstable (the bridge goes into a higher compression mode
		   which we have not reverse engineered yet). */
		if (gspca_dev->width == 640 && reg11 < 4)
			reg11 = 4;
892

893
		/* frame exposure time in ms = 1000 * reg11 / 30    ->
894 895
		reg10 = (sd->exposure / 2) * reg10_max / (1000 * reg11 / 30) */
		reg10 = (sd->exposure * 15 * reg10_max) / (1000 * reg11);
896

897 898 899 900 901 902
		/* Don't allow this to get below 10 when using autogain, the
		   steps become very large (relatively) when below 10 causing
		   the image to oscilate from much too dark, to much too bright
		   and back again. */
		if (sd->autogain && reg10 < 10)
			reg10 = 10;
903 904 905 906
		else if (reg10 > reg10_max)
			reg10 = reg10_max;

		/* Write reg 10 and reg11 low nibble */
907
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
908 909
		i2c[3] = reg10;
		i2c[4] |= reg11 - 1;
910 911

		/* If register 11 didn't change, don't change it */
912
		if (sd->reg11 == reg11)
913 914 915 916 917
			i2c[0] = 0xa0;

		if (i2c_w(gspca_dev, i2c) == 0)
			sd->reg11 = reg11;
		else
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
			goto err;
		break;
	    }
	case SENSOR_PAS202: {
		__u8 i2cpframerate[] =
			{0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
		__u8 i2cpexpo[] =
			{0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
		const __u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
		int framerate_ctrl;

		/* The exposure knee for the autogain algorithm is 200
		   (100 ms / 10 fps on other sensors), for values below this
		   use the control for setting the partial frame expose time,
		   above that use variable framerate. This way we run at max
		   framerate (640x480@7.5 fps, 320x240@10fps) until the knee
		   is reached. Using the variable framerate control above 200
		   is better then playing around with both clockdiv + partial
		   frame exposure times (like we are doing with the ov chips),
		   as that sometimes leads to jumps in the exposure control,
		   which are bad for auto exposure. */
		if (sd->exposure < 200) {
			i2cpexpo[3] = 255 - (sd->exposure * 255) / 200;
			framerate_ctrl = 500;
		} else {
			/* The PAS202's exposure control goes from 0 - 4095,
			   but anything below 500 causes vsync issues, so scale
			   our 200-1023 to 500-4095 */
			framerate_ctrl = (sd->exposure - 200) * 1000 / 229 +
					 500;
		}

		i2cpframerate[3] = framerate_ctrl >> 6;
		i2cpframerate[4] = framerate_ctrl & 0x3f;
		if (i2c_w(gspca_dev, i2cpframerate) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
959 960
		break;
	    }
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	case SENSOR_PAS106: {
		__u8 i2cpframerate[] =
			{0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
		__u8 i2cpexpo[] =
			{0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
		const __u8 i2cpdoit[] =
			{0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
		int framerate_ctrl;

		/* For values below 150 use partial frame exposure, above
		   that use framerate ctrl */
		if (sd->exposure < 150) {
			i2cpexpo[3] = 150 - sd->exposure;
			framerate_ctrl = 300;
		} else {
			/* The PAS106's exposure control goes from 0 - 4095,
			   but anything below 300 causes vsync issues, so scale
			   our 150-1023 to 300-4095 */
			framerate_ctrl = (sd->exposure - 150) * 1000 / 230 +
					 300;
		}

		i2cpframerate[3] = framerate_ctrl >> 4;
		i2cpframerate[4] = framerate_ctrl & 0x0f;
		if (i2c_w(gspca_dev, i2cpframerate) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
		break;
	    }
993
	}
994 995 996
	return;
err:
	PDEBUG(D_ERR, "i2c error exposure");
997 998
}

999 1000 1001 1002 1003
static void setfreq(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
1004
	case SENSOR_OV6650:
1005
	case SENSOR_OV7630: {
1006
		/* Framerate adjust register for artificial light 50 hz flicker
1007 1008 1009
		   compensation, for the ov6650 this is identical to ov6630
		   0x2b register, see ov6630 datasheet.
		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
1010
		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
1011 1012 1013 1014 1015 1016 1017
		switch (sd->freq) {
		default:
/*		case 0:			 * no filter*/
/*		case 2:			 * 60 hz */
			i2c[3] = 0;
			break;
		case 1:			/* 50 hz */
1018 1019
			i2c[3] = (sd->sensor == SENSOR_OV6650)
					? 0x4f : 0x8a;
1020 1021
			break;
		}
1022
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
1023 1024 1025 1026 1027 1028 1029
		if (i2c_w(gspca_dev, i2c) < 0)
			PDEBUG(D_ERR, "i2c error setfreq");
		break;
	    }
	}
}

1030 1031
#include "coarse_expo_autogain.h"

1032 1033
static void do_autogain(struct gspca_dev *gspca_dev)
{
1034
	int deadzone, desired_avg_lum, result;
1035 1036 1037
	struct sd *sd = (struct sd *) gspca_dev;
	int avg_lum = atomic_read(&sd->avg_lum);

1038 1039 1040 1041 1042
	if (avg_lum == -1 || !sd->autogain)
		return;

	if (sd->autogain_ignore_frames > 0) {
		sd->autogain_ignore_frames--;
1043
		return;
1044
	}
1045

1046 1047 1048
	/* SIF / VGA sensors have a different autoexposure area and thus
	   different avg_lum values for the same picture brightness */
	if (sensor_data[sd->sensor].flags & F_SIF) {
1049 1050 1051
		deadzone = 500;
		/* SIF sensors tend to overexpose, so keep this small */
		desired_avg_lum = 5000;
1052
	} else {
1053
		deadzone = 1500;
1054
		desired_avg_lum = 13000;
1055 1056
	}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	if (sensor_data[sd->sensor].flags & F_COARSE_EXPO)
		result = gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum,
				sd->brightness * desired_avg_lum / 127,
				deadzone);
	else
		result = gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
				sd->brightness * desired_avg_lum / 127,
				deadzone, GAIN_KNEE, EXPOSURE_KNEE);

	if (result) {
1067
		PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d",
1068
			(int)sd->gain, (int)sd->exposure);
1069
		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1070
	}
1071 1072 1073 1074 1075 1076 1077 1078
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam;
1079 1080 1081 1082

	reg_r(gspca_dev, 0x00);
	if (gspca_dev->usb_buf[0] != 0x10)
		return -ENODEV;
1083

1084
	/* copy the webcam info from the device id */
1085 1086 1087
	sd->sensor = id->driver_info >> 8;
	sd->bridge = id->driver_info & 0xff;
	gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
1088 1089

	cam = &gspca_dev->cam;
1090
	if (!(sensor_data[sd->sensor].flags & F_SIF)) {
1091
		cam->cam_mode = vga_mode;
1092
		cam->nmodes = ARRAY_SIZE(vga_mode);
1093 1094
	} else {
		cam->cam_mode = sif_mode;
1095
		cam->nmodes = ARRAY_SIZE(sif_mode);
1096
	}
1097 1098
	cam->npkt = 36;			/* 36 packets per ISOC message */

1099 1100
	sd->brightness = BRIGHTNESS_DEF;
	sd->gain = GAIN_DEF;
1101 1102 1103 1104 1105 1106 1107
	if (sensor_data[sd->sensor].flags & F_COARSE_EXPO) {
		sd->exposure = COARSE_EXPOSURE_DEF;
		gspca_dev->ctrl_dis |= (1 << EXPOSURE_IDX);
	} else {
		sd->exposure = EXPOSURE_DEF;
		gspca_dev->ctrl_dis |= (1 << COARSE_EXPOSURE_IDX);
	}
1108 1109 1110 1111
	if (gspca_dev->ctrl_dis & (1 << AUTOGAIN_IDX))
		sd->autogain = 0; /* Disable do_autogain callback */
	else
		sd->autogain = AUTOGAIN_DEF;
1112
	sd->freq = FREQ_DEF;
1113

1114 1115 1116
	return 0;
}

1117 1118
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
1119
{
1120 1121 1122 1123
	const __u8 stop = 0x09; /* Disable stream turn of LED */

	reg_w(gspca_dev, 0x01, &stop, 1);

1124 1125 1126 1127
	return 0;
}

/* -- start the camera -- */
1128
static int sd_start(struct gspca_dev *gspca_dev)
1129 1130
{
	struct sd *sd = (struct sd *) gspca_dev;
1131
	struct cam *cam = &gspca_dev->cam;
1132 1133
	int i, mode;
	__u8 regs[0x31];
1134

1135
	mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	/* Copy registers 0x01 - 0x19 from the template */
	memcpy(&regs[0x01], sensor_data[sd->sensor].bridge_init, 0x19);
	/* Set the mode */
	regs[0x18] |= mode << 4;

	/* Set bridge gain to 1.0 */
	if (sd->bridge == BRIDGE_103) {
		regs[0x05] = 0x20; /* Red */
		regs[0x06] = 0x20; /* Green */
		regs[0x07] = 0x20; /* Blue */
	} else {
		regs[0x10] = 0x00; /* Red and blue */
		regs[0x11] = 0x00; /* Green */
	}

	/* Setup pixel numbers and auto exposure window */
	if (sensor_data[sd->sensor].flags & F_SIF) {
		regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
		regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
		regs[0x1c] = 0x02; /* AE H-start 64 */
		regs[0x1d] = 0x02; /* AE V-start 64 */
		regs[0x1e] = 0x09; /* AE H-end 288 */
		regs[0x1f] = 0x07; /* AE V-end 224 */
	} else {
		regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
		regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
1162
		regs[0x1c] = 0x05; /* AE H-start 160 */
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		regs[0x1d] = 0x03; /* AE V-start 96 */
		regs[0x1e] = 0x0f; /* AE H-end 480 */
		regs[0x1f] = 0x0c; /* AE V-end 384 */
	}

	/* Setup the gamma table (only used with the sn9c103 bridge) */
	for (i = 0; i < 16; i++)
		regs[0x20 + i] = i * 16;
	regs[0x20 + i] = 255;

	/* Special cases where some regs depend on mode or bridge */
1174
	switch (sd->sensor) {
1175
	case SENSOR_TAS5130CXX:
1176 1177
		/* FIXME / TESTME
		   probably not mode specific at all most likely the upper
1178 1179
		   nibble of 0x19 is exposure (clock divider) just as with
		   the tas5110, we need someone to test this. */
1180
		regs[0x19] = mode ? 0x23 : 0x43;
1181
		break;
1182 1183 1184 1185 1186 1187 1188 1189 1190
	case SENSOR_OV7630:
		/* FIXME / TESTME for some reason with the 101/102 bridge the
		   clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
		   Also the hstart needs to go from 1 to 2 when using a 103,
		   which is likely related. This does not seem right. */
		if (sd->bridge == BRIDGE_103) {
			regs[0x01] = 0x44; /* Select 24 Mhz clock */
			regs[0x12] = 0x02; /* Set hstart to 2 */
		}
1191
	}
1192
	/* Disable compression when the raw bayer format has been selected */
1193
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
1194
		regs[0x18] &= ~0x80;
1195 1196 1197

	/* Vga mode emulation on SIF sensor? */
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
1198 1199 1200 1201
		regs[0x12] += 16;	/* hstart adjust */
		regs[0x13] += 24;	/* vstart adjust */
		regs[0x15]  = 320 / 16; /* hsize */
		regs[0x16]  = 240 / 16; /* vsize */
1202
	}
1203

1204
	/* reg 0x01 bit 2 video transfert on */
1205
	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1206
	/* reg 0x17 SensorClk enable inv Clk 0x60 */
1207
	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1208
	/* Set the registers from the template */
1209 1210
	reg_w(gspca_dev, 0x01, &regs[0x01],
	      (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f);
1211 1212 1213 1214 1215

	/* Init the sensor */
	i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
			sensor_data[sd->sensor].sensor_init_size);

1216
	/* Mode / bridge specific sensor setup */
1217 1218 1219 1220 1221 1222 1223
	switch (sd->sensor) {
	case SENSOR_PAS202: {
		const __u8 i2cpclockdiv[] =
			{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
		/* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
		if (mode)
			i2c_w(gspca_dev, i2cpclockdiv);
1224
		break;
1225
	    }
1226 1227 1228 1229 1230 1231 1232 1233 1234
	case SENSOR_OV7630:
		/* FIXME / TESTME We should be able to handle this identical
		   for the 101/102 and the 103 case */
		if (sd->bridge == BRIDGE_103) {
			const __u8 i2c[] = { 0xa0, 0x21, 0x13,
					     0x80, 0x00, 0x00, 0x00, 0x10 };
			i2c_w(gspca_dev, i2c);
		}
		break;
1235
	}
1236
	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1237
	reg_w(gspca_dev, 0x15, &regs[0x15], 2);
1238
	/* compression register */
1239
	reg_w(gspca_dev, 0x18, &regs[0x18], 1);
1240
	/* H_start */
1241
	reg_w(gspca_dev, 0x12, &regs[0x12], 1);
1242
	/* V_START */
1243
	reg_w(gspca_dev, 0x13, &regs[0x13], 1);
1244 1245
	/* reset 0x17 SensorClk enable inv Clk 0x60 */
				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1246
	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1247
	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
1248
	reg_w(gspca_dev, 0x19, &regs[0x19], 1);
1249
	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1250
	reg_w(gspca_dev, 0x1c, &regs[0x1c], 4);
1251
	/* Enable video transfert */
1252
	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1253
	/* Compression */
1254
	reg_w(gspca_dev, 0x18, &regs[0x18], 2);
1255 1256
	msleep(20);

1257 1258
	sd->reg11 = -1;

1259
	setgain(gspca_dev);
1260
	setbrightness(gspca_dev);
1261
	setexposure(gspca_dev);
1262
	setfreq(gspca_dev);
1263

1264
	sd->frames_to_drop = 0;
1265
	sd->autogain_ignore_frames = 0;
1266 1267
	sd->exp_too_high_cnt = 0;
	sd->exp_too_low_cnt = 0;
1268
	atomic_set(&sd->avg_lum, -1);
1269
	return 0;
1270 1271 1272 1273
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
1274
	sd_init(gspca_dev);
1275 1276
}

1277
static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
1278
{
1279
	struct sd *sd = (struct sd *) gspca_dev;
1280
	int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290
	/* frames start with:
	 *	ff ff 00 c4 c4 96	synchro
	 *	00		(unknown)
	 *	xx		(frame sequence / size / compression)
	 *	(xx)		(idem - extra byte for sn9c103)
	 *	ll mm		brightness sum inside auto exposure
	 *	ll mm		brightness sum outside auto exposure
	 *	(xx xx xx xx xx)	audio values for snc103
	 */
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	for (i = 0; i < len; i++) {
		switch (sd->header_read) {
		case 0:
			if (data[i] == 0xff)
				sd->header_read++;
			break;
		case 1:
			if (data[i] == 0xff)
				sd->header_read++;
			else
				sd->header_read = 0;
			break;
		case 2:
			if (data[i] == 0x00)
				sd->header_read++;
			else if (data[i] != 0xff)
				sd->header_read = 0;
			break;
		case 3:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 4:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 5:
			if (data[i] == 0x96)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		default:
			sd->header[sd->header_read - 6] = data[i];
			sd->header_read++;
			if (sd->header_read == header_size) {
				sd->header_read = 0;
				return data + i + 1;
1339 1340 1341
			}
		}
	}
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	return NULL;
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,			/* isoc packet */
			int len)			/* iso packet length */
{
	int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam = &gspca_dev->cam;
	u8 *sof;

	sof = find_sof(gspca_dev, data, len);
	if (sof) {
		if (sd->bridge == BRIDGE_103) {
			fr_h_sz = 18;
			lum_offset = 3;
		} else {
			fr_h_sz = 12;
			lum_offset = 2;
		}

		len_after_sof = len - (sof - data);
		len = (sof - data) - fr_h_sz;
		if (len < 0)
			len = 0;
	}
1369 1370 1371 1372

	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
		/* In raw mode we sometimes get some garbage after the frame
		   ignore this */
1373
		int used;
1374 1375
		int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;

1376
		used = gspca_dev->image_len;
1377 1378 1379 1380
		if (used + len > size)
			len = size - used;
	}

1381
	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	if (sof) {
		int  lum = sd->header[lum_offset] +
			  (sd->header[lum_offset + 1] << 8);

		/* When exposure changes midway a frame we
		   get a lum of 0 in this case drop 2 frames
		   as the frames directly after an exposure
		   change have an unstable image. Sometimes lum
		   *really* is 0 (cam used in low light with
		   low exposure setting), so do not drop frames
		   if the previous lum was 0 too. */
		if (lum == 0 && sd->prev_avg_lum != 0) {
			lum = -1;
			sd->frames_to_drop = 2;
			sd->prev_avg_lum = 0;
		} else
			sd->prev_avg_lum = lum;
		atomic_set(&sd->avg_lum, lum);

		if (sd->frames_to_drop)
			sd->frames_to_drop--;
		else
			gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);

		gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
	}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
}

static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->brightness = val;
	if (gspca_dev->streaming)
		setbrightness(gspca_dev);
	return 0;
}

static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->brightness;
	return 0;
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->gain = val;
	if (gspca_dev->streaming)
		setgain(gspca_dev);
	return 0;
}

static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1440 1441 1442
{
	struct sd *sd = (struct sd *) gspca_dev;

1443 1444 1445 1446 1447 1448 1449 1450 1451
	*val = sd->gain;
	return 0;
}

static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->exposure = val;
1452
	if (gspca_dev->streaming)
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		setexposure(gspca_dev);
	return 0;
}

static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->exposure;
	return 0;
}

static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->autogain = val;
1470 1471 1472
	sd->exp_too_high_cnt = 0;
	sd->exp_too_low_cnt = 0;

1473 1474 1475 1476
	/* when switching to autogain set defaults to make sure
	   we are on a valid point of the autogain gain /
	   exposure knee graph, and give this change time to
	   take effect before doing autogain. */
1477
	if (sd->autogain && !(sensor_data[sd->sensor].flags & F_COARSE_EXPO)) {
1478 1479 1480 1481 1482 1483 1484 1485 1486
		sd->exposure = EXPOSURE_DEF;
		sd->gain = GAIN_DEF;
		if (gspca_dev->streaming) {
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
			setexposure(gspca_dev);
			setgain(gspca_dev);
		}
	}

1487 1488 1489
	return 0;
}

1490
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1491 1492 1493
{
	struct sd *sd = (struct sd *) gspca_dev;

1494
	*val = sd->autogain;
1495 1496 1497
	return 0;
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->freq = val;
	if (gspca_dev->streaming)
		setfreq(gspca_dev);
	return 0;
}

static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->freq;
	return 0;
}

static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

1537
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,		/* interrupt packet data */
			int len)		/* interrupt packet length */
{
	int ret = -EINVAL;

	if (len == 1 && data[0] == 1) {
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
		input_sync(gspca_dev->input_dev);
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
		input_sync(gspca_dev->input_dev);
		ret = 0;
	}

	return ret;
}
#endif

1556
/* sub-driver description */
1557
static const struct sd_desc sd_desc = {
1558 1559 1560 1561
	.name = MODULE_NAME,
	.ctrls = sd_ctrls,
	.nctrls = ARRAY_SIZE(sd_ctrls),
	.config = sd_config,
1562
	.init = sd_init,
1563 1564 1565
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
1566
	.querymenu = sd_querymenu,
1567
	.dq_callback = do_autogain,
1568
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1569 1570
	.int_pkt_scan = sd_int_pkt_scan,
#endif
1571 1572 1573
};

/* -- module initialisation -- */
1574 1575 1576
#define SB(sensor, bridge) \
	.driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge

1577

1578
static const struct usb_device_id device_table[] __devinitconst = {
1579 1580 1581
	{USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1582 1583 1584
	{USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1585
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1586 1587 1588
	{USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
	{USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1589
#endif
1590 1591
	{USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
	{USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1592 1593
	{USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
	/* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1594
	{USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1595 1596
	{USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
	{USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1597
	/* {USB_DEVICE(0x0c45, 0x602b), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
1598
	{USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1599
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1600
	{USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1601
#endif
1602
	{USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1603 1604 1605 1606 1607
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
1608
static int __devinit sd_probe(struct usb_interface *intf,
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
1620 1621 1622 1623
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
#endif
1624 1625 1626 1627 1628
};

/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
1629
	return usb_register(&sd_driver);
1630 1631 1632 1633 1634 1635 1636 1637
}
static void __exit sd_mod_exit(void)
{
	usb_deregister(&sd_driver);
}

module_init(sd_mod_init);
module_exit(sd_mod_exit);