sonixb.c 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 *		sonix sn9c102 (bayer) library
 *		Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
 * Add Pas106 Stefano Mozzi (C) 2004
 *
 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Some documentation on known sonixb registers:

Reg	Use
0x10	high nibble red gain low nibble blue gain
0x11	low nibble green gain
0x12	hstart
0x13	vstart
0x15	hsize (hsize = register-value * 16)
0x16	vsize (vsize = register-value * 16)
0x17	bit 0 toggle compression quality (according to sn9c102 driver)
0x18	bit 7 enables compression, bit 4-5 set image down scaling:
	00 scale 1, 01 scale 1/2, 10, scale 1/4
0x19	high-nibble is sensor clock divider, changes exposure on sensors which
	use a clock generated by the bridge. Some sensors have their own clock.
0x1c	auto_exposure area (for avg_lum) startx (startx = register-value * 32)
0x1d	auto_exposure area (for avg_lum) starty (starty = register-value * 32)
0x1e	auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
0x1f	auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
*/

43 44 45 46 47 48 49 50 51 52 53
#define MODULE_NAME "sonixb"

#include "gspca.h"

MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
MODULE_LICENSE("GPL");

/* specific webcam descriptor */
struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */
54
	atomic_t avg_lum;
55
	int prev_avg_lum;
56

57 58
	unsigned char gain;
	unsigned char exposure;
59
	unsigned char brightness;
60 61
	unsigned char autogain;
	unsigned char autogain_ignore_frames;
62
	unsigned char frames_to_drop;
63
	unsigned char freq;		/* light freq filter setting */
64

65 66 67 68 69 70
	__u8 bridge;			/* Type of bridge */
#define BRIDGE_101 0
#define BRIDGE_102 0 /* We make no difference between 101 and 102 */
#define BRIDGE_103 1

	__u8 sensor;			/* Type of image sensor chip */
71 72 73
#define SENSOR_HV7131R 0
#define SENSOR_OV6650 1
#define SENSOR_OV7630 2
74 75 76 77 78
#define SENSOR_PAS106 3
#define SENSOR_PAS202 4
#define SENSOR_TAS5110 5
#define SENSOR_TAS5130CXX 6
	__u8 reg11;
79 80
};

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
typedef const __u8 sensor_init_t[8];

struct sensor_data {
	const __u8 *bridge_init[2];
	int bridge_init_size[2];
	sensor_init_t *sensor_init;
	int sensor_init_size;
	sensor_init_t *sensor_bridge_init[2];
	int sensor_bridge_init_size[2];
	int flags;
	unsigned ctrl_dis;
	__u8 sensor_addr;
};

/* sensor_data flags */
96
#define F_GAIN 0x01		/* has gain */
97
#define F_SIF  0x02		/* sif or vga */
98 99 100

/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
#define MODE_RAW 0x10		/* raw bayer mode */
101
#define MODE_REDUCED_SIF 0x20	/* vga mode (320x240 / 160x120) on sif cam */
102 103 104 105 106

/* ctrl_dis helper macros */
#define NO_EXPO ((1 << EXPOSURE_IDX) | (1 << AUTOGAIN_IDX))
#define NO_FREQ (1 << FREQ_IDX)
#define NO_BRIGHTNESS (1 << BRIGHTNESS_IDX)
107

108 109 110 111 112 113 114 115 116
#define COMP2 0x8f
#define COMP 0xc7		/* 0x87 //0x07 */
#define COMP1 0xc9		/* 0x89 //0x09 */

#define MCK_INIT 0x63
#define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/

#define SYS_CLK 0x04

117 118 119 120 121 122 123 124 125 126 127 128
#define SENS(bridge_1, bridge_3, sensor, sensor_1, \
	sensor_3, _flags, _ctrl_dis, _sensor_addr) \
{ \
	.bridge_init = { bridge_1, bridge_3 }, \
	.bridge_init_size = { sizeof(bridge_1), sizeof(bridge_3) }, \
	.sensor_init = sensor, \
	.sensor_init_size = sizeof(sensor), \
	.sensor_bridge_init = { sensor_1, sensor_3,}, \
	.sensor_bridge_init_size = { sizeof(sensor_1), sizeof(sensor_3)}, \
	.flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
}

129 130 131 132 133 134 135
/* We calculate the autogain at the end of the transfer of a frame, at this
   moment a frame with the old settings is being transmitted, and a frame is
   being captured with the old settings. So if we adjust the autogain we must
   ignore atleast the 2 next frames for the new settings to come into effect
   before doing any other adjustments */
#define AUTOGAIN_IGNORE_FRAMES 3

136 137 138
/* V4L2 controls supported by the driver */
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
139 140 141 142 143 144
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
145 146
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
147 148

static struct ctrl sd_ctrls[] = {
149
#define BRIGHTNESS_IDX 0
150 151 152 153 154 155 156 157
	{
	    {
		.id      = V4L2_CID_BRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Brightness",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
158 159
#define BRIGHTNESS_DEF 127
		.default_value = BRIGHTNESS_DEF,
160 161 162 163
	    },
	    .set = sd_setbrightness,
	    .get = sd_getbrightness,
	},
164
#define GAIN_IDX 1
165 166
	{
	    {
167
		.id      = V4L2_CID_GAIN,
168
		.type    = V4L2_CTRL_TYPE_INTEGER,
169
		.name    = "Gain",
170
		.minimum = 0,
171
		.maximum = 255,
172
		.step    = 1,
173 174
#define GAIN_DEF 127
#define GAIN_KNEE 200
175
		.default_value = GAIN_DEF,
176
	    },
177 178 179
	    .set = sd_setgain,
	    .get = sd_getgain,
	},
180
#define EXPOSURE_IDX 2
181 182 183 184 185
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
186 187
#define EXPOSURE_DEF  16 /*  32 ms / 30 fps */
#define EXPOSURE_KNEE 50 /* 100 ms / 10 fps */
188
			.minimum = 0,
189
			.maximum = 255,
190 191 192 193 194 195 196
			.step = 1,
			.default_value = EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
197
#define AUTOGAIN_IDX 3
198 199 200 201 202 203 204 205
	{
		{
			.id = V4L2_CID_AUTOGAIN,
			.type = V4L2_CTRL_TYPE_BOOLEAN,
			.name = "Automatic Gain (and Exposure)",
			.minimum = 0,
			.maximum = 1,
			.step = 1,
206 207
#define AUTOGAIN_DEF 1
			.default_value = AUTOGAIN_DEF,
208 209 210 211
			.flags = 0,
		},
		.set = sd_setautogain,
		.get = sd_getautogain,
212
	},
213
#define FREQ_IDX 4
214 215 216 217 218 219 220 221 222 223 224 225 226 227
	{
		{
			.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
			.type    = V4L2_CTRL_TYPE_MENU,
			.name    = "Light frequency filter",
			.minimum = 0,
			.maximum = 2,	/* 0: 0, 1: 50Hz, 2:60Hz */
			.step    = 1,
#define FREQ_DEF 1
			.default_value = FREQ_DEF,
		},
		.set = sd_setfreq,
		.get = sd_getfreq,
	},
228 229
};

230
static struct v4l2_pix_format vga_mode[] = {
231 232
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
233
		.sizeimage = 160 * 120,
234 235
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2 | MODE_RAW},
236 237
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
238
		.sizeimage = 160 * 120 * 5 / 4,
239 240 241 242
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
243
		.sizeimage = 320 * 240 * 5 / 4,
244 245 246 247
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 640,
248
		.sizeimage = 640 * 480 * 5 / 4,
249 250
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
251
};
252
static struct v4l2_pix_format sif_mode[] = {
253 254 255 256 257 258 259 260 261 262
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_REDUCED_SIF},
263 264
	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 176,
265
		.sizeimage = 176 * 144,
266 267
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW},
268 269
	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 176,
270
		.sizeimage = 176 * 144 * 5 / 4,
271 272
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
273 274 275 276 277
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0 | MODE_REDUCED_SIF},
278 279
	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 352,
280
		.sizeimage = 352 * 288 * 5 / 4,
281 282
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
283 284 285 286 287
};

static const __u8 initHv7131[] = {
	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
288
	0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
289 290 291 292 293 294 295 296 297 298 299 300 301
	0x28, 0x1e, 0x60, 0x8a, 0x20,
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c
};
static const __u8 hv7131_sensor_init[][8] = {
	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
};
static const __u8 initOv6650[] = {
	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
302
	0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
303
	0x10, 0x1d, 0x10, 0x02, 0x02, 0x09, 0x07
304 305 306 307 308 309
};
static const __u8 ov6650_sensor_init[][8] =
{
	/* Bright, contrast, etc are set througth SCBB interface.
	 * AVCAP on win2 do not send any data on this 	controls. */
	/* Anyway, some registers appears to alter bright and constrat */
310 311

	/* Reset sensor */
312
	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
313
	/* Set clock register 0x11 low nibble is clock divider */
314
	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
315
	/* Next some unknown stuff */
316 317 318 319 320 321 322 323
	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
/*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
		 * THIS SET GREEN SCREEN
		 * (pixels could be innverted in decode kind of "brg",
		 * but blue wont be there. Avoid this data ... */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
	{0xa0, 0x60, 0x30, 0x3d, 0x0A, 0xd8, 0xa4, 0x10},
324 325 326 327 328 329 330 331 332
	/* Enable rgb brightness control */
	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
	/* HDG: Note windows uses the line below, which sets both register 0x60
	   and 0x61 I believe these registers of the ov6650 are identical as
	   those of the ov7630, because if this is true the windows settings
	   add a bit additional red gain and a lot additional blue gain, which
	   matches my findings that the windows settings make blue much too
	   blue and red a little too red.
	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
333
	/* Some more unknown stuff */
334 335 336
	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
};
337

338 339 340
static const __u8 initOv7630[] = {
	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
341
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
342
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
343
	0x68, COMP2, MCK_INIT1,				/* r17 .. r19 */
344 345 346 347 348
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c		/* r1a .. r1f */
};
static const __u8 initOv7630_3[] = {
	0x44, 0x44, 0x00, 0x1a, 0x20, 0x20, 0x20, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,	/* r09 .. r10 */
349
	0x00, 0x02, 0x01, 0x0a,				/* r11 .. r14 */
350
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
351 352 353 354
	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c, 0x00,	/* r1a .. r20 */
	0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, /* r21 .. r28 */
	0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xff  /* r29 .. r30 */
355
};
356
static const __u8 ov7630_sensor_init[][8] = {
357 358 359
	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
/*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
360
	{0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
361 362 363 364 365 366 367
	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
368 369
	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
/*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
370 371 372 373 374 375 376 377
	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
};

378 379 380 381
static const __u8 ov7630_sensor_init_3[][8] = {
	{0xa0, 0x21, 0x13, 0x80, 0x00,	0x00, 0x00, 0x10},
};

382 383 384
static const __u8 initPas106[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
385
	0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
386
	0x16, 0x12, 0x24, COMP1, MCK_INIT1,
387
	0x18, 0x10, 0x02, 0x02, 0x09, 0x07
388 389
};
/* compression 0x86 mckinit1 0x2b */
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static const __u8 pas106_sensor_init[][8] = {
	/* Pixel Clock Divider 6 */
	{ 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time MSB (also seen as 0x12) */
	{ 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time LSB (also seen as 0x05) */
	{ 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Line Offset (also seen as 0x6d) */
	{ 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Pixel Offset (also seen as 0xb1) */
	{ 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Sign (also seen 0x00) */
	{ 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Level (also seen 0x01) */
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain B Pixel 5 a */
	{ 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G1 Pixel 1 5 */
	{ 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G2 Pixel 1 0 5 */
	{ 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain R Pixel 3 1 */
	{ 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color GainH  Pixel */
	{ 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* Global Gain */
	{ 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
	/* Contrast */
	{ 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* H&V synchro polarity */
	{ 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* DAC scale */
	{ 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
	/* Validate Settings */
	{ 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
430
};
431

432 433 434
static const __u8 initPas202[] = {
	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
435
	0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
436
	0x28, 0x1e, 0x28, 0x89, 0x20,
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	0x00, 0x00, 0x02, 0x03, 0x0f, 0x0c
};
static const __u8 pas202_sensor_init[][8] = {
	{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10},
	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
	{0xd0, 0x40, 0x0C, 0x00, 0x0C, 0x00, 0x32, 0x10},
	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x10},
	{0xb0, 0x40, 0x0e, 0x00, 0x3d, 0x00, 0x63, 0x10},

	{0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x10, 0x08, 0x3d, 0x00, 0x63, 0x15},
	{0xa0, 0x40, 0x02, 0x04, 0x3d, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
	{0xb0, 0x40, 0x0e, 0x00, 0x31, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15},
	{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
};

static const __u8 initTas5110[] = {
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
466
	0x00, 0x01, 0x00, 0x45, 0x09, 0x0a,
467 468 469 470 471 472 473 474 475 476 477 478
	0x16, 0x12, 0x60, 0x86, 0x2b,
	0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
};
static const __u8 tas5110_sensor_init[][8] = {
	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17},
};

static const __u8 initTas5130[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
479
	0x00, 0x01, 0x00, 0x68, 0x0c, 0x0a,
480 481 482 483 484 485 486 487 488 489 490
	0x28, 0x1e, 0x60, COMP, MCK_INIT,
	0x18, 0x10, 0x04, 0x03, 0x11, 0x0c
};
static const __u8 tas5130_sensor_init[][8] = {
/* 	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
					* shutter 0x47 short exposure? */
	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
					/* shutter 0x01 long exposure */
	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
};

491
static struct sensor_data sensor_data[] = {
492
SENS(initHv7131, NULL, hv7131_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ, 0),
493
SENS(initOv6650, NULL, ov6650_sensor_init, NULL, NULL, F_GAIN|F_SIF, 0, 0x60),
494 495 496 497
SENS(initOv7630, initOv7630_3, ov7630_sensor_init, NULL, ov7630_sensor_init_3,
	F_GAIN, 0, 0x21),
SENS(initPas106, NULL, pas106_sensor_init, NULL, NULL, F_SIF, NO_EXPO|NO_FREQ,
	0),
498
SENS(initPas202, initPas202, pas202_sensor_init, NULL, NULL, 0,
499
	NO_EXPO|NO_FREQ, 0),
500
SENS(initTas5110, NULL, tas5110_sensor_init, NULL, NULL, F_GAIN|F_SIF,
501 502 503 504 505
	NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initTas5130, NULL, tas5130_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ,
	0),
};

506 507 508
/* get one byte in gspca_dev->usb_buf */
static void reg_r(struct gspca_dev *gspca_dev,
		  __u16 value)
509
{
510 511
	usb_control_msg(gspca_dev->dev,
			usb_rcvctrlpipe(gspca_dev->dev, 0),
512 513 514 515
			0,			/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
516
			gspca_dev->usb_buf, 1,
517 518 519
			500);
}

520 521 522 523
static void reg_w(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
524
{
525
#ifdef GSPCA_DEBUG
526
	if (len > USB_BUF_SZ) {
527 528 529 530
		PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
		return;
	}
#endif
531 532 533 534 535 536 537 538 539 540 541 542
	memcpy(gspca_dev->usb_buf, buffer, len);
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
			gspca_dev->usb_buf, len,
			500);
}

static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
543 544 545 546
{
	int retry = 60;

	/* is i2c ready */
547
	reg_w(gspca_dev, 0x08, buffer, 8);
548 549
	while (retry--) {
		msleep(10);
550
		reg_r(gspca_dev, 0x08);
551 552 553
		if (gspca_dev->usb_buf[0] & 0x04) {
			if (gspca_dev->usb_buf[0] & 0x08)
				return -1;
554
			return 0;
555
		}
556 557 558 559
	}
	return -1;
}

560
static void i2c_w_vector(struct gspca_dev *gspca_dev,
561 562 563
			const __u8 buffer[][8], int len)
{
	for (;;) {
564
		reg_w(gspca_dev, 0x08, *buffer, 8);
565 566 567 568 569 570 571 572 573 574 575 576 577
		len -= 8;
		if (len <= 0)
			break;
		buffer++;
	}
}

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 value;

	switch (sd->sensor) {
578
	case  SENSOR_OV6650:
579 580
	case  SENSOR_OV7630: {
		__u8 i2cOV[] =
581
			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
582 583

		/* change reg 0x06 */
584
		i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
585
		i2cOV[3] = sd->brightness;
586
		if (i2c_w(gspca_dev, i2cOV) < 0)
587 588 589 590 591 592 593 594 595
			goto err;
		break;
	    }
	case SENSOR_PAS106: {
		__u8 i2c1[] =
			{0xa1, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14};

		i2c1[3] = sd->brightness >> 3;
		i2c1[2] = 0x0e;
596
		if (i2c_w(gspca_dev, i2c1) < 0)
597 598 599
			goto err;
		i2c1[3] = 0x01;
		i2c1[2] = 0x13;
600
		if (i2c_w(gspca_dev, i2c1) < 0)
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
			goto err;
		break;
	    }
	case SENSOR_PAS202: {
		/* __u8 i2cpexpo1[] =
			{0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x16}; */
		__u8 i2cpexpo[] =
			{0xb0, 0x40, 0x0e, 0x01, 0xab, 0x00, 0x63, 0x16};
		__u8 i2cp202[] =
			{0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15};
		static __u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16};

		/* change reg 0x10 */
		i2cpexpo[4] = 0xff - sd->brightness;
616
/*		if(i2c_w(gspca_dev,i2cpexpo1) < 0)
617
			goto err; */
618
/*		if(i2c_w(gspca_dev,i2cpdoit) < 0)
619
			goto err; */
620
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
621
			goto err;
622
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
623 624
			goto err;
		i2cp202[3] = sd->brightness >> 3;
625
		if (i2c_w(gspca_dev, i2cp202) < 0)
626
			goto err;
627
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
628 629 630
			goto err;
		break;
	    }
631
	case SENSOR_TAS5130CXX: {
632 633 634 635 636 637
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

		value = 0xff - sd->brightness;
		i2c[4] = value;
		PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
638
		if (i2c_w(gspca_dev, i2c) < 0)
639 640 641 642 643 644 645 646
			goto err;
		break;
	    }
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error brightness");
}
647 648 649 650

static void setsensorgain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
651
	unsigned char gain = sd->gain;
652 653 654 655 656 657 658

	switch (sd->sensor) {

	case SENSOR_TAS5110: {
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

659
		i2c[4] = 255 - gain;
660
		if (i2c_w(gspca_dev, i2c) < 0)
661
			goto err;
662 663
		break;
	    }
664

665 666 667
	case SENSOR_OV6650:
		gain >>= 1;
		/* fall thru */
668
	case SENSOR_OV7630: {
669
		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
670

671
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
672
		i2c[3] = gain >> 2;
673 674 675 676
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
677 678 679 680 681 682 683
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error gain");
}

static void setgain(struct gspca_dev *gspca_dev)
684 685 686 687 688
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 gain;
	__u8 rgb_value;

689
	gain = sd->gain >> 4;
690

691 692
	/* red and blue gain */
	rgb_value = gain << 4 | gain;
693
	reg_w(gspca_dev, 0x10, &rgb_value, 1);
694 695
	/* green gain */
	rgb_value = gain;
696
	reg_w(gspca_dev, 0x11, &rgb_value, 1);
697

698
	if (sensor_data[sd->sensor].flags & F_GAIN)
699 700 701 702 703 704 705 706 707 708 709 710 711 712
		setsensorgain(gspca_dev);
}

static void setexposure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
	case SENSOR_TAS5110: {
		__u8 reg;

		/* register 19's high nibble contains the sn9c10x clock divider
		   The high nibble configures the no fps according to the
		   formula: 60 / high_nibble. With a maximum of 30 fps */
713 714 715 716
		reg = 120 * sd->exposure / 1000;
		if (reg < 2)
			reg = 2;
		else if (reg > 15)
717 718
			reg = 15;
		reg = (reg << 4) | 0x0b;
719
		reg_w(gspca_dev, 0x19, &reg, 1);
720 721
		break;
	    }
722
	case SENSOR_OV6650:
723
	case SENSOR_OV7630: {
724 725
		/* The ov6650 / ov7630 have 2 registers which both influence
		   exposure, register 11, whose low nibble sets the nr off fps
726 727 728 729 730 731 732 733 734 735 736 737
		   according to: fps = 30 / (low_nibble + 1)

		   The fps configures the maximum exposure setting, but it is
		   possible to use less exposure then what the fps maximum
		   allows by setting register 10. register 10 configures the
		   actual exposure as quotient of the full exposure, with 0
		   being no exposure at all (not very usefull) and reg10_max
		   being max exposure possible at that framerate.

		   The code maps our 0 - 510 ms exposure ctrl to these 2
		   registers, trying to keep fps as high as possible.
		*/
738 739 740
		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
		int reg10, reg11, reg10_max;

741 742 743 744 745
		/* ov6645 datasheet says reg10_max is 9a, but that uses
		   tline * 2 * reg10 as formula for calculating texpo, the
		   ov6650 probably uses the same formula as the 7730 which uses
		   tline * 4 * reg10, which explains why the reg10max we've
		   found experimentally for the ov6650 is exactly half that of
746
		   the ov6645. The ov7630 datasheet says the max is 0x41. */
747 748 749 750 751
		if (sd->sensor == SENSOR_OV6650) {
			reg10_max = 0x4d;
			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
		} else
			reg10_max = 0x41;
752

753 754 755 756 757 758
		reg11 = (60 * sd->exposure + 999) / 1000;
		if (reg11 < 1)
			reg11 = 1;
		else if (reg11 > 16)
			reg11 = 16;

759 760 761 762 763
		/* In 640x480, if the reg11 has less than 3, the image is
		   unstable (not enough bandwidth). */
		if (gspca_dev->width == 640 && reg11 < 3)
			reg11 = 3;

764 765 766 767
		/* frame exposure time in ms = 1000 * reg11 / 30    ->
		reg10 = sd->exposure * 2 * reg10_max / (1000 * reg11 / 30) */
		reg10 = (sd->exposure * 60 * reg10_max) / (1000 * reg11);

768 769 770 771 772 773
		/* Don't allow this to get below 10 when using autogain, the
		   steps become very large (relatively) when below 10 causing
		   the image to oscilate from much too dark, to much too bright
		   and back again. */
		if (sd->autogain && reg10 < 10)
			reg10 = 10;
774 775 776 777
		else if (reg10 > reg10_max)
			reg10 = reg10_max;

		/* Write reg 10 and reg11 low nibble */
778
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
779 780
		i2c[3] = reg10;
		i2c[4] |= reg11 - 1;
781 782 783 784 785 786 787 788

		/* If register 11 didn't change, don't change it */
		if (sd->reg11 == reg11 )
			i2c[0] = 0xa0;

		if (i2c_w(gspca_dev, i2c) == 0)
			sd->reg11 = reg11;
		else
789
			PDEBUG(D_ERR, "i2c error exposure");
790 791
		break;
	    }
792 793 794
	}
}

795 796 797 798 799
static void setfreq(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
800
	case SENSOR_OV6650:
801
	case SENSOR_OV7630: {
802
		/* Framerate adjust register for artificial light 50 hz flicker
803 804 805
		   compensation, for the ov6650 this is identical to ov6630
		   0x2b register, see ov6630 datasheet.
		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
806
		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
807 808 809 810 811 812 813
		switch (sd->freq) {
		default:
/*		case 0:			 * no filter*/
/*		case 2:			 * 60 hz */
			i2c[3] = 0;
			break;
		case 1:			/* 50 hz */
814 815
			i2c[3] = (sd->sensor == SENSOR_OV6650)
					? 0x4f : 0x8a;
816 817
			break;
		}
818
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
819 820 821 822 823 824 825
		if (i2c_w(gspca_dev, i2c) < 0)
			PDEBUG(D_ERR, "i2c error setfreq");
		break;
	    }
	}
}

826 827
static void do_autogain(struct gspca_dev *gspca_dev)
{
828
	int deadzone, desired_avg_lum;
829 830 831 832 833 834
	struct sd *sd = (struct sd *) gspca_dev;
	int avg_lum = atomic_read(&sd->avg_lum);

	if (avg_lum == -1)
		return;

835 836 837 838 839 840 841 842 843 844
	/* SIF / VGA sensors have a different autoexposure area and thus
	   different avg_lum values for the same picture brightness */
	if (sensor_data[sd->sensor].flags & F_SIF) {
		deadzone = 1000;
		desired_avg_lum = 7000;
	} else {
		deadzone = 3000;
		desired_avg_lum = 23000;
	}

845 846 847
	if (sd->autogain_ignore_frames > 0)
		sd->autogain_ignore_frames--;
	else if (gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
848 849
			sd->brightness * desired_avg_lum / 127,
			deadzone, GAIN_KNEE, EXPOSURE_KNEE)) {
850 851
		PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d\n",
			(int)sd->gain, (int)sd->exposure);
852
		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
853
	}
854 855 856 857 858 859 860 861
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam;
862 863 864 865

	reg_r(gspca_dev, 0x00);
	if (gspca_dev->usb_buf[0] != 0x10)
		return -ENODEV;
866

867
	/* copy the webcam info from the device id */
868 869 870
	sd->sensor = id->driver_info >> 8;
	sd->bridge = id->driver_info & 0xff;
	gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
871 872 873

	cam = &gspca_dev->cam;
	cam->epaddr = 0x01;
874
	if (!(sensor_data[sd->sensor].flags & F_SIF)) {
875
		cam->cam_mode = vga_mode;
876
		cam->nmodes = ARRAY_SIZE(vga_mode);
877 878
	} else {
		cam->cam_mode = sif_mode;
879
		cam->nmodes = ARRAY_SIZE(sif_mode);
880
	}
881 882 883
	sd->brightness = BRIGHTNESS_DEF;
	sd->gain = GAIN_DEF;
	sd->exposure = EXPOSURE_DEF;
884 885 886 887
	if (gspca_dev->ctrl_dis & (1 << AUTOGAIN_IDX))
		sd->autogain = 0; /* Disable do_autogain callback */
	else
		sd->autogain = AUTOGAIN_DEF;
888
	sd->freq = FREQ_DEF;
889

890 891 892
	return 0;
}

893 894
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
895
{
896 897 898 899
	const __u8 stop = 0x09; /* Disable stream turn of LED */

	reg_w(gspca_dev, 0x01, &stop, 1);

900 901 902 903
	return 0;
}

/* -- start the camera -- */
904
static int sd_start(struct gspca_dev *gspca_dev)
905 906
{
	struct sd *sd = (struct sd *) gspca_dev;
907
	struct cam *cam = &gspca_dev->cam;
908
	int mode, l;
909
	const __u8 *sn9c10x;
910
	__u8 reg12_19[8];
911

912
	mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
913 914
	sn9c10x = sensor_data[sd->sensor].bridge_init[sd->bridge];
	l = sensor_data[sd->sensor].bridge_init_size[sd->bridge];
915 916
	memcpy(reg12_19, &sn9c10x[0x12 - 1], 8);
	reg12_19[6] = sn9c10x[0x18 - 1] | (mode << 4);
917
	/* Special cases where reg 17 and or 19 value depends on mode */
918 919
	switch (sd->sensor) {
	case SENSOR_PAS202:
920
		reg12_19[5] = mode ? 0x24 : 0x20;
921
		break;
922 923 924 925
	case SENSOR_TAS5130CXX:
		/* probably not mode specific at all most likely the upper
		   nibble of 0x19 is exposure (clock divider) just as with
		   the tas5110, we need someone to test this. */
926
		reg12_19[7] = mode ? 0x23 : 0x43;
927 928
		break;
	}
929
	/* Disable compression when the raw bayer format has been selected */
930 931 932 933 934 935 936 937 938 939
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
		reg12_19[6] &= ~0x80;

	/* Vga mode emulation on SIF sensor? */
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
		reg12_19[0] += 16; /* 0x12: hstart adjust */
		reg12_19[1] += 24; /* 0x13: vstart adjust */
		reg12_19[3] = 320 / 16; /* 0x15: hsize */
		reg12_19[4] = 240 / 16; /* 0x16: vsize */
	}
940

941
	/* reg 0x01 bit 2 video transfert on */
942
	reg_w(gspca_dev, 0x01, &sn9c10x[0x01 - 1], 1);
943
	/* reg 0x17 SensorClk enable inv Clk 0x60 */
944
	reg_w(gspca_dev, 0x17, &sn9c10x[0x17 - 1], 1);
945
	/* Set the registers from the template */
946
	reg_w(gspca_dev, 0x01, sn9c10x, l);
947 948 949 950 951 952 953 954 955 956

	/* Init the sensor */
	i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
			sensor_data[sd->sensor].sensor_init_size);
	if (sensor_data[sd->sensor].sensor_bridge_init[sd->bridge])
		i2c_w_vector(gspca_dev,
			sensor_data[sd->sensor].sensor_bridge_init[sd->bridge],
			sensor_data[sd->sensor].sensor_bridge_init_size[
				sd->bridge]);

957
	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
958
	reg_w(gspca_dev, 0x15, &reg12_19[3], 2);
959
	/* compression register */
960
	reg_w(gspca_dev, 0x18, &reg12_19[6], 1);
961
	/* H_start */
962
	reg_w(gspca_dev, 0x12, &reg12_19[0], 1);
963
	/* V_START */
964
	reg_w(gspca_dev, 0x13, &reg12_19[1], 1);
965 966
	/* reset 0x17 SensorClk enable inv Clk 0x60 */
				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
967
	reg_w(gspca_dev, 0x17, &reg12_19[5], 1);
968
	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
969
	reg_w(gspca_dev, 0x19, &reg12_19[7], 1);
970
	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
971
	reg_w(gspca_dev, 0x1c, &sn9c10x[0x1c - 1], 4);
972
	/* Enable video transfert */
973
	reg_w(gspca_dev, 0x01, &sn9c10x[0], 1);
974
	/* Compression */
975
	reg_w(gspca_dev, 0x18, &reg12_19[6], 2);
976 977
	msleep(20);

978 979
	sd->reg11 = -1;

980
	setgain(gspca_dev);
981
	setbrightness(gspca_dev);
982
	setexposure(gspca_dev);
983
	setfreq(gspca_dev);
984

985
	sd->frames_to_drop = 0;
986 987
	sd->autogain_ignore_frames = 0;
	atomic_set(&sd->avg_lum, -1);
988
	return 0;
989 990 991 992
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
993
	sd_init(gspca_dev);
994 995 996 997 998 999 1000
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			struct gspca_frame *frame,	/* target */
			unsigned char *data,		/* isoc packet */
			int len)			/* iso packet length */
{
1001
	int i;
1002
	struct sd *sd = (struct sd *) gspca_dev;
1003
	struct cam *cam = &gspca_dev->cam;
1004

1005 1006 1007 1008 1009 1010 1011 1012 1013
	/* frames start with:
	 *	ff ff 00 c4 c4 96	synchro
	 *	00		(unknown)
	 *	xx		(frame sequence / size / compression)
	 *	(xx)		(idem - extra byte for sn9c103)
	 *	ll mm		brightness sum inside auto exposure
	 *	ll mm		brightness sum outside auto exposure
	 *	(xx xx xx xx xx)	audio values for snc103
	 */
1014
	if (len > 6 && len < 24) {
1015 1016 1017 1018 1019 1020 1021
		for (i = 0; i < len - 6; i++) {
			if (data[0 + i] == 0xff
			    && data[1 + i] == 0xff
			    && data[2 + i] == 0x00
			    && data[3 + i] == 0xc4
			    && data[4 + i] == 0xc4
			    && data[5 + i] == 0x96) {	/* start of frame */
1022 1023
				int lum = -1;
				int pkt_type = LAST_PACKET;
1024 1025
				int fr_h_sz = (sd->bridge == BRIDGE_103) ?
					18 : 12;
1026

1027
				if (len - i < fr_h_sz) {
1028 1029
					PDEBUG(D_STREAM, "packet too short to"
						" get avg brightness");
1030
				} else if (sd->bridge == BRIDGE_103) {
1031 1032
					lum = data[i + 9] +
						(data[i + 10] << 8);
1033 1034
				} else {
					lum = data[i + 8] + (data[i + 9] << 8);
1035
				}
1036 1037 1038 1039 1040 1041 1042 1043
				/* When exposure changes midway a frame we
				   get a lum of 0 in this case drop 2 frames
				   as the frames directly after an exposure
				   change have an unstable image. Sometimes lum
				   *really* is 0 (cam used in low light with
				   low exposure setting), so do not drop frames
				   if the previous lum was 0 too. */
				if (lum == 0 && sd->prev_avg_lum != 0) {
1044 1045
					lum = -1;
					sd->frames_to_drop = 2;
1046 1047 1048
					sd->prev_avg_lum = 0;
				} else
					sd->prev_avg_lum = lum;
1049 1050 1051 1052 1053 1054 1055 1056 1057
				atomic_set(&sd->avg_lum, lum);

				if (sd->frames_to_drop) {
					sd->frames_to_drop--;
					pkt_type = DISCARD_PACKET;
				}

				frame = gspca_frame_add(gspca_dev, pkt_type,
							frame, data, 0);
1058 1059
				data += i + fr_h_sz;
				len -= i + fr_h_sz;
1060 1061 1062 1063 1064 1065
				gspca_frame_add(gspca_dev, FIRST_PACKET,
						frame, data, len);
				return;
			}
		}
	}
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
		/* In raw mode we sometimes get some garbage after the frame
		   ignore this */
		int used = frame->data_end - frame->data;
		int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;

		if (used + len > size)
			len = size - used;
	}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	gspca_frame_add(gspca_dev, INTER_PACKET,
			frame, data, len);
}

static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->brightness = val;
	if (gspca_dev->streaming)
		setbrightness(gspca_dev);
	return 0;
}

static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->brightness;
	return 0;
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->gain = val;
	if (gspca_dev->streaming)
		setgain(gspca_dev);
	return 0;
}

static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1110 1111 1112
{
	struct sd *sd = (struct sd *) gspca_dev;

1113 1114 1115 1116 1117 1118 1119 1120 1121
	*val = sd->gain;
	return 0;
}

static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->exposure = val;
1122
	if (gspca_dev->streaming)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		setexposure(gspca_dev);
	return 0;
}

static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->exposure;
	return 0;
}

static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->autogain = val;
	/* when switching to autogain set defaults to make sure
	   we are on a valid point of the autogain gain /
	   exposure knee graph, and give this change time to
	   take effect before doing autogain. */
	if (sd->autogain) {
		sd->exposure = EXPOSURE_DEF;
		sd->gain = GAIN_DEF;
		if (gspca_dev->streaming) {
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
			setexposure(gspca_dev);
			setgain(gspca_dev);
		}
	}

1154 1155 1156
	return 0;
}

1157
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1158 1159 1160
{
	struct sd *sd = (struct sd *) gspca_dev;

1161
	*val = sd->autogain;
1162 1163 1164
	return 0;
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->freq = val;
	if (gspca_dev->streaming)
		setfreq(gspca_dev);
	return 0;
}

static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->freq;
	return 0;
}

static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

1204
/* sub-driver description */
1205
static const struct sd_desc sd_desc = {
1206 1207 1208 1209
	.name = MODULE_NAME,
	.ctrls = sd_ctrls,
	.nctrls = ARRAY_SIZE(sd_ctrls),
	.config = sd_config,
1210
	.init = sd_init,
1211 1212 1213
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
1214
	.querymenu = sd_querymenu,
1215
	.dq_callback = do_autogain,
1216 1217 1218
};

/* -- module initialisation -- */
1219 1220 1221
#define SB(sensor, bridge) \
	.driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge

1222

1223
static __devinitdata struct usb_device_id device_table[] = {
1224 1225
	{USB_DEVICE(0x0c45, 0x6001), SB(TAS5110, 102)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6005), SB(TAS5110, 101)}, /* TAS5110C1B */
1226
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1227
	{USB_DEVICE(0x0c45, 0x6007), SB(TAS5110, 101)}, /* TAS5110D */
1228 1229
	{USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1230
#endif
1231
	{USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1232
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1233 1234 1235 1236 1237 1238
	{USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
	{USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
	{USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
	{USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1239
#endif
1240
	{USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1241
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1242
	{USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1243
#endif
1244
	{USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1245
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1246
	{USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1247
#endif
1248
	{USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
static int sd_probe(struct usb_interface *intf,
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
1266 1267 1268 1269
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
#endif
1270 1271 1272 1273 1274 1275 1276
};

/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
	if (usb_register(&sd_driver) < 0)
		return -1;
1277
	PDEBUG(D_PROBE, "registered");
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	return 0;
}
static void __exit sd_mod_exit(void)
{
	usb_deregister(&sd_driver);
	PDEBUG(D_PROBE, "deregistered");
}

module_init(sd_mod_init);
module_exit(sd_mod_exit);