sonixb.c 36.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 *		sonix sn9c102 (bayer) library
 *		Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
 * Add Pas106 Stefano Mozzi (C) 2004
 *
 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Some documentation on known sonixb registers:

Reg	Use
0x10	high nibble red gain low nibble blue gain
0x11	low nibble green gain
0x12	hstart
0x13	vstart
0x15	hsize (hsize = register-value * 16)
0x16	vsize (vsize = register-value * 16)
0x17	bit 0 toggle compression quality (according to sn9c102 driver)
0x18	bit 7 enables compression, bit 4-5 set image down scaling:
	00 scale 1, 01 scale 1/2, 10, scale 1/4
0x19	high-nibble is sensor clock divider, changes exposure on sensors which
	use a clock generated by the bridge. Some sensors have their own clock.
0x1c	auto_exposure area (for avg_lum) startx (startx = register-value * 32)
0x1d	auto_exposure area (for avg_lum) starty (starty = register-value * 32)
0x1e	auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
0x1f	auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
*/

43 44 45 46 47 48 49 50 51 52 53
#define MODULE_NAME "sonixb"

#include "gspca.h"

MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
MODULE_LICENSE("GPL");

/* specific webcam descriptor */
struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */
54 55
	atomic_t avg_lum;

56 57
	unsigned char gain;
	unsigned char exposure;
58
	unsigned char brightness;
59 60
	unsigned char autogain;
	unsigned char autogain_ignore_frames;
61
	unsigned char frames_to_drop;
62
	unsigned char freq;		/* light freq filter setting */
63

64 65 66 67 68 69
	__u8 bridge;			/* Type of bridge */
#define BRIDGE_101 0
#define BRIDGE_102 0 /* We make no difference between 101 and 102 */
#define BRIDGE_103 1

	__u8 sensor;			/* Type of image sensor chip */
70 71 72
#define SENSOR_HV7131R 0
#define SENSOR_OV6650 1
#define SENSOR_OV7630 2
73 74 75 76 77
#define SENSOR_PAS106 3
#define SENSOR_PAS202 4
#define SENSOR_TAS5110 5
#define SENSOR_TAS5130CXX 6
	__u8 reg11;
78 79
};

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
typedef const __u8 sensor_init_t[8];

struct sensor_data {
	const __u8 *bridge_init[2];
	int bridge_init_size[2];
	sensor_init_t *sensor_init;
	int sensor_init_size;
	sensor_init_t *sensor_bridge_init[2];
	int sensor_bridge_init_size[2];
	int flags;
	unsigned ctrl_dis;
	__u8 sensor_addr;
};

/* sensor_data flags */
95
#define F_GAIN 0x01		/* has gain */
96
#define F_SIF  0x02		/* sif or vga */
97 98 99

/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
#define MODE_RAW 0x10		/* raw bayer mode */
100
#define MODE_REDUCED_SIF 0x20	/* vga mode (320x240 / 160x120) on sif cam */
101 102 103 104 105

/* ctrl_dis helper macros */
#define NO_EXPO ((1 << EXPOSURE_IDX) | (1 << AUTOGAIN_IDX))
#define NO_FREQ (1 << FREQ_IDX)
#define NO_BRIGHTNESS (1 << BRIGHTNESS_IDX)
106

107 108 109 110 111 112 113 114 115
#define COMP2 0x8f
#define COMP 0xc7		/* 0x87 //0x07 */
#define COMP1 0xc9		/* 0x89 //0x09 */

#define MCK_INIT 0x63
#define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/

#define SYS_CLK 0x04

116 117 118 119 120 121 122 123 124 125 126 127
#define SENS(bridge_1, bridge_3, sensor, sensor_1, \
	sensor_3, _flags, _ctrl_dis, _sensor_addr) \
{ \
	.bridge_init = { bridge_1, bridge_3 }, \
	.bridge_init_size = { sizeof(bridge_1), sizeof(bridge_3) }, \
	.sensor_init = sensor, \
	.sensor_init_size = sizeof(sensor), \
	.sensor_bridge_init = { sensor_1, sensor_3,}, \
	.sensor_bridge_init_size = { sizeof(sensor_1), sizeof(sensor_3)}, \
	.flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
}

128 129 130 131 132 133
/* We calculate the autogain at the end of the transfer of a frame, at this
   moment a frame with the old settings is being transmitted, and a frame is
   being captured with the old settings. So if we adjust the autogain we must
   ignore atleast the 2 next frames for the new settings to come into effect
   before doing any other adjustments */
#define AUTOGAIN_IGNORE_FRAMES 3
134
#define AUTOGAIN_DEADZONE 1000
135 136
#define DESIRED_AVG_LUM 7000

137 138 139
/* V4L2 controls supported by the driver */
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
140 141 142 143 144 145
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
146 147
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
148 149

static struct ctrl sd_ctrls[] = {
150
#define BRIGHTNESS_IDX 0
151 152 153 154 155 156 157 158
	{
	    {
		.id      = V4L2_CID_BRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Brightness",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
159 160
#define BRIGHTNESS_DEF 127
		.default_value = BRIGHTNESS_DEF,
161 162 163 164
	    },
	    .set = sd_setbrightness,
	    .get = sd_getbrightness,
	},
165
#define GAIN_IDX 1
166 167
	{
	    {
168
		.id      = V4L2_CID_GAIN,
169
		.type    = V4L2_CTRL_TYPE_INTEGER,
170
		.name    = "Gain",
171
		.minimum = 0,
172
		.maximum = 255,
173
		.step    = 1,
174 175
#define GAIN_DEF 127
#define GAIN_KNEE 200
176
		.default_value = GAIN_DEF,
177
	    },
178 179 180
	    .set = sd_setgain,
	    .get = sd_getgain,
	},
181
#define EXPOSURE_IDX 2
182 183 184 185 186
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
187 188
#define EXPOSURE_DEF  16 /*  32 ms / 30 fps */
#define EXPOSURE_KNEE 50 /* 100 ms / 10 fps */
189
			.minimum = 0,
190
			.maximum = 255,
191 192 193 194 195 196 197
			.step = 1,
			.default_value = EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
198
#define AUTOGAIN_IDX 3
199 200 201 202 203 204 205 206
	{
		{
			.id = V4L2_CID_AUTOGAIN,
			.type = V4L2_CTRL_TYPE_BOOLEAN,
			.name = "Automatic Gain (and Exposure)",
			.minimum = 0,
			.maximum = 1,
			.step = 1,
207 208
#define AUTOGAIN_DEF 1
			.default_value = AUTOGAIN_DEF,
209 210 211 212
			.flags = 0,
		},
		.set = sd_setautogain,
		.get = sd_getautogain,
213
	},
214
#define FREQ_IDX 4
215 216 217 218 219 220 221 222 223 224 225 226 227 228
	{
		{
			.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
			.type    = V4L2_CTRL_TYPE_MENU,
			.name    = "Light frequency filter",
			.minimum = 0,
			.maximum = 2,	/* 0: 0, 1: 50Hz, 2:60Hz */
			.step    = 1,
#define FREQ_DEF 1
			.default_value = FREQ_DEF,
		},
		.set = sd_setfreq,
		.get = sd_getfreq,
	},
229 230
};

231
static struct v4l2_pix_format vga_mode[] = {
232 233
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
234
		.sizeimage = 160 * 120 * 5 / 4,
235 236
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2 | MODE_RAW},
237 238
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
239
		.sizeimage = 160 * 120 * 5 / 4,
240 241 242 243
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
244
		.sizeimage = 320 * 240 * 5 / 4,
245 246 247 248
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 640,
249
		.sizeimage = 640 * 480 * 5 / 4,
250 251
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
252
};
253
static struct v4l2_pix_format sif_mode[] = {
254 255 256 257 258 259 260 261 262 263
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_REDUCED_SIF},
264 265
	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 176,
266
		.sizeimage = 176 * 144 * 5 / 4,
267 268
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW},
269 270
	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 176,
271
		.sizeimage = 176 * 144 * 5 / 4,
272 273
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
274 275 276 277 278
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0 | MODE_REDUCED_SIF},
279 280
	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 352,
281
		.sizeimage = 352 * 288 * 5 / 4,
282 283
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
284 285 286 287 288
};

static const __u8 initHv7131[] = {
	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
289
	0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
290 291 292 293 294 295 296 297 298 299 300 301 302
	0x28, 0x1e, 0x60, 0x8a, 0x20,
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c
};
static const __u8 hv7131_sensor_init[][8] = {
	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
};
static const __u8 initOv6650[] = {
	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
303
	0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
304
	0x10, 0x1d, 0x10, 0x02, 0x02, 0x09, 0x07
305 306 307 308 309 310
};
static const __u8 ov6650_sensor_init[][8] =
{
	/* Bright, contrast, etc are set througth SCBB interface.
	 * AVCAP on win2 do not send any data on this 	controls. */
	/* Anyway, some registers appears to alter bright and constrat */
311 312

	/* Reset sensor */
313
	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
314
	/* Set clock register 0x11 low nibble is clock divider */
315
	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
316
	/* Next some unknown stuff */
317 318 319 320 321 322 323 324
	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
/*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
		 * THIS SET GREEN SCREEN
		 * (pixels could be innverted in decode kind of "brg",
		 * but blue wont be there. Avoid this data ... */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
	{0xa0, 0x60, 0x30, 0x3d, 0x0A, 0xd8, 0xa4, 0x10},
325 326 327 328 329 330 331 332 333
	/* Enable rgb brightness control */
	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
	/* HDG: Note windows uses the line below, which sets both register 0x60
	   and 0x61 I believe these registers of the ov6650 are identical as
	   those of the ov7630, because if this is true the windows settings
	   add a bit additional red gain and a lot additional blue gain, which
	   matches my findings that the windows settings make blue much too
	   blue and red a little too red.
	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
334
	/* Some more unknown stuff */
335 336 337
	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
};
338

339 340 341
static const __u8 initOv7630[] = {
	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
342
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
343
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
344
	0x68, COMP2, MCK_INIT1,				/* r17 .. r19 */
345 346 347 348 349
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c		/* r1a .. r1f */
};
static const __u8 initOv7630_3[] = {
	0x44, 0x44, 0x00, 0x1a, 0x20, 0x20, 0x20, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,	/* r09 .. r10 */
350
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
351
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
352 353 354 355
	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c, 0x00,	/* r1a .. r20 */
	0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, /* r21 .. r28 */
	0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xff  /* r29 .. r30 */
356
};
357
static const __u8 ov7630_sensor_init[][8] = {
358 359 360
	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
/*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
361
	{0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
362 363 364 365 366 367 368
	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
369 370
	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
/*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
371 372 373 374 375 376 377 378
	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
};

379 380 381 382
static const __u8 ov7630_sensor_init_3[][8] = {
	{0xa0, 0x21, 0x13, 0x80, 0x00,	0x00, 0x00, 0x10},
};

383 384 385
static const __u8 initPas106[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
386
	0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
387
	0x16, 0x12, 0x24, COMP1, MCK_INIT1,
388
	0x18, 0x10, 0x02, 0x02, 0x09, 0x07
389 390
};
/* compression 0x86 mckinit1 0x2b */
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static const __u8 pas106_sensor_init[][8] = {
	/* Pixel Clock Divider 6 */
	{ 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time MSB (also seen as 0x12) */
	{ 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time LSB (also seen as 0x05) */
	{ 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Line Offset (also seen as 0x6d) */
	{ 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Pixel Offset (also seen as 0xb1) */
	{ 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Sign (also seen 0x00) */
	{ 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Level (also seen 0x01) */
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain B Pixel 5 a */
	{ 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G1 Pixel 1 5 */
	{ 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G2 Pixel 1 0 5 */
	{ 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain R Pixel 3 1 */
	{ 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color GainH  Pixel */
	{ 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* Global Gain */
	{ 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
	/* Contrast */
	{ 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* H&V synchro polarity */
	{ 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* DAC scale */
	{ 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
	/* Validate Settings */
	{ 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
431
};
432

433 434 435
static const __u8 initPas202[] = {
	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
436
	0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
437
	0x28, 0x1e, 0x28, 0x89, 0x20,
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	0x00, 0x00, 0x02, 0x03, 0x0f, 0x0c
};
static const __u8 pas202_sensor_init[][8] = {
	{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10},
	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
	{0xd0, 0x40, 0x0C, 0x00, 0x0C, 0x00, 0x32, 0x10},
	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x10},
	{0xb0, 0x40, 0x0e, 0x00, 0x3d, 0x00, 0x63, 0x10},

	{0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x10, 0x08, 0x3d, 0x00, 0x63, 0x15},
	{0xa0, 0x40, 0x02, 0x04, 0x3d, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
	{0xb0, 0x40, 0x0e, 0x00, 0x31, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15},
	{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
};

static const __u8 initTas5110[] = {
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
467
	0x00, 0x01, 0x00, 0x45, 0x09, 0x0a,
468 469 470 471 472 473 474 475 476 477 478 479
	0x16, 0x12, 0x60, 0x86, 0x2b,
	0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
};
static const __u8 tas5110_sensor_init[][8] = {
	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17},
};

static const __u8 initTas5130[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
480
	0x00, 0x01, 0x00, 0x68, 0x0c, 0x0a,
481 482 483 484 485 486 487 488 489 490 491
	0x28, 0x1e, 0x60, COMP, MCK_INIT,
	0x18, 0x10, 0x04, 0x03, 0x11, 0x0c
};
static const __u8 tas5130_sensor_init[][8] = {
/* 	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
					* shutter 0x47 short exposure? */
	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
					/* shutter 0x01 long exposure */
	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
};

492 493
struct sensor_data sensor_data[] = {
SENS(initHv7131, NULL, hv7131_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ, 0),
494
SENS(initOv6650, NULL, ov6650_sensor_init, NULL, NULL, F_GAIN|F_SIF, 0, 0x60),
495 496 497 498
SENS(initOv7630, initOv7630_3, ov7630_sensor_init, NULL, ov7630_sensor_init_3,
	F_GAIN, 0, 0x21),
SENS(initPas106, NULL, pas106_sensor_init, NULL, NULL, F_SIF, NO_EXPO|NO_FREQ,
	0),
499
SENS(initPas202, initPas202, pas202_sensor_init, NULL, NULL, 0,
500
	NO_EXPO|NO_FREQ, 0),
501
SENS(initTas5110, NULL, tas5110_sensor_init, NULL, NULL, F_GAIN|F_SIF,
502 503 504 505 506
	NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initTas5130, NULL, tas5130_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ,
	0),
};

507 508 509
/* get one byte in gspca_dev->usb_buf */
static void reg_r(struct gspca_dev *gspca_dev,
		  __u16 value)
510
{
511 512
	usb_control_msg(gspca_dev->dev,
			usb_rcvctrlpipe(gspca_dev->dev, 0),
513 514 515 516
			0,			/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
517
			gspca_dev->usb_buf, 1,
518 519 520
			500);
}

521 522 523 524
static void reg_w(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
525
{
526
#ifdef GSPCA_DEBUG
527
	if (len > USB_BUF_SZ) {
528 529 530 531
		PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
		return;
	}
#endif
532 533 534 535 536 537 538 539 540 541 542 543
	memcpy(gspca_dev->usb_buf, buffer, len);
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
			gspca_dev->usb_buf, len,
			500);
}

static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
544 545 546 547
{
	int retry = 60;

	/* is i2c ready */
548
	reg_w(gspca_dev, 0x08, buffer, 8);
549 550
	while (retry--) {
		msleep(10);
551
		reg_r(gspca_dev, 0x08);
552 553 554
		if (gspca_dev->usb_buf[0] & 0x04) {
			if (gspca_dev->usb_buf[0] & 0x08)
				return -1;
555
			return 0;
556
		}
557 558 559 560
	}
	return -1;
}

561
static void i2c_w_vector(struct gspca_dev *gspca_dev,
562 563 564
			const __u8 buffer[][8], int len)
{
	for (;;) {
565
		reg_w(gspca_dev, 0x08, *buffer, 8);
566 567 568 569 570 571 572 573 574 575 576 577 578
		len -= 8;
		if (len <= 0)
			break;
		buffer++;
	}
}

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 value;

	switch (sd->sensor) {
579
	case  SENSOR_OV6650:
580 581
	case  SENSOR_OV7630: {
		__u8 i2cOV[] =
582
			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
583 584

		/* change reg 0x06 */
585
		i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
586
		i2cOV[3] = sd->brightness;
587
		if (i2c_w(gspca_dev, i2cOV) < 0)
588 589 590 591 592 593 594 595 596
			goto err;
		break;
	    }
	case SENSOR_PAS106: {
		__u8 i2c1[] =
			{0xa1, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14};

		i2c1[3] = sd->brightness >> 3;
		i2c1[2] = 0x0e;
597
		if (i2c_w(gspca_dev, i2c1) < 0)
598 599 600
			goto err;
		i2c1[3] = 0x01;
		i2c1[2] = 0x13;
601
		if (i2c_w(gspca_dev, i2c1) < 0)
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
			goto err;
		break;
	    }
	case SENSOR_PAS202: {
		/* __u8 i2cpexpo1[] =
			{0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x16}; */
		__u8 i2cpexpo[] =
			{0xb0, 0x40, 0x0e, 0x01, 0xab, 0x00, 0x63, 0x16};
		__u8 i2cp202[] =
			{0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15};
		static __u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16};

		/* change reg 0x10 */
		i2cpexpo[4] = 0xff - sd->brightness;
617
/*		if(i2c_w(gspca_dev,i2cpexpo1) < 0)
618
			goto err; */
619
/*		if(i2c_w(gspca_dev,i2cpdoit) < 0)
620
			goto err; */
621
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
622
			goto err;
623
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
624 625
			goto err;
		i2cp202[3] = sd->brightness >> 3;
626
		if (i2c_w(gspca_dev, i2cp202) < 0)
627
			goto err;
628
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
629 630 631
			goto err;
		break;
	    }
632
	case SENSOR_TAS5130CXX: {
633 634 635 636 637 638
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

		value = 0xff - sd->brightness;
		i2c[4] = value;
		PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
639
		if (i2c_w(gspca_dev, i2c) < 0)
640 641 642 643 644 645 646 647
			goto err;
		break;
	    }
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error brightness");
}
648 649 650 651

static void setsensorgain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
652
	unsigned char gain = sd->gain;
653 654 655 656 657 658 659

	switch (sd->sensor) {

	case SENSOR_TAS5110: {
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

660
		i2c[4] = 255 - gain;
661
		if (i2c_w(gspca_dev, i2c) < 0)
662
			goto err;
663 664
		break;
	    }
665

666 667 668
	case SENSOR_OV6650:
		gain >>= 1;
		/* fall thru */
669
	case SENSOR_OV7630: {
670
		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
671

672
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
673
		i2c[3] = gain >> 2;
674 675 676 677
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
678 679 680 681 682 683 684
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error gain");
}

static void setgain(struct gspca_dev *gspca_dev)
685 686 687 688 689
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 gain;
	__u8 rgb_value;

690
	gain = sd->gain >> 4;
691

692 693
	/* red and blue gain */
	rgb_value = gain << 4 | gain;
694
	reg_w(gspca_dev, 0x10, &rgb_value, 1);
695 696
	/* green gain */
	rgb_value = gain;
697
	reg_w(gspca_dev, 0x11, &rgb_value, 1);
698

699
	if (sensor_data[sd->sensor].flags & F_GAIN)
700 701 702 703 704 705 706 707 708 709 710 711 712 713
		setsensorgain(gspca_dev);
}

static void setexposure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
	case SENSOR_TAS5110: {
		__u8 reg;

		/* register 19's high nibble contains the sn9c10x clock divider
		   The high nibble configures the no fps according to the
		   formula: 60 / high_nibble. With a maximum of 30 fps */
714 715 716 717
		reg = 120 * sd->exposure / 1000;
		if (reg < 2)
			reg = 2;
		else if (reg > 15)
718 719
			reg = 15;
		reg = (reg << 4) | 0x0b;
720
		reg_w(gspca_dev, 0x19, &reg, 1);
721 722
		break;
	    }
723
	case SENSOR_OV6650:
724
	case SENSOR_OV7630: {
725 726
		/* The ov6650 / ov7630 have 2 registers which both influence
		   exposure, register 11, whose low nibble sets the nr off fps
727 728 729 730 731 732 733 734 735 736 737 738
		   according to: fps = 30 / (low_nibble + 1)

		   The fps configures the maximum exposure setting, but it is
		   possible to use less exposure then what the fps maximum
		   allows by setting register 10. register 10 configures the
		   actual exposure as quotient of the full exposure, with 0
		   being no exposure at all (not very usefull) and reg10_max
		   being max exposure possible at that framerate.

		   The code maps our 0 - 510 ms exposure ctrl to these 2
		   registers, trying to keep fps as high as possible.
		*/
739 740 741
		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
		int reg10, reg11, reg10_max;

742 743 744 745 746
		/* ov6645 datasheet says reg10_max is 9a, but that uses
		   tline * 2 * reg10 as formula for calculating texpo, the
		   ov6650 probably uses the same formula as the 7730 which uses
		   tline * 4 * reg10, which explains why the reg10max we've
		   found experimentally for the ov6650 is exactly half that of
747
		   the ov6645. The ov7630 datasheet says the max is 0x41. */
748 749 750 751 752
		if (sd->sensor == SENSOR_OV6650) {
			reg10_max = 0x4d;
			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
		} else
			reg10_max = 0x41;
753

754 755 756 757 758 759
		reg11 = (60 * sd->exposure + 999) / 1000;
		if (reg11 < 1)
			reg11 = 1;
		else if (reg11 > 16)
			reg11 = 16;

760 761 762 763 764
		/* In 640x480, if the reg11 has less than 3, the image is
		   unstable (not enough bandwidth). */
		if (gspca_dev->width == 640 && reg11 < 3)
			reg11 = 3;

765 766 767 768
		/* frame exposure time in ms = 1000 * reg11 / 30    ->
		reg10 = sd->exposure * 2 * reg10_max / (1000 * reg11 / 30) */
		reg10 = (sd->exposure * 60 * reg10_max) / (1000 * reg11);

769 770 771 772 773 774
		/* Don't allow this to get below 10 when using autogain, the
		   steps become very large (relatively) when below 10 causing
		   the image to oscilate from much too dark, to much too bright
		   and back again. */
		if (sd->autogain && reg10 < 10)
			reg10 = 10;
775 776 777 778
		else if (reg10 > reg10_max)
			reg10 = reg10_max;

		/* Write reg 10 and reg11 low nibble */
779
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
780 781
		i2c[3] = reg10;
		i2c[4] |= reg11 - 1;
782 783 784 785 786 787 788 789

		/* If register 11 didn't change, don't change it */
		if (sd->reg11 == reg11 )
			i2c[0] = 0xa0;

		if (i2c_w(gspca_dev, i2c) == 0)
			sd->reg11 = reg11;
		else
790
			PDEBUG(D_ERR, "i2c error exposure");
791 792
		break;
	    }
793 794 795
	}
}

796 797 798 799 800
static void setfreq(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
801
	case SENSOR_OV6650:
802
	case SENSOR_OV7630: {
803
		/* Framerate adjust register for artificial light 50 hz flicker
804 805 806
		   compensation, for the ov6650 this is identical to ov6630
		   0x2b register, see ov6630 datasheet.
		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
807
		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
808 809 810 811 812 813 814
		switch (sd->freq) {
		default:
/*		case 0:			 * no filter*/
/*		case 2:			 * 60 hz */
			i2c[3] = 0;
			break;
		case 1:			/* 50 hz */
815 816
			i2c[3] = (sd->sensor == SENSOR_OV6650)
					? 0x4f : 0x8a;
817 818
			break;
		}
819
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
820 821 822 823 824 825 826
		if (i2c_w(gspca_dev, i2c) < 0)
			PDEBUG(D_ERR, "i2c error setfreq");
		break;
	    }
	}
}

827 828 829 830 831 832 833 834 835 836 837 838
static void do_autogain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	int avg_lum = atomic_read(&sd->avg_lum);

	if (avg_lum == -1)
		return;

	if (sd->autogain_ignore_frames > 0)
		sd->autogain_ignore_frames--;
	else if (gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
			sd->brightness * DESIRED_AVG_LUM / 127,
839 840 841
			AUTOGAIN_DEADZONE, GAIN_KNEE, EXPOSURE_KNEE)) {
		PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d\n",
			(int)sd->gain, (int)sd->exposure);
842
		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
843
	}
844 845 846 847 848 849 850 851
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam;
852 853 854 855

	reg_r(gspca_dev, 0x00);
	if (gspca_dev->usb_buf[0] != 0x10)
		return -ENODEV;
856

857
	/* copy the webcam info from the device id */
858 859 860
	sd->sensor = id->driver_info >> 8;
	sd->bridge = id->driver_info & 0xff;
	gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
861 862 863

	cam = &gspca_dev->cam;
	cam->epaddr = 0x01;
864
	if (!(sensor_data[sd->sensor].flags & F_SIF)) {
865
		cam->cam_mode = vga_mode;
866
		cam->nmodes = ARRAY_SIZE(vga_mode);
867 868
	} else {
		cam->cam_mode = sif_mode;
869
		cam->nmodes = ARRAY_SIZE(sif_mode);
870
	}
871 872 873
	sd->brightness = BRIGHTNESS_DEF;
	sd->gain = GAIN_DEF;
	sd->exposure = EXPOSURE_DEF;
874 875 876 877
	if (gspca_dev->ctrl_dis & (1 << AUTOGAIN_IDX))
		sd->autogain = 0; /* Disable do_autogain callback */
	else
		sd->autogain = AUTOGAIN_DEF;
878
	sd->freq = FREQ_DEF;
879

880 881 882
	return 0;
}

883 884
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
885
{
886 887 888 889
	const __u8 stop = 0x09; /* Disable stream turn of LED */

	reg_w(gspca_dev, 0x01, &stop, 1);

890 891 892 893 894 895 896
	return 0;
}

/* -- start the camera -- */
static void sd_start(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
897
	struct cam *cam = &gspca_dev->cam;
898
	int mode, l;
899
	const __u8 *sn9c10x;
900
	__u8 reg12_19[8];
901

902
	mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
903 904
	sn9c10x = sensor_data[sd->sensor].bridge_init[sd->bridge];
	l = sensor_data[sd->sensor].bridge_init_size[sd->bridge];
905 906
	memcpy(reg12_19, &sn9c10x[0x12 - 1], 8);
	reg12_19[6] = sn9c10x[0x18 - 1] | (mode << 4);
907
	/* Special cases where reg 17 and or 19 value depends on mode */
908 909
	switch (sd->sensor) {
	case SENSOR_PAS202:
910
		reg12_19[5] = mode ? 0x24 : 0x20;
911
		break;
912 913 914 915
	case SENSOR_TAS5130CXX:
		/* probably not mode specific at all most likely the upper
		   nibble of 0x19 is exposure (clock divider) just as with
		   the tas5110, we need someone to test this. */
916
		reg12_19[7] = mode ? 0x23 : 0x43;
917 918
		break;
	}
919
	/* Disable compression when the raw bayer format has been selected */
920 921 922 923 924 925 926 927 928 929
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
		reg12_19[6] &= ~0x80;

	/* Vga mode emulation on SIF sensor? */
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
		reg12_19[0] += 16; /* 0x12: hstart adjust */
		reg12_19[1] += 24; /* 0x13: vstart adjust */
		reg12_19[3] = 320 / 16; /* 0x15: hsize */
		reg12_19[4] = 240 / 16; /* 0x16: vsize */
	}
930

931
	/* reg 0x01 bit 2 video transfert on */
932
	reg_w(gspca_dev, 0x01, &sn9c10x[0x01 - 1], 1);
933
	/* reg 0x17 SensorClk enable inv Clk 0x60 */
934
	reg_w(gspca_dev, 0x17, &sn9c10x[0x17 - 1], 1);
935
	/* Set the registers from the template */
936
	reg_w(gspca_dev, 0x01, sn9c10x, l);
937 938 939 940 941 942 943 944 945 946

	/* Init the sensor */
	i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
			sensor_data[sd->sensor].sensor_init_size);
	if (sensor_data[sd->sensor].sensor_bridge_init[sd->bridge])
		i2c_w_vector(gspca_dev,
			sensor_data[sd->sensor].sensor_bridge_init[sd->bridge],
			sensor_data[sd->sensor].sensor_bridge_init_size[
				sd->bridge]);

947
	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
948
	reg_w(gspca_dev, 0x15, &reg12_19[3], 2);
949
	/* compression register */
950
	reg_w(gspca_dev, 0x18, &reg12_19[6], 1);
951
	/* H_start */
952
	reg_w(gspca_dev, 0x12, &reg12_19[0], 1);
953
	/* V_START */
954
	reg_w(gspca_dev, 0x13, &reg12_19[1], 1);
955 956
	/* reset 0x17 SensorClk enable inv Clk 0x60 */
				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
957
	reg_w(gspca_dev, 0x17, &reg12_19[5], 1);
958
	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
959
	reg_w(gspca_dev, 0x19, &reg12_19[7], 1);
960
	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
961
	reg_w(gspca_dev, 0x1c, &sn9c10x[0x1c - 1], 4);
962
	/* Enable video transfert */
963
	reg_w(gspca_dev, 0x01, &sn9c10x[0], 1);
964
	/* Compression */
965
	reg_w(gspca_dev, 0x18, &reg12_19[6], 2);
966 967
	msleep(20);

968 969
	sd->reg11 = -1;

970
	setgain(gspca_dev);
971
	setbrightness(gspca_dev);
972
	setexposure(gspca_dev);
973
	setfreq(gspca_dev);
974

975
	sd->frames_to_drop = 0;
976 977
	sd->autogain_ignore_frames = 0;
	atomic_set(&sd->avg_lum, -1);
978 979 980 981
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
982
	sd_init(gspca_dev);
983 984 985 986 987 988 989
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			struct gspca_frame *frame,	/* target */
			unsigned char *data,		/* isoc packet */
			int len)			/* iso packet length */
{
990
	int i;
991
	struct sd *sd = (struct sd *) gspca_dev;
992
	struct cam *cam = &gspca_dev->cam;
993

994 995 996 997 998 999 1000 1001 1002
	/* frames start with:
	 *	ff ff 00 c4 c4 96	synchro
	 *	00		(unknown)
	 *	xx		(frame sequence / size / compression)
	 *	(xx)		(idem - extra byte for sn9c103)
	 *	ll mm		brightness sum inside auto exposure
	 *	ll mm		brightness sum outside auto exposure
	 *	(xx xx xx xx xx)	audio values for snc103
	 */
1003
	if (len > 6 && len < 24) {
1004 1005 1006 1007 1008 1009 1010
		for (i = 0; i < len - 6; i++) {
			if (data[0 + i] == 0xff
			    && data[1 + i] == 0xff
			    && data[2 + i] == 0x00
			    && data[3 + i] == 0xc4
			    && data[4 + i] == 0xc4
			    && data[5 + i] == 0x96) {	/* start of frame */
1011 1012
				int lum = -1;
				int pkt_type = LAST_PACKET;
1013 1014
				int fr_h_sz = (sd->bridge == BRIDGE_103) ?
					18 : 12;
1015

1016
				if (len - i < fr_h_sz) {
1017 1018
					PDEBUG(D_STREAM, "packet too short to"
						" get avg brightness");
1019
				} else if (sd->bridge == BRIDGE_103) {
1020 1021
					lum = data[i + 9] +
						(data[i + 10] << 8);
1022 1023
				} else {
					lum = data[i + 8] + (data[i + 9] << 8);
1024
				}
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
				if (lum == 0) {
					lum = -1;
					sd->frames_to_drop = 2;
				}
				atomic_set(&sd->avg_lum, lum);

				if (sd->frames_to_drop) {
					sd->frames_to_drop--;
					pkt_type = DISCARD_PACKET;
				}

				frame = gspca_frame_add(gspca_dev, pkt_type,
							frame, data, 0);
1038 1039
				data += i + fr_h_sz;
				len -= i + fr_h_sz;
1040 1041 1042 1043 1044 1045
				gspca_frame_add(gspca_dev, FIRST_PACKET,
						frame, data, len);
				return;
			}
		}
	}
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
		/* In raw mode we sometimes get some garbage after the frame
		   ignore this */
		int used = frame->data_end - frame->data;
		int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;

		if (used + len > size)
			len = size - used;
	}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	gspca_frame_add(gspca_dev, INTER_PACKET,
			frame, data, len);
}

static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->brightness = val;
	if (gspca_dev->streaming)
		setbrightness(gspca_dev);
	return 0;
}

static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->brightness;
	return 0;
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->gain = val;
	if (gspca_dev->streaming)
		setgain(gspca_dev);
	return 0;
}

static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1090 1091 1092
{
	struct sd *sd = (struct sd *) gspca_dev;

1093 1094 1095 1096 1097 1098 1099 1100 1101
	*val = sd->gain;
	return 0;
}

static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->exposure = val;
1102
	if (gspca_dev->streaming)
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		setexposure(gspca_dev);
	return 0;
}

static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->exposure;
	return 0;
}

static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->autogain = val;
	/* when switching to autogain set defaults to make sure
	   we are on a valid point of the autogain gain /
	   exposure knee graph, and give this change time to
	   take effect before doing autogain. */
	if (sd->autogain) {
		sd->exposure = EXPOSURE_DEF;
		sd->gain = GAIN_DEF;
		if (gspca_dev->streaming) {
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
			setexposure(gspca_dev);
			setgain(gspca_dev);
		}
	}

1134 1135 1136
	return 0;
}

1137
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1138 1139 1140
{
	struct sd *sd = (struct sd *) gspca_dev;

1141
	*val = sd->autogain;
1142 1143 1144
	return 0;
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->freq = val;
	if (gspca_dev->streaming)
		setfreq(gspca_dev);
	return 0;
}

static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->freq;
	return 0;
}

static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

1184
/* sub-driver description */
1185
static const struct sd_desc sd_desc = {
1186 1187 1188 1189
	.name = MODULE_NAME,
	.ctrls = sd_ctrls,
	.nctrls = ARRAY_SIZE(sd_ctrls),
	.config = sd_config,
1190
	.init = sd_init,
1191 1192 1193
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
1194
	.querymenu = sd_querymenu,
1195
	.dq_callback = do_autogain,
1196 1197 1198
};

/* -- module initialisation -- */
1199 1200 1201
#define SB(sensor, bridge) \
	.driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge

1202

1203
static __devinitdata struct usb_device_id device_table[] = {
1204 1205
	{USB_DEVICE(0x0c45, 0x6001), SB(TAS5110, 102)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6005), SB(TAS5110, 101)}, /* TAS5110C1B */
1206
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1207
	{USB_DEVICE(0x0c45, 0x6007), SB(TAS5110, 101)}, /* TAS5110D */
1208 1209
	{USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1210
#endif
1211
	{USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1212
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1213 1214 1215 1216 1217 1218
	{USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
	{USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
	{USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
	{USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1219
#endif
1220
	{USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1221
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1222 1223 1224 1225
	{USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
	{USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
	{USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
	{USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1226
#endif
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
static int sd_probe(struct usb_interface *intf,
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
1244 1245 1246 1247
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
#endif
1248 1249 1250 1251 1252 1253 1254
};

/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
	if (usb_register(&sd_driver) < 0)
		return -1;
1255
	PDEBUG(D_PROBE, "registered");
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	return 0;
}
static void __exit sd_mod_exit(void)
{
	usb_deregister(&sd_driver);
	PDEBUG(D_PROBE, "deregistered");
}

module_init(sd_mod_init);
module_exit(sd_mod_exit);