spi.c 32.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * spi.c - SPI init/core code
 *
 * Copyright (C) 2005 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
25
#include <linux/mutex.h>
26
#include <linux/of_device.h>
27
#include <linux/slab.h>
28
#include <linux/mod_devicetable.h>
29
#include <linux/spi/spi.h>
30
#include <linux/of_spi.h>
M
Mark Brown 已提交
31
#include <linux/pm_runtime.h>
32 33 34

static void spidev_release(struct device *dev)
{
35
	struct spi_device	*spi = to_spi_device(dev);
36 37 38 39 40

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
41
	spi_master_put(spi->master);
42
	kfree(spi);
43 44 45 46 47 48 49
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);

50
	return sprintf(buf, "%s\n", spi->modalias);
51 52 53 54 55 56 57 58 59 60 61
}

static struct device_attribute spi_dev_attrs[] = {
	__ATTR_RO(modalias),
	__ATTR_NULL,
};

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

81 82 83
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
84 85
	const struct spi_driver	*sdrv = to_spi_driver(drv);

86 87 88 89
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

90 91
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
92

93
	return strcmp(spi->modalias, drv->name) == 0;
94 95
}

96
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
97 98 99
{
	const struct spi_device		*spi = to_spi_device(dev);

100
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
101 102 103
	return 0;
}

M
Mark Brown 已提交
104 105
#ifdef CONFIG_PM_SLEEP
static int spi_legacy_suspend(struct device *dev, pm_message_t message)
106
{
107
	int			value = 0;
108
	struct spi_driver	*drv = to_spi_driver(dev->driver);
109 110

	/* suspend will stop irqs and dma; no more i/o */
111 112 113 114 115 116
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
117 118 119
	return value;
}

M
Mark Brown 已提交
120
static int spi_legacy_resume(struct device *dev)
121
{
122
	int			value = 0;
123
	struct spi_driver	*drv = to_spi_driver(dev->driver);
124 125

	/* resume may restart the i/o queue */
126 127 128 129 130 131
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
132 133 134
	return value;
}

M
Mark Brown 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static int spi_pm_suspend(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_suspend(dev);
	else
		return spi_legacy_suspend(dev, PMSG_SUSPEND);
}

static int spi_pm_resume(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_resume(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_freeze(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_freeze(dev);
	else
		return spi_legacy_suspend(dev, PMSG_FREEZE);
}

static int spi_pm_thaw(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_thaw(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_poweroff(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_poweroff(dev);
	else
		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
}

static int spi_pm_restore(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_restore(dev);
	else
		return spi_legacy_resume(dev);
}
194
#else
M
Mark Brown 已提交
195 196 197 198 199 200
#define spi_pm_suspend	NULL
#define spi_pm_resume	NULL
#define spi_pm_freeze	NULL
#define spi_pm_thaw	NULL
#define spi_pm_poweroff	NULL
#define spi_pm_restore	NULL
201 202
#endif

M
Mark Brown 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216
static const struct dev_pm_ops spi_pm = {
	.suspend = spi_pm_suspend,
	.resume = spi_pm_resume,
	.freeze = spi_pm_freeze,
	.thaw = spi_pm_thaw,
	.poweroff = spi_pm_poweroff,
	.restore = spi_pm_restore,
	SET_RUNTIME_PM_OPS(
		pm_generic_runtime_suspend,
		pm_generic_runtime_resume,
		pm_generic_runtime_idle
	)
};

217 218 219 220 221
struct bus_type spi_bus_type = {
	.name		= "spi",
	.dev_attrs	= spi_dev_attrs,
	.match		= spi_match_device,
	.uevent		= spi_uevent,
M
Mark Brown 已提交
222
	.pm		= &spi_pm,
223 224 225
};
EXPORT_SYMBOL_GPL(spi_bus_type);

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->probe(to_spi_device(dev));
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->remove(to_spi_device(dev));
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
248 249 250 251 252
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
253 254 255 256 257 258 259 260 261 262 263 264 265
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

266 267 268 269 270 271 272 273 274 275
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
276
	struct spi_board_info	board_info;
277 278 279
};

static LIST_HEAD(board_list);
280 281 282 283 284 285
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
286
static DEFINE_MUTEX(board_lock);
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;
	struct device		*dev = master->dev.parent;

	if (!spi_master_get(master))
		return NULL;

	spi = kzalloc(sizeof *spi, GFP_KERNEL);
	if (!spi) {
		dev_err(dev, "cannot alloc spi_device\n");
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
	spi->dev.parent = dev;
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
336
 * Returns 0 on success; negative errno on failure
337 338 339
 */
int spi_add_device(struct spi_device *spi)
{
340
	static DEFINE_MUTEX(spi_add_lock);
341
	struct device *dev = spi->master->dev.parent;
342
	struct device *d;
343 344 345 346 347 348 349 350 351 352 353
	int status;

	/* Chipselects are numbered 0..max; validate. */
	if (spi->chip_select >= spi->master->num_chipselect) {
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
			spi->master->num_chipselect);
		return -EINVAL;
	}

	/* Set the bus ID string */
354
	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
355 356
			spi->chip_select);

357 358 359 360 361 362 363

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

364 365
	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
	if (d != NULL) {
366 367
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
368
		put_device(d);
369 370 371 372 373 374 375 376
		status = -EBUSY;
		goto done;
	}

	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
377
	status = spi_setup(spi);
378
	if (status < 0) {
379 380
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
381
		goto done;
382 383
	}

384
	/* Device may be bound to an active driver when this returns */
385
	status = device_add(&spi->dev);
386
	if (status < 0)
387 388
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
389
	else
390
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
391

392 393 394
done:
	mutex_unlock(&spi_add_lock);
	return status;
395 396
}
EXPORT_SYMBOL_GPL(spi_add_device);
397

D
David Brownell 已提交
398 399 400 401 402 403 404
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
405 406 407 408
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
409 410
 *
 * Returns the new device, or NULL.
411
 */
412 413
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
414 415 416 417
{
	struct spi_device	*proxy;
	int			status;

418 419 420 421 422 423 424
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

425 426
	proxy = spi_alloc_device(master);
	if (!proxy)
427 428
		return NULL;

429 430
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

431 432
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
433
	proxy->mode = chip->mode;
434
	proxy->irq = chip->irq;
435
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
436 437 438 439
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

440
	status = spi_add_device(proxy);
441
	if (status < 0) {
442 443
		spi_dev_put(proxy);
		return NULL;
444 445 446 447 448 449
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

450 451 452 453 454 455 456 457 458 459 460 461 462 463
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
464 465 466 467 468 469
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
int __init
spi_register_board_info(struct spi_board_info const *info, unsigned n)
{
486 487
	struct boardinfo *bi;
	int i;
488

489
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
490 491 492
	if (!bi)
		return -ENOMEM;

493 494
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
495

496 497 498 499 500 501
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
502
	}
503 504

	return 0;
505 506 507 508
}

/*-------------------------------------------------------------------------*/

T
Tony Jones 已提交
509
static void spi_master_release(struct device *dev)
510 511 512
{
	struct spi_master *master;

T
Tony Jones 已提交
513
	master = container_of(dev, struct spi_master, dev);
514 515 516 517 518 519
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
520
	.dev_release	= spi_master_release,
521 522 523 524 525 526
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
527
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
528
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
529
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
530
 * Context: can sleep
531 532 533
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
534
 * an spi_master structure, prior to calling spi_register_master().
535 536 537 538 539
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
540
 * the master's methods before calling spi_register_master(); and (after errors
D
David Brownell 已提交
541
 * adding the device) calling spi_master_put() to prevent a memory leak.
542
 */
543
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
544 545 546
{
	struct spi_master	*master;

D
David Brownell 已提交
547 548 549
	if (!dev)
		return NULL;

550
	master = kzalloc(size + sizeof *master, GFP_KERNEL);
551 552 553
	if (!master)
		return NULL;

T
Tony Jones 已提交
554 555 556
	device_initialize(&master->dev);
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
557
	spi_master_set_devdata(master, &master[1]);
558 559 560 561 562 563 564 565

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
566
 * Context: can sleep
567 568 569 570 571 572 573 574 575 576 577 578 579
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
580 581
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
582
 */
583
int spi_register_master(struct spi_master *master)
584
{
585
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
586
	struct device		*dev = master->dev.parent;
587
	struct boardinfo	*bi;
588 589 590
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
591 592 593
	if (!dev)
		return -ENODEV;

594 595 596 597 598 599
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

600
	/* convention:  dynamically assigned bus IDs count down from the max */
601
	if (master->bus_num < 0) {
602 603 604
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
605
		master->bus_num = atomic_dec_return(&dyn_bus_id);
606
		dynamic = 1;
607 608
	}

609 610 611 612
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;

613 614 615
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
616
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
617
	status = device_add(&master->dev);
618
	if (status < 0)
619
		goto done;
620
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
621 622
			dynamic ? " (dynamic)" : "");

623 624 625 626 627 628
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

629
	status = 0;
630 631 632

	/* Register devices from the device tree */
	of_register_spi_devices(master);
633 634 635 636 637 638
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);


639
static int __unregister(struct device *dev, void *null)
640
{
641
	spi_unregister_device(to_spi_device(dev));
642 643 644 645 646 647
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
648
 * Context: can sleep
649 650 651 652 653 654 655 656
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
657 658
	int dummy;

659 660 661 662
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

663
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
664
	device_unregister(&master->dev);
665 666 667
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

D
Dave Young 已提交
668 669 670 671 672 673 674 675 676
static int __spi_master_match(struct device *dev, void *data)
{
	struct spi_master *m;
	u16 *bus_num = data;

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

677 678 679
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
680
 * Context: can sleep
681 682 683 684 685 686 687 688
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
689
	struct device		*dev;
690
	struct spi_master	*master = NULL;
D
Dave Young 已提交
691

692
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
693 694 695 696
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
697
	return master;
698 699 700 701 702 703
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
728
	unsigned	bad_bits;
729 730
	int		status;

731 732 733 734 735
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
	if (bad_bits) {
736
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
737 738 739 740
			bad_bits);
		return -EINVAL;
	}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

	status = spi->master->setup(spi);

	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
				"%u bits/w, %u Hz max --> %d\n",
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		struct spi_transfer *xfer;
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

	message->spi = spi;
	message->status = -EINPROGRESS;
	return master->transfer(spi, message);
}

D
David Brownell 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
821 822
	int ret;
	unsigned long flags;
D
David Brownell 已提交
823

824
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
825

826 827 828 829
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
830

831 832 833
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
834 835 836
}
EXPORT_SYMBOL_GPL(spi_async);

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

883 884 885 886 887 888 889 890

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

891 892 893 894 895
static void spi_complete(void *arg)
{
	complete(arg);
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;

	message->complete = spi_complete;
	message->context = &done;

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

	status = spi_async_locked(spi, message);

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

922 923 924 925
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
926
 * Context: can sleep
927 928 929 930 931 932 933 934 935 936 937
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
938 939 940
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
941
 * It returns zero on success, else a negative error code.
942 943 944
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
945
	return __spi_sync(spi, message, 0);
946 947 948
}
EXPORT_SYMBOL_GPL(spi_sync);

949 950 951 952 953 954 955 956 957 958 959
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
960
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

1025 1026
/* portable code must never pass more than 32 bytes */
#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1027 1028 1029 1030 1031 1032 1033 1034

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
1035 1036
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
1037
 * Context: can sleep
1038 1039 1040 1041
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
1042
 * This call may only be used from a context that may sleep.
1043
 *
D
David Brownell 已提交
1044
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
1045 1046
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
1047
 * spi_{async,sync}() calls with dma-safe buffers.
1048 1049
 */
int spi_write_then_read(struct spi_device *spi,
1050 1051
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
1052
{
D
David Brownell 已提交
1053
	static DEFINE_MUTEX(lock);
1054 1055 1056

	int			status;
	struct spi_message	message;
1057
	struct spi_transfer	x[2];
1058 1059 1060 1061 1062 1063 1064 1065 1066
	u8			*local_buf;

	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
	 * (as a pure convenience thing), but we can keep heap costs
	 * out of the hot path ...
	 */
	if ((n_tx + n_rx) > SPI_BUFSIZ)
		return -EINVAL;

1067
	spi_message_init(&message);
1068 1069 1070 1071 1072 1073 1074 1075 1076
	memset(x, 0, sizeof x);
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
1077

1078
	/* ... unless someone else is using the pre-allocated buffer */
D
David Brownell 已提交
1079
	if (!mutex_trylock(&lock)) {
1080 1081 1082 1083 1084 1085 1086
		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
		if (!local_buf)
			return -ENOMEM;
	} else
		local_buf = buf;

	memcpy(local_buf, txbuf, n_tx);
1087 1088
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
1089 1090 1091

	/* do the i/o */
	status = spi_sync(spi, &message);
1092
	if (status == 0)
1093
		memcpy(rxbuf, x[1].rx_buf, n_rx);
1094

1095
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
1096
		mutex_unlock(&lock);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
1108 1109
	int	status;

1110
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1111 1112 1113 1114 1115 1116 1117 1118
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
1119

1120 1121 1122
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
1123
	return 0;
1124 1125 1126 1127 1128 1129 1130 1131

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
1132
}
1133

1134 1135
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
1136 1137 1138 1139
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
1140
 */
1141
postcore_initcall(spi_init);
1142