hugetlb.c 20.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17

D
David Gibson 已提交
18 19 20 21
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
22
#include "internal.h"
L
Linus Torvalds 已提交
23 24

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
L
Linus Torvalds 已提交
26 27 28 29
unsigned long max_huge_pages;
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
30 31 32 33
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
34

35 36 37 38 39 40 41 42 43 44 45 46
static void clear_huge_page(struct page *page, unsigned long addr)
{
	int i;

	might_sleep();
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
		cond_resched();
		clear_user_highpage(page + i, addr);
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
47
			   unsigned long addr, struct vm_area_struct *vma)
48 49 50 51 52 53
{
	int i;

	might_sleep();
	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
		cond_resched();
54
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
55 56 57
	}
}

L
Linus Torvalds 已提交
58 59 60 61 62 63 64 65
static void enqueue_huge_page(struct page *page)
{
	int nid = page_to_nid(page);
	list_add(&page->lru, &hugepage_freelists[nid]);
	free_huge_pages++;
	free_huge_pages_node[nid]++;
}

66 67
static struct page *dequeue_huge_page(struct vm_area_struct *vma,
				unsigned long address)
L
Linus Torvalds 已提交
68 69 70
{
	int nid = numa_node_id();
	struct page *page = NULL;
71
	struct zonelist *zonelist = huge_zonelist(vma, address);
72
	struct zone **z;
L
Linus Torvalds 已提交
73

74
	for (z = zonelist->zones; *z; z++) {
75
		nid = zone_to_nid(*z);
76
		if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
77
		    !list_empty(&hugepage_freelists[nid]))
78
			break;
L
Linus Torvalds 已提交
79
	}
80 81

	if (*z) {
L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90
		page = list_entry(hugepage_freelists[nid].next,
				  struct page, lru);
		list_del(&page->lru);
		free_huge_pages--;
		free_huge_pages_node[nid]--;
	}
	return page;
}

91 92 93 94 95 96 97 98 99 100 101
static void free_huge_page(struct page *page)
{
	BUG_ON(page_count(page));

	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
	enqueue_huge_page(page);
	spin_unlock(&hugetlb_lock);
}

N
Nick Piggin 已提交
102
static int alloc_fresh_huge_page(void)
L
Linus Torvalds 已提交
103 104 105 106 107
{
	static int nid = 0;
	struct page *page;
	page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
					HUGETLB_PAGE_ORDER);
108 109 110
	nid = next_node(nid, node_online_map);
	if (nid == MAX_NUMNODES)
		nid = first_node(node_online_map);
L
Linus Torvalds 已提交
111
	if (page) {
112
		set_compound_page_dtor(page, free_huge_page);
113
		spin_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
114 115
		nr_huge_pages++;
		nr_huge_pages_node[page_to_nid(page)]++;
116
		spin_unlock(&hugetlb_lock);
N
Nick Piggin 已提交
117 118
		put_page(page); /* free it into the hugepage allocator */
		return 1;
L
Linus Torvalds 已提交
119
	}
N
Nick Piggin 已提交
120
	return 0;
L
Linus Torvalds 已提交
121 122
}

123 124
static struct page *alloc_huge_page(struct vm_area_struct *vma,
				    unsigned long addr)
L
Linus Torvalds 已提交
125 126 127 128
{
	struct page *page;

	spin_lock(&hugetlb_lock);
129 130 131 132
	if (vma->vm_flags & VM_MAYSHARE)
		resv_huge_pages--;
	else if (free_huge_pages <= resv_huge_pages)
		goto fail;
133 134 135 136 137

	page = dequeue_huge_page(vma, addr);
	if (!page)
		goto fail;

L
Linus Torvalds 已提交
138
	spin_unlock(&hugetlb_lock);
139
	set_page_refcounted(page);
L
Linus Torvalds 已提交
140
	return page;
141

142
fail:
143 144
	if (vma->vm_flags & VM_MAYSHARE)
		resv_huge_pages++;
145 146 147 148
	spin_unlock(&hugetlb_lock);
	return NULL;
}

L
Linus Torvalds 已提交
149 150 151 152
static int __init hugetlb_init(void)
{
	unsigned long i;

153 154 155
	if (HPAGE_SHIFT == 0)
		return 0;

L
Linus Torvalds 已提交
156 157 158 159
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&hugepage_freelists[i]);

	for (i = 0; i < max_huge_pages; ++i) {
N
Nick Piggin 已提交
160
		if (!alloc_fresh_huge_page())
L
Linus Torvalds 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
			break;
	}
	max_huge_pages = free_huge_pages = nr_huge_pages = i;
	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
	return 0;
}
module_init(hugetlb_init);

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
		max_huge_pages = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

177 178 179 180 181 182 183 184 185 186 187
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
188 189 190 191 192
#ifdef CONFIG_SYSCTL
static void update_and_free_page(struct page *page)
{
	int i;
	nr_huge_pages--;
193
	nr_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
194 195 196 197 198
	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
N
Nick Piggin 已提交
199
	page[1].lru.next = NULL;
200
	set_page_refcounted(page);
L
Linus Torvalds 已提交
201 202 203 204 205 206
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
207 208
	int i;

L
Linus Torvalds 已提交
209 210 211 212 213 214 215 216
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
217
			free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231
			if (count >= nr_huge_pages)
				return;
		}
	}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif

static unsigned long set_max_huge_pages(unsigned long count)
{
	while (count > nr_huge_pages) {
N
Nick Piggin 已提交
232
		if (!alloc_fresh_huge_page())
L
Linus Torvalds 已提交
233 234 235 236 237 238
			return nr_huge_pages;
	}
	if (count >= nr_huge_pages)
		return nr_huge_pages;

	spin_lock(&hugetlb_lock);
239
	count = max(count, resv_huge_pages);
L
Linus Torvalds 已提交
240 241
	try_to_free_low(count);
	while (count < nr_huge_pages) {
242
		struct page *page = dequeue_huge_page(NULL, 0);
L
Linus Torvalds 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
		if (!page)
			break;
		update_and_free_page(page);
	}
	spin_unlock(&hugetlb_lock);
	return nr_huge_pages;
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
	max_huge_pages = set_max_huge_pages(max_huge_pages);
	return 0;
}
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
266
			"HugePages_Rsvd:  %5lu\n"
L
Linus Torvalds 已提交
267 268 269
			"Hugepagesize:    %5lu kB\n",
			nr_huge_pages,
			free_huge_pages,
270
			resv_huge_pages,
L
Linus Torvalds 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
			HPAGE_SIZE/1024);
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
		"Node %d HugePages_Free:  %5u\n",
		nid, nr_huge_pages_node[nid],
		nid, free_huge_pages_node[nid]);
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}

/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
static struct page *hugetlb_nopage(struct vm_area_struct *vma,
				unsigned long address, int *unused)
{
	BUG();
	return NULL;
}

struct vm_operations_struct hugetlb_vm_ops = {
	.nopage = hugetlb_nopage,
};

306 307
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
308 309 310
{
	pte_t entry;

311
	if (writable) {
D
David Gibson 已提交
312 313 314 315 316 317 318 319 320 321 322
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

323 324 325 326 327 328 329 330 331 332 333 334
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

	entry = pte_mkwrite(pte_mkdirty(*ptep));
	ptep_set_access_flags(vma, address, ptep, entry, 1);
	update_mmu_cache(vma, address, entry);
	lazy_mmu_prot_update(entry);
}


D
David Gibson 已提交
335 336 337 338 339
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
340
	unsigned long addr;
341 342 343
	int cow;

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
344

345
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
H
Hugh Dickins 已提交
346 347 348
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
D
David Gibson 已提交
349 350 351
		dst_pte = huge_pte_alloc(dst, addr);
		if (!dst_pte)
			goto nomem;
H
Hugh Dickins 已提交
352
		spin_lock(&dst->page_table_lock);
353
		spin_lock(&src->page_table_lock);
H
Hugh Dickins 已提交
354
		if (!pte_none(*src_pte)) {
355 356
			if (cow)
				ptep_set_wrprotect(src, addr, src_pte);
357 358 359 360 361 362
			entry = *src_pte;
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
363
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
364 365 366 367 368 369 370
	}
	return 0;

nomem:
	return -ENOMEM;
}

371 372
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			    unsigned long end)
D
David Gibson 已提交
373 374 375
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
376
	pte_t *ptep;
D
David Gibson 已提交
377 378
	pte_t pte;
	struct page *page;
379
	struct page *tmp;
380 381 382 383 384
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
385
	LIST_HEAD(page_list);
D
David Gibson 已提交
386 387 388 389 390

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON(start & ~HPAGE_MASK);
	BUG_ON(end & ~HPAGE_MASK);

391
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
392
	for (address = start; address < end; address += HPAGE_SIZE) {
393
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
394
		if (!ptep)
395 396
			continue;

397 398 399
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

400
		pte = huge_ptep_get_and_clear(mm, address, ptep);
D
David Gibson 已提交
401 402
		if (pte_none(pte))
			continue;
403

D
David Gibson 已提交
404
		page = pte_page(pte);
405 406
		if (pte_dirty(pte))
			set_page_dirty(page);
407
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
408
	}
L
Linus Torvalds 已提交
409
	spin_unlock(&mm->page_table_lock);
410
	flush_tlb_range(vma, start, end);
411 412 413 414
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
415
}
D
David Gibson 已提交
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			  unsigned long end)
{
	/*
	 * It is undesirable to test vma->vm_file as it should be non-null
	 * for valid hugetlb area. However, vm_file will be NULL in the error
	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
	 * to clean up. Since no pte has actually been setup, it is safe to
	 * do nothing in this case.
	 */
	if (vma->vm_file) {
		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
		__unmap_hugepage_range(vma, start, end);
		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
	}
}

435 436 437 438
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *ptep, pte_t pte)
{
	struct page *old_page, *new_page;
439
	int avoidcopy;
440 441 442 443 444 445 446 447 448 449 450 451

	old_page = pte_page(pte);

	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
		return VM_FAULT_MINOR;
	}

	page_cache_get(old_page);
452
	new_page = alloc_huge_page(vma, address);
453 454 455

	if (!new_page) {
		page_cache_release(old_page);
456
		return VM_FAULT_OOM;
457 458 459
	}

	spin_unlock(&mm->page_table_lock);
460
	copy_huge_page(new_page, old_page, address, vma);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	spin_lock(&mm->page_table_lock);

	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
	if (likely(pte_same(*ptep, pte))) {
		/* Break COW */
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
	return VM_FAULT_MINOR;
}

476
int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
477
			unsigned long address, pte_t *ptep, int write_access)
478 479
{
	int ret = VM_FAULT_SIGBUS;
A
Adam Litke 已提交
480 481 482 483
	unsigned long idx;
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
484
	pte_t new_pte;
A
Adam Litke 已提交
485 486 487 488 489 490 491 492 493

	mapping = vma->vm_file->f_mapping;
	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
494 495 496
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
497 498 499
		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
		if (idx >= size)
			goto out;
500 501 502 503 504
		if (hugetlb_get_quota(mapping))
			goto out;
		page = alloc_huge_page(vma, address);
		if (!page) {
			hugetlb_put_quota(mapping);
505
			ret = VM_FAULT_OOM;
506 507
			goto out;
		}
508
		clear_huge_page(page, address);
509

510 511 512 513 514 515 516 517 518 519 520 521 522 523
		if (vma->vm_flags & VM_SHARED) {
			int err;

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				hugetlb_put_quota(mapping);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
		} else
			lock_page(page);
	}
524

525
	spin_lock(&mm->page_table_lock);
A
Adam Litke 已提交
526 527 528 529 530
	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
	if (idx >= size)
		goto backout;

	ret = VM_FAULT_MINOR;
531
	if (!pte_none(*ptep))
A
Adam Litke 已提交
532 533
		goto backout;

534 535 536 537 538 539 540 541 542
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
	}

543
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
544 545
	unlock_page(page);
out:
546
	return ret;
A
Adam Litke 已提交
547 548 549 550 551 552 553

backout:
	spin_unlock(&mm->page_table_lock);
	hugetlb_put_quota(mapping);
	unlock_page(page);
	put_page(page);
	goto out;
554 555
}

556 557 558 559 560
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
561
	int ret;
562
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
563 564 565 566 567

	ptep = huge_pte_alloc(mm, address);
	if (!ptep)
		return VM_FAULT_OOM;

568 569 570 571 572 573
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
574
	entry = *ptep;
575 576 577 578 579
	if (pte_none(entry)) {
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
580

581 582 583 584 585 586 587 588
	ret = VM_FAULT_MINOR;

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
	if (likely(pte_same(entry, *ptep)))
		if (write_access && !pte_write(entry))
			ret = hugetlb_cow(mm, vma, address, ptep, entry);
	spin_unlock(&mm->page_table_lock);
589
	mutex_unlock(&hugetlb_instantiation_mutex);
590 591

	return ret;
592 593
}

D
David Gibson 已提交
594 595 596 597
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
			unsigned long *position, int *length, int i)
{
598 599
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
600 601
	int remainder = *length;

602
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
603
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
604 605
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
606

A
Adam Litke 已提交
607 608 609 610 611 612
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
D
David Gibson 已提交
613

A
Adam Litke 已提交
614 615
		if (!pte || pte_none(*pte)) {
			int ret;
D
David Gibson 已提交
616

A
Adam Litke 已提交
617 618 619 620 621
			spin_unlock(&mm->page_table_lock);
			ret = hugetlb_fault(mm, vma, vaddr, 0);
			spin_lock(&mm->page_table_lock);
			if (ret == VM_FAULT_MINOR)
				continue;
D
David Gibson 已提交
622

A
Adam Litke 已提交
623 624 625 626 627 628
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

629 630 631
		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
		page = pte_page(*pte);
same_page:
632 633
		if (pages) {
			get_page(page);
634
			pages[i] = page + pfn_offset;
635
		}
D
David Gibson 已提交
636 637 638 639 640

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
641
		++pfn_offset;
D
David Gibson 已提交
642 643
		--remainder;
		++i;
644 645 646 647 648 649 650 651
		if (vaddr < vma->vm_end && remainder &&
				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
652
	}
653
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
654 655 656 657 658
	*length = remainder;
	*position = vaddr;

	return i;
}
659 660 661 662 663 664 665 666 667 668 669 670

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

671
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
672 673 674 675 676
	spin_lock(&mm->page_table_lock);
	for (; address < end; address += HPAGE_SIZE) {
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
677 678
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
679 680 681 682 683 684 685 686
		if (!pte_none(*ptep)) {
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
			lazy_mmu_prot_update(pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
687
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
688 689 690 691

	flush_tlb_range(vma, start, end);
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarentee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (nrg == 0)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

static int hugetlb_acct_memory(long delta)
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	if ((delta + resv_huge_pages) <= free_huge_pages) {
		resv_huge_pages += delta;
		ret = 0;
	}
	spin_unlock(&hugetlb_lock);
	return ret;
}

int hugetlb_reserve_pages(struct inode *inode, long from, long to)
{
	long ret, chg;

	chg = region_chg(&inode->i_mapping->private_list, from, to);
	if (chg < 0)
		return chg;
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (chg > cpuset_mems_nr(free_huge_pages_node))
		return -ENOMEM;

853 854 855 856 857 858 859 860 861 862 863 864
	ret = hugetlb_acct_memory(chg);
	if (ret < 0)
		return ret;
	region_add(&inode->i_mapping->private_list, from, to);
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
	hugetlb_acct_memory(freed - chg);
}