mmu.c 52.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
C
Christoffer Dall 已提交
23
#include <trace/events/kvm.h>
24
#include <asm/pgalloc.h>
25
#include <asm/cacheflush.h>
26 27
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
28
#include <asm/kvm_mmio.h>
29
#include <asm/kvm_asm.h>
30
#include <asm/kvm_emulate.h>
31
#include <asm/virt.h>
32 33

#include "trace.h"
34 35 36

extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46
#define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
47
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48

49 50 51 52 53 54
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 56 57 58 59 60 61 62 63 64 65
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66
}
67

68
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69
{
70
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 72
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

93 94 95 96 97
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

98 99 100 101 102 103 104 105 106 107 108
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
109
	if (!pmd_thp_or_huge(*pmd))
110 111 112 113 114 115 116
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

149
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150
{
151 152
	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
	stage2_pgd_clear(pgd);
153
	kvm_tlb_flush_vmid_ipa(kvm, addr);
154
	stage2_pud_free(pud_table);
155
	put_page(virt_to_page(pgd));
156 157
}

158
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159
{
160 161 162
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
	VM_BUG_ON(stage2_pud_huge(*pud));
	stage2_pud_clear(pud);
163
	kvm_tlb_flush_vmid_ipa(kvm, addr);
164
	stage2_pmd_free(pmd_table);
165 166
	put_page(virt_to_page(pud));
}
167

168
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169
{
170
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
171
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
172 173 174
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
175 176 177
	put_page(virt_to_page(pmd));
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
198
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199
		       phys_addr_t addr, phys_addr_t end)
200
{
201 202 203 204 205 206
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
207 208
			pte_t old_pte = *pte;

209 210
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
211 212

			/* No need to invalidate the cache for device mappings */
213
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214 215 216
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
217 218 219
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

220 221
	if (stage2_pte_table_empty(start_pte))
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 223
}

224
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225
		       phys_addr_t addr, phys_addr_t end)
226
{
227 228
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
229

230
	start_pmd = pmd = stage2_pmd_offset(pud, addr);
231
	do {
232
		next = stage2_pmd_addr_end(addr, end);
233
		if (!pmd_none(*pmd)) {
234
			if (pmd_thp_or_huge(*pmd)) {
235 236
				pmd_t old_pmd = *pmd;

237 238
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
239 240 241

				kvm_flush_dcache_pmd(old_pmd);

242 243
				put_page(virt_to_page(pmd));
			} else {
244
				unmap_stage2_ptes(kvm, pmd, addr, next);
245
			}
246
		}
247
	} while (pmd++, addr = next, addr != end);
248

249 250
	if (stage2_pmd_table_empty(start_pmd))
		clear_stage2_pud_entry(kvm, pud, start_addr);
251
}
252

253
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254 255 256 257
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
258

259
	start_pud = pud = stage2_pud_offset(pgd, addr);
260
	do {
261 262 263
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud)) {
264 265
				pud_t old_pud = *pud;

266
				stage2_pud_clear(pud);
267
				kvm_tlb_flush_vmid_ipa(kvm, addr);
268
				kvm_flush_dcache_pud(old_pud);
269 270
				put_page(virt_to_page(pud));
			} else {
271
				unmap_stage2_pmds(kvm, pud, addr, next);
272 273
			}
		}
274
	} while (pud++, addr = next, addr != end);
275

276 277
	if (stage2_pud_table_empty(start_pud))
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 279
}

280 281 282 283 284 285 286 287 288 289 290 291
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 293 294 295 296
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

297
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
298
	do {
299 300 301
		next = stage2_pgd_addr_end(addr, end);
		if (!stage2_pgd_none(*pgd))
			unmap_stage2_puds(kvm, pgd, addr, next);
302
	} while (pgd++, addr = next, addr != end);
303 304
}

305 306 307 308 309 310 311
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
312
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
313
			kvm_flush_dcache_pte(*pte);
314 315 316 317 318 319 320 321 322
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

323
	pmd = stage2_pmd_offset(pud, addr);
324
	do {
325
		next = stage2_pmd_addr_end(addr, end);
326
		if (!pmd_none(*pmd)) {
327
			if (pmd_thp_or_huge(*pmd))
328 329
				kvm_flush_dcache_pmd(*pmd);
			else
330 331 332 333 334 335 336 337 338 339 340
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

341
	pud = stage2_pud_offset(pgd, addr);
342
	do {
343 344 345
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
346 347
				kvm_flush_dcache_pud(*pud);
			else
348 349 350 351 352 353 354 355 356 357 358 359 360
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

361
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
362
	do {
363
		next = stage2_pgd_addr_end(addr, end);
364 365 366 367 368 369 370 371 372 373 374
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
375
static void stage2_flush_vm(struct kvm *kvm)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
	pgd = pgdp + pgd_index(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

486 487 488 489 490 491 492 493 494 495
/**
 * free_boot_hyp_pgd - free HYP boot page tables
 *
 * Free the HYP boot page tables. The bounce page is also freed.
 */
void free_boot_hyp_pgd(void)
{
	mutex_lock(&kvm_hyp_pgd_mutex);

	if (boot_hyp_pgd) {
496 497
		unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		unmap_hyp_range(boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
498
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
499 500 501 502
		boot_hyp_pgd = NULL;
	}

	if (hyp_pgd)
503
		unmap_hyp_range(hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
504 505 506 507

	mutex_unlock(&kvm_hyp_pgd_mutex);
}

508
/**
509
 * free_hyp_pgds - free Hyp-mode page tables
510
 *
511 512 513 514 515 516
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
517
 */
518
void free_hyp_pgds(void)
519 520 521
{
	unsigned long addr;

522
	free_boot_hyp_pgd();
523

524
	mutex_lock(&kvm_hyp_pgd_mutex);
525

526 527
	if (hyp_pgd) {
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
528
			unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
529
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
530
			unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
531

532
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
533
		hyp_pgd = NULL;
534
	}
535 536 537 538 539
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
540

541 542 543 544
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
545 546
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
547 548 549 550
{
	pte_t *pte;
	unsigned long addr;

551 552
	addr = start;
	do {
553 554
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
555
		get_page(virt_to_page(pte));
556
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
557
		pfn++;
558
	} while (addr += PAGE_SIZE, addr != end);
559 560 561
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
562 563
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
564 565 566 567 568
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

569 570
	addr = start;
	do {
571
		pmd = pmd_offset(pud, addr);
572 573 574 575

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
576
			pte = pte_alloc_one_kernel(NULL, addr);
577 578 579 580 581
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
582
			get_page(virt_to_page(pmd));
583
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
584 585 586 587
		}

		next = pmd_addr_end(addr, end);

588 589
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
590
	} while (addr = next, addr != end);
591 592 593 594

	return 0;
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

629 630 631
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
632 633 634 635 636 637 638
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
639 640 641
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
642
		pgd = pgdp + pgd_index(addr);
643

644 645 646 647
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
648 649 650
				err = -ENOMEM;
				goto out;
			}
651 652 653
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
654 655 656
		}

		next = pgd_addr_end(addr, end);
657
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
658 659
		if (err)
			goto out;
660
		pfn += (next - addr) >> PAGE_SHIFT;
661
	} while (addr = next, addr != end);
662 663 664 665 666
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

667 668 669 670 671 672 673 674 675 676 677
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

678
/**
679
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
680 681 682
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
 *
683 684 685
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
686 687 688
 */
int create_hyp_mappings(void *from, void *to)
{
689 690
	phys_addr_t phys_addr;
	unsigned long virt_addr;
691 692 693
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

694 695 696
	if (is_kernel_in_hyp_mode())
		return 0;

697 698
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
699

700 701
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
702

703 704 705 706 707 708 709 710 711 712
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
		err = __create_hyp_mappings(hyp_pgd, virt_addr,
					    virt_addr + PAGE_SIZE,
					    __phys_to_pfn(phys_addr),
					    PAGE_HYP);
		if (err)
			return err;
	}

	return 0;
713 714 715
}

/**
716 717 718
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
719
 * @phys_addr:	The physical start address which gets mapped
720 721 722
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
723
 */
724
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
725
{
726 727 728
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

729 730 731
	if (is_kernel_in_hyp_mode())
		return 0;

732 733 734 735 736 737
	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
738 739
}

740 741 742 743
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
744 745 746
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
747 748 749 750 751 752 753 754 755 756 757 758 759
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

760 761 762
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
	if (!pgd)
763 764
		return -ENOMEM;

765
	kvm_clean_pgd(pgd);
766 767 768 769
	kvm->arch.pgd = pgd;
	return 0;
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 *
 * Note we don't need locking here as this is only called when the VM is
 * destroyed, which can only be done once.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
	if (kvm->arch.pgd == NULL)
		return;

	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
852 853
	/* Free the HW pgd, one page at a time */
	free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
854 855 856
	kvm->arch.pgd = NULL;
}

857
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
858
			     phys_addr_t addr)
859 860 861 862
{
	pgd_t *pgd;
	pud_t *pud;

863 864
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
865 866 867
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
868
		stage2_pgd_populate(pgd, pud);
869 870 871
		get_page(virt_to_page(pgd));
	}

872
	return stage2_pud_offset(pgd, addr);
873 874 875 876 877 878 879 880 881
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
882
	if (stage2_pud_none(*pud)) {
883
		if (!cache)
884
			return NULL;
885
		pmd = mmu_memory_cache_alloc(cache);
886
		stage2_pud_populate(pud, pmd);
887
		get_page(virt_to_page(pud));
888 889
	}

890
	return stage2_pmd_offset(pud, addr);
891 892 893 894 895 896 897 898 899
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
900

901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
913 914
	if (pmd_present(old_pmd)) {
		pmd_clear(pmd);
915
		kvm_tlb_flush_vmid_ipa(kvm, addr);
916
	} else {
917
		get_page(virt_to_page(pmd));
918 919 920
	}

	kvm_set_pmd(pmd, *new_pmd);
921 922 923 924
	return 0;
}

static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
925 926
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
927 928 929
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
930 931 932 933
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
934

935
	/* Create stage-2 page table mapping - Levels 0 and 1 */
936 937 938 939 940 941 942 943 944
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

945 946 947 948 949 950 951
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

952
	/* Create stage-2 page mappings - Level 2 */
953 954 955 956
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
957
		kvm_clean_pte(pte);
958 959
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
960 961 962
	}

	pte = pte_offset_kernel(pmd, addr);
963 964 965 966 967 968

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
969 970
	if (pte_present(old_pte)) {
		kvm_set_pte(pte, __pte(0));
971
		kvm_tlb_flush_vmid_ipa(kvm, addr);
972
	} else {
973
		get_page(virt_to_page(pte));
974
	}
975

976
	kvm_set_pte(pte, *new_pte);
977 978 979
	return 0;
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
	return 0;
}
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}

1001 1002 1003 1004 1005 1006 1007 1008 1009
/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1010
			  phys_addr_t pa, unsigned long size, bool writable)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1021
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1022

1023
		if (writable)
1024
			pte = kvm_s2pte_mkwrite(pte);
1025

1026 1027
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1028 1029 1030
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1031 1032
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1045
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1046
{
D
Dan Williams 已提交
1047
	kvm_pfn_t pfn = *pfnp;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	gfn_t gfn = *ipap >> PAGE_SHIFT;

	if (PageTransCompound(pfn_to_page(pfn))) {
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1086 1087 1088 1089 1090 1091 1092 1093
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1124
	pmd = stage2_pmd_offset(pud, addr);
1125 1126

	do {
1127
		next = stage2_pmd_addr_end(addr, end);
1128
		if (!pmd_none(*pmd)) {
1129
			if (pmd_thp_or_huge(*pmd)) {
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1152
	pud = stage2_pud_offset(pgd, addr);
1153
	do {
1154 1155
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1156
			/* TODO:PUD not supported, revisit later if supported */
1157
			BUG_ON(stage2_pud_huge(*pud));
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1174
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1175 1176 1177 1178
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1179 1180
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1181 1182 1183 1184 1185
		 * will also starve other vCPUs.
		 */
		if (need_resched() || spin_needbreak(&kvm->mmu_lock))
			cond_resched_lock(&kvm->mmu_lock);

1186 1187
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1207 1208
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1209 1210 1211 1212 1213 1214 1215 1216
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1217 1218

/**
1219
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1220 1221 1222 1223 1224 1225 1226 1227 1228
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1229
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1230 1231 1232 1233 1234 1235 1236 1237 1238
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1239

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

D
Dan Williams 已提交
1254
static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1255 1256 1257 1258 1259
				      unsigned long size, bool uncached)
{
	__coherent_cache_guest_page(vcpu, pfn, size, uncached);
}

1260
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1261
			  struct kvm_memory_slot *memslot, unsigned long hva,
1262 1263 1264
			  unsigned long fault_status)
{
	int ret;
1265
	bool write_fault, writable, hugetlb = false, force_pte = false;
1266
	unsigned long mmu_seq;
1267 1268
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1269
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1270
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1271
	kvm_pfn_t pfn;
1272
	pgprot_t mem_type = PAGE_S2;
1273
	bool fault_ipa_uncached;
1274 1275
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1276

1277
	write_fault = kvm_is_write_fault(vcpu);
1278 1279 1280 1281 1282
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1283 1284 1285
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1286 1287 1288 1289 1290 1291
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1292
	if (is_vm_hugetlb_page(vma) && !logging_active) {
1293 1294
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1295 1296
	} else {
		/*
1297 1298 1299 1300 1301 1302 1303
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1304
		 */
1305 1306
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1307
			force_pte = true;
1308 1309 1310
	}
	up_read(&current->mm->mmap_sem);

1311
	/* We need minimum second+third level pages */
1312 1313
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1329
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1330 1331 1332
	if (is_error_pfn(pfn))
		return -EFAULT;

1333
	if (kvm_is_device_pfn(pfn)) {
1334
		mem_type = PAGE_S2_DEVICE;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1352

1353 1354
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1355
		goto out_unlock;
1356

1357 1358
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1359

1360
	fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1361

1362
	if (hugetlb) {
1363
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1364 1365
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
1366
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1367 1368
			kvm_set_pfn_dirty(pfn);
		}
1369
		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1370 1371
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1372
		pte_t new_pte = pfn_pte(pfn, mem_type);
1373

1374
		if (writable) {
1375
			new_pte = kvm_s2pte_mkwrite(new_pte);
1376
			kvm_set_pfn_dirty(pfn);
1377
			mark_page_dirty(kvm, gfn);
1378
		}
1379
		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1380
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1381
	}
1382

1383
out_unlock:
1384
	spin_unlock(&kvm->mmu_lock);
1385
	kvm_set_pfn_accessed(pfn);
1386
	kvm_release_pfn_clean(pfn);
1387
	return ret;
1388 1389
}

1390 1391 1392 1393
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1394 1395
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1396 1397 1398 1399 1400
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1401
	kvm_pfn_t pfn;
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1412
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1444 1445
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1446 1447 1448
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1449 1450
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1451 1452 1453
	gfn_t gfn;
	int ret, idx;

1454
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1455
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1456

1457 1458
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1459 1460

	/* Check the stage-2 fault is trans. fault or write fault */
1461
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1462 1463
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1464 1465 1466 1467
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1468 1469 1470 1471 1472 1473
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1474 1475
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1476
	write_fault = kvm_is_write_fault(vcpu);
1477
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1478 1479
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1480
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1481 1482 1483 1484
			ret = 1;
			goto out_unlock;
		}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1501 1502 1503 1504 1505 1506 1507
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1508
		ret = io_mem_abort(vcpu, run, fault_ipa);
1509 1510 1511
		goto out_unlock;
	}

1512 1513 1514
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1515 1516 1517 1518 1519 1520
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1521
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1522 1523 1524 1525 1526
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1527 1528
}

1529 1530 1531 1532 1533 1534
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
					    gpa_t gpa, void *data),
			     void *data)
1535 1536 1537
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1538
	int ret = 0;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

		for (; gfn < gfn_end; ++gfn) {
			gpa_t gpa = gfn << PAGE_SHIFT;
1562
			ret |= handler(kvm, gpa, data);
1563 1564
		}
	}
1565 1566

	return ret;
1567 1568
}

1569
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1570 1571
{
	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1572
	return 0;
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1598
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1599 1600 1601
{
	pte_t *pte = (pte_t *)data;

1602 1603 1604 1605 1606 1607 1608 1609
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1610
	return 0;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1627 1628 1629 1630 1631 1632 1633 1634 1635
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pmd_t *pmd;
	pte_t *pte;

	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1636 1637
	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
		return stage2_pmdp_test_and_clear_young(pmd);
1638 1639 1640 1641 1642

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

1643
	return stage2_ptep_test_and_clear_young(pte);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
}

static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pmd_t *pmd;
	pte_t *pte;

	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1655
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1677 1678 1679 1680 1681
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1682 1683
phys_addr_t kvm_mmu_get_httbr(void)
{
1684 1685 1686 1687
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1688 1689
}

1690 1691
phys_addr_t kvm_mmu_get_boot_httbr(void)
{
1692 1693 1694 1695
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(boot_hyp_pgd);
1696 1697 1698 1699 1700 1701 1702
}

phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1703 1704
int kvm_mmu_init(void)
{
1705 1706
	int err;

1707 1708 1709
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1710

1711 1712 1713 1714 1715
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1716

1717 1718
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
	boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1719

1720
	if (!hyp_pgd || !boot_hyp_pgd) {
1721
		kvm_err("Hyp mode PGD not allocated\n");
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		err = -ENOMEM;
		goto out;
	}

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);

	if (err) {
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);
		goto out;
1736 1737
	}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (__kvm_cpu_uses_extended_idmap()) {
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
		return 0;
	}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	/* Map the very same page at the trampoline VA */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

	/* Map the same page again into the runtime page tables */
	err = 	__create_hyp_mappings(hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

1771
	return 0;
1772
out:
1773
	free_hyp_pgds();
1774
	return err;
1775
}
1776 1777

void kvm_arch_commit_memory_region(struct kvm *kvm,
1778
				   const struct kvm_userspace_memory_region *mem,
1779
				   const struct kvm_memory_slot *old,
1780
				   const struct kvm_memory_slot *new,
1781 1782
				   enum kvm_mr_change change)
{
1783 1784 1785 1786 1787 1788 1789
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
1790 1791 1792 1793
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1794
				   const struct kvm_userspace_memory_region *mem,
1795 1796
				   enum kvm_mr_change change)
{
1797 1798 1799 1800 1801
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1802 1803
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1804 1805
		return 0;

1806 1807 1808 1809 1810 1811 1812 1813
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
1851 1852 1853 1854
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
1855

1856 1857 1858 1859
			/* IO region dirty page logging not allowed */
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
				return -EINVAL;

1860 1861 1862 1863 1864 1865 1866 1867 1868
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

1869 1870 1871
	if (change == KVM_MR_FLAGS_ONLY)
		return ret;

1872 1873
	spin_lock(&kvm->mmu_lock);
	if (ret)
1874
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1875 1876 1877
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
1878
	return ret;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
1889 1890 1891 1892 1893 1894 1895 1896 1897
	/*
	 * Readonly memslots are not incoherent with the caches by definition,
	 * but in practice, they are used mostly to emulate ROMs or NOR flashes
	 * that the guest may consider devices and hence map as uncached.
	 * To prevent incoherency issues in these cases, tag all readonly
	 * regions as incoherent.
	 */
	if (slot->flags & KVM_MEM_READONLY)
		slot->flags |= KVM_MEMSLOT_INCOHERENT;
1898 1899 1900
	return 0;
}

1901
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
1912 1913 1914 1915 1916 1917
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
1918
}
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
	unsigned long hcr = vcpu_get_hcr(vcpu);

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}