sb_edac.c 94.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * Copyright (c) 2011 by:
8
 *	 Mauro Carvalho Chehab
9 10 11 12 13 14 15 16 17 18 19 20
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
21
#include <linux/math64.h>
22 23
#include <linux/mod_devicetable.h>
#include <asm/cpu_device_id.h>
24
#include <asm/intel-family.h>
25
#include <asm/processor.h>
26
#include <asm/mce.h>
27

28
#include "edac_module.h"
29 30 31 32 33 34 35

/* Static vars */
static LIST_HEAD(sbridge_edac_list);

/*
 * Alter this version for the module when modifications are made
 */
36
#define SBRIDGE_REVISION    " Ver: 1.1.2 "
37
#define EDAC_MOD_STR	    "sb_edac"
38 39 40 41 42 43 44 45 46 47 48 49 50 51

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
52
	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
53 54

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
55
static const u32 sbridge_dram_rule[] = {
56 57 58 59
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};

60 61 62 63 64 65
static const u32 ibridge_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80,
	0x88, 0x90, 0x98, 0xa0,	0xa8,
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
66

67 68 69 70 71 72 73 74
static const u32 knl_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
};

75
#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
76
#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
77

78
static char *show_dram_attr(u32 attr)
79
{
80
	switch (attr) {
81 82 83 84 85 86 87 88 89 90 91
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

92
static const u32 sbridge_interleave_list[] = {
93 94 95 96
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};

97 98 99 100 101 102 103
static const u32 ibridge_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84,
	0x8c, 0x94, 0x9c, 0xa4, 0xac,
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};

104 105 106 107 108 109 110
static const u32 knl_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
};
111 112 113 114
#define MAX_INTERLEAVE							\
	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
		     ARRAY_SIZE(knl_interleave_list))))
115

A
Aristeu Rozanski 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
struct interleave_pkg {
	unsigned char start;
	unsigned char end;
};

static const struct interleave_pkg sbridge_interleave_pkg[] = {
	{ 0, 2 },
	{ 3, 5 },
	{ 8, 10 },
	{ 11, 13 },
	{ 16, 18 },
	{ 19, 21 },
	{ 24, 26 },
	{ 27, 29 },
};

132 133 134 135 136 137 138 139 140 141 142
static const struct interleave_pkg ibridge_interleave_pkg[] = {
	{ 0, 3 },
	{ 4, 7 },
	{ 8, 11 },
	{ 12, 15 },
	{ 16, 19 },
	{ 20, 23 },
	{ 24, 27 },
	{ 28, 31 },
};

A
Aristeu Rozanski 已提交
143 144
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
			  int interleave)
145
{
A
Aristeu Rozanski 已提交
146 147
	return GET_BITFIELD(reg, table[interleave].start,
			    table[interleave].end);
148 149 150 151 152
}

/* Devices 12 Function 7 */

#define TOLM		0x80
153
#define TOHM		0x84
154
#define HASWELL_TOLM	0xd0
155 156
#define HASWELL_TOHM_0	0xd4
#define HASWELL_TOHM_1	0xd8
157 158 159
#define KNL_TOLM	0xd0
#define KNL_TOHM_0	0xd4
#define KNL_TOHM_1	0xd8
160 161 162 163 164 165 166 167 168 169

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

170 171
#define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
#define SAD_CONTROL	0xf4

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c
194
#define KNL_MCMTR		0x624
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

211 212
static const int knl_mtr_reg = 0xb60;

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

245 246 247 248 249
#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))

#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

276
#define SB_RANK_CFG_A		0x0328
277

278
#define IB_RANK_CFG_A		0x0320
279 280 281 282 283

/*
 * sbridge structs
 */

284
#define NUM_CHANNELS		6	/* Max channels per MC */
285
#define MAX_DIMMS		3	/* Max DIMMS per channel */
286 287 288
#define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
#define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
#define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
289
#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
290

291 292 293
enum type {
	SANDY_BRIDGE,
	IVY_BRIDGE,
294
	HASWELL,
295
	BROADWELL,
296
	KNIGHTS_LANDING,
297 298
};

299 300 301 302 303 304
enum domain {
	IMC0 = 0,
	IMC1,
	SOCK,
};

305 306 307 308 309 310
enum mirroring_mode {
	NON_MIRRORING,
	ADDR_RANGE_MIRRORING,
	FULL_MIRRORING,
};

A
Aristeu Rozanski 已提交
311
struct sbridge_pvt;
312
struct sbridge_info {
313
	enum type	type;
314 315 316 317
	u32		mcmtr;
	u32		rankcfgr;
	u64		(*get_tolm)(struct sbridge_pvt *pvt);
	u64		(*get_tohm)(struct sbridge_pvt *pvt);
318
	u64		(*rir_limit)(u32 reg);
319 320 321
	u64		(*sad_limit)(u32 reg);
	u32		(*interleave_mode)(u32 reg);
	u32		(*dram_attr)(u32 reg);
322
	const u32	*dram_rule;
323
	const u32	*interleave_list;
A
Aristeu Rozanski 已提交
324
	const struct interleave_pkg *interleave_pkg;
325
	u8		max_sad;
326
	u8		(*get_node_id)(struct sbridge_pvt *pvt);
327
	u8		(*get_ha)(u8 bank);
328
	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
329
	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
330
	struct pci_dev	*pci_vtd;
331 332 333 334 335 336 337 338
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
339
	int			dev_id;
340
	int			optional;
341
	enum domain		dom;
342 343 344 345
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
346 347 348
	int				n_devs_per_imc;
	int				n_devs_per_sock;
	int				n_imcs_per_sock;
349
	enum type			type;
350 351 352 353
};

struct sbridge_dev {
	struct list_head	list;
354
	int			seg;
355 356 357
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
358
	enum domain		dom;
359
	int			n_devs;
360
	int			i_devs;
361 362 363
	struct mem_ctl_info	*mci;
};

364 365 366 367 368 369 370 371 372 373
struct knl_pvt {
	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
	struct pci_dev          *pci_mc0;
	struct pci_dev          *pci_mc1;
	struct pci_dev          *pci_mc0_misc;
	struct pci_dev          *pci_mc1_misc;
	struct pci_dev          *pci_mc_info; /* tolm, tohm */
};

374
struct sbridge_pvt {
375 376
	/* Devices per socket */
	struct pci_dev		*pci_ddrio;
377 378
	struct pci_dev		*pci_sad0, *pci_sad1;
	struct pci_dev		*pci_br0, *pci_br1;
379 380
	/* Devices per memory controller */
	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
381 382 383 384 385 386 387 388
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	/* Memory type detection */
389
	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
390
	bool			is_chan_hash;
391
	enum mirroring_mode	mirror_mode;
392 393 394

	/* Memory description */
	u64			tolm, tohm;
395
	struct knl_pvt knl;
396 397
};

398
#define PCI_DESCR(device_id, opt, domain)	\
399
	.dev_id = (device_id),		\
400 401
	.optional = opt,	\
	.dom = domain
402 403 404

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
405
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
406 407

		/* Memory controller */
408 409 410 411 412 413 414
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
415 416

		/* System Address Decoder */
417 418
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
419 420

		/* Broadcast Registers */
421
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
422 423
};

424
#define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
425
	.descr = A,			\
426 427 428
	.n_devs_per_imc = N,	\
	.n_devs_per_sock = ARRAY_SIZE(A),	\
	.n_imcs_per_sock = M,	\
429 430 431
	.type = T			\
}

432
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
433
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
434 435 436
	{0,}			/* 0 terminated list. */
};

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/* This changes depending if 1HA or 2HA:
 * 1HA:
 *	0x0eb8 (17.0) is DDRIO0
 * 2HA:
 *	0x0ebc (17.4) is DDRIO0
 */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc

/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
462 463
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
464 465 466

static const struct pci_id_descr pci_dev_descr_ibridge[] = {
		/* Processor Home Agent */
467
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
468
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
469 470

		/* Memory controller */
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },

		/* Optional, mode 2HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
488 489

		/* System Address Decoder */
490
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
491 492

		/* Broadcast Registers */
493 494
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
495 496 497 498

};

static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
499
	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
500 501 502
	{0,}			/* 0 terminated list. */
};

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/* Haswell support */
/* EN processor:
 *	- 1 IMC
 *	- 3 DDR3 channels, 2 DPC per channel
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 */
519
#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
520 521 522 523 524
#define HASWELL_HASYSDEFEATURE2 0x84
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
525
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
526
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
527
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
528 529 530 531 532 533 534 535 536 537 538
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
539 540 541
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
542 543
static const struct pci_id_descr pci_dev_descr_haswell[] = {
	/* first item must be the HA */
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
567 568 569
};

static const struct pci_id_table pci_dev_descr_haswell_table[] = {
570
	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
571 572 573
	{0,}			/* 0 terminated list. */
};

574 575 576
/* Knight's Landing Support */
/*
 * KNL's memory channels are swizzled between memory controllers.
577
 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
578
 */
579
#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
580 581 582 583

/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
584
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
/* SAD target - 1-29-1 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
/* Caching / Home Agent */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810

/*
 * KNL differs from SB, IB, and Haswell in that it has multiple
 * instances of the same device with the same device ID, so we handle that
 * by creating as many copies in the table as we expect to find.
 * (Like device ID must be grouped together.)
 */

static const struct pci_id_descr pci_dev_descr_knl[] = {
604 605 606 607 608 609 610
	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
611 612 613
};

static const struct pci_id_table pci_dev_descr_knl_table[] = {
614
	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
615 616 617
	{0,}
};

618 619 620 621 622 623
/*
 * Broadwell support
 *
 * DE processor:
 *	- 1 IMC
 *	- 2 DDR3 channels, 2 DPC per channel
624 625 626 627 628 629 630 631 632 633 634
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
635 636 637
 */
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
638
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
639
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
640
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
641
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
642
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
643 644 645 646 647 648
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
649 650 651 652
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
653 654 655 656
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf

static const struct pci_id_descr pci_dev_descr_broadwell[] = {
	/* first item must be the HA */
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
677 678 679
};

static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
680
	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
681 682 683
	{0,}			/* 0 terminated list. */
};

684 685

/****************************************************************************
D
David Mackey 已提交
686
			Ancillary status routines
687 688
 ****************************************************************************/

689
static inline int numrank(enum type type, u32 mtr)
690 691
{
	int ranks = (1 << RANK_CNT_BITS(mtr));
692 693
	int max = 4;

694
	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
695
		max = 8;
696

697 698 699
	if (ranks > max) {
		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
700 701 702 703 704 705 706 707 708 709 710
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
711 712
		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
713 714 715 716 717 718 719 720 721 722 723
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
724 725
		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
726 727 728 729 730 731
		return -EINVAL;
	}

	return 1 << cols;
}

732 733
static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
					   int multi_bus,
734
					   struct sbridge_dev *prev)
735 736 737
{
	struct sbridge_dev *sbridge_dev;

738 739 740 741 742 743 744 745 746
	/*
	 * If we have devices scattered across several busses that pertain
	 * to the same memory controller, we'll lump them all together.
	 */
	if (multi_bus) {
		return list_first_entry_or_null(&sbridge_edac_list,
				struct sbridge_dev, list);
	}

747 748 749 750
	sbridge_dev = list_entry(prev ? prev->list.next
				      : sbridge_edac_list.next, struct sbridge_dev, list);

	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
751 752
		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
				(dom == SOCK || dom == sbridge_dev->dom))
753 754 755 756 757 758
			return sbridge_dev;
	}

	return NULL;
}

759
static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
760
					     const struct pci_id_table *table)
761 762 763 764 765 766 767
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

768 769 770
	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
				    sizeof(*sbridge_dev->pdev),
				    GFP_KERNEL);
771 772 773 774 775
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

776
	sbridge_dev->seg = seg;
777
	sbridge_dev->bus = bus;
778
	sbridge_dev->dom = dom;
779
	sbridge_dev->n_devs = table->n_devs_per_imc;
780 781 782 783 784 785 786 787 788 789 790 791
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

A
Aristeu Rozanski 已提交
792 793 794 795 796 797 798 799 800
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
	return GET_TOLM(reg);
}

A
Aristeu Rozanski 已提交
801 802 803 804 805 806 807 808
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
	return GET_TOHM(reg);
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);

	return GET_TOLM(reg);
}

static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);

	return GET_TOHM(reg);
}

827 828 829 830 831
static u64 rir_limit(u32 reg)
{
	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static u64 sad_limit(u32 reg)
{
	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
}

static u32 interleave_mode(u32 reg)
{
	return GET_BITFIELD(reg, 1, 1);
}

static u32 dram_attr(u32 reg)
{
	return GET_BITFIELD(reg, 2, 3);
}

847 848 849 850 851 852 853 854 855 856
static u64 knl_sad_limit(u32 reg)
{
	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
}

static u32 knl_interleave_mode(u32 reg)
{
	return GET_BITFIELD(reg, 1, 2);
}

857 858 859
static const char * const knl_intlv_mode[] = {
	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
};
860

861 862 863 864 865 866
static const char *get_intlv_mode_str(u32 reg, enum type t)
{
	if (t == KNIGHTS_LANDING)
		return knl_intlv_mode[knl_interleave_mode(reg)];
	else
		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
867 868 869 870 871 872 873 874
}

static u32 dram_attr_knl(u32 reg)
{
	return GET_BITFIELD(reg, 3, 4);
}


875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	enum mem_type mtype;

	if (pvt->pci_ddrio) {
		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
				      &reg);
		if (GET_BITFIELD(reg, 11, 11))
			/* FIXME: Can also be LRDIMM */
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	} else
		mtype = MEM_UNKNOWN;

	return mtype;
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	bool registered = false;
	enum mem_type mtype = MEM_UNKNOWN;

	if (!pvt->pci_ddrio)
		goto out;

	pci_read_config_dword(pvt->pci_ddrio,
			      HASWELL_DDRCRCLKCONTROLS, &reg);
	/* Is_Rdimm */
	if (GET_BITFIELD(reg, 16, 16))
		registered = true;

	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
	if (GET_BITFIELD(reg, 14, 14)) {
		if (registered)
			mtype = MEM_RDDR4;
		else
			mtype = MEM_DDR4;
	} else {
		if (registered)
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	}

out:
	return mtype;
}

926 927 928 929 930 931
static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* for KNL value is fixed */
	return DEV_X16;
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* there's no way to figure out */
	return DEV_UNKNOWN;
}

static enum dev_type __ibridge_get_width(u32 mtr)
{
	enum dev_type type;

	switch (mtr) {
	case 3:
		type = DEV_UNKNOWN;
		break;
	case 2:
		type = DEV_X16;
		break;
	case 1:
		type = DEV_X8;
		break;
	case 0:
		type = DEV_X4;
		break;
	}

	return type;
}

static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/*
	 * ddr3_width on the documentation but also valid for DDR4 on
	 * Haswell
	 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
}

static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* ddr3_width on the documentation but also valid for DDR4 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
}

975 976 977 978 979 980
static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
{
	/* DDR4 RDIMMS and LRDIMMS are supported */
	return MEM_RDDR4;
}

981 982 983 984 985 986 987
static u8 get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;
	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}

988 989 990 991 992 993 994 995
static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 3);
}

996 997 998 999 1000 1001 1002 1003
static u8 knl_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 * Use the reporting bank number to determine which memory
 * controller (also known as "ha" for "home agent"). Sandy
 * Bridge only has one memory controller per socket, so the
 * answer is always zero.
 */
static u8 sbridge_get_ha(u8 bank)
{
	return 0;
}

/*
 * On Ivy Bridge, Haswell and Broadwell the error may be in a
 * home agent bank (7, 8), or one of the per-channel memory
 * controller banks (9 .. 16).
 */
static u8 ibridge_get_ha(u8 bank)
{
	switch (bank) {
	case 7 ... 8:
		return bank - 7;
	case 9 ... 16:
		return (bank - 9) / 4;
	default:
1028
		return 0xff;
1029 1030 1031 1032 1033 1034
	}
}

/* Not used, but included for safety/symmetry */
static u8 knl_get_ha(u8 bank)
{
1035
	return 0xff;
1036
}
1037

1038 1039 1040 1041
static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

1042 1043
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
}

static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg;

	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
	rc = GET_BITFIELD(reg, 26, 31);
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
	rc = ((reg << 6) | rc) << 26;

	return rc | 0x1ffffff;
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static u64 knl_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
}

static u64 knl_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg_lo, reg_hi;

	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
	rc = ((u64)reg_hi << 32) | reg_lo;
	return rc | 0x3ffffff;
}


1079 1080 1081 1082 1083
static u64 haswell_rir_limit(u32 reg)
{
	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
}

1084 1085 1086
static inline u8 sad_pkg_socket(u8 pkg)
{
	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1087
	return ((pkg >> 3) << 2) | (pkg & 0x3);
1088 1089 1090 1091 1092 1093 1094
}

static inline u8 sad_pkg_ha(u8 pkg)
{
	return (pkg >> 2) & 0x1;
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static int haswell_chan_hash(int idx, u64 addr)
{
	int i;

	/*
	 * XOR even bits from 12:26 to bit0 of idx,
	 *     odd bits from 13:27 to bit1
	 */
	for (i = 12; i < 28; i += 2)
		idx ^= (addr >> i) & 3;

	return idx;
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/* Low bits of TAD limit, and some metadata. */
static const u32 knl_tad_dram_limit_lo[] = {
	0x400, 0x500, 0x600, 0x700,
	0x800, 0x900, 0xa00, 0xb00,
};

/* Low bits of TAD offset. */
static const u32 knl_tad_dram_offset_lo[] = {
	0x404, 0x504, 0x604, 0x704,
	0x804, 0x904, 0xa04, 0xb04,
};

/* High 16 bits of TAD limit and offset. */
static const u32 knl_tad_dram_hi[] = {
	0x408, 0x508, 0x608, 0x708,
	0x808, 0x908, 0xa08, 0xb08,
};

/* Number of ways a tad entry is interleaved. */
static const u32 knl_tad_ways[] = {
	8, 6, 4, 3, 2, 1,
};

/*
 * Retrieve the n'th Target Address Decode table entry
 * from the memory controller's TAD table.
 *
 * @pvt:	driver private data
 * @entry:	which entry you want to retrieve
 * @mc:		which memory controller (0 or 1)
 * @offset:	output tad range offset
 * @limit:	output address of first byte above tad range
 * @ways:	output number of interleave ways
 *
 * The offset value has curious semantics.  It's a sort of running total
 * of the sizes of all the memory regions that aren't mapped in this
 * tad table.
 */
static int knl_get_tad(const struct sbridge_pvt *pvt,
		const int entry,
		const int mc,
		u64 *offset,
		u64 *limit,
		int *ways)
{
	u32 reg_limit_lo, reg_offset_lo, reg_hi;
	struct pci_dev *pci_mc;
	int way_id;

	switch (mc) {
	case 0:
		pci_mc = pvt->knl.pci_mc0;
		break;
	case 1:
		pci_mc = pvt->knl.pci_mc1;
		break;
	default:
		WARN_ON(1);
		return -EINVAL;
	}

	pci_read_config_dword(pci_mc,
			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
	pci_read_config_dword(pci_mc,
			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
	pci_read_config_dword(pci_mc,
			knl_tad_dram_hi[entry], &reg_hi);

	/* Is this TAD entry enabled? */
	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
		return -ENODEV;

	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);

	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
		*ways = knl_tad_ways[way_id];
	} else {
		*ways = 0;
		sbridge_printk(KERN_ERR,
				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
				way_id);
		return -ENODEV;
	}

	/*
	 * The least significant 6 bits of base and limit are truncated.
	 * For limit, we fill the missing bits with 1s.
	 */
	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);

	return 0;
}

/* Determine which memory controller is responsible for a given channel. */
static int knl_channel_mc(int channel)
{
	WARN_ON(channel < 0 || channel >= 6);

	return channel < 3 ? 1 : 0;
}

/*
 * Get the Nth entry from EDC_ROUTE_TABLE register.
 * (This is the per-tile mapping of logical interleave targets to
 *  physical EDC modules.)
 *
 * entry 0: 0:2
 *       1: 3:5
 *       2: 6:8
 *       3: 9:11
 *       4: 12:14
 *       5: 15:17
 *       6: 18:20
 *       7: 21:23
 * reserved: 24:31
 */
static u32 knl_get_edc_route(int entry, u32 reg)
{
	WARN_ON(entry >= KNL_MAX_EDCS);
	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
}

/*
 * Get the Nth entry from MC_ROUTE_TABLE register.
 * (This is the per-tile mapping of logical interleave targets to
 *  physical DRAM channels modules.)
 *
 * entry 0: mc 0:2   channel 18:19
 *       1: mc 3:5   channel 20:21
 *       2: mc 6:8   channel 22:23
 *       3: mc 9:11  channel 24:25
 *       4: mc 12:14 channel 26:27
 *       5: mc 15:17 channel 28:29
 * reserved: 30:31
 *
 * Though we have 3 bits to identify the MC, we should only see
 * the values 0 or 1.
 */

static u32 knl_get_mc_route(int entry, u32 reg)
{
	int mc, chan;

	WARN_ON(entry >= KNL_MAX_CHANNELS);

	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);

1260
	return knl_channel_remap(mc, chan);
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
}

/*
 * Render the EDC_ROUTE register in human-readable form.
 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
 */
static void knl_show_edc_route(u32 reg, char *s)
{
	int i;

	for (i = 0; i < KNL_MAX_EDCS; i++) {
		s[i*2] = knl_get_edc_route(i, reg) + '0';
		s[i*2+1] = '-';
	}

	s[KNL_MAX_EDCS*2 - 1] = '\0';
}

/*
 * Render the MC_ROUTE register in human-readable form.
 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
 */
static void knl_show_mc_route(u32 reg, char *s)
{
	int i;

	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
		s[i*2] = knl_get_mc_route(i, reg) + '0';
		s[i*2+1] = '-';
	}

	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
}

#define KNL_EDC_ROUTE 0xb8
#define KNL_MC_ROUTE 0xb4

/* Is this dram rule backed by regular DRAM in flat mode? */
#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)

/* Is this dram rule cached? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)

/* Is this rule backed by edc ? */
#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)

/* Is this rule backed by DRAM, cacheable in EDRAM? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)

/* Is this rule mod3? */
#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)

/*
 * Figure out how big our RAM modules are.
 *
 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
 * have to figure this out from the SAD rules, interleave lists, route tables,
 * and TAD rules.
 *
 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
 * inspect the TAD rules to figure out how large the SAD regions really are.
 *
 * When we know the real size of a SAD region and how many ways it's
 * interleaved, we know the individual contribution of each channel to
 * TAD is size/ways.
 *
 * Finally, we have to check whether each channel participates in each SAD
 * region.
 *
 * Fortunately, KNL only supports one DIMM per channel, so once we know how
 * much memory the channel uses, we know the DIMM is at least that large.
 * (The BIOS might possibly choose not to map all available memory, in which
 * case we will underreport the size of the DIMM.)
 *
 * In theory, we could try to determine the EDC sizes as well, but that would
 * only work in flat mode, not in cache mode.
 *
 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
 *            elements)
 */
static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
{
	u64 sad_base, sad_size, sad_limit = 0;
	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
	int sad_rule = 0;
	int tad_rule = 0;
	int intrlv_ways, tad_ways;
	u32 first_pkg, pkg;
	int i;
	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
	u32 dram_rule, interleave_reg;
	u32 mc_route_reg[KNL_MAX_CHAS];
	u32 edc_route_reg[KNL_MAX_CHAS];
	int edram_only;
	char edc_route_string[KNL_MAX_EDCS*2];
	char mc_route_string[KNL_MAX_CHANNELS*2];
	int cur_reg_start;
	int mc;
	int channel;
	int participants[KNL_MAX_CHANNELS];

	for (i = 0; i < KNL_MAX_CHANNELS; i++)
		mc_sizes[i] = 0;

	/* Read the EDC route table in each CHA. */
	cur_reg_start = 0;
	for (i = 0; i < KNL_MAX_CHAS; i++) {
		pci_read_config_dword(pvt->knl.pci_cha[i],
				KNL_EDC_ROUTE, &edc_route_reg[i]);

		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
			knl_show_edc_route(edc_route_reg[i-1],
					edc_route_string);
			if (cur_reg_start == i-1)
				edac_dbg(0, "edc route table for CHA %d: %s\n",
					cur_reg_start, edc_route_string);
			else
				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
					cur_reg_start, i-1, edc_route_string);
			cur_reg_start = i;
		}
	}
	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
	if (cur_reg_start == i-1)
		edac_dbg(0, "edc route table for CHA %d: %s\n",
			cur_reg_start, edc_route_string);
	else
		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
			cur_reg_start, i-1, edc_route_string);

	/* Read the MC route table in each CHA. */
	cur_reg_start = 0;
	for (i = 0; i < KNL_MAX_CHAS; i++) {
		pci_read_config_dword(pvt->knl.pci_cha[i],
			KNL_MC_ROUTE, &mc_route_reg[i]);

		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
			if (cur_reg_start == i-1)
				edac_dbg(0, "mc route table for CHA %d: %s\n",
					cur_reg_start, mc_route_string);
			else
				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
					cur_reg_start, i-1, mc_route_string);
			cur_reg_start = i;
		}
	}
	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
	if (cur_reg_start == i-1)
		edac_dbg(0, "mc route table for CHA %d: %s\n",
			cur_reg_start, mc_route_string);
	else
		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
			cur_reg_start, i-1, mc_route_string);

	/* Process DRAM rules */
	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
		/* previous limit becomes the new base */
		sad_base = sad_limit;

		pci_read_config_dword(pvt->pci_sad0,
			pvt->info.dram_rule[sad_rule], &dram_rule);

		if (!DRAM_RULE_ENABLE(dram_rule))
			break;

		edram_only = KNL_EDRAM_ONLY(dram_rule);

		sad_limit = pvt->info.sad_limit(dram_rule)+1;
		sad_size = sad_limit - sad_base;

		pci_read_config_dword(pvt->pci_sad0,
			pvt->info.interleave_list[sad_rule], &interleave_reg);

		/*
		 * Find out how many ways this dram rule is interleaved.
		 * We stop when we see the first channel again.
		 */
		first_pkg = sad_pkg(pvt->info.interleave_pkg,
						interleave_reg, 0);
		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
			pkg = sad_pkg(pvt->info.interleave_pkg,
						interleave_reg, intrlv_ways);

			if ((pkg & 0x8) == 0) {
				/*
				 * 0 bit means memory is non-local,
				 * which KNL doesn't support
				 */
				edac_dbg(0, "Unexpected interleave target %d\n",
					pkg);
				return -1;
			}

			if (pkg == first_pkg)
				break;
		}
		if (KNL_MOD3(dram_rule))
			intrlv_ways *= 3;

		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
			sad_rule,
			sad_base,
			sad_limit,
			intrlv_ways,
			edram_only ? ", EDRAM" : "");

		/*
		 * Find out how big the SAD region really is by iterating
		 * over TAD tables (SAD regions may contain holes).
		 * Each memory controller might have a different TAD table, so
		 * we have to look at both.
		 *
		 * Livespace is the memory that's mapped in this TAD table,
		 * deadspace is the holes (this could be the MMIO hole, or it
		 * could be memory that's mapped by the other TAD table but
		 * not this one).
		 */
		for (mc = 0; mc < 2; mc++) {
			sad_actual_size[mc] = 0;
			tad_livespace = 0;
			for (tad_rule = 0;
					tad_rule < ARRAY_SIZE(
						knl_tad_dram_limit_lo);
					tad_rule++) {
				if (knl_get_tad(pvt,
						tad_rule,
						mc,
						&tad_deadspace,
						&tad_limit,
						&tad_ways))
					break;

				tad_size = (tad_limit+1) -
					(tad_livespace + tad_deadspace);
				tad_livespace += tad_size;
				tad_base = (tad_limit+1) - tad_size;

				if (tad_base < sad_base) {
					if (tad_limit > sad_base)
						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
				} else if (tad_base < sad_limit) {
					if (tad_limit+1 > sad_limit) {
						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
					} else {
						/* TAD region is completely inside SAD region */
						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
							tad_rule, tad_base,
							tad_limit, tad_size,
							mc);
						sad_actual_size[mc] += tad_size;
					}
				}
			}
		}

		for (mc = 0; mc < 2; mc++) {
			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
				mc, sad_actual_size[mc], sad_actual_size[mc]);
		}

		/* Ignore EDRAM rule */
		if (edram_only)
			continue;

		/* Figure out which channels participate in interleave. */
		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
			participants[channel] = 0;

		/* For each channel, does at least one CHA have
		 * this channel mapped to the given target?
		 */
		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1534 1535
			int target;
			int cha;
1536

1537
			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1538 1539 1540
				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
					if (knl_get_mc_route(target,
						mc_route_reg[cha]) == channel
1541
						&& !participants[channel]) {
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
						participants[channel] = 1;
						break;
					}
				}
			}
		}

		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
			mc = knl_channel_mc(channel);
			if (participants[channel]) {
				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
					channel,
					sad_actual_size[mc]/intrlv_ways,
					sad_rule);
				mc_sizes[channel] +=
					sad_actual_size[mc]/intrlv_ways;
			}
		}
	}

	return 0;
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
static void get_source_id(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	u32 reg;

	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
	    pvt->info.type == KNIGHTS_LANDING)
		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
	else
		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);

	if (pvt->info.type == KNIGHTS_LANDING)
		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
	else
		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
}

1582 1583 1584
static int __populate_dimms(struct mem_ctl_info *mci,
			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
			    enum edac_type mode)
1585 1586
{
	struct sbridge_pvt *pvt = mci->pvt_info;
1587 1588 1589
	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
							 : NUM_CHANNELS;
	unsigned int i, j, banks, ranks, rows, cols, npages;
1590
	struct dimm_info *dimm;
1591
	enum mem_type mtype;
1592
	u64 size;
1593

1594
	mtype = pvt->info.get_memory_type(pvt);
1595
	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1596 1597
		edac_dbg(0, "Memory is registered\n");
	else if (mtype == MEM_UNKNOWN)
1598
		edac_dbg(0, "Cannot determine memory type\n");
1599 1600
	else
		edac_dbg(0, "Memory is unregistered\n");
1601

1602
	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1603 1604 1605
		banks = 16;
	else
		banks = 8;
1606

1607
	for (i = 0; i < channels; i++) {
1608 1609
		u32 mtr;

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		int max_dimms_per_channel;

		if (pvt->info.type == KNIGHTS_LANDING) {
			max_dimms_per_channel = 1;
			if (!pvt->knl.pci_channel[i])
				continue;
		} else {
			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
			if (!pvt->pci_tad[i])
				continue;
		}

		for (j = 0; j < max_dimms_per_channel; j++) {
1623
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1624 1625 1626 1627 1628 1629 1630
			if (pvt->info.type == KNIGHTS_LANDING) {
				pci_read_config_dword(pvt->knl.pci_channel[i],
					knl_mtr_reg, &mtr);
			} else {
				pci_read_config_dword(pvt->pci_tad[i],
					mtr_regs[j], &mtr);
			}
1631
			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1632
			if (IS_DIMM_PRESENT(mtr)) {
1633 1634 1635 1636 1637 1638
				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
						       pvt->sbridge_dev->source_id,
						       pvt->sbridge_dev->dom, i);
					return -ENODEV;
				}
1639 1640
				pvt->channel[i].dimms++;

1641
				ranks = numrank(pvt->info.type, mtr);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

				if (pvt->info.type == KNIGHTS_LANDING) {
					/* For DDR4, this is fixed. */
					cols = 1 << 10;
					rows = knl_mc_sizes[i] /
						((u64) cols * ranks * banks * 8);
				} else {
					rows = numrow(mtr);
					cols = numcol(mtr);
				}
1652

1653
				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1654 1655
				npages = MiB_TO_PAGES(size);

1656
				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1657
					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1658 1659
					 size, npages,
					 banks, ranks, rows, cols);
1660

1661
				dimm->nr_pages = npages;
1662
				dimm->grain = 32;
1663
				dimm->dtype = pvt->info.get_width(pvt, mtr);
1664 1665 1666
				dimm->mtype = mtype;
				dimm->edac_mode = mode;
				snprintf(dimm->label, sizeof(dimm->label),
1667 1668
						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1669 1670 1671
			}
		}
	}
1672 1673

	return 0;
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
}

static int get_dimm_config(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
	enum edac_type mode;
	u32 reg;

	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
		 pvt->sbridge_dev->mc,
		 pvt->sbridge_dev->node_id,
		 pvt->sbridge_dev->source_id);

	/* KNL doesn't support mirroring or lockstep,
	 * and is always closed page
	 */
	if (pvt->info.type == KNIGHTS_LANDING) {
		mode = EDAC_S4ECD4ED;
1694 1695
		pvt->mirror_mode = NON_MIRRORING;
		pvt->is_cur_addr_mirrored = false;
1696 1697 1698

		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
			return -1;
1699 1700 1701 1702
		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
			return -ENODEV;
		}
1703
	} else {
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
				return -ENODEV;
			}
			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
			if (GET_BITFIELD(reg, 28, 28)) {
				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
				goto next;
			}
		}
		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
			edac_dbg(0, "Failed to read RASENABLES register\n");
			return -ENODEV;
		}
1720
		if (IS_MIRROR_ENABLED(reg)) {
1721 1722
			pvt->mirror_mode = FULL_MIRRORING;
			edac_dbg(0, "Full memory mirroring is enabled\n");
1723
		} else {
1724 1725
			pvt->mirror_mode = NON_MIRRORING;
			edac_dbg(0, "Memory mirroring is disabled\n");
1726 1727
		}

1728 1729 1730 1731 1732
next:
		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
			edac_dbg(0, "Failed to read MCMTR register\n");
			return -ENODEV;
		}
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
			edac_dbg(0, "Lockstep is enabled\n");
			mode = EDAC_S8ECD8ED;
			pvt->is_lockstep = true;
		} else {
			edac_dbg(0, "Lockstep is disabled\n");
			mode = EDAC_S4ECD4ED;
			pvt->is_lockstep = false;
		}
		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
			edac_dbg(0, "address map is on closed page mode\n");
			pvt->is_close_pg = true;
		} else {
			edac_dbg(0, "address map is on open page mode\n");
			pvt->is_close_pg = false;
		}
	}

1751
	return __populate_dimms(mci, knl_mc_sizes, mode);
1752 1753 1754 1755 1756 1757 1758 1759 1760
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
1761
	u32 gb, mb;
1762 1763 1764 1765 1766 1767
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

A
Aristeu Rozanski 已提交
1768
	pvt->tolm = pvt->info.get_tolm(pvt);
1769 1770
	tmp_mb = (1 + pvt->tolm) >> 20;

1771 1772 1773
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tolm);
1774 1775

	/* Address range is already 45:25 */
A
Aristeu Rozanski 已提交
1776
	pvt->tohm = pvt->info.get_tohm(pvt);
1777 1778
	tmp_mb = (1 + pvt->tohm) >> 20;

1779 1780 1781
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tohm);
1782 1783 1784 1785 1786 1787 1788 1789

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
1790
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1791
		/* SAD_LIMIT Address range is 45:26 */
1792
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1793
				      &reg);
1794
		limit = pvt->info.sad_limit(reg);
1795 1796 1797 1798 1799 1800 1801 1802

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
1803
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1804 1805
		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
			 n_sads,
1806
			 show_dram_attr(pvt->info.dram_attr(reg)),
1807
			 gb, (mb*1000)/1024,
1808
			 ((u64)tmp_mb) << 20L,
1809
			 get_intlv_mode_str(reg, pvt->info.type),
1810
			 reg);
1811 1812
		prv = limit;

1813
		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1814
				      &reg);
A
Aristeu Rozanski 已提交
1815
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1816
		for (j = 0; j < 8; j++) {
A
Aristeu Rozanski 已提交
1817 1818
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
			if (j > 0 && sad_interl == pkg)
1819 1820
				break;

1821
			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
A
Aristeu Rozanski 已提交
1822
				 n_sads, j, pkg);
1823 1824 1825
		}
	}

1826 1827 1828
	if (pvt->info.type == KNIGHTS_LANDING)
		return;

1829 1830 1831 1832 1833
	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1834
		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1835 1836 1837 1838 1839
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

1840
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1841
		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1842
			 n_tads, gb, (mb*1000)/1024,
1843
			 ((u64)tmp_mb) << 20L,
1844 1845
			 (u32)(1 << TAD_SOCK(reg)),
			 (u32)TAD_CH(reg) + 1,
1846 1847 1848 1849 1850
			 (u32)TAD_TGT0(reg),
			 (u32)TAD_TGT1(reg),
			 (u32)TAD_TGT2(reg),
			 (u32)TAD_TGT3(reg),
			 reg);
1851
		prv = limit;
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
1865
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1866 1867
			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
				 i, j,
1868
				 gb, (mb*1000)/1024,
1869 1870
				 ((u64)tmp_mb) << 20L,
				 reg);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

1888
			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1889
			rir_way = 1 << RIR_WAY(reg);
1890
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1891 1892
			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
				 i, j,
1893
				 gb, (mb*1000)/1024,
1894 1895 1896
				 ((u64)tmp_mb) << 20L,
				 rir_way,
				 reg);
1897 1898 1899 1900 1901

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
1902
				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1903

1904
				gb = div_u64_rem(tmp_mb, 1024, &mb);
1905 1906
				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					 i, j, k,
1907
					 gb, (mb*1000)/1024,
1908
					 ((u64)tmp_mb) << 20L,
1909
					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1910
					 reg);
1911 1912 1913 1914 1915
			}
		}
	}
}

1916
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1917 1918 1919 1920
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1921
		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1922 1923 1924 1925 1926 1927 1928
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
1929
				 u8 *socket, u8 *ha,
1930 1931
				 long *channel_mask,
				 u8 *rank,
1932
				 char **area_type, char *msg)
1933 1934 1935
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1936
	struct pci_dev		*pci_ha;
1937
	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1938
	int			sad_interl, idx, base_ch;
1939
	int			interleave_mode, shiftup = 0;
1940
	unsigned int		sad_interleave[MAX_INTERLEAVE];
1941
	u32			reg, dram_rule;
1942
	u8			ch_way, sck_way, pkg, sad_ha = 0;
1943 1944
	u32			tad_offset;
	u32			rir_way;
1945
	u32			mb, gb;
1946
	u64			ch_addr, offset, limit = 0, prv = 0;
1947 1948 1949 1950 1951 1952 1953 1954 1955


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
1956
	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
1968 1969
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1970 1971 1972 1973 1974
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

1975
		limit = pvt->info.sad_limit(reg);
1976 1977 1978 1979 1980 1981 1982 1983
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1984
	if (n_sads == pvt->info.max_sad) {
1985 1986 1987
		sprintf(msg, "Can't discover the memory socket");
		return -EINVAL;
	}
1988
	dram_rule = reg;
1989 1990
	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
	interleave_mode = pvt->info.interleave_mode(dram_rule);
1991

1992
	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1993
			      &reg);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	if (pvt->info.type == SANDY_BRIDGE) {
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
		for (sad_way = 0; sad_way < 8; sad_way++) {
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
			if (sad_way > 0 && sad_interl == pkg)
				break;
			sad_interleave[sad_way] = pkg;
			edac_dbg(0, "SAD interleave #%d: %d\n",
				 sad_way, sad_interleave[sad_way]);
		}
		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
			 pvt->sbridge_dev->mc,
			 n_sads,
			 addr,
			 limit,
			 sad_way + 7,
			 !interleave_mode ? "" : "XOR[18:16]");
		if (interleave_mode)
			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
		else
			idx = (addr >> 6) & 7;
		switch (sad_way) {
		case 1:
			idx = 0;
2019
			break;
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
		case 2:
			idx = idx & 1;
			break;
		case 4:
			idx = idx & 3;
			break;
		case 8:
			break;
		default:
			sprintf(msg, "Can't discover socket interleave");
			return -EINVAL;
		}
		*socket = sad_interleave[idx];
		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
			 idx, sad_way, *socket);
2035
	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2036 2037 2038 2039 2040 2041 2042
		int bits, a7mode = A7MODE(dram_rule);

		if (a7mode) {
			/* A7 mode swaps P9 with P6 */
			bits = GET_BITFIELD(addr, 7, 8) << 1;
			bits |= GET_BITFIELD(addr, 9, 9);
		} else
2043
			bits = GET_BITFIELD(addr, 6, 8);
2044

2045
		if (interleave_mode == 0) {
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
			/* interleave mode will XOR {8,7,6} with {18,17,16} */
			idx = GET_BITFIELD(addr, 16, 18);
			idx ^= bits;
		} else
			idx = bits;

		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);

		if (a7mode) {
			/* MCChanShiftUpEnable */
2058
			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2059 2060 2061 2062 2063
			shiftup = GET_BITFIELD(reg, 22, 22);
		}

		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
			 idx, *socket, sad_ha, shiftup);
2064 2065
	} else {
		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2066
		idx = (addr >> 6) & 7;
2067 2068 2069 2070 2071
		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);
		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
			 idx, *socket, sad_ha);
2072 2073
	}

2074 2075
	*ha = sad_ha;

2076 2077 2078 2079
	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
2080
	new_mci = get_mci_for_node_id(*socket, sad_ha);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
2093
	pci_ha = pvt->pci_ha;
2094
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2095
		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2096 2097 2098 2099 2100 2101 2102 2103 2104
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
2105 2106 2107 2108 2109
	if (n_tads == MAX_TAD) {
		sprintf(msg, "Can't discover the memory channel");
		return -EINVAL;
	}

2110
	ch_way = TAD_CH(reg) + 1;
2111
	sck_way = TAD_SOCK(reg);
2112 2113 2114

	if (ch_way == 3)
		idx = addr >> 6;
2115
	else {
2116
		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2117 2118 2119
		if (pvt->is_chan_hash)
			idx = haswell_chan_hash(idx, addr);
	}
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

2144
	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2145

2146 2147
	if (pvt->mirror_mode == FULL_MIRRORING ||
	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2148 2149 2150 2151
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
2152
			sck_xch = (1 << sck_way) * (ch_way >> 1);
2153 2154 2155 2156 2157
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			return -EINVAL;
		}
2158 2159 2160

		pvt->is_cur_addr_mirrored = true;
	} else {
2161
		sck_xch = (1 << sck_way) * ch_way;
2162 2163
		pvt->is_cur_addr_mirrored = false;
	}
2164 2165 2166 2167 2168 2169

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

2170 2171 2172 2173
	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		 n_tads,
		 addr,
		 limit,
2174
		 sck_way,
2175 2176 2177 2178 2179
		 ch_way,
		 offset,
		 idx,
		 base_ch,
		 *channel_mask);
2180 2181 2182 2183 2184 2185 2186 2187 2188

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		return -EINVAL;
	}
2189 2190 2191

	ch_addr = addr - offset;
	ch_addr >>= (6 + shiftup);
2192
	ch_addr /= sck_xch;
2193 2194
	ch_addr <<= (6 + shiftup);
	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2195 2196 2197 2198 2199

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2200
		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2201 2202 2203 2204

		if (!IS_RIR_VALID(reg))
			continue;

2205
		limit = pvt->info.rir_limit(reg);
2206
		gb = div_u64_rem(limit >> 20, 1024, &mb);
2207 2208
		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
			 n_rir,
2209
			 gb, (mb*1000)/1024,
2210 2211
			 limit,
			 1 << RIR_WAY(reg));
2212 2213 2214 2215 2216 2217 2218 2219 2220
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);
2221

2222 2223 2224 2225 2226 2227
	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

2228
	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2229
	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2230

2231 2232 2233 2234 2235 2236
	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		 n_rir,
		 ch_addr,
		 limit,
		 rir_way,
		 idx);
2237 2238 2239 2240

	return 0;
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
					  const struct mce *m, u8 *socket,
					  u8 *ha, long *channel_mask,
					  char *msg)
{
	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt;
	struct pci_dev *pci_ha;
	bool tad0;

	if (channel >= NUM_CHANNELS) {
		sprintf(msg, "Invalid channel 0x%x", channel);
		return -EINVAL;
	}

	pvt = mci->pvt_info;
	if (!pvt->info.get_ha) {
		sprintf(msg, "No get_ha()");
		return -EINVAL;
	}
	*ha = pvt->info.get_ha(m->bank);
	if (*ha != 0 && *ha != 1) {
		sprintf(msg, "Impossible bank %d", m->bank);
		return -EINVAL;
	}

	*socket = m->socketid;
	new_mci = get_mci_for_node_id(*socket, *ha);
	if (!new_mci) {
		strcpy(msg, "mci socket got corrupted!");
		return -EINVAL;
	}

	pvt = new_mci->pvt_info;
	pci_ha = pvt->pci_ha;
	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
	tad0 = m->addr <= TAD_LIMIT(reg);

	*channel_mask = 1 << channel;
	if (pvt->mirror_mode == FULL_MIRRORING ||
	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
		*channel_mask |= 1 << ((channel + 2) % 4);
		pvt->is_cur_addr_mirrored = true;
	} else {
		pvt->is_cur_addr_mirrored = false;
	}

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((channel + 1) % 4);

	return 0;
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

2307
	edac_dbg(0, "\n");
2308 2309 2310 2311
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
2312 2313 2314
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
2332 2333
				 const unsigned devno,
				 const int multi_bus)
2334
{
2335
	struct sbridge_dev *sbridge_dev = NULL;
2336 2337
	const struct pci_id_descr *dev_descr = &table->descr[devno];
	struct pci_dev *pdev = NULL;
2338
	int seg = 0;
2339
	u8 bus = 0;
2340
	int i = 0;
2341

2342
	sbridge_printk(KERN_DEBUG,
2343
		"Seeking for: PCI ID %04x:%04x\n",
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

2358
		/* if the HA wasn't found */
2359 2360 2361 2362
		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
2363
			"Device not found: %04x:%04x\n",
2364 2365 2366 2367 2368
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
2369
	seg = pci_domain_nr(pdev->bus);
2370 2371
	bus = pdev->bus->number;

2372
next_imc:
2373 2374
	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
				      multi_bus, sbridge_dev);
2375
	if (!sbridge_dev) {
2376 2377 2378 2379 2380 2381 2382
		/* If the HA1 wasn't found, don't create EDAC second memory controller */
		if (dev_descr->dom == IMC1 && devno != 1) {
			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
			pci_dev_put(pdev);
			return 0;
		}
2383 2384 2385 2386

		if (dev_descr->dom == SOCK)
			goto out_imc;

2387
		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2388 2389 2390 2391 2392 2393 2394
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

2395
	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2396
		sbridge_printk(KERN_ERR,
2397
			"Duplicated device for %04x:%04x\n",
2398 2399 2400 2401 2402
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

2403 2404 2405 2406 2407 2408 2409 2410
	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;

	/* pdev belongs to more than one IMC, do extra gets */
	if (++i > 1)
		pci_dev_get(pdev);

	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
		goto next_imc;
2411

2412
out_imc:
2413 2414 2415
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
2416
			"Couldn't enable %04x:%04x\n",
2417 2418 2419 2420
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

2421
	edac_dbg(0, "Detected %04x:%04x\n",
2422
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

2436 2437
/*
 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2438
 *			     devices we want to reference for this driver.
2439
 * @num_mc: pointer to the memory controllers count, to be incremented in case
2440
 *	    of success.
2441 2442 2443 2444
 * @table: model specific table
 *
 * returns 0 in case of success or error code
 */
T
Tony Luck 已提交
2445 2446
static int sbridge_get_all_devices(u8 *num_mc,
					const struct pci_id_table *table)
2447 2448 2449
{
	int i, rc;
	struct pci_dev *pdev = NULL;
T
Tony Luck 已提交
2450 2451
	int allow_dups = 0;
	int multi_bus = 0;
2452

T
Tony Luck 已提交
2453 2454
	if (table->type == KNIGHTS_LANDING)
		allow_dups = multi_bus = 1;
2455
	while (table && table->descr) {
2456
		for (i = 0; i < table->n_devs_per_sock; i++) {
2457 2458 2459 2460 2461
			if (!allow_dups || i == 0 ||
					table->descr[i].dev_id !=
						table->descr[i-1].dev_id) {
				pdev = NULL;
			}
2462 2463
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
2464
							   table, i, multi_bus);
2465 2466
				if (rc < 0) {
					if (i == 0) {
2467
						i = table->n_devs_per_sock;
2468 2469 2470 2471 2472
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
2473
			} while (pdev && !allow_dups);
2474 2475 2476 2477 2478 2479 2480
		}
		table++;
	}

	return 0;
}

2481 2482 2483 2484 2485 2486 2487
/*
 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
 * the format: XXXa. So we can convert from a device to the corresponding
 * channel like this
 */
#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)

A
Aristeu Rozanski 已提交
2488 2489
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
2490 2491 2492
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
2493
	u8 saw_chan_mask = 0;
2494
	int i;
2495 2496 2497 2498 2499

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
2500 2501 2502 2503

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
			pvt->pci_sad0 = pdev;
2504
			break;
2505 2506
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
			pvt->pci_sad1 = pdev;
2507
			break;
2508 2509
		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
			pvt->pci_br0 = pdev;
2510
			break;
2511
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2512
			pvt->pci_ha = pdev;
2513
			break;
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
		{
2525
			int id = TAD_DEV_TO_CHAN(pdev->device);
2526
			pvt->pci_tad[id] = pdev;
2527
			saw_chan_mask |= 1 << id;
2528 2529 2530 2531
		}
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
			pvt->pci_ddrio = pdev;
2532 2533 2534 2535 2536
			break;
		default:
			goto error;
		}

2537 2538
		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
			 pdev->vendor, pdev->device,
2539 2540
			 sbridge_dev->bus,
			 pdev);
2541 2542 2543
	}

	/* Check if everything were registered */
2544
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2545
	    !pvt->pci_ras || !pvt->pci_ta)
2546 2547
		goto enodev;

2548 2549
	if (saw_chan_mask != 0x0f)
		goto enodev;
2550 2551 2552 2553 2554 2555 2556
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
2557 2558
	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
		       PCI_VENDOR_ID_INTEL, pdev->device);
2559 2560 2561
	return -EINVAL;
}

2562 2563 2564 2565
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
2566 2567
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
2568
	int i;
2569 2570 2571 2572 2573 2574

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

2575 2576
		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2577
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2578
			pvt->pci_ha = pdev;
2579 2580
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2581
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2582
			pvt->pci_ta = pdev;
2583
			break;
2584
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2585
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2586 2587 2588 2589
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2590 2591
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2592 2593 2594 2595
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2596
		{
2597
			int id = TAD_DEV_TO_CHAN(pdev->device);
2598
			pvt->pci_tad[id] = pdev;
2599
			saw_chan_mask |= 1 << id;
2600
		}
2601
			break;
2602 2603 2604 2605
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2606
			pvt->pci_ddrio = pdev;
2607
			break;
2608 2609 2610 2611 2612 2613 2614 2615 2616
		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
			pvt->pci_br0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
			pvt->pci_br1 = pdev;
			break;
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		default:
			goto error;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
2628
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2629
	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2630 2631
		goto enodev;

2632 2633
	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
2634
		goto enodev;
2635 2636 2637 2638 2639 2640 2641 2642
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR,
2643 2644
		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
			pdev->device);
2645 2646 2647
	return -EINVAL;
}

2648 2649 2650 2651
static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
2652 2653
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2676
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2677
			pvt->pci_ha = pdev;
2678 2679
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2680
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2681 2682
			pvt->pci_ta = pdev;
			break;
2683
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2684
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2685 2686 2687 2688 2689 2690
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2691 2692 2693 2694 2695
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
		{
2696
			int id = TAD_DEV_TO_CHAN(pdev->device);
2697 2698 2699
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
2700 2701
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2702 2703 2704 2705 2706
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
			if (!pvt->pci_ddrio)
				pvt->pci_ddrio = pdev;
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
2719
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2720 2721 2722
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

2723 2724
	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
2725
		goto enodev;
2726 2727 2728 2729 2730 2731 2732
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2733 2734 2735 2736 2737
static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
2738
	u8 saw_chan_mask = 0;
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2761
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2762
			pvt->pci_ha = pdev;
2763 2764
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2765
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2766 2767
			pvt->pci_ta = pdev;
			break;
2768
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2769
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2770 2771 2772 2773 2774 2775
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2776 2777 2778 2779 2780
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
		{
2781
			int id = TAD_DEV_TO_CHAN(pdev->device);
2782 2783 2784
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
2800
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2801 2802 2803
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

2804 2805
	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
2806
		goto enodev;
2807 2808 2809 2810 2811 2812 2813
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
static int knl_mci_bind_devs(struct mem_ctl_info *mci,
			struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int dev, func;

	int i;
	int devidx;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		/* Extract PCI device and function. */
		dev = (pdev->devfn >> 3) & 0x1f;
		func = pdev->devfn & 0x7;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
			if (dev == 8)
				pvt->knl.pci_mc0 = pdev;
			else if (dev == 9)
				pvt->knl.pci_mc1 = pdev;
			else {
				sbridge_printk(KERN_ERR,
					"Memory controller in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
			pvt->pci_sad0 = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
			pvt->pci_sad1 = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
			/* There are one of these per tile, and range from
			 * 1.14.0 to 1.18.5.
			 */
			devidx = ((dev-14)*8)+func;

			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
				sbridge_printk(KERN_ERR,
					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}

			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);

			pvt->knl.pci_cha[devidx] = pdev;
			break;

2873
		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
			devidx = -1;

			/*
			 *  MC0 channels 0-2 are device 9 function 2-4,
			 *  MC1 channels 3-5 are device 8 function 2-4.
			 */

			if (dev == 9)
				devidx = func-2;
			else if (dev == 8)
				devidx = 3 + (func-2);

			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
				sbridge_printk(KERN_ERR,
					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}

			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
			pvt->knl.pci_channel[devidx] = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
			pvt->knl.pci_mc_info = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
			pvt->pci_ta = pdev;
			break;

		default:
			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
				pdev->device);
			break;
		}
	}

	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
	    !pvt->pci_ta) {
		goto enodev;
	}

	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
		if (!pvt->knl.pci_channel[i]) {
			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
			goto enodev;
		}
	}

	for (i = 0; i < KNL_MAX_CHAS; i++) {
		if (!pvt->knl.pci_cha[i]) {
			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
			goto enodev;
		}
	}

	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
2954
	enum hw_event_mc_err_type tp_event;
2955
	char *type, *optype, msg[256];
2956 2957 2958
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2959
	bool recoverable;
2960 2961 2962 2963 2964
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2965 2966 2967 2968 2969 2970
	/*
	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
	 * A value 6 is for cache line aligned address, a value 12 is for page
	 * aligned address reported by patrol scrubber.
	 */
	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2971
	long channel_mask, first_channel;
2972
	u8  rank = 0xff, socket, ha;
2973
	int rc, dimm;
2974
	char *area_type = "DRAM";
2975

2976
	if (pvt->info.type != SANDY_BRIDGE)
2977 2978 2979 2980
		recoverable = true;
	else
		recoverable = GET_BITFIELD(m->status, 56, 56);

2981
	if (uncorrected_error) {
2982
		core_err_cnt = 1;
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
2994 2995

	/*
D
David Mackey 已提交
2996
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2997 2998 2999 3000 3001 3002 3003 3004 3005
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	switch (optypenum) {
	case 0:
		optype = "generic undef request error";
		break;
	case 1:
		optype = "memory read error";
		break;
	case 2:
		optype = "memory write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "memory scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
3025 3026
	}

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	if (pvt->info.type == KNIGHTS_LANDING) {
		if (channel == 14) {
			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
				overflow ? " OVERFLOW" : "",
				(uncorrected_error && recoverable)
				? " recoverable" : "",
				mscod, errcode,
				m->bank);
		} else {
			char A = *("A");

3038 3039 3040 3041 3042 3043 3044
			/*
			 * Reported channel is in range 0-2, so we can't map it
			 * back to mc. To figure out mc we check machine check
			 * bank register that reported this error.
			 * bank15 means mc0 and bank16 means mc1.
			 */
			channel = knl_channel_remap(m->bank == 16, channel);
3045
			channel_mask = 1 << channel;
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
			snprintf(msg, sizeof(msg),
				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
				overflow ? " OVERFLOW" : "",
				(uncorrected_error && recoverable)
				? " recoverable" : " ",
				mscod, errcode, channel, A + channel);
			edac_mc_handle_error(tp_event, mci, core_err_cnt,
				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
				channel, 0, -1,
				optype, msg);
		}
		return;
3059
	} else if (lsb < 12) {
3060
		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3061 3062 3063 3064 3065
					   &channel_mask, &rank,
					   &area_type, msg);
	} else {
		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
						    &channel_mask, msg);
3066 3067
	}

3068
	if (rc < 0)
3069
		goto err_parsing;
3070
	new_mci = get_mci_for_node_id(socket, ha);
3071
	if (!new_mci) {
3072 3073
		strcpy(msg, "Error: socket got corrupted!");
		goto err_parsing;
3074 3075 3076 3077 3078 3079
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

3080 3081 3082
	if (rank == 0xff)
		dimm = -1;
	else if (rank < 4)
3083 3084 3085 3086 3087 3088 3089
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;

	/*
3090 3091 3092 3093
	 * FIXME: On some memory configurations (mirror, lockstep), the
	 * Memory Controller can't point the error to a single DIMM. The
	 * EDAC core should be handling the channel mask, in order to point
	 * to the group of dimm's where the error may be happening.
3094
	 */
3095
	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3096 3097
		channel = first_channel;

3098
	snprintf(msg, sizeof(msg),
3099
		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3100 3101 3102 3103
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 area_type,
		 mscod, errcode,
3104
		 socket, ha,
3105 3106
		 channel_mask,
		 rank);
3107

3108
	edac_dbg(0, "%s\n", msg);
3109

3110 3111
	/* FIXME: need support for channel mask */

3112 3113 3114
	if (channel == CHANNEL_UNSPECIFIED)
		channel = -1;

3115
	/* Call the helper to output message */
3116
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3117
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3118
			     channel, dimm, -1,
3119
			     optype, msg);
3120 3121
	return;
err_parsing:
3122
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3123
			     -1, -1, -1,
3124
			     msg, "");
3125 3126 3127 3128

}

/*
3129 3130
 * Check that logging is enabled and that this is the right type
 * of error for us to handle.
3131
 */
3132 3133
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
3134
{
3135 3136
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
3137
	char *type;
3138

3139
	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3140 3141
		return NOTIFY_DONE;

3142 3143 3144 3145 3146 3147 3148
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
3149
		return NOTIFY_DONE;
3150

3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	/* Check ADDRV bit in STATUS */
	if (!GET_BITFIELD(mce->status, 58, 58))
		return NOTIFY_DONE;

	/* Check MISCV bit in STATUS */
	if (!GET_BITFIELD(mce->status, 59, 59))
		return NOTIFY_DONE;

	/* Check address type in MISC (physical address only) */
	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
		return NOTIFY_DONE;

	mci = get_mci_for_node_id(mce->socketid, IMC0);
	if (!mci)
		return NOTIFY_DONE;

3167 3168 3169 3170 3171
	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

3172
	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3173

3174 3175 3176 3177 3178 3179
	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
			  "Bank %d: %016Lx\n", mce->extcpu, type,
			  mce->mcgstatus, mce->bank, mce->status);
	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3180

3181 3182 3183
	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
			  mce->time, mce->socketid, mce->apicid);
3184

3185
	sbridge_mce_output_error(mci, mce);
3186 3187

	/* Advice mcelog that the error were handled */
3188
	return NOTIFY_STOP;
3189 3190
}

3191
static struct notifier_block sbridge_mce_dec = {
3192 3193
	.notifier_call	= sbridge_mce_check_error,
	.priority	= MCE_PRIO_EDAC,
3194 3195
};

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;
	struct sbridge_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
3206
		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3207 3208 3209 3210 3211 3212 3213

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

3214 3215
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);
3216 3217

	/* Remove MC sysfs nodes */
3218
	edac_mc_del_mc(mci->pdev);
3219

3220
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3221 3222 3223 3224 3225
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

3226
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3227 3228
{
	struct mem_ctl_info *mci;
3229
	struct edac_mc_layer layers[2];
3230
	struct sbridge_pvt *pvt;
3231
	struct pci_dev *pdev = sbridge_dev->pdev[0];
3232
	int rc;
3233 3234

	/* allocate a new MC control structure */
3235
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3236 3237
	layers[0].size = type == KNIGHTS_LANDING ?
		KNL_MAX_CHANNELS : NUM_CHANNELS;
3238 3239
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
3240
	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3241
	layers[1].is_virt_csrow = true;
3242
	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3243 3244
			    sizeof(*pvt));

3245 3246 3247
	if (unlikely(!mci))
		return -ENOMEM;

3248
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3249
		 mci, &pdev->dev);
3250 3251 3252 3253 3254 3255 3256 3257

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

3258 3259
	mci->mtype_cap = type == KNIGHTS_LANDING ?
		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3260 3261
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
3262
	mci->mod_name = EDAC_MOD_STR;
3263
	mci->dev_name = pci_name(pdev);
3264 3265
	mci->ctl_page_to_phys = NULL;

3266
	pvt->info.type = type;
3267 3268
	switch (type) {
	case IVY_BRIDGE:
3269 3270 3271 3272
		pvt->info.rankcfgr = IB_RANK_CFG_A;
		pvt->info.get_tolm = ibridge_get_tolm;
		pvt->info.get_tohm = ibridge_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
3273
		pvt->info.get_memory_type = get_memory_type;
3274
		pvt->info.get_node_id = get_node_id;
3275
		pvt->info.get_ha = ibridge_get_ha;
3276
		pvt->info.rir_limit = rir_limit;
3277 3278 3279
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3280 3281 3282
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3283
		pvt->info.get_width = ibridge_get_width;
3284 3285 3286 3287 3288

		/* Store pci devices at mci for faster access */
		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3289
		get_source_id(mci);
3290 3291
		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3292 3293
		break;
	case SANDY_BRIDGE:
3294 3295 3296 3297
		pvt->info.rankcfgr = SB_RANK_CFG_A;
		pvt->info.get_tolm = sbridge_get_tolm;
		pvt->info.get_tohm = sbridge_get_tohm;
		pvt->info.dram_rule = sbridge_dram_rule;
3298
		pvt->info.get_memory_type = get_memory_type;
3299
		pvt->info.get_node_id = get_node_id;
3300
		pvt->info.get_ha = sbridge_get_ha;
3301
		pvt->info.rir_limit = rir_limit;
3302 3303 3304
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3305 3306 3307
		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
		pvt->info.interleave_list = sbridge_interleave_list;
		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3308
		pvt->info.get_width = sbridge_get_width;
3309 3310 3311 3312 3313

		/* Store pci devices at mci for faster access */
		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3314
		get_source_id(mci);
3315 3316
		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3317 3318 3319 3320 3321 3322 3323 3324
		break;
	case HASWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
3325
		pvt->info.get_ha = ibridge_get_ha;
3326
		pvt->info.rir_limit = haswell_rir_limit;
3327 3328 3329
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3330 3331 3332
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3333
		pvt->info.get_width = ibridge_get_width;
3334

3335 3336 3337 3338
		/* Store pci devices at mci for faster access */
		rc = haswell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3339
		get_source_id(mci);
3340 3341
		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3342
		break;
3343 3344 3345 3346 3347 3348 3349
	case BROADWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
3350
		pvt->info.get_ha = ibridge_get_ha;
3351
		pvt->info.rir_limit = haswell_rir_limit;
3352 3353 3354
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3355 3356 3357
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3358
		pvt->info.get_width = broadwell_get_width;
3359 3360 3361 3362 3363

		/* Store pci devices at mci for faster access */
		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3364
		get_source_id(mci);
3365 3366
		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3367
		break;
3368 3369 3370 3371 3372 3373 3374
	case KNIGHTS_LANDING:
		/* pvt->info.rankcfgr == ??? */
		pvt->info.get_tolm = knl_get_tolm;
		pvt->info.get_tohm = knl_get_tohm;
		pvt->info.dram_rule = knl_dram_rule;
		pvt->info.get_memory_type = knl_get_memory_type;
		pvt->info.get_node_id = knl_get_node_id;
3375
		pvt->info.get_ha = knl_get_ha;
3376 3377 3378 3379 3380 3381 3382
		pvt->info.rir_limit = NULL;
		pvt->info.sad_limit = knl_sad_limit;
		pvt->info.interleave_mode = knl_interleave_mode;
		pvt->info.dram_attr = dram_attr_knl;
		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
		pvt->info.interleave_list = knl_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3383
		pvt->info.get_width = knl_get_width;
3384 3385 3386 3387

		rc = knl_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3388
		get_source_id(mci);
3389 3390
		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3391
		break;
3392
	}
3393

3394 3395 3396 3397 3398
	if (!mci->ctl_name) {
		rc = -ENOMEM;
		goto fail0;
	}

3399
	/* Get dimm basic config and the memory layout */
3400 3401 3402 3403 3404
	rc = get_dimm_config(mci);
	if (rc < 0) {
		edac_dbg(0, "MC: failed to get_dimm_config()\n");
		goto fail;
	}
3405 3406 3407
	get_memory_layout(mci);

	/* record ptr to the generic device */
3408
	mci->pdev = &pdev->dev;
3409 3410 3411

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
3412
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3413
		rc = -EINVAL;
3414
		goto fail;
3415 3416 3417 3418
	}

	return 0;

3419
fail:
3420
	kfree(mci->ctl_name);
3421
fail0:
3422 3423 3424 3425 3426
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

3427
static const struct x86_cpu_id sbridge_cpuids[] = {
3428 3429 3430 3431 3432 3433 3434
	INTEL_CPU_FAM6(SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
	INTEL_CPU_FAM6(IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
	INTEL_CPU_FAM6(HASWELL_X,	  pci_dev_descr_haswell_table),
	INTEL_CPU_FAM6(BROADWELL_X,	  pci_dev_descr_broadwell_table),
	INTEL_CPU_FAM6(BROADWELL_XEON_D,  pci_dev_descr_broadwell_table),
	INTEL_CPU_FAM6(XEON_PHI_KNL,	  pci_dev_descr_knl_table),
	INTEL_CPU_FAM6(XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3435 3436 3437 3438
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);

3439
/*
3440
 *	sbridge_probe	Get all devices and register memory controllers
3441 3442 3443 3444 3445 3446
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

3447
static int sbridge_probe(const struct x86_cpu_id *id)
3448
{
3449
	int rc = -ENODEV;
3450 3451
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;
3452
	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3453 3454

	/* get the pci devices we want to reserve for our use */
3455
	rc = sbridge_get_all_devices(&num_mc, ptable);
3456

3457
	if (unlikely(rc < 0)) {
3458
		edac_dbg(0, "couldn't get all devices\n");
3459
		goto fail0;
3460 3461
	}

3462 3463 3464
	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3465 3466
		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
			 mc, mc + 1, num_mc);
3467

3468
		sbridge_dev->mc = mc++;
3469
		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3470 3471 3472 3473
		if (unlikely(rc < 0))
			goto fail1;
	}

3474
	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487

	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	return rc;
}

/*
3488
 *	sbridge_remove	cleanup
3489 3490
 *
 */
3491
static void sbridge_remove(void)
3492 3493 3494
{
	struct sbridge_dev *sbridge_dev;

3495
	edac_dbg(0, "\n");
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();
}

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
3510
	const struct x86_cpu_id *id;
3511
	const char *owner;
3512
	int rc;
3513

3514
	edac_dbg(2, "\n");
3515

3516 3517 3518 3519
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3520 3521 3522 3523
	id = x86_match_cpu(sbridge_cpuids);
	if (!id)
		return -ENODEV;

3524 3525 3526
	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

3527 3528 3529
	rc = sbridge_probe(id);

	if (rc >= 0) {
3530
		mce_register_decode_chain(&sbridge_mce_dec);
3531
		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3532
			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3533
		return 0;
3534
	}
3535 3536

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3537
		      rc);
3538

3539
	return rc;
3540 3541 3542 3543 3544 3545 3546 3547
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
3548
	edac_dbg(2, "\n");
3549
	sbridge_remove();
3550
	mce_unregister_decode_chain(&sbridge_mce_dec);
3551 3552 3553 3554 3555 3556 3557 3558 3559
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
3560
MODULE_AUTHOR("Mauro Carvalho Chehab");
3561
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3562
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3563
		   SBRIDGE_REVISION);