sb_edac.c 70.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2011 by:
10
 *	 Mauro Carvalho Chehab
11 12 13 14 15 16 17 18 19 20 21 22
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
23
#include <linux/math64.h>
24
#include <asm/processor.h>
25
#include <asm/mce.h>
26 27 28 29 30 31 32 33 34 35 36

#include "edac_core.h"

/* Static vars */
static LIST_HEAD(sbridge_edac_list);
static DEFINE_MUTEX(sbridge_edac_lock);
static int probed;

/*
 * Alter this version for the module when modifications are made
 */
37
#define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#define EDAC_MOD_STR      "sbridge_edac"

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
53
	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 55

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56
static const u32 sbridge_dram_rule[] = {
57 58 59 60
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};

61 62 63 64 65 66
static const u32 ibridge_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80,
	0x88, 0x90, 0x98, 0xa0,	0xa8,
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
67 68

#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
69
#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
70

71
static char *show_dram_attr(u32 attr)
72
{
73
	switch (attr) {
74 75 76 77 78 79 80 81 82 83 84
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

85
static const u32 sbridge_interleave_list[] = {
86 87 88 89
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};

90 91 92 93 94 95 96
static const u32 ibridge_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84,
	0x8c, 0x94, 0x9c, 0xa4, 0xac,
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};

A
Aristeu Rozanski 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
struct interleave_pkg {
	unsigned char start;
	unsigned char end;
};

static const struct interleave_pkg sbridge_interleave_pkg[] = {
	{ 0, 2 },
	{ 3, 5 },
	{ 8, 10 },
	{ 11, 13 },
	{ 16, 18 },
	{ 19, 21 },
	{ 24, 26 },
	{ 27, 29 },
};

113 114 115 116 117 118 119 120 121 122 123
static const struct interleave_pkg ibridge_interleave_pkg[] = {
	{ 0, 3 },
	{ 4, 7 },
	{ 8, 11 },
	{ 12, 15 },
	{ 16, 19 },
	{ 20, 23 },
	{ 24, 27 },
	{ 28, 31 },
};

A
Aristeu Rozanski 已提交
124 125
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
			  int interleave)
126
{
A
Aristeu Rozanski 已提交
127 128
	return GET_BITFIELD(reg, table[interleave].start,
			    table[interleave].end);
129 130 131 132 133 134
}

/* Devices 12 Function 7 */

#define TOLM		0x80
#define	TOHM		0x84
135
#define HASWELL_TOLM	0xd0
136 137
#define HASWELL_TOHM_0	0xd4
#define HASWELL_TOHM_1	0xd8
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

#define SAD_CONTROL	0xf4

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

#define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
#define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

246
#define SB_RANK_CFG_A		0x0328
247

248
#define IB_RANK_CFG_A		0x0320
249 250 251 252 253

/*
 * sbridge structs
 */

254
#define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */
255 256
#define MAX_DIMMS		3	/* Max DIMMS per channel */
#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
257

258 259 260
enum type {
	SANDY_BRIDGE,
	IVY_BRIDGE,
261
	HASWELL,
262
	BROADWELL,
263 264
};

A
Aristeu Rozanski 已提交
265
struct sbridge_pvt;
266
struct sbridge_info {
267
	enum type	type;
268 269 270 271
	u32		mcmtr;
	u32		rankcfgr;
	u64		(*get_tolm)(struct sbridge_pvt *pvt);
	u64		(*get_tohm)(struct sbridge_pvt *pvt);
272
	u64		(*rir_limit)(u32 reg);
273 274 275 276
	u64		(*sad_limit)(u32 reg);
	u32		(*interleave_mode)(u32 reg);
	char*		(*show_interleave_mode)(u32 reg);
	u32		(*dram_attr)(u32 reg);
277
	const u32	*dram_rule;
278
	const u32	*interleave_list;
A
Aristeu Rozanski 已提交
279
	const struct interleave_pkg *interleave_pkg;
280
	u8		max_sad;
281
	u8		max_interleave;
282
	u8		(*get_node_id)(struct sbridge_pvt *pvt);
283
	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
284
	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
285
	struct pci_dev	*pci_vtd;
286 287 288 289 290 291 292 293
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
294
	int			dev_id;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	int			optional;
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
	int				n_devs;
};

struct sbridge_dev {
	struct list_head	list;
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
	int			n_devs;
	struct mem_ctl_info	*mci;
};

struct sbridge_pvt {
	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
314 315 316
	struct pci_dev		*pci_sad0, *pci_sad1;
	struct pci_dev		*pci_ha0, *pci_ha1;
	struct pci_dev		*pci_br0, *pci_br1;
317
	struct pci_dev		*pci_ha1_ta;
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	/* Memory type detection */
	bool			is_mirrored, is_lockstep, is_close_pg;

	/* Fifo double buffers */
	struct mce		mce_entry[MCE_LOG_LEN];
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;

	/* Memory description */
	u64			tolm, tohm;
};

342 343
#define PCI_DESCR(device_id, opt)	\
	.dev_id = (device_id),		\
344
	.optional = opt
345 346 347

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
348
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
349 350

		/* Memory controller */
351 352 353 354 355 356 357
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
358 359

		/* System Address Decoder */
360 361
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
362 363

		/* Broadcast Registers */
364
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
365 366 367 368 369 370 371 372
};

#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
	{0,}			/* 0 terminated list. */
};

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/* This changes depending if 1HA or 2HA:
 * 1HA:
 *	0x0eb8 (17.0) is DDRIO0
 * 2HA:
 *	0x0ebc (17.4) is DDRIO0
 */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc

/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
398 399
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
400 401 402

static const struct pci_id_descr pci_dev_descr_ibridge[] = {
		/* Processor Home Agent */
403
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
404 405

		/* Memory controller */
406 407 408 409 410 411
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
412 413

		/* System Address Decoder */
414
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
415 416

		/* Broadcast Registers */
417 418
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
419 420

		/* Optional, mode 2HA */
421
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
422
#if 0
423 424
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
425
#endif
426 427
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
428 429
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	},
430

431 432
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
433 434 435 436 437 438 439
};

static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
	{0,}			/* 0 terminated list. */
};

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/* Haswell support */
/* EN processor:
 *	- 1 IMC
 *	- 3 DDR3 channels, 2 DPC per channel
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 */
456
#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
#define HASWELL_HASYSDEFEATURE2 0x84
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
476 477 478
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static const struct pci_id_descr pci_dev_descr_haswell[] = {
	/* first item must be the HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
496 497 498
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)		},
499 500 501 502 503 504 505 506 507 508 509 510 511 512

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
};

static const struct pci_id_table pci_dev_descr_haswell_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
	{0,}			/* 0 terminated list. */
};

513 514 515 516 517 518
/*
 * Broadwell support
 *
 * DE processor:
 *	- 1 IMC
 *	- 2 DDR3 channels, 2 DPC per channel
519 520 521 522 523 524 525 526 527 528 529
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
530 531 532
 */
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
533
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
534 535
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
536 537
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
538 539 540 541 542 543
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
544 545 546 547
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
548 549 550 551 552 553 554 555 556
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf

static const struct pci_id_descr pci_dev_descr_broadwell[] = {
	/* first item must be the HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},

557 558
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		},

559 560 561 562
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
563 564 565
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	},

566
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
567 568 569 570 571 572 573

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	},
574 575 576 577 578 579 580
};

static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
	{0,}			/* 0 terminated list. */
};

581 582 583
/*
 *	pci_device_id	table for which devices we are looking for
 */
584
static const struct pci_device_id sbridge_pci_tbl[] = {
585
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
586
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
587
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
588
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
589 590 591 592 593
	{0,}			/* 0 terminated list. */
};


/****************************************************************************
D
David Mackey 已提交
594
			Ancillary status routines
595 596
 ****************************************************************************/

597
static inline int numrank(enum type type, u32 mtr)
598 599
{
	int ranks = (1 << RANK_CNT_BITS(mtr));
600 601
	int max = 4;

602
	if (type == HASWELL || type == BROADWELL)
603
		max = 8;
604

605 606 607
	if (ranks > max) {
		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
608 609 610 611 612 613 614 615 616 617 618
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
619 620
		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
621 622 623 624 625 626 627 628 629 630 631
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
632 633
		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		return -EINVAL;
	}

	return 1 << cols;
}

static struct sbridge_dev *get_sbridge_dev(u8 bus)
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->bus == bus)
			return sbridge_dev;
	}

	return NULL;
}

static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
					   const struct pci_id_table *table)
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

	sbridge_dev->bus = bus;
	sbridge_dev->n_devs = table->n_devs;
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

A
Aristeu Rozanski 已提交
682 683 684 685 686 687 688 689 690
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
	return GET_TOLM(reg);
}

A
Aristeu Rozanski 已提交
691 692 693 694 695 696 697 698
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
	return GET_TOHM(reg);
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);

	return GET_TOLM(reg);
}

static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);

	return GET_TOHM(reg);
}

717 718 719 720 721
static u64 rir_limit(u32 reg)
{
	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static u64 sad_limit(u32 reg)
{
	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
}

static u32 interleave_mode(u32 reg)
{
	return GET_BITFIELD(reg, 1, 1);
}

char *show_interleave_mode(u32 reg)
{
	return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
}

static u32 dram_attr(u32 reg)
{
	return GET_BITFIELD(reg, 2, 3);
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	enum mem_type mtype;

	if (pvt->pci_ddrio) {
		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
				      &reg);
		if (GET_BITFIELD(reg, 11, 11))
			/* FIXME: Can also be LRDIMM */
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	} else
		mtype = MEM_UNKNOWN;

	return mtype;
}

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	bool registered = false;
	enum mem_type mtype = MEM_UNKNOWN;

	if (!pvt->pci_ddrio)
		goto out;

	pci_read_config_dword(pvt->pci_ddrio,
			      HASWELL_DDRCRCLKCONTROLS, &reg);
	/* Is_Rdimm */
	if (GET_BITFIELD(reg, 16, 16))
		registered = true;

	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
	if (GET_BITFIELD(reg, 14, 14)) {
		if (registered)
			mtype = MEM_RDDR4;
		else
			mtype = MEM_DDR4;
	} else {
		if (registered)
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	}

out:
	return mtype;
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* there's no way to figure out */
	return DEV_UNKNOWN;
}

static enum dev_type __ibridge_get_width(u32 mtr)
{
	enum dev_type type;

	switch (mtr) {
	case 3:
		type = DEV_UNKNOWN;
		break;
	case 2:
		type = DEV_X16;
		break;
	case 1:
		type = DEV_X8;
		break;
	case 0:
		type = DEV_X4;
		break;
	}

	return type;
}

static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/*
	 * ddr3_width on the documentation but also valid for DDR4 on
	 * Haswell
	 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
}

static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* ddr3_width on the documentation but also valid for DDR4 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
}

836 837 838 839 840 841 842
static u8 get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;
	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}

843 844 845 846 847 848 849 850 851 852 853 854
static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 3);
}

static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

855 856
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
}

static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg;

	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
	rc = GET_BITFIELD(reg, 26, 31);
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
	rc = ((reg << 6) | rc) << 26;

	return rc | 0x1ffffff;
}

static u64 haswell_rir_limit(u32 reg)
{
	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
}

877 878 879
static inline u8 sad_pkg_socket(u8 pkg)
{
	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
880
	return ((pkg >> 3) << 2) | (pkg & 0x3);
881 882 883 884 885 886 887
}

static inline u8 sad_pkg_ha(u8 pkg)
{
	return (pkg >> 2) & 0x1;
}

888 889 890
/****************************************************************************
			Memory check routines
 ****************************************************************************/
891
static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
892
{
893
	struct pci_dev *pdev = NULL;
894

895 896 897 898 899
	do {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
		if (pdev && pdev->bus->number == bus)
			break;
	} while (pdev);
900

901
	return pdev;
902 903 904
}

/**
905
 * check_if_ecc_is_active() - Checks if ECC is active
906 907 908 909
 * @bus:	Device bus
 * @type:	Memory controller type
 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
 *	    disabled
910
 */
911
static int check_if_ecc_is_active(const u8 bus, enum type type)
912 913
{
	struct pci_dev *pdev = NULL;
914
	u32 mcmtr, id;
915

916 917
	switch (type) {
	case IVY_BRIDGE:
918
		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
919 920
		break;
	case HASWELL:
921
		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
922 923
		break;
	case SANDY_BRIDGE:
924
		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
925 926 927 928 929 930 931
		break;
	case BROADWELL:
		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
		break;
	default:
		return -ENODEV;
	}
932 933

	pdev = get_pdev_same_bus(bus, id);
934 935
	if (!pdev) {
		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
936 937
					"%04x:%04x! on bus %02d\n",
					PCI_VENDOR_ID_INTEL, id, bus);
938 939 940 941 942 943 944 945 946 947 948
		return -ENODEV;
	}

	pci_read_config_dword(pdev, MCMTR, &mcmtr);
	if (!IS_ECC_ENABLED(mcmtr)) {
		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
		return -ENODEV;
	}
	return 0;
}

949
static int get_dimm_config(struct mem_ctl_info *mci)
950 951
{
	struct sbridge_pvt *pvt = mci->pvt_info;
952
	struct dimm_info *dimm;
953 954
	unsigned i, j, banks, ranks, rows, cols, npages;
	u64 size;
955 956
	u32 reg;
	enum edac_type mode;
957
	enum mem_type mtype;
958

959
	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
960 961 962 963
		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
	else
		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);

964 965
	pvt->sbridge_dev->source_id = SOURCE_ID(reg);

966
	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
967 968 969 970
	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
		 pvt->sbridge_dev->mc,
		 pvt->sbridge_dev->node_id,
		 pvt->sbridge_dev->source_id);
971 972 973

	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
	if (IS_MIRROR_ENABLED(reg)) {
974
		edac_dbg(0, "Memory mirror is enabled\n");
975 976
		pvt->is_mirrored = true;
	} else {
977
		edac_dbg(0, "Memory mirror is disabled\n");
978 979 980 981 982
		pvt->is_mirrored = false;
	}

	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
983
		edac_dbg(0, "Lockstep is enabled\n");
984 985 986
		mode = EDAC_S8ECD8ED;
		pvt->is_lockstep = true;
	} else {
987
		edac_dbg(0, "Lockstep is disabled\n");
988 989 990 991
		mode = EDAC_S4ECD4ED;
		pvt->is_lockstep = false;
	}
	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
992
		edac_dbg(0, "address map is on closed page mode\n");
993 994
		pvt->is_close_pg = true;
	} else {
995
		edac_dbg(0, "address map is on open page mode\n");
996 997 998
		pvt->is_close_pg = false;
	}

999
	mtype = pvt->info.get_memory_type(pvt);
1000
	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1001 1002
		edac_dbg(0, "Memory is registered\n");
	else if (mtype == MEM_UNKNOWN)
1003
		edac_dbg(0, "Cannot determine memory type\n");
1004 1005
	else
		edac_dbg(0, "Memory is unregistered\n");
1006

1007
	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1008 1009 1010
		banks = 16;
	else
		banks = 8;
1011 1012 1013 1014

	for (i = 0; i < NUM_CHANNELS; i++) {
		u32 mtr;

1015 1016
		if (!pvt->pci_tad[i])
			continue;
1017
		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
1018 1019
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
1020 1021
			pci_read_config_dword(pvt->pci_tad[i],
					      mtr_regs[j], &mtr);
1022
			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1023 1024 1025
			if (IS_DIMM_PRESENT(mtr)) {
				pvt->channel[i].dimms++;

1026
				ranks = numrank(pvt->info.type, mtr);
1027 1028 1029
				rows = numrow(mtr);
				cols = numcol(mtr);

1030
				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1031 1032
				npages = MiB_TO_PAGES(size);

1033 1034
				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
					 pvt->sbridge_dev->mc, i/4, i%4, j,
1035 1036
					 size, npages,
					 banks, ranks, rows, cols);
1037

1038
				dimm->nr_pages = npages;
1039
				dimm->grain = 32;
1040
				dimm->dtype = pvt->info.get_width(pvt, mtr);
1041 1042 1043
				dimm->mtype = mtype;
				dimm->edac_mode = mode;
				snprintf(dimm->label, sizeof(dimm->label),
1044 1045
					 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
					 pvt->sbridge_dev->source_id, i/4, i%4, j);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
			}
		}
	}

	return 0;
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
1060
	u32 gb, mb;
1061 1062 1063 1064 1065 1066
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

A
Aristeu Rozanski 已提交
1067
	pvt->tolm = pvt->info.get_tolm(pvt);
1068 1069
	tmp_mb = (1 + pvt->tolm) >> 20;

1070 1071 1072
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tolm);
1073 1074

	/* Address range is already 45:25 */
A
Aristeu Rozanski 已提交
1075
	pvt->tohm = pvt->info.get_tohm(pvt);
1076 1077
	tmp_mb = (1 + pvt->tohm) >> 20;

1078 1079 1080
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tohm);
1081 1082 1083 1084 1085 1086 1087 1088

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
1089
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1090
		/* SAD_LIMIT Address range is 45:26 */
1091
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1092
				      &reg);
1093
		limit = pvt->info.sad_limit(reg);
1094 1095 1096 1097 1098 1099 1100 1101

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
1102
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1103 1104
		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
			 n_sads,
1105
			 show_dram_attr(pvt->info.dram_attr(reg)),
1106
			 gb, (mb*1000)/1024,
1107
			 ((u64)tmp_mb) << 20L,
1108
			 pvt->info.show_interleave_mode(reg),
1109
			 reg);
1110 1111
		prv = limit;

1112
		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1113
				      &reg);
A
Aristeu Rozanski 已提交
1114
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1115
		for (j = 0; j < 8; j++) {
A
Aristeu Rozanski 已提交
1116 1117
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
			if (j > 0 && sad_interl == pkg)
1118 1119
				break;

1120
			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
A
Aristeu Rozanski 已提交
1121
				 n_sads, j, pkg);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		}
	}

	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
				      &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

1137
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1138
		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1139
			 n_tads, gb, (mb*1000)/1024,
1140 1141 1142 1143 1144 1145 1146 1147
			 ((u64)tmp_mb) << 20L,
			 (u32)TAD_SOCK(reg),
			 (u32)TAD_CH(reg),
			 (u32)TAD_TGT0(reg),
			 (u32)TAD_TGT1(reg),
			 (u32)TAD_TGT2(reg),
			 (u32)TAD_TGT3(reg),
			 reg);
1148
		prv = limit;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
1162
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1163 1164
			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
				 i, j,
1165
				 gb, (mb*1000)/1024,
1166 1167
				 ((u64)tmp_mb) << 20L,
				 reg);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

1185
			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1186
			rir_way = 1 << RIR_WAY(reg);
1187
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1188 1189
			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
				 i, j,
1190
				 gb, (mb*1000)/1024,
1191 1192 1193
				 ((u64)tmp_mb) << 20L,
				 rir_way,
				 reg);
1194 1195 1196 1197 1198 1199 1200

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
				tmp_mb = RIR_OFFSET(reg) << 6;

1201
				gb = div_u64_rem(tmp_mb, 1024, &mb);
1202 1203
				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					 i, j, k,
1204
					 gb, (mb*1000)/1024,
1205 1206 1207
					 ((u64)tmp_mb) << 20L,
					 (u32)RIR_RNK_TGT(reg),
					 reg);
1208 1209 1210 1211 1212
			}
		}
	}
}

1213
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->node_id == node_id)
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
1226
				 u8 *socket, u8 *ha,
1227 1228
				 long *channel_mask,
				 u8 *rank,
1229
				 char **area_type, char *msg)
1230 1231 1232
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1233
	struct pci_dev		*pci_ha;
1234
	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1235
	int			sad_interl, idx, base_ch;
1236
	int			interleave_mode, shiftup = 0;
1237
	unsigned		sad_interleave[pvt->info.max_interleave];
1238
	u32			reg, dram_rule;
1239
	u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1240 1241
	u32			tad_offset;
	u32			rir_way;
1242
	u32			mb, gb;
1243
	u64			ch_addr, offset, limit = 0, prv = 0;
1244 1245 1246 1247 1248 1249 1250 1251 1252


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
1253
	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
1265 1266
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1267 1268 1269 1270 1271
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

1272
		limit = pvt->info.sad_limit(reg);
1273 1274 1275 1276 1277 1278 1279 1280
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1281
	if (n_sads == pvt->info.max_sad) {
1282 1283 1284
		sprintf(msg, "Can't discover the memory socket");
		return -EINVAL;
	}
1285
	dram_rule = reg;
1286 1287
	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
	interleave_mode = pvt->info.interleave_mode(dram_rule);
1288

1289
	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1290
			      &reg);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	if (pvt->info.type == SANDY_BRIDGE) {
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
		for (sad_way = 0; sad_way < 8; sad_way++) {
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
			if (sad_way > 0 && sad_interl == pkg)
				break;
			sad_interleave[sad_way] = pkg;
			edac_dbg(0, "SAD interleave #%d: %d\n",
				 sad_way, sad_interleave[sad_way]);
		}
		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
			 pvt->sbridge_dev->mc,
			 n_sads,
			 addr,
			 limit,
			 sad_way + 7,
			 !interleave_mode ? "" : "XOR[18:16]");
		if (interleave_mode)
			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
		else
			idx = (addr >> 6) & 7;
		switch (sad_way) {
		case 1:
			idx = 0;
1316
			break;
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		case 2:
			idx = idx & 1;
			break;
		case 4:
			idx = idx & 3;
			break;
		case 8:
			break;
		default:
			sprintf(msg, "Can't discover socket interleave");
			return -EINVAL;
		}
		*socket = sad_interleave[idx];
		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
			 idx, sad_way, *socket);
1332
	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1333 1334 1335 1336 1337 1338 1339
		int bits, a7mode = A7MODE(dram_rule);

		if (a7mode) {
			/* A7 mode swaps P9 with P6 */
			bits = GET_BITFIELD(addr, 7, 8) << 1;
			bits |= GET_BITFIELD(addr, 9, 9);
		} else
1340
			bits = GET_BITFIELD(addr, 6, 8);
1341

1342
		if (interleave_mode == 0) {
1343 1344 1345 1346 1347 1348 1349 1350 1351
			/* interleave mode will XOR {8,7,6} with {18,17,16} */
			idx = GET_BITFIELD(addr, 16, 18);
			idx ^= bits;
		} else
			idx = bits;

		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);
1352 1353
		if (sad_ha)
			ch_add = 4;
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

		if (a7mode) {
			/* MCChanShiftUpEnable */
			pci_read_config_dword(pvt->pci_ha0,
					      HASWELL_HASYSDEFEATURE2, &reg);
			shiftup = GET_BITFIELD(reg, 22, 22);
		}

		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
			 idx, *socket, sad_ha, shiftup);
1364 1365
	} else {
		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1366
		idx = (addr >> 6) & 7;
1367 1368 1369
		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);
1370 1371
		if (sad_ha)
			ch_add = 4;
1372 1373
		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
			 idx, *socket, sad_ha);
1374 1375
	}

1376 1377
	*ha = sad_ha;

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
	new_mci = get_mci_for_node_id(*socket);
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
1395 1396 1397 1398 1399 1400 1401 1402
	if (pvt->info.type == SANDY_BRIDGE)
		pci_ha = pvt->pci_ha0;
	else {
		if (sad_ha)
			pci_ha = pvt->pci_ha1;
		else
			pci_ha = pvt->pci_ha0;
	}
1403
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1404
		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1405 1406 1407 1408 1409 1410 1411 1412 1413
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1414 1415 1416 1417 1418
	if (n_tads == MAX_TAD) {
		sprintf(msg, "Can't discover the memory channel");
		return -EINVAL;
	}

1419 1420 1421 1422 1423 1424
	ch_way = TAD_CH(reg) + 1;
	sck_way = TAD_SOCK(reg) + 1;

	if (ch_way == 3)
		idx = addr >> 6;
	else
1425
		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

1450
	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1451 1452 1453
				tad_ch_nilv_offset[n_tads],
				&tad_offset);

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	if (pvt->is_mirrored) {
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
			sck_xch = 1 << sck_way * (ch_way >> 1);
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			return -EINVAL;
		}
	} else
		sck_xch = (1 << sck_way) * ch_way;

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		 n_tads,
		 addr,
		 limit,
		 (u32)TAD_SOCK(reg),
		 ch_way,
		 offset,
		 idx,
		 base_ch,
		 *channel_mask);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		return -EINVAL;
	}
	addr -= offset;
	/* Store the low bits [0:6] of the addr */
	ch_addr = addr & 0x7f;
	/* Remove socket wayness and remove 6 bits */
	addr >>= 6;
1497
	addr = div_u64(addr, sck_xch);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
#if 0
	/* Divide by channel way */
	addr = addr / ch_way;
#endif
	/* Recover the last 6 bits */
	ch_addr |= addr << 6;

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1509
		pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1510 1511 1512 1513 1514 1515
				      rir_way_limit[n_rir],
				      &reg);

		if (!IS_RIR_VALID(reg))
			continue;

1516
		limit = pvt->info.rir_limit(reg);
1517
		gb = div_u64_rem(limit >> 20, 1024, &mb);
1518 1519
		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
			 n_rir,
1520
			 gb, (mb*1000)/1024,
1521 1522
			 limit,
			 1 << RIR_WAY(reg));
1523 1524 1525 1526 1527 1528 1529 1530 1531
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);
1532

1533 1534 1535 1536 1537 1538
	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

1539
	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1540 1541 1542 1543
			      rir_offset[n_rir][idx],
			      &reg);
	*rank = RIR_RNK_TGT(reg);

1544 1545 1546 1547 1548 1549
	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		 n_rir,
		 ch_addr,
		 limit,
		 rir_way,
		 idx);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

	return 0;
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

1566
	edac_dbg(0, "\n");
1567 1568 1569 1570
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
1571 1572 1573
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
				 const unsigned devno)
{
	struct sbridge_dev *sbridge_dev;
	const struct pci_id_descr *dev_descr = &table->descr[devno];
	struct pci_dev *pdev = NULL;
	u8 bus = 0;

1598
	sbridge_printk(KERN_DEBUG,
1599
		"Seeking for: PCI ID %04x:%04x\n",
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

1614
		/* if the HA wasn't found */
1615 1616 1617 1618
		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
1619
			"Device not found: %04x:%04x\n",
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;

	sbridge_dev = get_sbridge_dev(bus);
	if (!sbridge_dev) {
		sbridge_dev = alloc_sbridge_dev(bus, table);
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

	if (sbridge_dev->pdev[devno]) {
		sbridge_printk(KERN_ERR,
1639
			"Duplicated device for %04x:%04x\n",
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

	sbridge_dev->pdev[devno] = pdev;

	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
1650
			"Couldn't enable %04x:%04x\n",
1651 1652 1653 1654
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

1655
	edac_dbg(0, "Detected %04x:%04x\n",
1656
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

1670 1671
/*
 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1672
 *			     devices we want to reference for this driver.
1673
 * @num_mc: pointer to the memory controllers count, to be incremented in case
1674
 *	    of success.
1675 1676 1677 1678 1679 1680
 * @table: model specific table
 *
 * returns 0 in case of success or error code
 */
static int sbridge_get_all_devices(u8 *num_mc,
				   const struct pci_id_table *table)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
{
	int i, rc;
	struct pci_dev *pdev = NULL;

	while (table && table->descr) {
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
							   table, i);
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
		table++;
	}

	return 0;
}

A
Aristeu Rozanski 已提交
1707 1708
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
1709 1710 1711
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1712
	u8 saw_chan_mask = 0;
1713
	int i;
1714 1715 1716 1717 1718

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
1719 1720 1721 1722

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
			pvt->pci_sad0 = pdev;
1723
			break;
1724 1725
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
			pvt->pci_sad1 = pdev;
1726
			break;
1727 1728
		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
			pvt->pci_br0 = pdev;
1729
			break;
1730 1731
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
			pvt->pci_ha0 = pdev;
1732
			break;
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
			pvt->pci_tad[id] = pdev;
1746
			saw_chan_mask |= 1 << id;
1747 1748 1749 1750
		}
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
			pvt->pci_ddrio = pdev;
1751 1752 1753 1754 1755
			break;
		default:
			goto error;
		}

1756 1757
		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
			 pdev->vendor, pdev->device,
1758 1759
			 sbridge_dev->bus,
			 pdev);
1760 1761 1762 1763
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1764
	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1765 1766
		goto enodev;

1767 1768
	if (saw_chan_mask != 0x0f)
		goto enodev;
1769 1770 1771 1772 1773 1774 1775
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
1776 1777
	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
		       PCI_VENDOR_ID_INTEL, pdev->device);
1778 1779 1780
	return -EINVAL;
}

1781 1782 1783 1784
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
1785 1786
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
1787
	int i;
1788 1789 1790 1791 1792 1793

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
			pvt->pci_ha0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
			pvt->pci_ta = pdev;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1805 1806
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1807 1808 1809
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
			pvt->pci_tad[id] = pdev;
1810
			saw_chan_mask |= 1 << id;
1811
		}
1812
			break;
1813 1814 1815 1816
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1817
			pvt->pci_ddrio = pdev;
1818
			break;
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
			pvt->pci_br0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
			pvt->pci_br1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
			pvt->pci_ha1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1833 1834
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
1835
		{
1836
			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
1837
			pvt->pci_tad[id] = pdev;
1838
			saw_chan_mask |= 1 << id;
1839 1840
		}
			break;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
		default:
			goto error;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
	    !pvt->pci_ta)
		goto enodev;

1857 1858 1859 1860
	if (saw_chan_mask != 0x0f && /* -EN */
	    saw_chan_mask != 0x33 && /* -EP */
	    saw_chan_mask != 0xff)   /* -EX */
		goto enodev;
1861 1862 1863 1864 1865 1866 1867 1868
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR,
1869 1870
		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
			pdev->device);
1871 1872 1873
	return -EINVAL;
}

1874 1875 1876 1877
static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
1878 1879
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
			pvt->pci_ha0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;

			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;

			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
1931 1932
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1933 1934 1935 1936 1937
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
			if (!pvt->pci_ddrio)
				pvt->pci_ddrio = pdev;
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
			pvt->pci_ha1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
			pvt->pci_ha1_ta = pdev;
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

1960 1961 1962 1963
	if (saw_chan_mask != 0x0f && /* -EN */
	    saw_chan_mask != 0x33 && /* -EP */
	    saw_chan_mask != 0xff)   /* -EX */
		goto enodev;
1964 1965 1966 1967 1968 1969 1970
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

1971 1972 1973 1974 1975
static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1976
	u8 saw_chan_mask = 0;
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
			pvt->pci_ha0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
2026 2027 2028 2029
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
2030 2031 2032 2033 2034 2035
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
			pvt->pci_ha1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
			pvt->pci_ha1_ta = pdev;
			break;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

2051 2052 2053 2054
	if (saw_chan_mask != 0x0f && /* -EN */
	    saw_chan_mask != 0x33 && /* -EP */
	    saw_chan_mask != 0xff)   /* -EX */
		goto enodev;
2055 2056 2057 2058 2059 2060 2061
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
2077
	enum hw_event_mc_err_type tp_event;
2078
	char *type, *optype, msg[256];
2079 2080 2081
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2082
	bool recoverable;
2083 2084 2085 2086 2087 2088
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	long channel_mask, first_channel;
2089
	u8  rank, socket, ha;
2090
	int rc, dimm;
2091
	char *area_type = NULL;
2092

2093
	if (pvt->info.type != SANDY_BRIDGE)
2094 2095 2096 2097
		recoverable = true;
	else
		recoverable = GET_BITFIELD(m->status, 56, 56);

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
2110 2111

	/*
D
David Mackey 已提交
2112
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (! ((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
2127
			optype = "generic undef request error";
2128 2129
			break;
		case 1:
2130
			optype = "memory read error";
2131 2132
			break;
		case 2:
2133
			optype = "memory write error";
2134 2135
			break;
		case 3:
2136
			optype = "addr/cmd error";
2137 2138
			break;
		case 4:
2139
			optype = "memory scrubbing error";
2140 2141 2142 2143 2144 2145 2146
			break;
		default:
			optype = "reserved";
			break;
		}
	}

2147 2148 2149 2150
	/* Only decode errors with an valid address (ADDRV) */
	if (!GET_BITFIELD(m->status, 58, 58))
		return;

2151
	rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2152
				   &channel_mask, &rank, &area_type, msg);
2153
	if (rc < 0)
2154
		goto err_parsing;
2155 2156
	new_mci = get_mci_for_node_id(socket);
	if (!new_mci) {
2157 2158
		strcpy(msg, "Error: socket got corrupted!");
		goto err_parsing;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

	if (rank < 4)
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;


	/*
2174 2175 2176 2177
	 * FIXME: On some memory configurations (mirror, lockstep), the
	 * Memory Controller can't point the error to a single DIMM. The
	 * EDAC core should be handling the channel mask, in order to point
	 * to the group of dimm's where the error may be happening.
2178
	 */
2179 2180 2181
	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
		channel = first_channel;

2182
	snprintf(msg, sizeof(msg),
2183
		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2184 2185 2186 2187
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 area_type,
		 mscod, errcode,
2188
		 socket, ha,
2189 2190
		 channel_mask,
		 rank);
2191

2192
	edac_dbg(0, "%s\n", msg);
2193

2194 2195
	/* FIXME: need support for channel mask */

2196 2197 2198
	if (channel == CHANNEL_UNSPECIFIED)
		channel = -1;

2199
	/* Call the helper to output message */
2200
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
2201
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2202
			     4*ha+channel, dimm, -1,
2203
			     optype, msg);
2204 2205
	return;
err_parsing:
2206
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2207
			     -1, -1, -1,
2208
			     msg, "");
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270

}

/*
 *	sbridge_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void sbridge_check_error(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
	struct mce *m;

	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
	if (!count)
		return;

	m = pvt->mce_outentry;
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;

		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}

	/*
	 * MCE second step: parse errors and display
	 */
	for (i = 0; i < count; i++)
		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
}

/*
 * sbridge_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by sbridge_check_error.
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
 */
2271 2272
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
2273
{
2274 2275 2276
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct sbridge_pvt *pvt;
2277
	char *type;
2278

2279 2280 2281
	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
		return NOTIFY_DONE;

2282 2283 2284 2285
	mci = get_mci_for_node_id(mce->socketid);
	if (!mci)
		return NOTIFY_BAD;
	pvt = mci->pvt_info;
2286 2287 2288 2289 2290 2291 2292 2293

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
2294
		return NOTIFY_DONE;
2295

2296 2297 2298 2299 2300
	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

2301
	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2302

2303 2304 2305 2306 2307 2308
	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
			  "Bank %d: %016Lx\n", mce->extcpu, type,
			  mce->mcgstatus, mce->bank, mce->status);
	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2309

2310 2311 2312
	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
			  mce->time, mce->socketid, mce->apicid);
2313 2314 2315 2316 2317

	smp_rmb();
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
		smp_wmb();
		pvt->mce_overrun++;
2318
		return NOTIFY_DONE;
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	}

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
	smp_wmb();
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;

	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		sbridge_check_error(mci);

	/* Advice mcelog that the error were handled */
2331
	return NOTIFY_STOP;
2332 2333
}

2334 2335 2336 2337
static struct notifier_block sbridge_mce_dec = {
	.notifier_call      = sbridge_mce_check_error,
};

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;
	struct sbridge_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
2348
		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2349 2350 2351 2352 2353 2354 2355

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

2356 2357
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);
2358 2359

	/* Remove MC sysfs nodes */
2360
	edac_mc_del_mc(mci->pdev);
2361

2362
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2363 2364 2365 2366 2367
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

2368
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2369 2370
{
	struct mem_ctl_info *mci;
2371
	struct edac_mc_layer layers[2];
2372
	struct sbridge_pvt *pvt;
2373
	struct pci_dev *pdev = sbridge_dev->pdev[0];
2374
	int rc;
2375 2376

	/* Check the number of active and not disabled channels */
2377
	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2378 2379 2380 2381
	if (unlikely(rc < 0))
		return rc;

	/* allocate a new MC control structure */
2382 2383 2384 2385 2386 2387
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANNELS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
2388
	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2389 2390
			    sizeof(*pvt));

2391 2392 2393
	if (unlikely(!mci))
		return -ENOMEM;

2394
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2395
		 mci, &pdev->dev);
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

	mci->mtype_cap = MEM_FLAG_DDR3;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "sbridge_edac.c";
	mci->mod_ver = SBRIDGE_REVISION;
2409
	mci->dev_name = pci_name(pdev);
2410 2411 2412 2413 2414
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = sbridge_check_error;

2415
	pvt->info.type = type;
2416 2417
	switch (type) {
	case IVY_BRIDGE:
2418 2419 2420 2421
		pvt->info.rankcfgr = IB_RANK_CFG_A;
		pvt->info.get_tolm = ibridge_get_tolm;
		pvt->info.get_tohm = ibridge_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
2422
		pvt->info.get_memory_type = get_memory_type;
2423
		pvt->info.get_node_id = get_node_id;
2424
		pvt->info.rir_limit = rir_limit;
2425 2426 2427 2428
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.show_interleave_mode = show_interleave_mode;
		pvt->info.dram_attr = dram_attr;
2429 2430 2431 2432
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2433
		pvt->info.get_width = ibridge_get_width;
2434 2435 2436 2437 2438 2439
		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
2440 2441
		break;
	case SANDY_BRIDGE:
2442 2443 2444 2445
		pvt->info.rankcfgr = SB_RANK_CFG_A;
		pvt->info.get_tolm = sbridge_get_tolm;
		pvt->info.get_tohm = sbridge_get_tohm;
		pvt->info.dram_rule = sbridge_dram_rule;
2446
		pvt->info.get_memory_type = get_memory_type;
2447
		pvt->info.get_node_id = get_node_id;
2448
		pvt->info.rir_limit = rir_limit;
2449 2450 2451 2452
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.show_interleave_mode = show_interleave_mode;
		pvt->info.dram_attr = dram_attr;
2453 2454 2455 2456
		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
		pvt->info.interleave_list = sbridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
		pvt->info.interleave_pkg = sbridge_interleave_pkg;
2457
		pvt->info.get_width = sbridge_get_width;
2458 2459 2460 2461 2462 2463
		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
2464 2465 2466 2467 2468 2469 2470 2471 2472
		break;
	case HASWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.rir_limit = haswell_rir_limit;
2473 2474 2475 2476
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.show_interleave_mode = show_interleave_mode;
		pvt->info.dram_attr = dram_attr;
2477 2478 2479 2480
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2481
		pvt->info.get_width = ibridge_get_width;
2482
		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2483

2484 2485 2486 2487 2488
		/* Store pci devices at mci for faster access */
		rc = haswell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		break;
2489 2490 2491 2492 2493 2494 2495 2496
	case BROADWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.rir_limit = haswell_rir_limit;
2497 2498 2499 2500
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.show_interleave_mode = show_interleave_mode;
		pvt->info.dram_attr = dram_attr;
2501 2502 2503 2504
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2505
		pvt->info.get_width = broadwell_get_width;
2506 2507 2508 2509 2510 2511 2512
		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		break;
2513
	}
2514 2515 2516 2517 2518 2519

	/* Get dimm basic config and the memory layout */
	get_dimm_config(mci);
	get_memory_layout(mci);

	/* record ptr to the generic device */
2520
	mci->pdev = &pdev->dev;
2521 2522 2523

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
2524
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
		rc = -EINVAL;
		goto fail0;
	}

	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

/*
 *	sbridge_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

2546
static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2547
{
2548
	int rc = -ENODEV;
2549 2550
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;
2551
	enum type type = SANDY_BRIDGE;
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&sbridge_edac_lock);

	/*
	 * All memory controllers are allocated at the first pass.
	 */
	if (unlikely(probed >= 1)) {
		mutex_unlock(&sbridge_edac_lock);
		return -ENODEV;
	}
	probed++;

2565 2566
	switch (pdev->device) {
	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2567 2568
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
		type = IVY_BRIDGE;
2569
		break;
2570
	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2571 2572
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
		type = SANDY_BRIDGE;
2573 2574 2575 2576 2577
		break;
	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
		type = HASWELL;
		break;
2578 2579 2580 2581
	case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
		type = BROADWELL;
		break;
2582
	}
2583 2584
	if (unlikely(rc < 0)) {
		edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
2585
		goto fail0;
2586 2587
	}

2588 2589 2590
	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2591 2592
		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
			 mc, mc + 1, num_mc);
2593

2594
		sbridge_dev->mc = mc++;
2595
		rc = sbridge_register_mci(sbridge_dev, type);
2596 2597 2598 2599
		if (unlikely(rc < 0))
			goto fail1;
	}

2600
	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618

	mutex_unlock(&sbridge_edac_lock);
	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	mutex_unlock(&sbridge_edac_lock);
	return rc;
}

/*
 *	sbridge_remove	destructor for one instance of device
 *
 */
2619
static void sbridge_remove(struct pci_dev *pdev)
2620 2621 2622
{
	struct sbridge_dev *sbridge_dev;

2623
	edac_dbg(0, "\n");
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */

	mutex_lock(&sbridge_edac_lock);

	if (unlikely(!probed)) {
		mutex_unlock(&sbridge_edac_lock);
		return;
	}

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();

	probed--;

	mutex_unlock(&sbridge_edac_lock);
}

MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);

/*
 *	sbridge_driver	pci_driver structure for this module
 *
 */
static struct pci_driver sbridge_driver = {
	.name     = "sbridge_edac",
	.probe    = sbridge_probe,
2660
	.remove   = sbridge_remove,
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	.id_table = sbridge_pci_tbl,
};

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
	int pci_rc;

2672
	edac_dbg(2, "\n");
2673 2674 2675 2676 2677

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	pci_rc = pci_register_driver(&sbridge_driver);
2678 2679
	if (pci_rc >= 0) {
		mce_register_decode_chain(&sbridge_mce_dec);
2680 2681
		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2682
		return 0;
2683
	}
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
2697
	edac_dbg(2, "\n");
2698
	pci_unregister_driver(&sbridge_driver);
2699
	mce_unregister_decode_chain(&sbridge_mce_dec);
2700 2701 2702 2703 2704 2705 2706 2707 2708
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
2709
MODULE_AUTHOR("Mauro Carvalho Chehab");
2710
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2711
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2712
		   SBRIDGE_REVISION);