sb_edac.c 91.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2011 by:
10
 *	 Mauro Carvalho Chehab
11 12 13 14 15 16 17 18 19 20 21 22
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
23
#include <linux/math64.h>
24 25
#include <linux/mod_devicetable.h>
#include <asm/cpu_device_id.h>
26
#include <asm/intel-family.h>
27
#include <asm/processor.h>
28
#include <asm/mce.h>
29

30
#include "edac_module.h"
31 32 33 34 35 36 37

/* Static vars */
static LIST_HEAD(sbridge_edac_list);

/*
 * Alter this version for the module when modifications are made
 */
38
#define SBRIDGE_REVISION    " Ver: 1.1.2 "
39
#define EDAC_MOD_STR	    "sb_edac"
40 41 42 43 44 45 46 47 48 49 50 51 52 53

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
54
	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 56

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57
static const u32 sbridge_dram_rule[] = {
58 59 60 61
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};

62 63 64 65 66 67
static const u32 ibridge_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80,
	0x88, 0x90, 0x98, 0xa0,	0xa8,
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
68

69 70 71 72 73 74 75 76
static const u32 knl_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
};

77
#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78
#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79

80
static char *show_dram_attr(u32 attr)
81
{
82
	switch (attr) {
83 84 85 86 87 88 89 90 91 92 93
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

94
static const u32 sbridge_interleave_list[] = {
95 96 97 98
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};

99 100 101 102 103 104 105
static const u32 ibridge_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84,
	0x8c, 0x94, 0x9c, 0xa4, 0xac,
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};

106 107 108 109 110 111 112 113
static const u32 knl_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
};

A
Aristeu Rozanski 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
struct interleave_pkg {
	unsigned char start;
	unsigned char end;
};

static const struct interleave_pkg sbridge_interleave_pkg[] = {
	{ 0, 2 },
	{ 3, 5 },
	{ 8, 10 },
	{ 11, 13 },
	{ 16, 18 },
	{ 19, 21 },
	{ 24, 26 },
	{ 27, 29 },
};

130 131 132 133 134 135 136 137 138 139 140
static const struct interleave_pkg ibridge_interleave_pkg[] = {
	{ 0, 3 },
	{ 4, 7 },
	{ 8, 11 },
	{ 12, 15 },
	{ 16, 19 },
	{ 20, 23 },
	{ 24, 27 },
	{ 28, 31 },
};

A
Aristeu Rozanski 已提交
141 142
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
			  int interleave)
143
{
A
Aristeu Rozanski 已提交
144 145
	return GET_BITFIELD(reg, table[interleave].start,
			    table[interleave].end);
146 147 148 149 150
}

/* Devices 12 Function 7 */

#define TOLM		0x80
151
#define TOHM		0x84
152
#define HASWELL_TOLM	0xd0
153 154
#define HASWELL_TOHM_0	0xd4
#define HASWELL_TOHM_1	0xd8
155 156 157
#define KNL_TOLM	0xd0
#define KNL_TOHM_0	0xd4
#define KNL_TOHM_1	0xd8
158 159 160 161 162 163 164 165 166 167

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

168 169
#define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#define SAD_CONTROL	0xf4

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c
192
#define KNL_MCMTR		0x624
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

209 210
static const int knl_mtr_reg = 0xb60;

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

243 244 245 246 247
#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))

#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

274
#define SB_RANK_CFG_A		0x0328
275

276
#define IB_RANK_CFG_A		0x0320
277 278 279 280 281

/*
 * sbridge structs
 */

282
#define NUM_CHANNELS		4	/* Max channels per MC */
283
#define MAX_DIMMS		3	/* Max DIMMS per channel */
284 285 286
#define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
#define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
#define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
287
#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
288

289 290 291
enum type {
	SANDY_BRIDGE,
	IVY_BRIDGE,
292
	HASWELL,
293
	BROADWELL,
294
	KNIGHTS_LANDING,
295 296
};

297 298 299 300 301 302
enum domain {
	IMC0 = 0,
	IMC1,
	SOCK,
};

303 304 305 306 307 308
enum mirroring_mode {
	NON_MIRRORING,
	ADDR_RANGE_MIRRORING,
	FULL_MIRRORING,
};

A
Aristeu Rozanski 已提交
309
struct sbridge_pvt;
310
struct sbridge_info {
311
	enum type	type;
312 313 314 315
	u32		mcmtr;
	u32		rankcfgr;
	u64		(*get_tolm)(struct sbridge_pvt *pvt);
	u64		(*get_tohm)(struct sbridge_pvt *pvt);
316
	u64		(*rir_limit)(u32 reg);
317 318 319
	u64		(*sad_limit)(u32 reg);
	u32		(*interleave_mode)(u32 reg);
	u32		(*dram_attr)(u32 reg);
320
	const u32	*dram_rule;
321
	const u32	*interleave_list;
A
Aristeu Rozanski 已提交
322
	const struct interleave_pkg *interleave_pkg;
323
	u8		max_sad;
324
	u8		max_interleave;
325
	u8		(*get_node_id)(struct sbridge_pvt *pvt);
326
	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
327
	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
328
	struct pci_dev	*pci_vtd;
329 330 331 332 333 334 335 336
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
337
	int			dev_id;
338
	int			optional;
339
	enum domain		dom;
340 341 342 343
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
344 345 346
	int				n_devs_per_imc;
	int				n_devs_per_sock;
	int				n_imcs_per_sock;
347
	enum type			type;
348 349 350 351 352 353 354
};

struct sbridge_dev {
	struct list_head	list;
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
355
	enum domain		dom;
356
	int			n_devs;
357
	int			i_devs;
358 359 360
	struct mem_ctl_info	*mci;
};

361 362 363 364 365 366 367 368 369 370
struct knl_pvt {
	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
	struct pci_dev          *pci_mc0;
	struct pci_dev          *pci_mc1;
	struct pci_dev          *pci_mc0_misc;
	struct pci_dev          *pci_mc1_misc;
	struct pci_dev          *pci_mc_info; /* tolm, tohm */
};

371
struct sbridge_pvt {
372 373
	/* Devices per socket */
	struct pci_dev		*pci_ddrio;
374 375
	struct pci_dev		*pci_sad0, *pci_sad1;
	struct pci_dev		*pci_br0, *pci_br1;
376 377
	/* Devices per memory controller */
	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
378 379 380 381 382 383 384 385
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	/* Memory type detection */
386
	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
387
	bool			is_chan_hash;
388
	enum mirroring_mode	mirror_mode;
389 390 391

	/* Memory description */
	u64			tolm, tohm;
392
	struct knl_pvt knl;
393 394
};

395
#define PCI_DESCR(device_id, opt, domain)	\
396
	.dev_id = (device_id),		\
397 398
	.optional = opt,	\
	.dom = domain
399 400 401

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
402
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
403 404

		/* Memory controller */
405 406 407 408 409 410 411
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
412 413

		/* System Address Decoder */
414 415
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
416 417

		/* Broadcast Registers */
418
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
419 420
};

421
#define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
422
	.descr = A,			\
423 424 425
	.n_devs_per_imc = N,	\
	.n_devs_per_sock = ARRAY_SIZE(A),	\
	.n_imcs_per_sock = M,	\
426 427 428
	.type = T			\
}

429
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
430
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
431 432 433
	{0,}			/* 0 terminated list. */
};

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/* This changes depending if 1HA or 2HA:
 * 1HA:
 *	0x0eb8 (17.0) is DDRIO0
 * 2HA:
 *	0x0ebc (17.4) is DDRIO0
 */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc

/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
459 460
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
461 462 463

static const struct pci_id_descr pci_dev_descr_ibridge[] = {
		/* Processor Home Agent */
464
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
465 466

		/* Memory controller */
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },

		/* Optional, mode 2HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
485 486

		/* System Address Decoder */
487
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
488 489

		/* Broadcast Registers */
490 491
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
492 493 494 495

};

static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
496
	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
497 498 499
	{0,}			/* 0 terminated list. */
};

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/* Haswell support */
/* EN processor:
 *	- 1 IMC
 *	- 3 DDR3 channels, 2 DPC per channel
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 */
516
#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
517 518 519 520 521
#define HASWELL_HASYSDEFEATURE2 0x84
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
522
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
523
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
524
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
525 526 527 528 529 530 531 532 533 534 535
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
536 537 538
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
539 540
static const struct pci_id_descr pci_dev_descr_haswell[] = {
	/* first item must be the HA */
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
564 565 566
};

static const struct pci_id_table pci_dev_descr_haswell_table[] = {
567
	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
568 569 570
	{0,}			/* 0 terminated list. */
};

571 572 573
/* Knight's Landing Support */
/*
 * KNL's memory channels are swizzled between memory controllers.
574
 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
575
 */
576
#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
577 578 579 580

/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
581
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
/* SAD target - 1-29-1 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
/* Caching / Home Agent */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810

/*
 * KNL differs from SB, IB, and Haswell in that it has multiple
 * instances of the same device with the same device ID, so we handle that
 * by creating as many copies in the table as we expect to find.
 * (Like device ID must be grouped together.)
 */

static const struct pci_id_descr pci_dev_descr_knl[] = {
601 602 603 604 605 606 607
	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
608 609 610
};

static const struct pci_id_table pci_dev_descr_knl_table[] = {
611
	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
612 613 614
	{0,}
};

615 616 617 618 619 620
/*
 * Broadwell support
 *
 * DE processor:
 *	- 1 IMC
 *	- 2 DDR3 channels, 2 DPC per channel
621 622 623 624 625 626 627 628 629 630 631
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
632 633 634
 */
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
635
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
636
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
637
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
638
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
639
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
640 641 642 643 644 645
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
646 647 648 649
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
650 651 652 653
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf

static const struct pci_id_descr pci_dev_descr_broadwell[] = {
	/* first item must be the HA */
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
674 675 676
};

static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
677
	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
678 679 680
	{0,}			/* 0 terminated list. */
};

681 682

/****************************************************************************
D
David Mackey 已提交
683
			Ancillary status routines
684 685
 ****************************************************************************/

686
static inline int numrank(enum type type, u32 mtr)
687 688
{
	int ranks = (1 << RANK_CNT_BITS(mtr));
689 690
	int max = 4;

691
	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
692
		max = 8;
693

694 695 696
	if (ranks > max) {
		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
697 698 699 700 701 702 703 704 705 706 707
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
708 709
		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
710 711 712 713 714 715 716 717 718 719 720
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
721 722
		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
723 724 725 726 727 728
		return -EINVAL;
	}

	return 1 << cols;
}

729 730
static struct sbridge_dev *get_sbridge_dev(u8 bus, enum domain dom, int multi_bus,
					   struct sbridge_dev *prev)
731 732 733
{
	struct sbridge_dev *sbridge_dev;

734 735 736 737 738 739 740 741 742
	/*
	 * If we have devices scattered across several busses that pertain
	 * to the same memory controller, we'll lump them all together.
	 */
	if (multi_bus) {
		return list_first_entry_or_null(&sbridge_edac_list,
				struct sbridge_dev, list);
	}

743 744 745 746 747
	sbridge_dev = list_entry(prev ? prev->list.next
				      : sbridge_edac_list.next, struct sbridge_dev, list);

	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->bus == bus && (dom == SOCK || dom == sbridge_dev->dom))
748 749 750 751 752 753
			return sbridge_dev;
	}

	return NULL;
}

754 755
static struct sbridge_dev *alloc_sbridge_dev(u8 bus, enum domain dom,
					     const struct pci_id_table *table)
756 757 758 759 760 761 762
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

763 764 765
	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
				    sizeof(*sbridge_dev->pdev),
				    GFP_KERNEL);
766 767 768 769 770 771
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

	sbridge_dev->bus = bus;
772
	sbridge_dev->dom = dom;
773
	sbridge_dev->n_devs = table->n_devs_per_imc;
774 775 776 777 778 779 780 781 782 783 784 785
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

A
Aristeu Rozanski 已提交
786 787 788 789 790 791 792 793 794
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
	return GET_TOLM(reg);
}

A
Aristeu Rozanski 已提交
795 796 797 798 799 800 801 802
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
	return GET_TOHM(reg);
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);

	return GET_TOLM(reg);
}

static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);

	return GET_TOHM(reg);
}

821 822 823 824 825
static u64 rir_limit(u32 reg)
{
	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static u64 sad_limit(u32 reg)
{
	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
}

static u32 interleave_mode(u32 reg)
{
	return GET_BITFIELD(reg, 1, 1);
}

static u32 dram_attr(u32 reg)
{
	return GET_BITFIELD(reg, 2, 3);
}

841 842 843 844 845 846 847 848 849 850
static u64 knl_sad_limit(u32 reg)
{
	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
}

static u32 knl_interleave_mode(u32 reg)
{
	return GET_BITFIELD(reg, 1, 2);
}

851 852 853
static const char * const knl_intlv_mode[] = {
	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
};
854

855 856 857 858 859 860
static const char *get_intlv_mode_str(u32 reg, enum type t)
{
	if (t == KNIGHTS_LANDING)
		return knl_intlv_mode[knl_interleave_mode(reg)];
	else
		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
861 862 863 864 865 866 867 868
}

static u32 dram_attr_knl(u32 reg)
{
	return GET_BITFIELD(reg, 3, 4);
}


869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	enum mem_type mtype;

	if (pvt->pci_ddrio) {
		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
				      &reg);
		if (GET_BITFIELD(reg, 11, 11))
			/* FIXME: Can also be LRDIMM */
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	} else
		mtype = MEM_UNKNOWN;

	return mtype;
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	bool registered = false;
	enum mem_type mtype = MEM_UNKNOWN;

	if (!pvt->pci_ddrio)
		goto out;

	pci_read_config_dword(pvt->pci_ddrio,
			      HASWELL_DDRCRCLKCONTROLS, &reg);
	/* Is_Rdimm */
	if (GET_BITFIELD(reg, 16, 16))
		registered = true;

	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
	if (GET_BITFIELD(reg, 14, 14)) {
		if (registered)
			mtype = MEM_RDDR4;
		else
			mtype = MEM_DDR4;
	} else {
		if (registered)
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	}

out:
	return mtype;
}

920 921 922 923 924 925
static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* for KNL value is fixed */
	return DEV_X16;
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* there's no way to figure out */
	return DEV_UNKNOWN;
}

static enum dev_type __ibridge_get_width(u32 mtr)
{
	enum dev_type type;

	switch (mtr) {
	case 3:
		type = DEV_UNKNOWN;
		break;
	case 2:
		type = DEV_X16;
		break;
	case 1:
		type = DEV_X8;
		break;
	case 0:
		type = DEV_X4;
		break;
	}

	return type;
}

static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/*
	 * ddr3_width on the documentation but also valid for DDR4 on
	 * Haswell
	 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
}

static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* ddr3_width on the documentation but also valid for DDR4 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
}

969 970 971 972 973 974
static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
{
	/* DDR4 RDIMMS and LRDIMMS are supported */
	return MEM_RDDR4;
}

975 976 977 978 979 980 981
static u8 get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;
	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}

982 983 984 985 986 987 988 989
static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 3);
}

990 991 992 993 994 995 996 997 998
static u8 knl_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}


999 1000 1001 1002
static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

1003 1004
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
}

static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg;

	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
	rc = GET_BITFIELD(reg, 26, 31);
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
	rc = ((reg << 6) | rc) << 26;

	return rc | 0x1ffffff;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static u64 knl_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
}

static u64 knl_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg_lo, reg_hi;

	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
	rc = ((u64)reg_hi << 32) | reg_lo;
	return rc | 0x3ffffff;
}


1040 1041 1042 1043 1044
static u64 haswell_rir_limit(u32 reg)
{
	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
}

1045 1046 1047
static inline u8 sad_pkg_socket(u8 pkg)
{
	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1048
	return ((pkg >> 3) << 2) | (pkg & 0x3);
1049 1050 1051 1052 1053 1054 1055
}

static inline u8 sad_pkg_ha(u8 pkg)
{
	return (pkg >> 2) & 0x1;
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static int haswell_chan_hash(int idx, u64 addr)
{
	int i;

	/*
	 * XOR even bits from 12:26 to bit0 of idx,
	 *     odd bits from 13:27 to bit1
	 */
	for (i = 12; i < 28; i += 2)
		idx ^= (addr >> i) & 3;

	return idx;
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
/* Low bits of TAD limit, and some metadata. */
static const u32 knl_tad_dram_limit_lo[] = {
	0x400, 0x500, 0x600, 0x700,
	0x800, 0x900, 0xa00, 0xb00,
};

/* Low bits of TAD offset. */
static const u32 knl_tad_dram_offset_lo[] = {
	0x404, 0x504, 0x604, 0x704,
	0x804, 0x904, 0xa04, 0xb04,
};

/* High 16 bits of TAD limit and offset. */
static const u32 knl_tad_dram_hi[] = {
	0x408, 0x508, 0x608, 0x708,
	0x808, 0x908, 0xa08, 0xb08,
};

/* Number of ways a tad entry is interleaved. */
static const u32 knl_tad_ways[] = {
	8, 6, 4, 3, 2, 1,
};

/*
 * Retrieve the n'th Target Address Decode table entry
 * from the memory controller's TAD table.
 *
 * @pvt:	driver private data
 * @entry:	which entry you want to retrieve
 * @mc:		which memory controller (0 or 1)
 * @offset:	output tad range offset
 * @limit:	output address of first byte above tad range
 * @ways:	output number of interleave ways
 *
 * The offset value has curious semantics.  It's a sort of running total
 * of the sizes of all the memory regions that aren't mapped in this
 * tad table.
 */
static int knl_get_tad(const struct sbridge_pvt *pvt,
		const int entry,
		const int mc,
		u64 *offset,
		u64 *limit,
		int *ways)
{
	u32 reg_limit_lo, reg_offset_lo, reg_hi;
	struct pci_dev *pci_mc;
	int way_id;

	switch (mc) {
	case 0:
		pci_mc = pvt->knl.pci_mc0;
		break;
	case 1:
		pci_mc = pvt->knl.pci_mc1;
		break;
	default:
		WARN_ON(1);
		return -EINVAL;
	}

	pci_read_config_dword(pci_mc,
			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
	pci_read_config_dword(pci_mc,
			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
	pci_read_config_dword(pci_mc,
			knl_tad_dram_hi[entry], &reg_hi);

	/* Is this TAD entry enabled? */
	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
		return -ENODEV;

	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);

	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
		*ways = knl_tad_ways[way_id];
	} else {
		*ways = 0;
		sbridge_printk(KERN_ERR,
				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
				way_id);
		return -ENODEV;
	}

	/*
	 * The least significant 6 bits of base and limit are truncated.
	 * For limit, we fill the missing bits with 1s.
	 */
	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);

	return 0;
}

/* Determine which memory controller is responsible for a given channel. */
static int knl_channel_mc(int channel)
{
	WARN_ON(channel < 0 || channel >= 6);

	return channel < 3 ? 1 : 0;
}

/*
 * Get the Nth entry from EDC_ROUTE_TABLE register.
 * (This is the per-tile mapping of logical interleave targets to
 *  physical EDC modules.)
 *
 * entry 0: 0:2
 *       1: 3:5
 *       2: 6:8
 *       3: 9:11
 *       4: 12:14
 *       5: 15:17
 *       6: 18:20
 *       7: 21:23
 * reserved: 24:31
 */
static u32 knl_get_edc_route(int entry, u32 reg)
{
	WARN_ON(entry >= KNL_MAX_EDCS);
	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
}

/*
 * Get the Nth entry from MC_ROUTE_TABLE register.
 * (This is the per-tile mapping of logical interleave targets to
 *  physical DRAM channels modules.)
 *
 * entry 0: mc 0:2   channel 18:19
 *       1: mc 3:5   channel 20:21
 *       2: mc 6:8   channel 22:23
 *       3: mc 9:11  channel 24:25
 *       4: mc 12:14 channel 26:27
 *       5: mc 15:17 channel 28:29
 * reserved: 30:31
 *
 * Though we have 3 bits to identify the MC, we should only see
 * the values 0 or 1.
 */

static u32 knl_get_mc_route(int entry, u32 reg)
{
	int mc, chan;

	WARN_ON(entry >= KNL_MAX_CHANNELS);

	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);

1221
	return knl_channel_remap(mc, chan);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
}

/*
 * Render the EDC_ROUTE register in human-readable form.
 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
 */
static void knl_show_edc_route(u32 reg, char *s)
{
	int i;

	for (i = 0; i < KNL_MAX_EDCS; i++) {
		s[i*2] = knl_get_edc_route(i, reg) + '0';
		s[i*2+1] = '-';
	}

	s[KNL_MAX_EDCS*2 - 1] = '\0';
}

/*
 * Render the MC_ROUTE register in human-readable form.
 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
 */
static void knl_show_mc_route(u32 reg, char *s)
{
	int i;

	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
		s[i*2] = knl_get_mc_route(i, reg) + '0';
		s[i*2+1] = '-';
	}

	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
}

#define KNL_EDC_ROUTE 0xb8
#define KNL_MC_ROUTE 0xb4

/* Is this dram rule backed by regular DRAM in flat mode? */
#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)

/* Is this dram rule cached? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)

/* Is this rule backed by edc ? */
#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)

/* Is this rule backed by DRAM, cacheable in EDRAM? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)

/* Is this rule mod3? */
#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)

/*
 * Figure out how big our RAM modules are.
 *
 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
 * have to figure this out from the SAD rules, interleave lists, route tables,
 * and TAD rules.
 *
 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
 * inspect the TAD rules to figure out how large the SAD regions really are.
 *
 * When we know the real size of a SAD region and how many ways it's
 * interleaved, we know the individual contribution of each channel to
 * TAD is size/ways.
 *
 * Finally, we have to check whether each channel participates in each SAD
 * region.
 *
 * Fortunately, KNL only supports one DIMM per channel, so once we know how
 * much memory the channel uses, we know the DIMM is at least that large.
 * (The BIOS might possibly choose not to map all available memory, in which
 * case we will underreport the size of the DIMM.)
 *
 * In theory, we could try to determine the EDC sizes as well, but that would
 * only work in flat mode, not in cache mode.
 *
 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
 *            elements)
 */
static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
{
	u64 sad_base, sad_size, sad_limit = 0;
	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
	int sad_rule = 0;
	int tad_rule = 0;
	int intrlv_ways, tad_ways;
	u32 first_pkg, pkg;
	int i;
	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
	u32 dram_rule, interleave_reg;
	u32 mc_route_reg[KNL_MAX_CHAS];
	u32 edc_route_reg[KNL_MAX_CHAS];
	int edram_only;
	char edc_route_string[KNL_MAX_EDCS*2];
	char mc_route_string[KNL_MAX_CHANNELS*2];
	int cur_reg_start;
	int mc;
	int channel;
	int way;
	int participants[KNL_MAX_CHANNELS];
	int participant_count = 0;

	for (i = 0; i < KNL_MAX_CHANNELS; i++)
		mc_sizes[i] = 0;

	/* Read the EDC route table in each CHA. */
	cur_reg_start = 0;
	for (i = 0; i < KNL_MAX_CHAS; i++) {
		pci_read_config_dword(pvt->knl.pci_cha[i],
				KNL_EDC_ROUTE, &edc_route_reg[i]);

		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
			knl_show_edc_route(edc_route_reg[i-1],
					edc_route_string);
			if (cur_reg_start == i-1)
				edac_dbg(0, "edc route table for CHA %d: %s\n",
					cur_reg_start, edc_route_string);
			else
				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
					cur_reg_start, i-1, edc_route_string);
			cur_reg_start = i;
		}
	}
	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
	if (cur_reg_start == i-1)
		edac_dbg(0, "edc route table for CHA %d: %s\n",
			cur_reg_start, edc_route_string);
	else
		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
			cur_reg_start, i-1, edc_route_string);

	/* Read the MC route table in each CHA. */
	cur_reg_start = 0;
	for (i = 0; i < KNL_MAX_CHAS; i++) {
		pci_read_config_dword(pvt->knl.pci_cha[i],
			KNL_MC_ROUTE, &mc_route_reg[i]);

		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
			if (cur_reg_start == i-1)
				edac_dbg(0, "mc route table for CHA %d: %s\n",
					cur_reg_start, mc_route_string);
			else
				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
					cur_reg_start, i-1, mc_route_string);
			cur_reg_start = i;
		}
	}
	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
	if (cur_reg_start == i-1)
		edac_dbg(0, "mc route table for CHA %d: %s\n",
			cur_reg_start, mc_route_string);
	else
		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
			cur_reg_start, i-1, mc_route_string);

	/* Process DRAM rules */
	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
		/* previous limit becomes the new base */
		sad_base = sad_limit;

		pci_read_config_dword(pvt->pci_sad0,
			pvt->info.dram_rule[sad_rule], &dram_rule);

		if (!DRAM_RULE_ENABLE(dram_rule))
			break;

		edram_only = KNL_EDRAM_ONLY(dram_rule);

		sad_limit = pvt->info.sad_limit(dram_rule)+1;
		sad_size = sad_limit - sad_base;

		pci_read_config_dword(pvt->pci_sad0,
			pvt->info.interleave_list[sad_rule], &interleave_reg);

		/*
		 * Find out how many ways this dram rule is interleaved.
		 * We stop when we see the first channel again.
		 */
		first_pkg = sad_pkg(pvt->info.interleave_pkg,
						interleave_reg, 0);
		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
			pkg = sad_pkg(pvt->info.interleave_pkg,
						interleave_reg, intrlv_ways);

			if ((pkg & 0x8) == 0) {
				/*
				 * 0 bit means memory is non-local,
				 * which KNL doesn't support
				 */
				edac_dbg(0, "Unexpected interleave target %d\n",
					pkg);
				return -1;
			}

			if (pkg == first_pkg)
				break;
		}
		if (KNL_MOD3(dram_rule))
			intrlv_ways *= 3;

		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
			sad_rule,
			sad_base,
			sad_limit,
			intrlv_ways,
			edram_only ? ", EDRAM" : "");

		/*
		 * Find out how big the SAD region really is by iterating
		 * over TAD tables (SAD regions may contain holes).
		 * Each memory controller might have a different TAD table, so
		 * we have to look at both.
		 *
		 * Livespace is the memory that's mapped in this TAD table,
		 * deadspace is the holes (this could be the MMIO hole, or it
		 * could be memory that's mapped by the other TAD table but
		 * not this one).
		 */
		for (mc = 0; mc < 2; mc++) {
			sad_actual_size[mc] = 0;
			tad_livespace = 0;
			for (tad_rule = 0;
					tad_rule < ARRAY_SIZE(
						knl_tad_dram_limit_lo);
					tad_rule++) {
				if (knl_get_tad(pvt,
						tad_rule,
						mc,
						&tad_deadspace,
						&tad_limit,
						&tad_ways))
					break;

				tad_size = (tad_limit+1) -
					(tad_livespace + tad_deadspace);
				tad_livespace += tad_size;
				tad_base = (tad_limit+1) - tad_size;

				if (tad_base < sad_base) {
					if (tad_limit > sad_base)
						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
				} else if (tad_base < sad_limit) {
					if (tad_limit+1 > sad_limit) {
						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
					} else {
						/* TAD region is completely inside SAD region */
						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
							tad_rule, tad_base,
							tad_limit, tad_size,
							mc);
						sad_actual_size[mc] += tad_size;
					}
				}
				tad_base = tad_limit+1;
			}
		}

		for (mc = 0; mc < 2; mc++) {
			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
				mc, sad_actual_size[mc], sad_actual_size[mc]);
		}

		/* Ignore EDRAM rule */
		if (edram_only)
			continue;

		/* Figure out which channels participate in interleave. */
		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
			participants[channel] = 0;

		/* For each channel, does at least one CHA have
		 * this channel mapped to the given target?
		 */
		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
			for (way = 0; way < intrlv_ways; way++) {
				int target;
				int cha;

				if (KNL_MOD3(dram_rule))
					target = way;
				else
					target = 0x7 & sad_pkg(
				pvt->info.interleave_pkg, interleave_reg, way);

				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
					if (knl_get_mc_route(target,
						mc_route_reg[cha]) == channel
1511
						&& !participants[channel]) {
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
						participant_count++;
						participants[channel] = 1;
						break;
					}
				}
			}
		}

		if (participant_count != intrlv_ways)
			edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
				participant_count, intrlv_ways);

		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
			mc = knl_channel_mc(channel);
			if (participants[channel]) {
				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
					channel,
					sad_actual_size[mc]/intrlv_ways,
					sad_rule);
				mc_sizes[channel] +=
					sad_actual_size[mc]/intrlv_ways;
			}
		}
	}

	return 0;
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static void get_source_id(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	u32 reg;

	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
	    pvt->info.type == KNIGHTS_LANDING)
		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
	else
		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);

	if (pvt->info.type == KNIGHTS_LANDING)
		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
	else
		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
}

1557 1558 1559
static int __populate_dimms(struct mem_ctl_info *mci,
			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
			    enum edac_type mode)
1560 1561
{
	struct sbridge_pvt *pvt = mci->pvt_info;
1562 1563 1564
	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
							 : NUM_CHANNELS;
	unsigned int i, j, banks, ranks, rows, cols, npages;
1565
	struct dimm_info *dimm;
1566
	enum mem_type mtype;
1567
	u64 size;
1568

1569
	mtype = pvt->info.get_memory_type(pvt);
1570
	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1571 1572
		edac_dbg(0, "Memory is registered\n");
	else if (mtype == MEM_UNKNOWN)
1573
		edac_dbg(0, "Cannot determine memory type\n");
1574 1575
	else
		edac_dbg(0, "Memory is unregistered\n");
1576

1577
	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1578 1579 1580
		banks = 16;
	else
		banks = 8;
1581

1582
	for (i = 0; i < channels; i++) {
1583 1584
		u32 mtr;

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		int max_dimms_per_channel;

		if (pvt->info.type == KNIGHTS_LANDING) {
			max_dimms_per_channel = 1;
			if (!pvt->knl.pci_channel[i])
				continue;
		} else {
			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
			if (!pvt->pci_tad[i])
				continue;
		}

		for (j = 0; j < max_dimms_per_channel; j++) {
1598
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1599 1600 1601 1602 1603 1604 1605
			if (pvt->info.type == KNIGHTS_LANDING) {
				pci_read_config_dword(pvt->knl.pci_channel[i],
					knl_mtr_reg, &mtr);
			} else {
				pci_read_config_dword(pvt->pci_tad[i],
					mtr_regs[j], &mtr);
			}
1606
			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1607
			if (IS_DIMM_PRESENT(mtr)) {
1608 1609 1610 1611 1612 1613
				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
						       pvt->sbridge_dev->source_id,
						       pvt->sbridge_dev->dom, i);
					return -ENODEV;
				}
1614 1615
				pvt->channel[i].dimms++;

1616
				ranks = numrank(pvt->info.type, mtr);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

				if (pvt->info.type == KNIGHTS_LANDING) {
					/* For DDR4, this is fixed. */
					cols = 1 << 10;
					rows = knl_mc_sizes[i] /
						((u64) cols * ranks * banks * 8);
				} else {
					rows = numrow(mtr);
					cols = numcol(mtr);
				}
1627

1628
				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1629 1630
				npages = MiB_TO_PAGES(size);

1631
				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1632
					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1633 1634
					 size, npages,
					 banks, ranks, rows, cols);
1635

1636
				dimm->nr_pages = npages;
1637
				dimm->grain = 32;
1638
				dimm->dtype = pvt->info.get_width(pvt, mtr);
1639 1640 1641
				dimm->mtype = mtype;
				dimm->edac_mode = mode;
				snprintf(dimm->label, sizeof(dimm->label),
1642 1643
						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1644 1645 1646
			}
		}
	}
1647 1648

	return 0;
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
}

static int get_dimm_config(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
	enum edac_type mode;
	u32 reg;

	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
		 pvt->sbridge_dev->mc,
		 pvt->sbridge_dev->node_id,
		 pvt->sbridge_dev->source_id);

	/* KNL doesn't support mirroring or lockstep,
	 * and is always closed page
	 */
	if (pvt->info.type == KNIGHTS_LANDING) {
		mode = EDAC_S4ECD4ED;
1669 1670
		pvt->mirror_mode = NON_MIRRORING;
		pvt->is_cur_addr_mirrored = false;
1671 1672 1673

		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
			return -1;
1674 1675 1676 1677
		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
			return -ENODEV;
		}
1678
	} else {
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
				return -ENODEV;
			}
			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
			if (GET_BITFIELD(reg, 28, 28)) {
				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
				goto next;
			}
		}
		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
			edac_dbg(0, "Failed to read RASENABLES register\n");
			return -ENODEV;
		}
1695
		if (IS_MIRROR_ENABLED(reg)) {
1696 1697
			pvt->mirror_mode = FULL_MIRRORING;
			edac_dbg(0, "Full memory mirroring is enabled\n");
1698
		} else {
1699 1700
			pvt->mirror_mode = NON_MIRRORING;
			edac_dbg(0, "Memory mirroring is disabled\n");
1701 1702
		}

1703 1704 1705 1706 1707
next:
		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
			edac_dbg(0, "Failed to read MCMTR register\n");
			return -ENODEV;
		}
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
			edac_dbg(0, "Lockstep is enabled\n");
			mode = EDAC_S8ECD8ED;
			pvt->is_lockstep = true;
		} else {
			edac_dbg(0, "Lockstep is disabled\n");
			mode = EDAC_S4ECD4ED;
			pvt->is_lockstep = false;
		}
		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
			edac_dbg(0, "address map is on closed page mode\n");
			pvt->is_close_pg = true;
		} else {
			edac_dbg(0, "address map is on open page mode\n");
			pvt->is_close_pg = false;
		}
	}

1726
	return __populate_dimms(mci, knl_mc_sizes, mode);
1727 1728 1729 1730 1731 1732 1733 1734 1735
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
1736
	u32 gb, mb;
1737 1738 1739 1740 1741 1742
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

A
Aristeu Rozanski 已提交
1743
	pvt->tolm = pvt->info.get_tolm(pvt);
1744 1745
	tmp_mb = (1 + pvt->tolm) >> 20;

1746 1747 1748
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tolm);
1749 1750

	/* Address range is already 45:25 */
A
Aristeu Rozanski 已提交
1751
	pvt->tohm = pvt->info.get_tohm(pvt);
1752 1753
	tmp_mb = (1 + pvt->tohm) >> 20;

1754 1755 1756
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tohm);
1757 1758 1759 1760 1761 1762 1763 1764

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
1765
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1766
		/* SAD_LIMIT Address range is 45:26 */
1767
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1768
				      &reg);
1769
		limit = pvt->info.sad_limit(reg);
1770 1771 1772 1773 1774 1775 1776 1777

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
1778
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1779 1780
		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
			 n_sads,
1781
			 show_dram_attr(pvt->info.dram_attr(reg)),
1782
			 gb, (mb*1000)/1024,
1783
			 ((u64)tmp_mb) << 20L,
1784
			 get_intlv_mode_str(reg, pvt->info.type),
1785
			 reg);
1786 1787
		prv = limit;

1788
		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1789
				      &reg);
A
Aristeu Rozanski 已提交
1790
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1791
		for (j = 0; j < 8; j++) {
A
Aristeu Rozanski 已提交
1792 1793
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
			if (j > 0 && sad_interl == pkg)
1794 1795
				break;

1796
			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
A
Aristeu Rozanski 已提交
1797
				 n_sads, j, pkg);
1798 1799 1800
		}
	}

1801 1802 1803
	if (pvt->info.type == KNIGHTS_LANDING)
		return;

1804 1805 1806 1807 1808
	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1809
		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1810 1811 1812 1813 1814
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

1815
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1816
		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1817
			 n_tads, gb, (mb*1000)/1024,
1818
			 ((u64)tmp_mb) << 20L,
1819 1820
			 (u32)(1 << TAD_SOCK(reg)),
			 (u32)TAD_CH(reg) + 1,
1821 1822 1823 1824 1825
			 (u32)TAD_TGT0(reg),
			 (u32)TAD_TGT1(reg),
			 (u32)TAD_TGT2(reg),
			 (u32)TAD_TGT3(reg),
			 reg);
1826
		prv = limit;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
1840
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1841 1842
			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
				 i, j,
1843
				 gb, (mb*1000)/1024,
1844 1845
				 ((u64)tmp_mb) << 20L,
				 reg);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

1863
			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1864
			rir_way = 1 << RIR_WAY(reg);
1865
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1866 1867
			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
				 i, j,
1868
				 gb, (mb*1000)/1024,
1869 1870 1871
				 ((u64)tmp_mb) << 20L,
				 rir_way,
				 reg);
1872 1873 1874 1875 1876

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
1877
				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1878

1879
				gb = div_u64_rem(tmp_mb, 1024, &mb);
1880 1881
				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					 i, j, k,
1882
					 gb, (mb*1000)/1024,
1883
					 ((u64)tmp_mb) << 20L,
1884
					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1885
					 reg);
1886 1887 1888 1889 1890
			}
		}
	}
}

1891
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1892 1893 1894 1895
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1896
		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1897 1898 1899 1900 1901 1902 1903
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
1904
				 u8 *socket, u8 *ha,
1905 1906
				 long *channel_mask,
				 u8 *rank,
1907
				 char **area_type, char *msg)
1908 1909 1910
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1911
	struct pci_dev		*pci_ha;
1912
	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1913
	int			sad_interl, idx, base_ch;
1914
	int			interleave_mode, shiftup = 0;
1915
	unsigned		sad_interleave[pvt->info.max_interleave];
1916
	u32			reg, dram_rule;
1917
	u8			ch_way, sck_way, pkg, sad_ha = 0;
1918 1919
	u32			tad_offset;
	u32			rir_way;
1920
	u32			mb, gb;
1921
	u64			ch_addr, offset, limit = 0, prv = 0;
1922 1923 1924 1925 1926 1927 1928 1929 1930


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
1931
	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
1943 1944
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1945 1946 1947 1948 1949
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

1950
		limit = pvt->info.sad_limit(reg);
1951 1952 1953 1954 1955 1956 1957 1958
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1959
	if (n_sads == pvt->info.max_sad) {
1960 1961 1962
		sprintf(msg, "Can't discover the memory socket");
		return -EINVAL;
	}
1963
	dram_rule = reg;
1964 1965
	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
	interleave_mode = pvt->info.interleave_mode(dram_rule);
1966

1967
	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1968
			      &reg);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

	if (pvt->info.type == SANDY_BRIDGE) {
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
		for (sad_way = 0; sad_way < 8; sad_way++) {
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
			if (sad_way > 0 && sad_interl == pkg)
				break;
			sad_interleave[sad_way] = pkg;
			edac_dbg(0, "SAD interleave #%d: %d\n",
				 sad_way, sad_interleave[sad_way]);
		}
		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
			 pvt->sbridge_dev->mc,
			 n_sads,
			 addr,
			 limit,
			 sad_way + 7,
			 !interleave_mode ? "" : "XOR[18:16]");
		if (interleave_mode)
			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
		else
			idx = (addr >> 6) & 7;
		switch (sad_way) {
		case 1:
			idx = 0;
1994
			break;
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		case 2:
			idx = idx & 1;
			break;
		case 4:
			idx = idx & 3;
			break;
		case 8:
			break;
		default:
			sprintf(msg, "Can't discover socket interleave");
			return -EINVAL;
		}
		*socket = sad_interleave[idx];
		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
			 idx, sad_way, *socket);
2010
	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2011 2012 2013 2014 2015 2016 2017
		int bits, a7mode = A7MODE(dram_rule);

		if (a7mode) {
			/* A7 mode swaps P9 with P6 */
			bits = GET_BITFIELD(addr, 7, 8) << 1;
			bits |= GET_BITFIELD(addr, 9, 9);
		} else
2018
			bits = GET_BITFIELD(addr, 6, 8);
2019

2020
		if (interleave_mode == 0) {
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
			/* interleave mode will XOR {8,7,6} with {18,17,16} */
			idx = GET_BITFIELD(addr, 16, 18);
			idx ^= bits;
		} else
			idx = bits;

		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);

		if (a7mode) {
			/* MCChanShiftUpEnable */
2033
			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2034 2035 2036 2037 2038
			shiftup = GET_BITFIELD(reg, 22, 22);
		}

		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
			 idx, *socket, sad_ha, shiftup);
2039 2040
	} else {
		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2041
		idx = (addr >> 6) & 7;
2042 2043 2044 2045 2046
		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);
		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
			 idx, *socket, sad_ha);
2047 2048
	}

2049 2050
	*ha = sad_ha;

2051 2052 2053 2054
	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
2055
	new_mci = get_mci_for_node_id(*socket, sad_ha);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
2068
	pci_ha = pvt->pci_ha;
2069
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2070
		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2071 2072 2073 2074 2075 2076 2077 2078 2079
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
2080 2081 2082 2083 2084
	if (n_tads == MAX_TAD) {
		sprintf(msg, "Can't discover the memory channel");
		return -EINVAL;
	}

2085
	ch_way = TAD_CH(reg) + 1;
2086
	sck_way = TAD_SOCK(reg);
2087 2088 2089

	if (ch_way == 3)
		idx = addr >> 6;
2090
	else {
2091
		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2092 2093 2094
		if (pvt->is_chan_hash)
			idx = haswell_chan_hash(idx, addr);
	}
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

2119
	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2120

2121 2122
	if (pvt->mirror_mode == FULL_MIRRORING ||
	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2123 2124 2125 2126
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
2127
			sck_xch = (1 << sck_way) * (ch_way >> 1);
2128 2129 2130 2131 2132
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			return -EINVAL;
		}
2133 2134 2135

		pvt->is_cur_addr_mirrored = true;
	} else {
2136
		sck_xch = (1 << sck_way) * ch_way;
2137 2138
		pvt->is_cur_addr_mirrored = false;
	}
2139 2140 2141 2142 2143 2144

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

2145 2146 2147 2148
	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		 n_tads,
		 addr,
		 limit,
2149
		 sck_way,
2150 2151 2152 2153 2154
		 ch_way,
		 offset,
		 idx,
		 base_ch,
		 *channel_mask);
2155 2156 2157 2158 2159 2160 2161 2162 2163

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		return -EINVAL;
	}
2164 2165 2166

	ch_addr = addr - offset;
	ch_addr >>= (6 + shiftup);
2167
	ch_addr /= sck_xch;
2168 2169
	ch_addr <<= (6 + shiftup);
	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2170 2171 2172 2173 2174

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2175
		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2176 2177 2178 2179

		if (!IS_RIR_VALID(reg))
			continue;

2180
		limit = pvt->info.rir_limit(reg);
2181
		gb = div_u64_rem(limit >> 20, 1024, &mb);
2182 2183
		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
			 n_rir,
2184
			 gb, (mb*1000)/1024,
2185 2186
			 limit,
			 1 << RIR_WAY(reg));
2187 2188 2189 2190 2191 2192 2193 2194 2195
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);
2196

2197 2198 2199 2200 2201 2202
	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

2203
	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2204
	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2205

2206 2207 2208 2209 2210 2211
	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		 n_rir,
		 ch_addr,
		 limit,
		 rir_way,
		 idx);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

	return 0;
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

2228
	edac_dbg(0, "\n");
2229 2230 2231 2232
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
2233 2234 2235
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
2253 2254
				 const unsigned devno,
				 const int multi_bus)
2255
{
2256
	struct sbridge_dev *sbridge_dev = NULL;
2257 2258 2259
	const struct pci_id_descr *dev_descr = &table->descr[devno];
	struct pci_dev *pdev = NULL;
	u8 bus = 0;
2260
	int i = 0;
2261

2262
	sbridge_printk(KERN_DEBUG,
2263
		"Seeking for: PCI ID %04x:%04x\n",
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

2278
		/* if the HA wasn't found */
2279 2280 2281 2282
		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
2283
			"Device not found: %04x:%04x\n",
2284 2285 2286 2287 2288 2289 2290
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;

2291 2292
next_imc:
	sbridge_dev = get_sbridge_dev(bus, dev_descr->dom, multi_bus, sbridge_dev);
2293
	if (!sbridge_dev) {
2294 2295 2296 2297

		if (dev_descr->dom == SOCK)
			goto out_imc;

2298
		sbridge_dev = alloc_sbridge_dev(bus, dev_descr->dom, table);
2299 2300 2301 2302 2303 2304 2305
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

2306
	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2307
		sbridge_printk(KERN_ERR,
2308
			"Duplicated device for %04x:%04x\n",
2309 2310 2311 2312 2313
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

2314 2315 2316 2317 2318 2319 2320 2321
	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;

	/* pdev belongs to more than one IMC, do extra gets */
	if (++i > 1)
		pci_dev_get(pdev);

	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
		goto next_imc;
2322

2323
out_imc:
2324 2325 2326
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
2327
			"Couldn't enable %04x:%04x\n",
2328 2329 2330 2331
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

2332
	edac_dbg(0, "Detected %04x:%04x\n",
2333
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

2347 2348
/*
 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2349
 *			     devices we want to reference for this driver.
2350
 * @num_mc: pointer to the memory controllers count, to be incremented in case
2351
 *	    of success.
2352 2353 2354 2355
 * @table: model specific table
 *
 * returns 0 in case of success or error code
 */
T
Tony Luck 已提交
2356 2357
static int sbridge_get_all_devices(u8 *num_mc,
					const struct pci_id_table *table)
2358 2359 2360
{
	int i, rc;
	struct pci_dev *pdev = NULL;
T
Tony Luck 已提交
2361 2362
	int allow_dups = 0;
	int multi_bus = 0;
2363

T
Tony Luck 已提交
2364 2365
	if (table->type == KNIGHTS_LANDING)
		allow_dups = multi_bus = 1;
2366
	while (table && table->descr) {
2367
		for (i = 0; i < table->n_devs_per_sock; i++) {
2368 2369 2370 2371 2372
			if (!allow_dups || i == 0 ||
					table->descr[i].dev_id !=
						table->descr[i-1].dev_id) {
				pdev = NULL;
			}
2373 2374
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
2375
							   table, i, multi_bus);
2376 2377
				if (rc < 0) {
					if (i == 0) {
2378
						i = table->n_devs_per_sock;
2379 2380 2381 2382 2383
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
2384
			} while (pdev && !allow_dups);
2385 2386 2387 2388 2389 2390 2391
		}
		table++;
	}

	return 0;
}

2392 2393 2394 2395 2396 2397 2398
/*
 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
 * the format: XXXa. So we can convert from a device to the corresponding
 * channel like this
 */
#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)

A
Aristeu Rozanski 已提交
2399 2400
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
2401 2402 2403
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
2404
	u8 saw_chan_mask = 0;
2405
	int i;
2406 2407 2408 2409 2410

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
2411 2412 2413 2414

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
			pvt->pci_sad0 = pdev;
2415
			break;
2416 2417
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
			pvt->pci_sad1 = pdev;
2418
			break;
2419 2420
		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
			pvt->pci_br0 = pdev;
2421
			break;
2422
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2423
			pvt->pci_ha = pdev;
2424
			break;
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
		{
2436
			int id = TAD_DEV_TO_CHAN(pdev->device);
2437
			pvt->pci_tad[id] = pdev;
2438
			saw_chan_mask |= 1 << id;
2439 2440 2441 2442
		}
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
			pvt->pci_ddrio = pdev;
2443 2444 2445 2446 2447
			break;
		default:
			goto error;
		}

2448 2449
		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
			 pdev->vendor, pdev->device,
2450 2451
			 sbridge_dev->bus,
			 pdev);
2452 2453 2454
	}

	/* Check if everything were registered */
2455
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2456
	    !pvt->pci_ras || !pvt->pci_ta)
2457 2458
		goto enodev;

2459 2460
	if (saw_chan_mask != 0x0f)
		goto enodev;
2461 2462 2463 2464 2465 2466 2467
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
2468 2469
	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
		       PCI_VENDOR_ID_INTEL, pdev->device);
2470 2471 2472
	return -EINVAL;
}

2473 2474 2475 2476
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
2477 2478
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
2479
	int i;
2480 2481 2482 2483 2484 2485

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

2486 2487
		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2488
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2489
			pvt->pci_ha = pdev;
2490 2491
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2492
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2493 2494
			pvt->pci_ta = pdev;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2495
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2496 2497 2498 2499
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2500 2501
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2502 2503 2504 2505
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2506
		{
2507
			int id = TAD_DEV_TO_CHAN(pdev->device);
2508
			pvt->pci_tad[id] = pdev;
2509
			saw_chan_mask |= 1 << id;
2510
		}
2511
			break;
2512 2513 2514 2515
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2516
			pvt->pci_ddrio = pdev;
2517
			break;
2518 2519 2520 2521 2522 2523 2524 2525 2526
		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
			pvt->pci_br0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
			pvt->pci_br1 = pdev;
			break;
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
		default:
			goto error;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
2538
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2539
	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2540 2541
		goto enodev;

2542 2543
	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
2544
		goto enodev;
2545 2546 2547 2548 2549 2550 2551 2552
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR,
2553 2554
		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
			pdev->device);
2555 2556 2557
	return -EINVAL;
}

2558 2559 2560 2561
static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
2562 2563
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2586
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2587
			pvt->pci_ha = pdev;
2588 2589
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2590
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2591 2592
			pvt->pci_ta = pdev;
			break;
2593
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2594
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2595 2596 2597 2598 2599 2600
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2601 2602 2603 2604 2605
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
		{
2606
			int id = TAD_DEV_TO_CHAN(pdev->device);
2607 2608 2609
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
2610 2611
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2612 2613 2614 2615 2616
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
			if (!pvt->pci_ddrio)
				pvt->pci_ddrio = pdev;
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
2629
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2630 2631 2632
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

2633 2634
	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
2635
		goto enodev;
2636 2637 2638 2639 2640 2641 2642
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2643 2644 2645 2646 2647
static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
2648
	u8 saw_chan_mask = 0;
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2671
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2672
			pvt->pci_ha = pdev;
2673 2674
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2675
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2676 2677
			pvt->pci_ta = pdev;
			break;
2678
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2679
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2680 2681 2682 2683 2684 2685
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2686 2687 2688 2689 2690
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
		{
2691
			int id = TAD_DEV_TO_CHAN(pdev->device);
2692 2693 2694
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
2710
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2711 2712 2713
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

2714 2715
	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
2716
		goto enodev;
2717 2718 2719 2720 2721 2722 2723
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
static int knl_mci_bind_devs(struct mem_ctl_info *mci,
			struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int dev, func;

	int i;
	int devidx;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		/* Extract PCI device and function. */
		dev = (pdev->devfn >> 3) & 0x1f;
		func = pdev->devfn & 0x7;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
			if (dev == 8)
				pvt->knl.pci_mc0 = pdev;
			else if (dev == 9)
				pvt->knl.pci_mc1 = pdev;
			else {
				sbridge_printk(KERN_ERR,
					"Memory controller in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
			pvt->pci_sad0 = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
			pvt->pci_sad1 = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
			/* There are one of these per tile, and range from
			 * 1.14.0 to 1.18.5.
			 */
			devidx = ((dev-14)*8)+func;

			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
				sbridge_printk(KERN_ERR,
					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}

			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);

			pvt->knl.pci_cha[devidx] = pdev;
			break;

2783
		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
			devidx = -1;

			/*
			 *  MC0 channels 0-2 are device 9 function 2-4,
			 *  MC1 channels 3-5 are device 8 function 2-4.
			 */

			if (dev == 9)
				devidx = func-2;
			else if (dev == 8)
				devidx = 3 + (func-2);

			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
				sbridge_printk(KERN_ERR,
					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}

			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
			pvt->knl.pci_channel[devidx] = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
			pvt->knl.pci_mc_info = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
			pvt->pci_ta = pdev;
			break;

		default:
			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
				pdev->device);
			break;
		}
	}

	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
	    !pvt->pci_ta) {
		goto enodev;
	}

	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
		if (!pvt->knl.pci_channel[i]) {
			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
			goto enodev;
		}
	}

	for (i = 0; i < KNL_MAX_CHAS; i++) {
		if (!pvt->knl.pci_cha[i]) {
			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
			goto enodev;
		}
	}

	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
2864
	enum hw_event_mc_err_type tp_event;
2865
	char *type, *optype, msg[256];
2866 2867 2868
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2869
	bool recoverable;
2870 2871 2872 2873 2874 2875
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	long channel_mask, first_channel;
2876
	u8  rank, socket, ha;
2877
	int rc, dimm;
2878
	char *area_type = NULL;
2879

2880
	if (pvt->info.type != SANDY_BRIDGE)
2881 2882 2883 2884
		recoverable = true;
	else
		recoverable = GET_BITFIELD(m->status, 56, 56);

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
2897 2898

	/*
D
David Mackey 已提交
2899
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (! ((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
2914
			optype = "generic undef request error";
2915 2916
			break;
		case 1:
2917
			optype = "memory read error";
2918 2919
			break;
		case 2:
2920
			optype = "memory write error";
2921 2922
			break;
		case 3:
2923
			optype = "addr/cmd error";
2924 2925
			break;
		case 4:
2926
			optype = "memory scrubbing error";
2927 2928 2929 2930 2931 2932 2933
			break;
		default:
			optype = "reserved";
			break;
		}
	}

2934 2935 2936 2937
	/* Only decode errors with an valid address (ADDRV) */
	if (!GET_BITFIELD(m->status, 58, 58))
		return;

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	if (pvt->info.type == KNIGHTS_LANDING) {
		if (channel == 14) {
			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
				overflow ? " OVERFLOW" : "",
				(uncorrected_error && recoverable)
				? " recoverable" : "",
				mscod, errcode,
				m->bank);
		} else {
			char A = *("A");

2949 2950 2951 2952 2953 2954 2955
			/*
			 * Reported channel is in range 0-2, so we can't map it
			 * back to mc. To figure out mc we check machine check
			 * bank register that reported this error.
			 * bank15 means mc0 and bank16 means mc1.
			 */
			channel = knl_channel_remap(m->bank == 16, channel);
2956
			channel_mask = 1 << channel;
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
			snprintf(msg, sizeof(msg),
				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
				overflow ? " OVERFLOW" : "",
				(uncorrected_error && recoverable)
				? " recoverable" : " ",
				mscod, errcode, channel, A + channel);
			edac_mc_handle_error(tp_event, mci, core_err_cnt,
				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
				channel, 0, -1,
				optype, msg);
		}
		return;
	} else {
		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
				&channel_mask, &rank, &area_type, msg);
	}

2975
	if (rc < 0)
2976
		goto err_parsing;
2977
	new_mci = get_mci_for_node_id(socket, ha);
2978
	if (!new_mci) {
2979 2980
		strcpy(msg, "Error: socket got corrupted!");
		goto err_parsing;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

	if (rank < 4)
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;


	/*
2996 2997 2998 2999
	 * FIXME: On some memory configurations (mirror, lockstep), the
	 * Memory Controller can't point the error to a single DIMM. The
	 * EDAC core should be handling the channel mask, in order to point
	 * to the group of dimm's where the error may be happening.
3000
	 */
3001
	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3002 3003
		channel = first_channel;

3004
	snprintf(msg, sizeof(msg),
3005
		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3006 3007 3008 3009
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 area_type,
		 mscod, errcode,
3010
		 socket, ha,
3011 3012
		 channel_mask,
		 rank);
3013

3014
	edac_dbg(0, "%s\n", msg);
3015

3016 3017
	/* FIXME: need support for channel mask */

3018 3019 3020
	if (channel == CHANNEL_UNSPECIFIED)
		channel = -1;

3021
	/* Call the helper to output message */
3022
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3023
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3024
			     channel, dimm, -1,
3025
			     optype, msg);
3026 3027
	return;
err_parsing:
3028
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3029
			     -1, -1, -1,
3030
			     msg, "");
3031 3032 3033 3034

}

/*
3035 3036
 * Check that logging is enabled and that this is the right type
 * of error for us to handle.
3037
 */
3038 3039
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
3040
{
3041 3042 3043
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct sbridge_pvt *pvt;
3044
	char *type;
3045

3046
	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3047 3048
		return NOTIFY_DONE;

3049
	mci = get_mci_for_node_id(mce->socketid, IMC0);
3050
	if (!mci)
3051
		return NOTIFY_DONE;
3052
	pvt = mci->pvt_info;
3053 3054 3055 3056 3057 3058 3059 3060

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
3061
		return NOTIFY_DONE;
3062

3063 3064 3065 3066 3067
	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

3068
	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3069

3070 3071 3072 3073 3074 3075
	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
			  "Bank %d: %016Lx\n", mce->extcpu, type,
			  mce->mcgstatus, mce->bank, mce->status);
	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3076

3077 3078 3079
	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
			  mce->time, mce->socketid, mce->apicid);
3080

3081
	sbridge_mce_output_error(mci, mce);
3082 3083

	/* Advice mcelog that the error were handled */
3084
	return NOTIFY_STOP;
3085 3086
}

3087
static struct notifier_block sbridge_mce_dec = {
3088 3089
	.notifier_call	= sbridge_mce_check_error,
	.priority	= MCE_PRIO_EDAC,
3090 3091
};

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;
	struct sbridge_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
3102
		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3103 3104 3105 3106 3107 3108 3109

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

3110 3111
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);
3112 3113

	/* Remove MC sysfs nodes */
3114
	edac_mc_del_mc(mci->pdev);
3115

3116
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3117 3118 3119 3120 3121
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

3122
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3123 3124
{
	struct mem_ctl_info *mci;
3125
	struct edac_mc_layer layers[2];
3126
	struct sbridge_pvt *pvt;
3127
	struct pci_dev *pdev = sbridge_dev->pdev[0];
3128
	int rc;
3129 3130

	/* allocate a new MC control structure */
3131
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3132 3133
	layers[0].size = type == KNIGHTS_LANDING ?
		KNL_MAX_CHANNELS : NUM_CHANNELS;
3134 3135
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
3136
	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3137
	layers[1].is_virt_csrow = true;
3138
	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3139 3140
			    sizeof(*pvt));

3141 3142 3143
	if (unlikely(!mci))
		return -ENOMEM;

3144
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3145
		 mci, &pdev->dev);
3146 3147 3148 3149 3150 3151 3152 3153

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

3154 3155
	mci->mtype_cap = type == KNIGHTS_LANDING ?
		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3156 3157
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
3158
	mci->mod_name = EDAC_MOD_STR;
3159
	mci->dev_name = pci_name(pdev);
3160 3161
	mci->ctl_page_to_phys = NULL;

3162
	pvt->info.type = type;
3163 3164
	switch (type) {
	case IVY_BRIDGE:
3165 3166 3167 3168
		pvt->info.rankcfgr = IB_RANK_CFG_A;
		pvt->info.get_tolm = ibridge_get_tolm;
		pvt->info.get_tohm = ibridge_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
3169
		pvt->info.get_memory_type = get_memory_type;
3170
		pvt->info.get_node_id = get_node_id;
3171
		pvt->info.rir_limit = rir_limit;
3172 3173 3174
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3175 3176 3177 3178
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3179
		pvt->info.get_width = ibridge_get_width;
3180 3181 3182 3183 3184

		/* Store pci devices at mci for faster access */
		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3185
		get_source_id(mci);
3186 3187
		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3188 3189
		break;
	case SANDY_BRIDGE:
3190 3191 3192 3193
		pvt->info.rankcfgr = SB_RANK_CFG_A;
		pvt->info.get_tolm = sbridge_get_tolm;
		pvt->info.get_tohm = sbridge_get_tohm;
		pvt->info.dram_rule = sbridge_dram_rule;
3194
		pvt->info.get_memory_type = get_memory_type;
3195
		pvt->info.get_node_id = get_node_id;
3196
		pvt->info.rir_limit = rir_limit;
3197 3198 3199
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3200 3201 3202 3203
		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
		pvt->info.interleave_list = sbridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3204
		pvt->info.get_width = sbridge_get_width;
3205 3206 3207 3208 3209

		/* Store pci devices at mci for faster access */
		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3210
		get_source_id(mci);
3211 3212
		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3213 3214 3215 3216 3217 3218 3219 3220 3221
		break;
	case HASWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.rir_limit = haswell_rir_limit;
3222 3223 3224
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3225 3226 3227 3228
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3229
		pvt->info.get_width = ibridge_get_width;
3230

3231 3232 3233 3234
		/* Store pci devices at mci for faster access */
		rc = haswell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3235
		get_source_id(mci);
3236 3237
		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3238
		break;
3239 3240 3241 3242 3243 3244 3245 3246
	case BROADWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.rir_limit = haswell_rir_limit;
3247 3248 3249
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3250 3251 3252 3253
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3254
		pvt->info.get_width = broadwell_get_width;
3255 3256 3257 3258 3259

		/* Store pci devices at mci for faster access */
		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3260
		get_source_id(mci);
3261 3262
		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3263
		break;
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	case KNIGHTS_LANDING:
		/* pvt->info.rankcfgr == ??? */
		pvt->info.get_tolm = knl_get_tolm;
		pvt->info.get_tohm = knl_get_tohm;
		pvt->info.dram_rule = knl_dram_rule;
		pvt->info.get_memory_type = knl_get_memory_type;
		pvt->info.get_node_id = knl_get_node_id;
		pvt->info.rir_limit = NULL;
		pvt->info.sad_limit = knl_sad_limit;
		pvt->info.interleave_mode = knl_interleave_mode;
		pvt->info.dram_attr = dram_attr_knl;
		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
		pvt->info.interleave_list = knl_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3279
		pvt->info.get_width = knl_get_width;
3280 3281 3282 3283

		rc = knl_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3284
		get_source_id(mci);
3285 3286
		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3287
		break;
3288
	}
3289

3290 3291 3292 3293 3294
	if (!mci->ctl_name) {
		rc = -ENOMEM;
		goto fail0;
	}

3295
	/* Get dimm basic config and the memory layout */
3296 3297 3298 3299 3300
	rc = get_dimm_config(mci);
	if (rc < 0) {
		edac_dbg(0, "MC: failed to get_dimm_config()\n");
		goto fail;
	}
3301 3302 3303
	get_memory_layout(mci);

	/* record ptr to the generic device */
3304
	mci->pdev = &pdev->dev;
3305 3306 3307

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
3308
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3309
		rc = -EINVAL;
3310
		goto fail;
3311 3312 3313 3314
	}

	return 0;

3315
fail:
3316
	kfree(mci->ctl_name);
3317
fail0:
3318 3319 3320 3321 3322
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

3323 3324 3325 3326
#define ICPU(model, table) \
	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }

static const struct x86_cpu_id sbridge_cpuids[] = {
3327 3328 3329 3330 3331 3332
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
	ICPU(INTEL_FAM6_HASWELL_X,	  pci_dev_descr_haswell_table),
	ICPU(INTEL_FAM6_BROADWELL_X,	  pci_dev_descr_broadwell_table),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3333
	ICPU(INTEL_FAM6_XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3334 3335 3336 3337
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);

3338
/*
3339
 *	sbridge_probe	Get all devices and register memory controllers
3340 3341 3342 3343 3344 3345
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

3346
static int sbridge_probe(const struct x86_cpu_id *id)
3347
{
3348
	int rc = -ENODEV;
3349 3350
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;
3351
	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3352 3353

	/* get the pci devices we want to reserve for our use */
3354
	rc = sbridge_get_all_devices(&num_mc, ptable);
3355

3356
	if (unlikely(rc < 0)) {
3357
		edac_dbg(0, "couldn't get all devices\n");
3358
		goto fail0;
3359 3360
	}

3361 3362 3363
	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3364 3365
		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
			 mc, mc + 1, num_mc);
3366

3367
		sbridge_dev->mc = mc++;
3368
		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3369 3370 3371 3372
		if (unlikely(rc < 0))
			goto fail1;
	}

3373
	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	return rc;
}

/*
3387
 *	sbridge_remove	cleanup
3388 3389
 *
 */
3390
static void sbridge_remove(void)
3391 3392 3393
{
	struct sbridge_dev *sbridge_dev;

3394
	edac_dbg(0, "\n");
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();
}

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
3409
	const struct x86_cpu_id *id;
3410
	const char *owner;
3411
	int rc;
3412

3413
	edac_dbg(2, "\n");
3414

3415 3416 3417 3418
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3419 3420 3421 3422
	id = x86_match_cpu(sbridge_cpuids);
	if (!id)
		return -ENODEV;

3423 3424 3425
	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

3426 3427 3428
	rc = sbridge_probe(id);

	if (rc >= 0) {
3429
		mce_register_decode_chain(&sbridge_mce_dec);
3430
		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3431
			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3432
		return 0;
3433
	}
3434 3435

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3436
		      rc);
3437

3438
	return rc;
3439 3440 3441 3442 3443 3444 3445 3446
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
3447
	edac_dbg(2, "\n");
3448
	sbridge_remove();
3449
	mce_unregister_decode_chain(&sbridge_mce_dec);
3450 3451 3452 3453 3454 3455 3456 3457 3458
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
3459
MODULE_AUTHOR("Mauro Carvalho Chehab");
3460
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3461
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3462
		   SBRIDGE_REVISION);