internal.h 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

10 11
#ifndef _ASM_X86_FPU_INTERNAL_H
#define _ASM_X86_FPU_INTERNAL_H
12

13
#include <linux/compat.h>
14
#include <linux/sched.h>
15
#include <linux/slab.h>
16

17
#include <asm/user.h>
18
#include <asm/fpu/api.h>
19
#include <asm/fpu/xstate.h>
20

21 22 23
/*
 * High level FPU state handling functions:
 */
24
extern void fpu__activate_curr(struct fpu *fpu);
25
extern void fpu__activate_fpstate_read(struct fpu *fpu);
26
extern void fpu__activate_fpstate_write(struct fpu *fpu);
27
extern void fpu__save(struct fpu *fpu);
28
extern void fpu__restore(struct fpu *fpu);
29
extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
30 31
extern void fpu__drop(struct fpu *fpu);
extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
32
extern void fpu__clear(struct fpu *fpu);
I
Ingo Molnar 已提交
33 34
extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
35

I
Ingo Molnar 已提交
36 37 38 39 40 41 42
/*
 * Boot time FPU initialization functions:
 */
extern void fpu__init_cpu(void);
extern void fpu__init_system_xstate(void);
extern void fpu__init_cpu_xstate(void);
extern void fpu__init_system(struct cpuinfo_x86 *c);
43 44 45
extern void fpu__init_check_bugs(void);
extern void fpu__resume_cpu(void);

46 47 48 49 50 51 52 53 54
/*
 * Debugging facility:
 */
#ifdef CONFIG_X86_DEBUG_FPU
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
#else
# define WARN_ON_FPU(x) ({ 0; })
#endif

55
/*
I
Ingo Molnar 已提交
56
 * FPU related CPU feature flag helper routines:
57
 */
58 59
static __always_inline __pure bool use_eager_fpu(void)
{
60
	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
61 62
}

63 64
static __always_inline __pure bool use_xsaveopt(void)
{
65
	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
66 67 68 69
}

static __always_inline __pure bool use_xsave(void)
{
70
	return static_cpu_has_safe(X86_FEATURE_XSAVE);
71 72 73 74
}

static __always_inline __pure bool use_fxsr(void)
{
75
	return static_cpu_has_safe(X86_FEATURE_FXSR);
76 77
}

I
Ingo Molnar 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * fpstate handling functions:
 */

extern union fpregs_state init_fpstate;

extern void fpstate_init(union fpregs_state *state);
#ifdef CONFIG_MATH_EMULATION
extern void fpstate_init_soft(struct swregs_state *soft);
#else
static inline void fpstate_init_soft(struct swregs_state *soft) {}
#endif
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
{
	fx->cwd = 0x37f;
	fx->mxcsr = MXCSR_DEFAULT;
}
95
extern void fpstate_sanitize_xstate(struct fpu *fpu);
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

128
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
129
{
130
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
131 132
}

133
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
134
{
135
	if (config_enabled(CONFIG_X86_32))
136
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
137
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
138
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
139

140
	/* See comment in copy_fxregs_to_kernel() below. */
141
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
142 143
}

144
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
145
{
146 147 148 149 150 151 152 153 154 155 156 157 158 159
	int err;

	if (config_enabled(CONFIG_X86_32)) {
		err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	} else {
		if (config_enabled(CONFIG_AS_FXSAVEQ)) {
			err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
		} else {
			/* See comment in copy_fxregs_to_kernel() below. */
			err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
		}
	}
	/* Copying from a kernel buffer to FPU registers should never fail: */
	WARN_ON_FPU(err);
160 161
}

162
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
163 164 165 166 167 168
{
	if (config_enabled(CONFIG_X86_32))
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

169
	/* See comment in copy_fxregs_to_kernel() below. */
170 171 172 173
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

174
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
175
{
176 177 178
	int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));

	WARN_ON_FPU(err);
179 180
}

181
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
182 183
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
184 185
}

186
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
187
{
188
	if (config_enabled(CONFIG_X86_32))
189
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
190
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
191
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
208
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
209 210 211 212 213 214
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
215 216
			     : "=m" (fpu->state.fxsave)
			     : [fx] "R" (&fpu->state.fxsave));
217
	}
218 219
}

220 221 222 223 224 225 226 227 228 229 230 231
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
#define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
#define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
#define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
#define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
#define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"

/* xstate instruction fault handler: */
#define xstate_fault(__err)		\
					\
	".section .fixup,\"ax\"\n"	\
					\
232
	"3:  movl $-2,%[_err]\n"	\
233 234 235 236 237
	"    jmp  2b\n"			\
					\
	".previous\n"			\
					\
	_ASM_EXTABLE(1b, 3b)		\
238
	: [_err] "=r" (__err)
239 240 241 242 243

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
244
static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
245 246 247 248 249 250 251 252 253 254 255 256
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	WARN_ON(system_state != SYSTEM_BOOTING);

	if (boot_cpu_has(X86_FEATURE_XSAVES))
		asm volatile("1:"XSAVES"\n\t"
			"2:\n\t"
			     xstate_fault(err)
257 258
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
259 260 261 262
	else
		asm volatile("1:"XSAVE"\n\t"
			"2:\n\t"
			     xstate_fault(err)
263 264
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
265 266 267

	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
268 269 270 271 272 273
}

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
274
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate, u64 mask)
275 276 277 278 279 280 281 282 283 284 285
{
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	WARN_ON(system_state != SYSTEM_BOOTING);

	if (boot_cpu_has(X86_FEATURE_XSAVES))
		asm volatile("1:"XRSTORS"\n\t"
			"2:\n\t"
			     xstate_fault(err)
286 287
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
288 289 290 291
	else
		asm volatile("1:"XRSTOR"\n\t"
			"2:\n\t"
			     xstate_fault(err)
292 293
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
294 295 296

	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
297 298 299 300 301
}

/*
 * Save processor xstate to xsave area.
 */
302
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	WARN_ON(!alternatives_patched);

	/*
	 * If xsaves is enabled, xsaves replaces xsaveopt because
	 * it supports compact format and supervisor states in addition to
	 * modified optimization in xsaveopt.
	 *
	 * Otherwise, if xsaveopt is enabled, xsaveopt replaces xsave
	 * because xsaveopt supports modified optimization which is not
	 * supported by xsave.
	 *
	 * If none of xsaves and xsaveopt is enabled, use xsave.
	 */
	alternative_input_2(
		"1:"XSAVE,
		XSAVEOPT,
		X86_FEATURE_XSAVEOPT,
		XSAVES,
		X86_FEATURE_XSAVES,
328
		[xstate] "D" (xstate), "a" (lmask), "d" (hmask) :
329 330 331
		"memory");
	asm volatile("2:\n\t"
		     xstate_fault(err)
332
		     : "0" (err)
333 334
		     : "memory");

335 336
	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
337 338 339 340 341
}

/*
 * Restore processor xstate from xsave area.
 */
342
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
343 344 345
{
	u32 lmask = mask;
	u32 hmask = mask >> 32;
346
	int err = 0;
347 348 349 350 351 352 353 354 355

	/*
	 * Use xrstors to restore context if it is enabled. xrstors supports
	 * compacted format of xsave area which is not supported by xrstor.
	 */
	alternative_input(
		"1: " XRSTOR,
		XRSTORS,
		X86_FEATURE_XSAVES,
356
		"D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask)
357 358 359 360
		: "memory");

	asm volatile("2:\n"
		     xstate_fault(err)
361
		     : "0" (err)
362 363
		     : "memory");

364 365
	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
}

/*
 * Save xstate to user space xsave area.
 *
 * We don't use modified optimization because xrstor/xrstors might track
 * a different application.
 *
 * We don't use compacted format xsave area for
 * backward compatibility for old applications which don't understand
 * compacted format of xsave area.
 */
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
{
	int err;

	/*
	 * Clear the xsave header first, so that reserved fields are
	 * initialized to zero.
	 */
	err = __clear_user(&buf->header, sizeof(buf->header));
	if (unlikely(err))
		return -EFAULT;

	__asm__ __volatile__(ASM_STAC "\n"
			     "1:"XSAVE"\n"
			     "2: " ASM_CLAC "\n"
			     xstate_fault(err)
394
			     : "D" (buf), "a" (-1), "d" (-1), "0" (err)
395 396 397 398 399 400 401 402 403 404 405 406
			     : "memory");
	return err;
}

/*
 * Restore xstate from user space xsave area.
 */
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
{
	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
	u32 lmask = mask;
	u32 hmask = mask >> 32;
407
	int err = 0;
408 409 410 411 412

	__asm__ __volatile__(ASM_STAC "\n"
			     "1:"XRSTOR"\n"
			     "2: " ASM_CLAC "\n"
			     xstate_fault(err)
413
			     : "D" (xstate), "a" (lmask), "d" (hmask), "0" (err)
414 415 416 417
			     : "memory");	/* memory required? */
	return err;
}

418 419
/*
 * These must be called with preempt disabled. Returns
420 421 422 423 424 425
 * 'true' if the FPU state is still intact and we can
 * keep registers active.
 *
 * The legacy FNSAVE instruction cleared all FPU state
 * unconditionally, so registers are essentially destroyed.
 * Modern FPU state can be kept in registers, if there are
426
 * no pending FP exceptions.
427
 */
428
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
429
{
430
	if (likely(use_xsave())) {
431
		copy_xregs_to_kernel(&fpu->state.xsave);
432 433
		return 1;
	}
434

435
	if (likely(use_fxsr())) {
436
		copy_fxregs_to_kernel(fpu);
437
		return 1;
438 439 440
	}

	/*
441 442
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
	 * so we have to mark them inactive:
443
	 */
444
	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
445 446

	return 0;
447 448
}

449
static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
450
{
451
	if (use_xsave()) {
452
		copy_kernel_to_xregs(&fpstate->xsave, -1);
453 454
	} else {
		if (use_fxsr())
455
			copy_kernel_to_fxregs(&fpstate->fxsave);
456
		else
457
			copy_kernel_to_fregs(&fpstate->fsave);
458
	}
459 460
}

461
static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
462
{
463 464 465 466 467
	/*
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
	 * pending. Clear the x87 state here by setting it to fixed values.
	 * "m" is a random variable that should be in L1.
	 */
468
	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
469 470 471 472
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
473
			: : [addr] "m" (fpstate));
474
	}
475

476
	__copy_kernel_to_fpregs(fpstate);
477 478
}

479
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
I
Ingo Molnar 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

/*
 * FPU context switch related helper methods:
 */

DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

/*
 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
 * on this CPU.
 *
 * This will disable any lazy FPU state restore of the current FPU state,
 * but if the current thread owns the FPU, it will still be saved by.
 */
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
{
	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
}

static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
{
	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
}


505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/*
 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
 */

static inline void __fpregs_activate_hw(void)
{
	if (!use_eager_fpu())
		clts();
}

static inline void __fpregs_deactivate_hw(void)
{
	if (!use_eager_fpu())
		stts();
}

/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
523
static inline void __fpregs_deactivate(struct fpu *fpu)
524
{
525 526
	WARN_ON_FPU(!fpu->fpregs_active);

527
	fpu->fpregs_active = 0;
528
	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
529 530
}

531
/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
532
static inline void __fpregs_activate(struct fpu *fpu)
533
{
534 535
	WARN_ON_FPU(fpu->fpregs_active);

536
	fpu->fpregs_active = 1;
537
	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
538 539
}

540 541 542 543 544 545 546 547 548 549
/*
 * The question "does this thread have fpu access?"
 * is slightly racy, since preemption could come in
 * and revoke it immediately after the test.
 *
 * However, even in that very unlikely scenario,
 * we can just assume we have FPU access - typically
 * to save the FP state - we'll just take a #NM
 * fault and get the FPU access back.
 */
550
static inline int fpregs_active(void)
551 552 553 554
{
	return current->thread.fpu.fpregs_active;
}

555 556 557 558 559 560 561
/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
562
static inline void fpregs_activate(struct fpu *fpu)
563
{
564
	__fpregs_activate_hw();
565
	__fpregs_activate(fpu);
566 567
}

568
static inline void fpregs_deactivate(struct fpu *fpu)
569
{
570
	__fpregs_deactivate(fpu);
571
	__fpregs_deactivate_hw();
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
}

/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

588 589
static inline fpu_switch_t
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
590 591 592
{
	fpu_switch_t fpu;

593 594 595 596
	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
597
	fpu.preload = new_fpu->fpstate_active &&
598
		      (use_eager_fpu() || new_fpu->counter > 5);
599

600
	if (old_fpu->fpregs_active) {
601
		if (!copy_fpregs_to_fpstate(old_fpu))
602
			old_fpu->last_cpu = -1;
603
		else
604
			old_fpu->last_cpu = cpu;
605

606
		/* But leave fpu_fpregs_owner_ctx! */
607
		old_fpu->fpregs_active = 0;
608 609 610

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
611
			new_fpu->counter++;
612
			__fpregs_activate(new_fpu);
613
			prefetch(&new_fpu->state);
614 615 616
		} else {
			__fpregs_deactivate_hw();
		}
617
	} else {
618 619
		old_fpu->counter = 0;
		old_fpu->last_cpu = -1;
620
		if (fpu.preload) {
621
			new_fpu->counter++;
622
			if (fpu_want_lazy_restore(new_fpu, cpu))
623 624
				fpu.preload = 0;
			else
625
				prefetch(&new_fpu->state);
626
			fpregs_activate(new_fpu);
627 628 629 630 631
		}
	}
	return fpu;
}

I
Ingo Molnar 已提交
632 633 634 635
/*
 * Misc helper functions:
 */

636 637 638 639 640 641
/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
642
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
643
{
644
	if (fpu_switch.preload)
645
		copy_kernel_to_fpregs(&new_fpu->state);
646 647 648
}

/*
649
 * Needs to be preemption-safe.
650
 *
651
 * NOTE! user_fpu_begin() must be used only immediately before restoring
652 653 654
 * the save state. It does not do any saving/restoring on its own. In
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 * the task can lose the FPU right after preempt_enable().
655 656 657
 */
static inline void user_fpu_begin(void)
{
658 659
	struct fpu *fpu = &current->thread.fpu;

660
	preempt_disable();
661
	if (!fpregs_active())
662
		fpregs_activate(fpu);
663 664 665
	preempt_enable();
}

I
Ingo Molnar 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
/*
 * MXCSR and XCR definitions:
 */

extern unsigned int mxcsr_feature_mask;

#define XCR_XFEATURE_ENABLED_MASK	0x00000000

static inline u64 xgetbv(u32 index)
{
	u32 eax, edx;

	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
		     : "=a" (eax), "=d" (edx)
		     : "c" (index));
	return eax + ((u64)edx << 32);
}

static inline void xsetbv(u32 index, u64 value)
{
	u32 eax = value;
	u32 edx = value >> 32;

	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
		     : : "a" (eax), "d" (edx), "c" (index));
}

693
#endif /* _ASM_X86_FPU_INTERNAL_H */