internal.h 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

10 11
#ifndef _ASM_X86_FPU_INTERNAL_H
#define _ASM_X86_FPU_INTERNAL_H
12

13
#include <linux/compat.h>
14
#include <linux/sched.h>
15
#include <linux/slab.h>
16

17
#include <asm/user.h>
18
#include <asm/fpu/api.h>
19
#include <asm/fpu/xstate.h>
20

21 22 23
/*
 * High level FPU state handling functions:
 */
24 25
extern void fpu__activate_curr(struct fpu *fpu);
extern void fpu__activate_stopped(struct fpu *fpu);
26
extern void fpu__save(struct fpu *fpu);
27
extern void fpu__restore(struct fpu *fpu);
28
extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
29 30
extern void fpu__drop(struct fpu *fpu);
extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
31
extern void fpu__clear(struct fpu *fpu);
I
Ingo Molnar 已提交
32 33
extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
34

I
Ingo Molnar 已提交
35 36 37 38 39 40 41
/*
 * Boot time FPU initialization functions:
 */
extern void fpu__init_cpu(void);
extern void fpu__init_system_xstate(void);
extern void fpu__init_cpu_xstate(void);
extern void fpu__init_system(struct cpuinfo_x86 *c);
42 43 44
extern void fpu__init_check_bugs(void);
extern void fpu__resume_cpu(void);

45 46 47 48 49 50 51 52 53
/*
 * Debugging facility:
 */
#ifdef CONFIG_X86_DEBUG_FPU
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
#else
# define WARN_ON_FPU(x) ({ 0; })
#endif

54
/*
I
Ingo Molnar 已提交
55
 * FPU related CPU feature flag helper routines:
56
 */
57 58
static __always_inline __pure bool use_eager_fpu(void)
{
59
	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
60 61
}

62 63
static __always_inline __pure bool use_xsaveopt(void)
{
64
	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
65 66 67 68
}

static __always_inline __pure bool use_xsave(void)
{
69
	return static_cpu_has_safe(X86_FEATURE_XSAVE);
70 71 72 73
}

static __always_inline __pure bool use_fxsr(void)
{
74
	return static_cpu_has_safe(X86_FEATURE_FXSR);
75 76
}

I
Ingo Molnar 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * fpstate handling functions:
 */

extern union fpregs_state init_fpstate;

extern void fpstate_init(union fpregs_state *state);
#ifdef CONFIG_MATH_EMULATION
extern void fpstate_init_soft(struct swregs_state *soft);
#else
static inline void fpstate_init_soft(struct swregs_state *soft) {}
#endif
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
{
	fx->cwd = 0x37f;
	fx->mxcsr = MXCSR_DEFAULT;
}
94
extern void fpstate_sanitize_xstate(struct fpu *fpu);
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

127
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
128
{
129
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
130 131
}

132
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
133
{
134
	if (config_enabled(CONFIG_X86_32))
135
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
136
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
137
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
138

139
	/* See comment in copy_fxregs_to_kernel() below. */
140
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
141 142
}

143
static inline int copy_kernel_to_fxregs(struct fxregs_state *fx)
144
{
145 146 147 148
	if (config_enabled(CONFIG_X86_32))
		return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
149

150
	/* See comment in copy_fxregs_to_kernel() below. */
151 152
	return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
153 154
}

155
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
156 157 158 159 160 161
{
	if (config_enabled(CONFIG_X86_32))
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

162
	/* See comment in copy_fxregs_to_kernel() below. */
163 164 165 166
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

167
static inline int copy_kernel_to_fregs(struct fregs_state *fx)
168
{
169
	return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
170 171
}

172
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
173 174
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
175 176
}

177
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
178
{
179
	if (config_enabled(CONFIG_X86_32))
180
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
181
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
182
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
199
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
200 201 202 203 204 205
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
206 207
			     : "=m" (fpu->state.fxsave)
			     : [fx] "R" (&fpu->state.fxsave));
208
	}
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
#define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
#define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
#define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
#define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
#define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"

/* xstate instruction fault handler: */
#define xstate_fault(__err)		\
					\
	".section .fixup,\"ax\"\n"	\
					\
223
	"3:  movl $-2,%[_err]\n"	\
224 225 226 227 228
	"    jmp  2b\n"			\
					\
	".previous\n"			\
					\
	_ASM_EXTABLE(1b, 3b)		\
229
	: [_err] "=r" (__err)
230 231 232 233 234

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
235
static inline int copy_xregs_to_kernel_booting(struct xregs_state *xstate)
236 237 238 239 240 241 242 243 244 245 246 247
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	WARN_ON(system_state != SYSTEM_BOOTING);

	if (boot_cpu_has(X86_FEATURE_XSAVES))
		asm volatile("1:"XSAVES"\n\t"
			"2:\n\t"
			     xstate_fault(err)
248 249
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
250 251 252 253
	else
		asm volatile("1:"XSAVE"\n\t"
			"2:\n\t"
			     xstate_fault(err)
254 255
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
256 257 258 259 260 261 262
	return err;
}

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
263
static inline int copy_kernel_to_xregs_booting(struct xregs_state *xstate, u64 mask)
264 265 266 267 268 269 270 271 272 273 274
{
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	WARN_ON(system_state != SYSTEM_BOOTING);

	if (boot_cpu_has(X86_FEATURE_XSAVES))
		asm volatile("1:"XRSTORS"\n\t"
			"2:\n\t"
			     xstate_fault(err)
275 276
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
277 278 279 280
	else
		asm volatile("1:"XRSTOR"\n\t"
			"2:\n\t"
			     xstate_fault(err)
281 282
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
283 284 285 286 287 288
	return err;
}

/*
 * Save processor xstate to xsave area.
 */
289
static inline int copy_xregs_to_kernel(struct xregs_state *xstate)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	WARN_ON(!alternatives_patched);

	/*
	 * If xsaves is enabled, xsaves replaces xsaveopt because
	 * it supports compact format and supervisor states in addition to
	 * modified optimization in xsaveopt.
	 *
	 * Otherwise, if xsaveopt is enabled, xsaveopt replaces xsave
	 * because xsaveopt supports modified optimization which is not
	 * supported by xsave.
	 *
	 * If none of xsaves and xsaveopt is enabled, use xsave.
	 */
	alternative_input_2(
		"1:"XSAVE,
		XSAVEOPT,
		X86_FEATURE_XSAVEOPT,
		XSAVES,
		X86_FEATURE_XSAVES,
315
		[xstate] "D" (xstate), "a" (lmask), "d" (hmask) :
316 317 318
		"memory");
	asm volatile("2:\n\t"
		     xstate_fault(err)
319
		     : "0" (err)
320 321 322 323 324 325 326 327
		     : "memory");

	return err;
}

/*
 * Restore processor xstate from xsave area.
 */
328
static inline int copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
329 330 331
{
	u32 lmask = mask;
	u32 hmask = mask >> 32;
332
	int err = 0;
333 334 335 336 337 338 339 340 341

	/*
	 * Use xrstors to restore context if it is enabled. xrstors supports
	 * compacted format of xsave area which is not supported by xrstor.
	 */
	alternative_input(
		"1: " XRSTOR,
		XRSTORS,
		X86_FEATURE_XSAVES,
342
		"D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask)
343 344 345 346
		: "memory");

	asm volatile("2:\n"
		     xstate_fault(err)
347
		     : "0" (err)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
		     : "memory");

	return err;
}

/*
 * Save xstate to user space xsave area.
 *
 * We don't use modified optimization because xrstor/xrstors might track
 * a different application.
 *
 * We don't use compacted format xsave area for
 * backward compatibility for old applications which don't understand
 * compacted format of xsave area.
 */
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
{
	int err;

	/*
	 * Clear the xsave header first, so that reserved fields are
	 * initialized to zero.
	 */
	err = __clear_user(&buf->header, sizeof(buf->header));
	if (unlikely(err))
		return -EFAULT;

	__asm__ __volatile__(ASM_STAC "\n"
			     "1:"XSAVE"\n"
			     "2: " ASM_CLAC "\n"
			     xstate_fault(err)
379
			     : "D" (buf), "a" (-1), "d" (-1), "0" (err)
380 381 382 383 384 385 386 387 388 389 390 391
			     : "memory");
	return err;
}

/*
 * Restore xstate from user space xsave area.
 */
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
{
	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
	u32 lmask = mask;
	u32 hmask = mask >> 32;
392
	int err = 0;
393 394 395 396 397

	__asm__ __volatile__(ASM_STAC "\n"
			     "1:"XRSTOR"\n"
			     "2: " ASM_CLAC "\n"
			     xstate_fault(err)
398
			     : "D" (xstate), "a" (lmask), "d" (hmask), "0" (err)
399 400 401 402
			     : "memory");	/* memory required? */
	return err;
}

403 404
/*
 * These must be called with preempt disabled. Returns
405 406 407 408 409 410
 * 'true' if the FPU state is still intact and we can
 * keep registers active.
 *
 * The legacy FNSAVE instruction cleared all FPU state
 * unconditionally, so registers are essentially destroyed.
 * Modern FPU state can be kept in registers, if there are
411
 * no pending FP exceptions.
412
 */
413
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
414
{
415
	if (likely(use_xsave())) {
416
		copy_xregs_to_kernel(&fpu->state.xsave);
417 418
		return 1;
	}
419

420
	if (likely(use_fxsr())) {
421
		copy_fxregs_to_kernel(fpu);
422
		return 1;
423 424 425
	}

	/*
426 427
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
	 * so we have to mark them inactive:
428
	 */
429
	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
430 431

	return 0;
432 433
}

434
static inline int __copy_fpstate_to_fpregs(struct fpu *fpu)
435 436
{
	if (use_xsave())
437
		return copy_kernel_to_xregs(&fpu->state.xsave, -1);
438
	else if (use_fxsr())
439
		return copy_kernel_to_fxregs(&fpu->state.fxsave);
440
	else
441
		return copy_kernel_to_fregs(&fpu->state.fsave);
442 443
}

444
static inline int copy_fpstate_to_fpregs(struct fpu *fpu)
445
{
446 447 448 449 450
	/*
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
	 * pending. Clear the x87 state here by setting it to fixed values.
	 * "m" is a random variable that should be in L1.
	 */
451
	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
452 453 454 455
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
456
			: : [addr] "m" (fpu->fpregs_active));
457
	}
458

459
	return __copy_fpstate_to_fpregs(fpu);
460 461
}

462
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
I
Ingo Molnar 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

/*
 * FPU context switch related helper methods:
 */

DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

/*
 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
 * on this CPU.
 *
 * This will disable any lazy FPU state restore of the current FPU state,
 * but if the current thread owns the FPU, it will still be saved by.
 */
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
{
	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
}

static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
{
	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
}


488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
 */

static inline void __fpregs_activate_hw(void)
{
	if (!use_eager_fpu())
		clts();
}

static inline void __fpregs_deactivate_hw(void)
{
	if (!use_eager_fpu())
		stts();
}

/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
506
static inline void __fpregs_deactivate(struct fpu *fpu)
507
{
508 509
	WARN_ON_FPU(!fpu->fpregs_active);

510
	fpu->fpregs_active = 0;
511
	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
512 513
}

514
/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
515
static inline void __fpregs_activate(struct fpu *fpu)
516
{
517 518
	WARN_ON_FPU(fpu->fpregs_active);

519
	fpu->fpregs_active = 1;
520
	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
521 522
}

523 524 525 526 527 528 529 530 531 532
/*
 * The question "does this thread have fpu access?"
 * is slightly racy, since preemption could come in
 * and revoke it immediately after the test.
 *
 * However, even in that very unlikely scenario,
 * we can just assume we have FPU access - typically
 * to save the FP state - we'll just take a #NM
 * fault and get the FPU access back.
 */
533
static inline int fpregs_active(void)
534 535 536 537
{
	return current->thread.fpu.fpregs_active;
}

538 539 540 541 542 543 544
/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
545
static inline void fpregs_activate(struct fpu *fpu)
546
{
547
	__fpregs_activate_hw();
548
	__fpregs_activate(fpu);
549 550
}

551
static inline void fpregs_deactivate(struct fpu *fpu)
552
{
553
	__fpregs_deactivate(fpu);
554
	__fpregs_deactivate_hw();
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
}

/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

571 572
static inline fpu_switch_t
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
573 574 575
{
	fpu_switch_t fpu;

576 577 578 579
	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
580
	fpu.preload = new_fpu->fpstate_active &&
581
		      (use_eager_fpu() || new_fpu->counter > 5);
582

583
	if (old_fpu->fpregs_active) {
584
		if (!copy_fpregs_to_fpstate(old_fpu))
585
			old_fpu->last_cpu = -1;
586
		else
587
			old_fpu->last_cpu = cpu;
588

589
		/* But leave fpu_fpregs_owner_ctx! */
590
		old_fpu->fpregs_active = 0;
591 592 593

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
594
			new_fpu->counter++;
595
			__fpregs_activate(new_fpu);
596
			prefetch(&new_fpu->state);
597 598 599
		} else {
			__fpregs_deactivate_hw();
		}
600
	} else {
601 602
		old_fpu->counter = 0;
		old_fpu->last_cpu = -1;
603
		if (fpu.preload) {
604
			new_fpu->counter++;
605
			if (fpu_want_lazy_restore(new_fpu, cpu))
606 607
				fpu.preload = 0;
			else
608
				prefetch(&new_fpu->state);
609
			fpregs_activate(new_fpu);
610 611 612 613 614
		}
	}
	return fpu;
}

I
Ingo Molnar 已提交
615 616 617 618
/*
 * Misc helper functions:
 */

619 620 621 622 623 624
/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
625
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
626
{
627
	if (fpu_switch.preload) {
628 629
		if (unlikely(copy_fpstate_to_fpregs(new_fpu))) {
			WARN_ON_FPU(1);
630
			fpu__clear(new_fpu);
631
		}
632 633 634 635
	}
}

/*
636
 * Needs to be preemption-safe.
637
 *
638
 * NOTE! user_fpu_begin() must be used only immediately before restoring
639 640 641
 * the save state. It does not do any saving/restoring on its own. In
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 * the task can lose the FPU right after preempt_enable().
642 643 644
 */
static inline void user_fpu_begin(void)
{
645 646
	struct fpu *fpu = &current->thread.fpu;

647
	preempt_disable();
648
	if (!fpregs_active())
649
		fpregs_activate(fpu);
650 651 652
	preempt_enable();
}

I
Ingo Molnar 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
/*
 * MXCSR and XCR definitions:
 */

extern unsigned int mxcsr_feature_mask;

#define XCR_XFEATURE_ENABLED_MASK	0x00000000

static inline u64 xgetbv(u32 index)
{
	u32 eax, edx;

	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
		     : "=a" (eax), "=d" (edx)
		     : "c" (index));
	return eax + ((u64)edx << 32);
}

static inline void xsetbv(u32 index, u64 value)
{
	u32 eax = value;
	u32 edx = value >> 32;

	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
		     : : "a" (eax), "d" (edx), "c" (index));
}

680
#endif /* _ASM_X86_FPU_INTERNAL_H */