StrictMath.java 63.9 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
D
duke 已提交
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
D
duke 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
24 25 26 27
 */

package java.lang;
import java.util.Random;
28
import sun.misc.DoubleConsts;
D
duke 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

/**
 * The class {@code StrictMath} contains methods for performing basic
 * numeric operations such as the elementary exponential, logarithm,
 * square root, and trigonometric functions.
 *
 * <p>To help ensure portability of Java programs, the definitions of
 * some of the numeric functions in this package require that they
 * produce the same results as certain published algorithms. These
 * algorithms are available from the well-known network library
 * {@code netlib} as the package "Freely Distributable Math
 * Library," <a
 * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
 * algorithms, which are written in the C programming language, are
 * then to be understood as executed with all floating-point
 * operations following the rules of Java floating-point arithmetic.
 *
 * <p>The Java math library is defined with respect to
 * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
 * more than one definition for a function (such as
 * {@code acos}), use the "IEEE 754 core function" version
 * (residing in a file whose name begins with the letter
 * {@code e}).  The methods which require {@code fdlibm}
 * semantics are {@code sin}, {@code cos}, {@code tan},
 * {@code asin}, {@code acos}, {@code atan},
 * {@code exp}, {@code log}, {@code log10},
 * {@code cbrt}, {@code atan2}, {@code pow},
 * {@code sinh}, {@code cosh}, {@code tanh},
 * {@code hypot}, {@code expm1}, and {@code log1p}.
 *
S
sherman 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * <p>
 * The platform uses signed two's complement integer arithmetic with
 * int and long primitive types.  The developer should choose
 * the primitive type to ensure that arithmetic operations consistently
 * produce correct results, which in some cases means the operations
 * will not overflow the range of values of the computation.
 * The best practice is to choose the primitive type and algorithm to avoid
 * overflow. In cases where the size is {@code int} or {@code long} and
 * overflow errors need to be detected, the methods {@code addExact},
 * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
 * throw an {@code ArithmeticException} when the results overflow.
 * For other arithmetic operations such as divide, absolute value,
 * increment, decrement, and negation overflow occurs only with
 * a specific minimum or maximum value and should be checked against
 * the minimum or maximum as appropriate.
 *
D
duke 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
 * @author  unascribed
 * @author  Joseph D. Darcy
 * @since   1.3
 */

public final class StrictMath {

    /**
     * Don't let anyone instantiate this class.
     */
    private StrictMath() {}

    /**
     * The {@code double} value that is closer than any other to
     * <i>e</i>, the base of the natural logarithms.
     */
    public static final double E = 2.7182818284590452354;

    /**
     * The {@code double} value that is closer than any other to
     * <i>pi</i>, the ratio of the circumference of a circle to its
     * diameter.
     */
    public static final double PI = 3.14159265358979323846;

    /**
     * Returns the trigonometric sine of an angle. Special cases:
     * <ul><li>If the argument is NaN or an infinity, then the
     * result is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     *
     * @param   a   an angle, in radians.
     * @return  the sine of the argument.
     */
    public static native double sin(double a);

    /**
     * Returns the trigonometric cosine of an angle. Special cases:
     * <ul><li>If the argument is NaN or an infinity, then the
     * result is NaN.</ul>
     *
     * @param   a   an angle, in radians.
     * @return  the cosine of the argument.
     */
    public static native double cos(double a);

    /**
     * Returns the trigonometric tangent of an angle. Special cases:
     * <ul><li>If the argument is NaN or an infinity, then the result
     * is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     *
     * @param   a   an angle, in radians.
     * @return  the tangent of the argument.
     */
    public static native double tan(double a);

    /**
     * Returns the arc sine of a value; the returned angle is in the
     * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
     * <ul><li>If the argument is NaN or its absolute value is greater
     * than 1, then the result is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     *
     * @param   a   the value whose arc sine is to be returned.
     * @return  the arc sine of the argument.
     */
    public static native double asin(double a);

    /**
     * Returns the arc cosine of a value; the returned angle is in the
     * range 0.0 through <i>pi</i>.  Special case:
     * <ul><li>If the argument is NaN or its absolute value is greater
     * than 1, then the result is NaN.</ul>
     *
     * @param   a   the value whose arc cosine is to be returned.
     * @return  the arc cosine of the argument.
     */
    public static native double acos(double a);

    /**
     * Returns the arc tangent of a value; the returned angle is in the
     * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
     * <ul><li>If the argument is NaN, then the result is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     *
     * @param   a   the value whose arc tangent is to be returned.
     * @return  the arc tangent of the argument.
     */
    public static native double atan(double a);

    /**
     * Converts an angle measured in degrees to an approximately
     * equivalent angle measured in radians.  The conversion from
     * degrees to radians is generally inexact.
     *
     * @param   angdeg   an angle, in degrees
     * @return  the measurement of the angle {@code angdeg}
     *          in radians.
     */
    public static strictfp double toRadians(double angdeg) {
180 181
        // Do not delegate to Math.toRadians(angdeg) because
        // this method has the strictfp modifier.
D
duke 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        return angdeg / 180.0 * PI;
    }

    /**
     * Converts an angle measured in radians to an approximately
     * equivalent angle measured in degrees.  The conversion from
     * radians to degrees is generally inexact; users should
     * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
     * equal {@code 0.0}.
     *
     * @param   angrad   an angle, in radians
     * @return  the measurement of the angle {@code angrad}
     *          in degrees.
     */
    public static strictfp double toDegrees(double angrad) {
197 198
        // Do not delegate to Math.toDegrees(angrad) because
        // this method has the strictfp modifier.
D
duke 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        return angrad * 180.0 / PI;
    }

    /**
     * Returns Euler's number <i>e</i> raised to the power of a
     * {@code double} value. Special cases:
     * <ul><li>If the argument is NaN, the result is NaN.
     * <li>If the argument is positive infinity, then the result is
     * positive infinity.
     * <li>If the argument is negative infinity, then the result is
     * positive zero.</ul>
     *
     * @param   a   the exponent to raise <i>e</i> to.
     * @return  the value <i>e</i><sup>{@code a}</sup>,
     *          where <i>e</i> is the base of the natural logarithms.
     */
    public static native double exp(double a);

    /**
     * Returns the natural logarithm (base <i>e</i>) of a {@code double}
     * value. Special cases:
     * <ul><li>If the argument is NaN or less than zero, then the result
     * is NaN.
     * <li>If the argument is positive infinity, then the result is
     * positive infinity.
     * <li>If the argument is positive zero or negative zero, then the
     * result is negative infinity.</ul>
     *
     * @param   a   a value
     * @return  the value ln&nbsp;{@code a}, the natural logarithm of
     *          {@code a}.
     */
    public static native double log(double a);


    /**
     * Returns the base 10 logarithm of a {@code double} value.
     * Special cases:
     *
     * <ul><li>If the argument is NaN or less than zero, then the result
     * is NaN.
     * <li>If the argument is positive infinity, then the result is
     * positive infinity.
     * <li>If the argument is positive zero or negative zero, then the
     * result is negative infinity.
     * <li> If the argument is equal to 10<sup><i>n</i></sup> for
     * integer <i>n</i>, then the result is <i>n</i>.
     * </ul>
     *
     * @param   a   a value
     * @return  the base 10 logarithm of  {@code a}.
     * @since 1.5
     */
    public static native double log10(double a);

    /**
     * Returns the correctly rounded positive square root of a
     * {@code double} value.
     * Special cases:
     * <ul><li>If the argument is NaN or less than zero, then the result
     * is NaN.
     * <li>If the argument is positive infinity, then the result is positive
     * infinity.
     * <li>If the argument is positive zero or negative zero, then the
     * result is the same as the argument.</ul>
     * Otherwise, the result is the {@code double} value closest to
     * the true mathematical square root of the argument value.
     *
     * @param   a   a value.
     * @return  the positive square root of {@code a}.
     */
    public static native double sqrt(double a);

    /**
     * Returns the cube root of a {@code double} value.  For
     * positive finite {@code x}, {@code cbrt(-x) ==
     * -cbrt(x)}; that is, the cube root of a negative value is
     * the negative of the cube root of that value's magnitude.
     * Special cases:
     *
     * <ul>
     *
     * <li>If the argument is NaN, then the result is NaN.
     *
     * <li>If the argument is infinite, then the result is an infinity
     * with the same sign as the argument.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     *
     * </ul>
     *
     * @param   a   a value.
     * @return  the cube root of {@code a}.
     * @since 1.5
     */
    public static native double cbrt(double a);

    /**
     * Computes the remainder operation on two arguments as prescribed
     * by the IEEE 754 standard.
     * The remainder value is mathematically equal to
     * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
     * where <i>n</i> is the mathematical integer closest to the exact
     * mathematical value of the quotient {@code f1/f2}, and if two
     * mathematical integers are equally close to {@code f1/f2},
     * then <i>n</i> is the integer that is even. If the remainder is
     * zero, its sign is the same as the sign of the first argument.
     * Special cases:
     * <ul><li>If either argument is NaN, or the first argument is infinite,
     * or the second argument is positive zero or negative zero, then the
     * result is NaN.
     * <li>If the first argument is finite and the second argument is
     * infinite, then the result is the same as the first argument.</ul>
     *
     * @param   f1   the dividend.
     * @param   f2   the divisor.
     * @return  the remainder when {@code f1} is divided by
     *          {@code f2}.
     */
    public static native double IEEEremainder(double f1, double f2);

    /**
     * Returns the smallest (closest to negative infinity)
     * {@code double} value that is greater than or equal to the
     * argument and is equal to a mathematical integer. Special cases:
     * <ul><li>If the argument value is already equal to a
     * mathematical integer, then the result is the same as the
     * argument.  <li>If the argument is NaN or an infinity or
     * positive zero or negative zero, then the result is the same as
     * the argument.  <li>If the argument value is less than zero but
     * greater than -1.0, then the result is negative zero.</ul> Note
     * that the value of {@code StrictMath.ceil(x)} is exactly the
     * value of {@code -StrictMath.floor(-x)}.
     *
     * @param   a   a value.
     * @return  the smallest (closest to negative infinity)
     *          floating-point value that is greater than or equal to
     *          the argument and is equal to a mathematical integer.
     */
339 340 341
    public static double ceil(double a) {
        return floorOrCeil(a, -0.0, 1.0, 1.0);
    }
D
duke 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

    /**
     * Returns the largest (closest to positive infinity)
     * {@code double} value that is less than or equal to the
     * argument and is equal to a mathematical integer. Special cases:
     * <ul><li>If the argument value is already equal to a
     * mathematical integer, then the result is the same as the
     * argument.  <li>If the argument is NaN or an infinity or
     * positive zero or negative zero, then the result is the same as
     * the argument.</ul>
     *
     * @param   a   a value.
     * @return  the largest (closest to positive infinity)
     *          floating-point value that less than or equal to the argument
     *          and is equal to a mathematical integer.
     */
358 359 360 361 362 363 364 365 366 367
    public static double floor(double a) {
        return floorOrCeil(a, -1.0, 0.0, -1.0);
    }

    /**
     * Internal method to share logic between floor and ceil.
     *
     * @param a the value to be floored or ceiled
     * @param negativeBoundary result for values in (-1, 0)
     * @param positiveBoundary result for values in (0, 1)
368
     * @param increment value to add when the argument is non-integral
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
     */
    private static double floorOrCeil(double a,
                                      double negativeBoundary,
                                      double positiveBoundary,
                                      double sign) {
        int exponent = Math.getExponent(a);

        if (exponent < 0) {
            /*
             * Absolute value of argument is less than 1.
             * floorOrceil(-0.0) => -0.0
             * floorOrceil(+0.0) => +0.0
             */
            return ((a == 0.0) ? a :
                    ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
        } else if (exponent >= 52) {
            /*
             * Infinity, NaN, or a value so large it must be integral.
             */
            return a;
        }
        // Else the argument is either an integral value already XOR it
        // has to be rounded to one.
        assert exponent >= 0 && exponent <= 51;

        long doppel = Double.doubleToRawLongBits(a);
        long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;

        if ( (mask & doppel) == 0L )
            return a; // integral value
        else {
            double result = Double.longBitsToDouble(doppel & (~mask));
            if (sign*a > 0.0)
                result = result + sign;
            return result;
        }
    }
D
duke 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    /**
     * Returns the {@code double} value that is closest in value
     * to the argument and is equal to a mathematical integer. If two
     * {@code double} values that are mathematical integers are
     * equally close to the value of the argument, the result is the
     * integer value that is even. Special cases:
     * <ul><li>If the argument value is already equal to a mathematical
     * integer, then the result is the same as the argument.
     * <li>If the argument is NaN or an infinity or positive zero or negative
     * zero, then the result is the same as the argument.</ul>
     *
     * @param   a   a value.
     * @return  the closest floating-point value to {@code a} that is
     *          equal to a mathematical integer.
     * @author Joseph D. Darcy
     */
    public static double rint(double a) {
        /*
         * If the absolute value of a is not less than 2^52, it
         * is either a finite integer (the double format does not have
         * enough significand bits for a number that large to have any
         * fractional portion), an infinity, or a NaN.  In any of
         * these cases, rint of the argument is the argument.
         *
         * Otherwise, the sum (twoToThe52 + a ) will properly round
         * away any fractional portion of a since ulp(twoToThe52) ==
         * 1.0; subtracting out twoToThe52 from this sum will then be
         * exact and leave the rounded integer portion of a.
         *
         * This method does *not* need to be declared strictfp to get
         * fully reproducible results.  Whether or not a method is
         * declared strictfp can only make a difference in the
         * returned result if some operation would overflow or
         * underflow with strictfp semantics.  The operation
         * (twoToThe52 + a ) cannot overflow since large values of a
         * are screened out; the add cannot underflow since twoToThe52
         * is too large.  The subtraction ((twoToThe52 + a ) -
         * twoToThe52) will be exact as discussed above and thus
         * cannot overflow or meaningfully underflow.  Finally, the
         * last multiply in the return statement is by plus or minus
         * 1.0, which is exact too.
         */
        double twoToThe52 = (double)(1L << 52); // 2^52
450
        double sign = Math.copySign(1.0, a); // preserve sign info
D
duke 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        a = Math.abs(a);

        if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
            a = ((twoToThe52 + a ) - twoToThe52);
        }

        return sign * a; // restore original sign
    }

    /**
     * Returns the angle <i>theta</i> from the conversion of rectangular
     * coordinates ({@code x},&nbsp;{@code y}) to polar
     * coordinates (r,&nbsp;<i>theta</i>).
     * This method computes the phase <i>theta</i> by computing an arc tangent
     * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
     * cases:
     * <ul><li>If either argument is NaN, then the result is NaN.
     * <li>If the first argument is positive zero and the second argument
     * is positive, or the first argument is positive and finite and the
     * second argument is positive infinity, then the result is positive
     * zero.
     * <li>If the first argument is negative zero and the second argument
     * is positive, or the first argument is negative and finite and the
     * second argument is positive infinity, then the result is negative zero.
     * <li>If the first argument is positive zero and the second argument
     * is negative, or the first argument is positive and finite and the
     * second argument is negative infinity, then the result is the
     * {@code double} value closest to <i>pi</i>.
     * <li>If the first argument is negative zero and the second argument
     * is negative, or the first argument is negative and finite and the
     * second argument is negative infinity, then the result is the
     * {@code double} value closest to -<i>pi</i>.
     * <li>If the first argument is positive and the second argument is
     * positive zero or negative zero, or the first argument is positive
     * infinity and the second argument is finite, then the result is the
     * {@code double} value closest to <i>pi</i>/2.
     * <li>If the first argument is negative and the second argument is
     * positive zero or negative zero, or the first argument is negative
     * infinity and the second argument is finite, then the result is the
     * {@code double} value closest to -<i>pi</i>/2.
     * <li>If both arguments are positive infinity, then the result is the
     * {@code double} value closest to <i>pi</i>/4.
     * <li>If the first argument is positive infinity and the second argument
     * is negative infinity, then the result is the {@code double}
     * value closest to 3*<i>pi</i>/4.
     * <li>If the first argument is negative infinity and the second argument
     * is positive infinity, then the result is the {@code double} value
     * closest to -<i>pi</i>/4.
     * <li>If both arguments are negative infinity, then the result is the
     * {@code double} value closest to -3*<i>pi</i>/4.</ul>
     *
     * @param   y   the ordinate coordinate
     * @param   x   the abscissa coordinate
     * @return  the <i>theta</i> component of the point
     *          (<i>r</i>,&nbsp;<i>theta</i>)
     *          in polar coordinates that corresponds to the point
     *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
     */
    public static native double atan2(double y, double x);


    /**
     * Returns the value of the first argument raised to the power of the
     * second argument. Special cases:
     *
     * <ul><li>If the second argument is positive or negative zero, then the
     * result is 1.0.
     * <li>If the second argument is 1.0, then the result is the same as the
     * first argument.
     * <li>If the second argument is NaN, then the result is NaN.
     * <li>If the first argument is NaN and the second argument is nonzero,
     * then the result is NaN.
     *
     * <li>If
     * <ul>
     * <li>the absolute value of the first argument is greater than 1
     * and the second argument is positive infinity, or
     * <li>the absolute value of the first argument is less than 1 and
     * the second argument is negative infinity,
     * </ul>
     * then the result is positive infinity.
     *
     * <li>If
     * <ul>
     * <li>the absolute value of the first argument is greater than 1 and
     * the second argument is negative infinity, or
     * <li>the absolute value of the
     * first argument is less than 1 and the second argument is positive
     * infinity,
     * </ul>
     * then the result is positive zero.
     *
     * <li>If the absolute value of the first argument equals 1 and the
     * second argument is infinite, then the result is NaN.
     *
     * <li>If
     * <ul>
     * <li>the first argument is positive zero and the second argument
     * is greater than zero, or
     * <li>the first argument is positive infinity and the second
     * argument is less than zero,
     * </ul>
     * then the result is positive zero.
     *
     * <li>If
     * <ul>
     * <li>the first argument is positive zero and the second argument
     * is less than zero, or
     * <li>the first argument is positive infinity and the second
     * argument is greater than zero,
     * </ul>
     * then the result is positive infinity.
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is greater than zero but not a finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is less than zero but not a finite odd integer,
     * </ul>
     * then the result is positive zero.
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is a positive finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is a negative finite odd integer,
     * </ul>
     * then the result is negative zero.
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is less than zero but not a finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is greater than zero but not a finite odd integer,
     * </ul>
     * then the result is positive infinity.
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is a negative finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is a positive finite odd integer,
     * </ul>
     * then the result is negative infinity.
     *
     * <li>If the first argument is finite and less than zero
     * <ul>
     * <li> if the second argument is a finite even integer, the
     * result is equal to the result of raising the absolute value of
     * the first argument to the power of the second argument
     *
     * <li>if the second argument is a finite odd integer, the result
     * is equal to the negative of the result of raising the absolute
     * value of the first argument to the power of the second
     * argument
     *
     * <li>if the second argument is finite and not an integer, then
     * the result is NaN.
     * </ul>
     *
     * <li>If both arguments are integers, then the result is exactly equal
     * to the mathematical result of raising the first argument to the power
     * of the second argument if that result can in fact be represented
     * exactly as a {@code double} value.</ul>
     *
     * <p>(In the foregoing descriptions, a floating-point value is
     * considered to be an integer if and only if it is finite and a
     * fixed point of the method {@link #ceil ceil} or,
     * equivalently, a fixed point of the method {@link #floor
     * floor}. A value is a fixed point of a one-argument
     * method if and only if the result of applying the method to the
     * value is equal to the value.)
     *
     * @param   a   base.
     * @param   b   the exponent.
     * @return  the value {@code a}<sup>{@code b}</sup>.
     */
    public static native double pow(double a, double b);

    /**
635 636
     * Returns the closest {@code int} to the argument, with ties
     * rounding up.
D
duke 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
     *
     * <p>Special cases:
     * <ul><li>If the argument is NaN, the result is 0.
     * <li>If the argument is negative infinity or any value less than or
     * equal to the value of {@code Integer.MIN_VALUE}, the result is
     * equal to the value of {@code Integer.MIN_VALUE}.
     * <li>If the argument is positive infinity or any value greater than or
     * equal to the value of {@code Integer.MAX_VALUE}, the result is
     * equal to the value of {@code Integer.MAX_VALUE}.</ul>
     *
     * @param   a   a floating-point value to be rounded to an integer.
     * @return  the value of the argument rounded to the nearest
     *          {@code int} value.
     * @see     java.lang.Integer#MAX_VALUE
     * @see     java.lang.Integer#MIN_VALUE
     */
    public static int round(float a) {
654
        return Math.round(a);
D
duke 已提交
655 656 657
    }

    /**
658 659
     * Returns the closest {@code long} to the argument, with ties
     * rounding up.
D
duke 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
     *
     * <p>Special cases:
     * <ul><li>If the argument is NaN, the result is 0.
     * <li>If the argument is negative infinity or any value less than or
     * equal to the value of {@code Long.MIN_VALUE}, the result is
     * equal to the value of {@code Long.MIN_VALUE}.
     * <li>If the argument is positive infinity or any value greater than or
     * equal to the value of {@code Long.MAX_VALUE}, the result is
     * equal to the value of {@code Long.MAX_VALUE}.</ul>
     *
     * @param   a  a floating-point value to be rounded to a
     *          {@code long}.
     * @return  the value of the argument rounded to the nearest
     *          {@code long} value.
     * @see     java.lang.Long#MAX_VALUE
     * @see     java.lang.Long#MIN_VALUE
     */
    public static long round(double a) {
678
        return Math.round(a);
D
duke 已提交
679 680 681 682
    }

    private static Random randomNumberGenerator;

683 684 685
    private static synchronized Random initRNG() {
        Random rnd = randomNumberGenerator;
        return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
D
duke 已提交
686 687 688 689 690 691 692 693 694 695
    }

    /**
     * Returns a {@code double} value with a positive sign, greater
     * than or equal to {@code 0.0} and less than {@code 1.0}.
     * Returned values are chosen pseudorandomly with (approximately)
     * uniform distribution from that range.
     *
     * <p>When this method is first called, it creates a single new
     * pseudorandom-number generator, exactly as if by the expression
696 697 698 699 700
     *
     * <blockquote>{@code new java.util.Random()}</blockquote>
     *
     * This new pseudorandom-number generator is used thereafter for
     * all calls to this method and is used nowhere else.
D
duke 已提交
701 702 703 704
     *
     * <p>This method is properly synchronized to allow correct use by
     * more than one thread. However, if many threads need to generate
     * pseudorandom numbers at a great rate, it may reduce contention
705
     * for each thread to have its own pseudorandom-number generator.
D
duke 已提交
706 707 708
     *
     * @return  a pseudorandom {@code double} greater than or equal
     * to {@code 0.0} and less than {@code 1.0}.
709
     * @see Random#nextDouble()
D
duke 已提交
710 711
     */
    public static double random() {
712 713 714
        Random rnd = randomNumberGenerator;
        if (rnd == null) rnd = initRNG();
        return rnd.nextDouble();
D
duke 已提交
715 716 717
    }

    /**
S
sherman 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
     * Returns the sum of its arguments,
     * throwing an exception if the result overflows an {@code int}.
     *
     * @param x the first value
     * @param y the second value
     * @return the result
     * @throws ArithmeticException if the result overflows an int
     * @see Math#addExact(int,int)
     * @since 1.8
     */
    public static int addExact(int x, int y) {
        return Math.addExact(x, y);
    }

    /**
     * Returns the sum of its arguments,
     * throwing an exception if the result overflows a {@code long}.
     *
     * @param x the first value
     * @param y the second value
     * @return the result
     * @throws ArithmeticException if the result overflows a long
     * @see Math#addExact(long,long)
     * @since 1.8
     */
    public static long addExact(long x, long y) {
        return Math.addExact(x, y);
    }

    /**
748
     * Returns the difference of the arguments,
S
sherman 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762
     * throwing an exception if the result overflows an {@code int}.
     *
     * @param x the first value
     * @param y the second value to subtract from the first
     * @return the result
     * @throws ArithmeticException if the result overflows an int
     * @see Math#subtractExact(int,int)
     * @since 1.8
     */
    public static int subtractExact(int x, int y) {
        return Math.subtractExact(x, y);
    }

    /**
763
     * Returns the difference of the arguments,
S
sherman 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
     * throwing an exception if the result overflows a {@code long}.
     *
     * @param x the first value
     * @param y the second value to subtract from the first
     * @return the result
     * @throws ArithmeticException if the result overflows a long
     * @see Math#subtractExact(long,long)
     * @since 1.8
     */
    public static long subtractExact(long x, long y) {
        return Math.subtractExact(x, y);
    }

    /**
778
     * Returns the product of the arguments,
S
sherman 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792
     * throwing an exception if the result overflows an {@code int}.
     *
     * @param x the first value
     * @param y the second value
     * @return the result
     * @throws ArithmeticException if the result overflows an int
     * @see Math#multiplyExact(int,int)
     * @since 1.8
     */
    public static int multiplyExact(int x, int y) {
        return Math.multiplyExact(x, y);
    }

    /**
793
     * Returns the product of the arguments,
S
sherman 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807
     * throwing an exception if the result overflows a {@code long}.
     *
     * @param x the first value
     * @param y the second value
     * @return the result
     * @throws ArithmeticException if the result overflows a long
     * @see Math#multiplyExact(long,long)
     * @since 1.8
     */
    public static long multiplyExact(long x, long y) {
        return Math.multiplyExact(x, y);
    }

    /**
808
     * Returns the value of the {@code long} argument;
S
sherman 已提交
809 810 811 812 813
     * throwing an exception if the value overflows an {@code int}.
     *
     * @param value the long value
     * @return the argument as an int
     * @throws ArithmeticException if the {@code argument} overflows an int
A
alanb 已提交
814
     * @see Math#toIntExact(long)
S
sherman 已提交
815 816 817 818 819 820
     * @since 1.8
     */
    public static int toIntExact(long value) {
        return Math.toIntExact(value);
    }

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
    /**
     * Returns the largest (closest to positive infinity)
     * {@code int} value that is less than or equal to the algebraic quotient.
     * There is one special case, if the dividend is the
     * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
     * then integer overflow occurs and
     * the result is equal to the {@code Integer.MIN_VALUE}.
     * <p>
     * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
     * a comparison to the integer division {@code /} operator.
     *
     * @param x the dividend
     * @param y the divisor
     * @return the largest (closest to positive infinity)
     * {@code int} value that is less than or equal to the algebraic quotient.
     * @throws ArithmeticException if the divisor {@code y} is zero
     * @see Math#floorDiv(int, int)
     * @see Math#floor(double)
     * @since 1.8
     */
    public static int floorDiv(int x, int y) {
        return Math.floorDiv(x, y);
    }

    /**
     * Returns the largest (closest to positive infinity)
     * {@code long} value that is less than or equal to the algebraic quotient.
     * There is one special case, if the dividend is the
     * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
     * then integer overflow occurs and
     * the result is equal to the {@code Long.MIN_VALUE}.
     * <p>
     * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
     * a comparison to the integer division {@code /} operator.
     *
     * @param x the dividend
     * @param y the divisor
     * @return the largest (closest to positive infinity)
     * {@code long} value that is less than or equal to the algebraic quotient.
     * @throws ArithmeticException if the divisor {@code y} is zero
     * @see Math#floorDiv(long, long)
     * @see Math#floor(double)
     * @since 1.8
     */
    public static long floorDiv(long x, long y) {
        return Math.floorDiv(x, y);
    }

    /**
     * Returns the floor modulus of the {@code int} arguments.
     * <p>
     * The floor modulus is {@code x - (floorDiv(x, y) * y)},
     * has the same sign as the divisor {@code y}, and
     * is in the range of {@code -abs(y) < r < +abs(y)}.
     * <p>
     * The relationship between {@code floorDiv} and {@code floorMod} is such that:
     * <ul>
     *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
     * </ul>
     * <p>
     * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
     * a comparison to the {@code %} operator.
     *
     * @param x the dividend
     * @param y the divisor
     * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
     * @throws ArithmeticException if the divisor {@code y} is zero
     * @see Math#floorMod(int, int)
     * @see StrictMath#floorDiv(int, int)
     * @since 1.8
     */
    public static int floorMod(int x, int y) {
        return Math.floorMod(x , y);
    }
    /**
     * Returns the floor modulus of the {@code long} arguments.
     * <p>
     * The floor modulus is {@code x - (floorDiv(x, y) * y)},
     * has the same sign as the divisor {@code y}, and
     * is in the range of {@code -abs(y) < r < +abs(y)}.
     * <p>
     * The relationship between {@code floorDiv} and {@code floorMod} is such that:
     * <ul>
     *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
     * </ul>
     * <p>
     * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
     * a comparison to the {@code %} operator.
     *
     * @param x the dividend
     * @param y the divisor
     * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
     * @throws ArithmeticException if the divisor {@code y} is zero
     * @see Math#floorMod(long, long)
     * @see StrictMath#floorDiv(long, long)
     * @since 1.8
     */
    public static long floorMod(long x, long y) {
        return Math.floorMod(x, y);
    }

S
sherman 已提交
922 923
    /**
     * Returns the absolute value of an {@code int} value.
D
duke 已提交
924 925 926 927 928 929 930 931 932 933 934 935
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned.
     *
     * <p>Note that if the argument is equal to the value of
     * {@link Integer#MIN_VALUE}, the most negative representable
     * {@code int} value, the result is that same value, which is
     * negative.
     *
     * @param   a   the  argument whose absolute value is to be determined.
     * @return  the absolute value of the argument.
     */
    public static int abs(int a) {
936
        return Math.abs(a);
D
duke 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    }

    /**
     * Returns the absolute value of a {@code long} value.
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned.
     *
     * <p>Note that if the argument is equal to the value of
     * {@link Long#MIN_VALUE}, the most negative representable
     * {@code long} value, the result is that same value, which
     * is negative.
     *
     * @param   a   the  argument whose absolute value is to be determined.
     * @return  the absolute value of the argument.
     */
    public static long abs(long a) {
953
        return Math.abs(a);
D
duke 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
    }

    /**
     * Returns the absolute value of a {@code float} value.
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned.
     * Special cases:
     * <ul><li>If the argument is positive zero or negative zero, the
     * result is positive zero.
     * <li>If the argument is infinite, the result is positive infinity.
     * <li>If the argument is NaN, the result is NaN.</ul>
     * In other words, the result is the same as the value of the expression:
     * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
     *
     * @param   a   the argument whose absolute value is to be determined
     * @return  the absolute value of the argument.
     */
    public static float abs(float a) {
972
        return Math.abs(a);
D
duke 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
    }

    /**
     * Returns the absolute value of a {@code double} value.
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned.
     * Special cases:
     * <ul><li>If the argument is positive zero or negative zero, the result
     * is positive zero.
     * <li>If the argument is infinite, the result is positive infinity.
     * <li>If the argument is NaN, the result is NaN.</ul>
     * In other words, the result is the same as the value of the expression:
     * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
     *
     * @param   a   the argument whose absolute value is to be determined
     * @return  the absolute value of the argument.
     */
    public static double abs(double a) {
991
        return Math.abs(a);
D
duke 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    }

    /**
     * Returns the greater of two {@code int} values. That is, the
     * result is the argument closer to the value of
     * {@link Integer#MAX_VALUE}. If the arguments have the same value,
     * the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of {@code a} and {@code b}.
     */
    public static int max(int a, int b) {
1005
        return Math.max(a, b);
D
duke 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    }

    /**
     * Returns the greater of two {@code long} values. That is, the
     * result is the argument closer to the value of
     * {@link Long#MAX_VALUE}. If the arguments have the same value,
     * the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of {@code a} and {@code b}.
        */
    public static long max(long a, long b) {
1019
        return Math.max(a, b);
D
duke 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    }

    /**
     * Returns the greater of two {@code float} values.  That is,
     * the result is the argument closer to positive infinity. If the
     * arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero. If one
     * argument is positive zero and the other negative zero, the
     * result is positive zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of {@code a} and {@code b}.
     */
    public static float max(float a, float b) {
1037
        return Math.max(a, b);
D
duke 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    }

    /**
     * Returns the greater of two {@code double} values.  That
     * is, the result is the argument closer to positive infinity. If
     * the arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero. If one
     * argument is positive zero and the other negative zero, the
     * result is positive zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of {@code a} and {@code b}.
     */
    public static double max(double a, double b) {
1055
        return Math.max(a, b);
D
duke 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    }

    /**
     * Returns the smaller of two {@code int} values. That is,
     * the result the argument closer to the value of
     * {@link Integer#MIN_VALUE}.  If the arguments have the same
     * value, the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of {@code a} and {@code b}.
     */
    public static int min(int a, int b) {
1069
        return Math.min(a, b);
D
duke 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    }

    /**
     * Returns the smaller of two {@code long} values. That is,
     * the result is the argument closer to the value of
     * {@link Long#MIN_VALUE}. If the arguments have the same
     * value, the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of {@code a} and {@code b}.
     */
    public static long min(long a, long b) {
1083
        return Math.min(a, b);
D
duke 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    }

    /**
     * Returns the smaller of two {@code float} values.  That is,
     * the result is the value closer to negative infinity. If the
     * arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero.  If
     * one argument is positive zero and the other is negative zero,
     * the result is negative zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of {@code a} and {@code b.}
     */
    public static float min(float a, float b) {
1101
        return Math.min(a, b);
D
duke 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    }

    /**
     * Returns the smaller of two {@code double} values.  That
     * is, the result is the value closer to negative infinity. If the
     * arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero. If one
     * argument is positive zero and the other is negative zero, the
     * result is negative zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of {@code a} and {@code b}.
     */
    public static double min(double a, double b) {
1119
        return Math.min(a, b);
D
duke 已提交
1120 1121 1122
    }

    /**
1123 1124 1125 1126 1127
     * Returns the size of an ulp of the argument.  An ulp, unit in
     * the last place, of a {@code double} value is the positive
     * distance between this floating-point value and the {@code
     * double} value next larger in magnitude.  Note that for non-NaN
     * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
D
duke 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, then the result is NaN.
     * <li> If the argument is positive or negative infinity, then the
     * result is positive infinity.
     * <li> If the argument is positive or negative zero, then the result is
     * {@code Double.MIN_VALUE}.
     * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
     * the result is equal to 2<sup>971</sup>.
     * </ul>
     *
     * @param d the floating-point value whose ulp is to be returned
     * @return the size of an ulp of the argument
     * @author Joseph D. Darcy
     * @since 1.5
     */
    public static double ulp(double d) {
1146
        return Math.ulp(d);
D
duke 已提交
1147 1148 1149
    }

    /**
1150 1151 1152 1153 1154
     * Returns the size of an ulp of the argument.  An ulp, unit in
     * the last place, of a {@code float} value is the positive
     * distance between this floating-point value and the {@code
     * float} value next larger in magnitude.  Note that for non-NaN
     * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
D
duke 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, then the result is NaN.
     * <li> If the argument is positive or negative infinity, then the
     * result is positive infinity.
     * <li> If the argument is positive or negative zero, then the result is
     * {@code Float.MIN_VALUE}.
     * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
     * the result is equal to 2<sup>104</sup>.
     * </ul>
     *
     * @param f the floating-point value whose ulp is to be returned
     * @return the size of an ulp of the argument
     * @author Joseph D. Darcy
     * @since 1.5
     */
    public static float ulp(float f) {
1173
        return Math.ulp(f);
D
duke 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    }

    /**
     * Returns the signum function of the argument; zero if the argument
     * is zero, 1.0 if the argument is greater than zero, -1.0 if the
     * argument is less than zero.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, then the result is NaN.
     * <li> If the argument is positive zero or negative zero, then the
     *      result is the same as the argument.
     * </ul>
     *
     * @param d the floating-point value whose signum is to be returned
     * @return the signum function of the argument
     * @author Joseph D. Darcy
     * @since 1.5
     */
    public static double signum(double d) {
1194
        return Math.signum(d);
D
duke 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
    }

    /**
     * Returns the signum function of the argument; zero if the argument
     * is zero, 1.0f if the argument is greater than zero, -1.0f if the
     * argument is less than zero.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, then the result is NaN.
     * <li> If the argument is positive zero or negative zero, then the
     *      result is the same as the argument.
     * </ul>
     *
     * @param f the floating-point value whose signum is to be returned
     * @return the signum function of the argument
     * @author Joseph D. Darcy
     * @since 1.5
     */
    public static float signum(float f) {
1215
        return Math.signum(f);
D
duke 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    }

    /**
     * Returns the hyperbolic sine of a {@code double} value.
     * The hyperbolic sine of <i>x</i> is defined to be
     * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
     * where <i>e</i> is {@linkplain Math#E Euler's number}.
     *
     * <p>Special cases:
     * <ul>
     *
     * <li>If the argument is NaN, then the result is NaN.
     *
     * <li>If the argument is infinite, then the result is an infinity
     * with the same sign as the argument.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     *
     * </ul>
     *
     * @param   x The number whose hyperbolic sine is to be returned.
     * @return  The hyperbolic sine of {@code x}.
     * @since 1.5
     */
    public static native double sinh(double x);

    /**
     * Returns the hyperbolic cosine of a {@code double} value.
     * The hyperbolic cosine of <i>x</i> is defined to be
     * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
     * where <i>e</i> is {@linkplain Math#E Euler's number}.
     *
     * <p>Special cases:
     * <ul>
     *
     * <li>If the argument is NaN, then the result is NaN.
     *
     * <li>If the argument is infinite, then the result is positive
     * infinity.
     *
     * <li>If the argument is zero, then the result is {@code 1.0}.
     *
     * </ul>
     *
     * @param   x The number whose hyperbolic cosine is to be returned.
     * @return  The hyperbolic cosine of {@code x}.
     * @since 1.5
     */
    public static native double cosh(double x);

    /**
     * Returns the hyperbolic tangent of a {@code double} value.
     * The hyperbolic tangent of <i>x</i> is defined to be
     * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
     * in other words, {@linkplain Math#sinh
     * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
     * that the absolute value of the exact tanh is always less than
     * 1.
     *
     * <p>Special cases:
     * <ul>
     *
     * <li>If the argument is NaN, then the result is NaN.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     *
     * <li>If the argument is positive infinity, then the result is
     * {@code +1.0}.
     *
     * <li>If the argument is negative infinity, then the result is
     * {@code -1.0}.
     *
     * </ul>
     *
     * @param   x The number whose hyperbolic tangent is to be returned.
     * @return  The hyperbolic tangent of {@code x}.
     * @since 1.5
     */
    public static native double tanh(double x);

    /**
     * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
     * without intermediate overflow or underflow.
     *
     * <p>Special cases:
     * <ul>
     *
     * <li> If either argument is infinite, then the result
     * is positive infinity.
     *
     * <li> If either argument is NaN and neither argument is infinite,
     * then the result is NaN.
     *
     * </ul>
     *
     * @param x a value
     * @param y a value
     * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
     * without intermediate overflow or underflow
     * @since 1.5
     */
    public static native double hypot(double x, double y);

    /**
     * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
     * <i>x</i> near 0, the exact sum of
     * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
     * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
     *
     * <p>Special cases:
     * <ul>
     * <li>If the argument is NaN, the result is NaN.
     *
     * <li>If the argument is positive infinity, then the result is
     * positive infinity.
     *
     * <li>If the argument is negative infinity, then the result is
     * -1.0.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     *
     * </ul>
     *
     * @param   x   the exponent to raise <i>e</i> to in the computation of
     *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
     * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
     * @since 1.5
     */
    public static native double expm1(double x);

    /**
     * Returns the natural logarithm of the sum of the argument and 1.
     * Note that for small values {@code x}, the result of
     * {@code log1p(x)} is much closer to the true result of ln(1
     * + {@code x}) than the floating-point evaluation of
     * {@code log(1.0+x)}.
     *
     * <p>Special cases:
     * <ul>
     *
     * <li>If the argument is NaN or less than -1, then the result is
     * NaN.
     *
     * <li>If the argument is positive infinity, then the result is
     * positive infinity.
     *
     * <li>If the argument is negative one, then the result is
     * negative infinity.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     *
     * </ul>
     *
     * @param   x   a value
     * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
     * log of {@code x}&nbsp;+&nbsp;1
     * @since 1.5
     */
    public static native double log1p(double x);

    /**
     * Returns the first floating-point argument with the sign of the
     * second floating-point argument.  For this method, a NaN
     * {@code sign} argument is always treated as if it were
     * positive.
     *
     * @param magnitude  the parameter providing the magnitude of the result
     * @param sign   the parameter providing the sign of the result
     * @return a value with the magnitude of {@code magnitude}
     * and the sign of {@code sign}.
     * @since 1.6
     */
    public static double copySign(double magnitude, double sign) {
1393
        return Math.copySign(magnitude, (Double.isNaN(sign)?1.0d:sign));
D
duke 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    }

    /**
     * Returns the first floating-point argument with the sign of the
     * second floating-point argument.  For this method, a NaN
     * {@code sign} argument is always treated as if it were
     * positive.
     *
     * @param magnitude  the parameter providing the magnitude of the result
     * @param sign   the parameter providing the sign of the result
     * @return a value with the magnitude of {@code magnitude}
     * and the sign of {@code sign}.
     * @since 1.6
     */
    public static float copySign(float magnitude, float sign) {
1409
        return Math.copySign(magnitude, (Float.isNaN(sign)?1.0f:sign));
D
duke 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    }
    /**
     * Returns the unbiased exponent used in the representation of a
     * {@code float}.  Special cases:
     *
     * <ul>
     * <li>If the argument is NaN or infinite, then the result is
     * {@link Float#MAX_EXPONENT} + 1.
     * <li>If the argument is zero or subnormal, then the result is
     * {@link Float#MIN_EXPONENT} -1.
     * </ul>
     * @param f a {@code float} value
     * @since 1.6
     */
    public static int getExponent(float f) {
1425
        return Math.getExponent(f);
D
duke 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    }

    /**
     * Returns the unbiased exponent used in the representation of a
     * {@code double}.  Special cases:
     *
     * <ul>
     * <li>If the argument is NaN or infinite, then the result is
     * {@link Double#MAX_EXPONENT} + 1.
     * <li>If the argument is zero or subnormal, then the result is
     * {@link Double#MIN_EXPONENT} -1.
     * </ul>
     * @param d a {@code double} value
     * @since 1.6
     */
    public static int getExponent(double d) {
1442
        return Math.getExponent(d);
D
duke 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
    }

    /**
     * Returns the floating-point number adjacent to the first
     * argument in the direction of the second argument.  If both
     * arguments compare as equal the second argument is returned.
     *
     * <p>Special cases:
     * <ul>
     * <li> If either argument is a NaN, then NaN is returned.
     *
     * <li> If both arguments are signed zeros, {@code direction}
     * is returned unchanged (as implied by the requirement of
     * returning the second argument if the arguments compare as
     * equal).
     *
     * <li> If {@code start} is
     * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
     * has a value such that the result should have a smaller
     * magnitude, then a zero with the same sign as {@code start}
     * is returned.
     *
     * <li> If {@code start} is infinite and
     * {@code direction} has a value such that the result should
     * have a smaller magnitude, {@link Double#MAX_VALUE} with the
     * same sign as {@code start} is returned.
     *
     * <li> If {@code start} is equal to &plusmn;
     * {@link Double#MAX_VALUE} and {@code direction} has a
     * value such that the result should have a larger magnitude, an
     * infinity with same sign as {@code start} is returned.
     * </ul>
     *
     * @param start  starting floating-point value
     * @param direction value indicating which of
     * {@code start}'s neighbors or {@code start} should
     * be returned
     * @return The floating-point number adjacent to {@code start} in the
     * direction of {@code direction}.
     * @since 1.6
     */
    public static double nextAfter(double start, double direction) {
1485
        return Math.nextAfter(start, direction);
D
duke 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    }

    /**
     * Returns the floating-point number adjacent to the first
     * argument in the direction of the second argument.  If both
     * arguments compare as equal a value equivalent to the second argument
     * is returned.
     *
     * <p>Special cases:
     * <ul>
     * <li> If either argument is a NaN, then NaN is returned.
     *
     * <li> If both arguments are signed zeros, a value equivalent
     * to {@code direction} is returned.
     *
     * <li> If {@code start} is
     * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
     * has a value such that the result should have a smaller
     * magnitude, then a zero with the same sign as {@code start}
     * is returned.
     *
     * <li> If {@code start} is infinite and
     * {@code direction} has a value such that the result should
     * have a smaller magnitude, {@link Float#MAX_VALUE} with the
     * same sign as {@code start} is returned.
     *
     * <li> If {@code start} is equal to &plusmn;
     * {@link Float#MAX_VALUE} and {@code direction} has a
     * value such that the result should have a larger magnitude, an
     * infinity with same sign as {@code start} is returned.
     * </ul>
     *
     * @param start  starting floating-point value
     * @param direction value indicating which of
     * {@code start}'s neighbors or {@code start} should
     * be returned
     * @return The floating-point number adjacent to {@code start} in the
     * direction of {@code direction}.
     * @since 1.6
     */
    public static float nextAfter(float start, double direction) {
1527
        return Math.nextAfter(start, direction);
D
duke 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
    }

    /**
     * Returns the floating-point value adjacent to {@code d} in
     * the direction of positive infinity.  This method is
     * semantically equivalent to {@code nextAfter(d,
     * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
     * implementation may run faster than its equivalent
     * {@code nextAfter} call.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, the result is NaN.
     *
     * <li> If the argument is positive infinity, the result is
     * positive infinity.
     *
     * <li> If the argument is zero, the result is
     * {@link Double#MIN_VALUE}
     *
     * </ul>
     *
     * @param d starting floating-point value
     * @return The adjacent floating-point value closer to positive
     * infinity.
     * @since 1.6
     */
    public static double nextUp(double d) {
1556
        return Math.nextUp(d);
D
duke 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
    }

    /**
     * Returns the floating-point value adjacent to {@code f} in
     * the direction of positive infinity.  This method is
     * semantically equivalent to {@code nextAfter(f,
     * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
     * implementation may run faster than its equivalent
     * {@code nextAfter} call.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, the result is NaN.
     *
     * <li> If the argument is positive infinity, the result is
     * positive infinity.
     *
     * <li> If the argument is zero, the result is
     * {@link Float#MIN_VALUE}
     *
     * </ul>
     *
     * @param f starting floating-point value
     * @return The adjacent floating-point value closer to positive
     * infinity.
     * @since 1.6
     */
    public static float nextUp(float f) {
1585
        return Math.nextUp(f);
D
duke 已提交
1586 1587
    }

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
    /**
     * Returns the floating-point value adjacent to {@code d} in
     * the direction of negative infinity.  This method is
     * semantically equivalent to {@code nextAfter(d,
     * Double.NEGATIVE_INFINITY)}; however, a
     * {@code nextDown} implementation may run faster than its
     * equivalent {@code nextAfter} call.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, the result is NaN.
     *
     * <li> If the argument is negative infinity, the result is
     * negative infinity.
     *
     * <li> If the argument is zero, the result is
     * {@code -Double.MIN_VALUE}
     *
     * </ul>
     *
     * @param d  starting floating-point value
     * @return The adjacent floating-point value closer to negative
     * infinity.
     * @since 1.8
     */
    public static double nextDown(double d) {
        return Math.nextDown(d);
    }

    /**
     * Returns the floating-point value adjacent to {@code f} in
     * the direction of negative infinity.  This method is
     * semantically equivalent to {@code nextAfter(f,
     * Float.NEGATIVE_INFINITY)}; however, a
     * {@code nextDown} implementation may run faster than its
     * equivalent {@code nextAfter} call.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, the result is NaN.
     *
     * <li> If the argument is negative infinity, the result is
     * negative infinity.
     *
     * <li> If the argument is zero, the result is
     * {@code -Float.MIN_VALUE}
     *
     * </ul>
     *
     * @param f  starting floating-point value
     * @return The adjacent floating-point value closer to negative
     * infinity.
     * @since 1.8
     */
    public static float nextDown(float f) {
        return Math.nextDown(f);
    }

D
duke 已提交
1646
    /**
1647
     * Returns {@code d} &times;
D
duke 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
     * 2<sup>{@code scaleFactor}</sup> rounded as if performed
     * by a single correctly rounded floating-point multiply to a
     * member of the double value set.  See the Java
     * Language Specification for a discussion of floating-point
     * value sets.  If the exponent of the result is between {@link
     * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
     * answer is calculated exactly.  If the exponent of the result
     * would be larger than {@code Double.MAX_EXPONENT}, an
     * infinity is returned.  Note that if the result is subnormal,
     * precision may be lost; that is, when {@code scalb(x, n)}
     * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
     * <i>x</i>.  When the result is non-NaN, the result has the same
     * sign as {@code d}.
     *
     * <p>Special cases:
     * <ul>
     * <li> If the first argument is NaN, NaN is returned.
     * <li> If the first argument is infinite, then an infinity of the
     * same sign is returned.
     * <li> If the first argument is zero, then a zero of the same
     * sign is returned.
     * </ul>
     *
     * @param d number to be scaled by a power of two.
     * @param scaleFactor power of 2 used to scale {@code d}
     * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
     * @since 1.6
     */
    public static double scalb(double d, int scaleFactor) {
1677
        return Math.scalb(d, scaleFactor);
D
duke 已提交
1678 1679 1680
    }

    /**
1681
     * Returns {@code f} &times;
D
duke 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
     * 2<sup>{@code scaleFactor}</sup> rounded as if performed
     * by a single correctly rounded floating-point multiply to a
     * member of the float value set.  See the Java
     * Language Specification for a discussion of floating-point
     * value sets.  If the exponent of the result is between {@link
     * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
     * answer is calculated exactly.  If the exponent of the result
     * would be larger than {@code Float.MAX_EXPONENT}, an
     * infinity is returned.  Note that if the result is subnormal,
     * precision may be lost; that is, when {@code scalb(x, n)}
     * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
     * <i>x</i>.  When the result is non-NaN, the result has the same
     * sign as {@code f}.
     *
     * <p>Special cases:
     * <ul>
     * <li> If the first argument is NaN, NaN is returned.
     * <li> If the first argument is infinite, then an infinity of the
     * same sign is returned.
     * <li> If the first argument is zero, then a zero of the same
     * sign is returned.
     * </ul>
     *
     * @param f number to be scaled by a power of two.
     * @param scaleFactor power of 2 used to scale {@code f}
     * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
     * @since 1.6
     */
    public static float scalb(float f, int scaleFactor) {
1711
        return Math.scalb(f, scaleFactor);
D
duke 已提交
1712 1713
    }
}