提交 ba3d23b3 编写于 作者: S sherman

6282196: There should be Math.mod(number, modulo) methods

Summary: added the requested methods
Reviewed-by: darcy, emcmanus, alanb
Contributed-by: roger.riggs@oracle.com
上级 98e89733
......@@ -742,6 +742,7 @@ public final class Math {
* @param y the second value
* @return the result
* @throws ArithmeticException if the result overflows an int
* @since 1.8
*/
public static int addExact(int x, int y) {
int r = x + y;
......@@ -760,6 +761,7 @@ public final class Math {
* @param y the second value
* @return the result
* @throws ArithmeticException if the result overflows a long
* @since 1.8
*/
public static long addExact(long x, long y) {
long r = x + y;
......@@ -778,6 +780,7 @@ public final class Math {
* @param y the second value to subtract from the first
* @return the result
* @throws ArithmeticException if the result overflows an int
* @since 1.8
*/
public static int subtractExact(int x, int y) {
int r = x - y;
......@@ -797,6 +800,7 @@ public final class Math {
* @param y the second value to subtract from the first
* @return the result
* @throws ArithmeticException if the result overflows a long
* @since 1.8
*/
public static long subtractExact(long x, long y) {
long r = x - y;
......@@ -816,6 +820,7 @@ public final class Math {
* @param y the second value
* @return the result
* @throws ArithmeticException if the result overflows an int
* @since 1.8
*/
public static int multiplyExact(int x, int y) {
long r = (long)x * (long)y;
......@@ -833,6 +838,7 @@ public final class Math {
* @param y the second value
* @return the result
* @throws ArithmeticException if the result overflows a long
* @since 1.8
*/
public static long multiplyExact(long x, long y) {
long r = x * y;
......@@ -857,6 +863,7 @@ public final class Math {
* @param value the long value
* @return the argument as an int
* @throws ArithmeticException if the {@code argument} overflows an int
* @since 1.8
*/
public static int toIntExact(long value) {
if ((int)value != value) {
......@@ -865,6 +872,159 @@ public final class Math {
return (int)value;
}
/**
* Returns the largest (closest to positive infinity)
* {@code int} value that is less than or equal to the algebraic quotient.
* There is one special case, if the dividend is the
* {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
* then integer overflow occurs and
* the result is equal to the {@code Integer.MIN_VALUE}.
* <p>
* Normal integer division operates under the round to zero rounding mode
* (truncation). This operation instead acts under the round toward
* negative infinity (floor) rounding mode.
* The floor rounding mode gives different results than truncation
* when the exact result is negative.
* <ul>
* <li>If the signs of the arguments are the same, the results of
* {@code floorDiv} and the {@code /} operator are the same. <br>
* For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
* <li>If the signs of the arguments are different, the quotient is negative and
* {@code floorDiv} returns the integer less than or equal to the quotient
* and the {@code /} operator returns the integer closest to zero.<br>
* For example, {@code floorDiv(-4, 3) == -2},
* whereas {@code (-4 / 3) == -1}.
* </li>
* </ul>
* <p>
*
* @param x the dividend
* @param y the divisor
* @return the largest (closest to positive infinity)
* {@code int} value that is less than or equal to the algebraic quotient.
* @throws ArithmeticException if the divisor {@code y} is zero
* @see #floorMod(int, int)
* @see #floor(double)
* @since 1.8
*/
public static int floorDiv(int x, int y) {
int r = x / y;
// if the signs are different and modulo not zero, round down
if ((x ^ y) < 0 && (r * y != x)) {
r--;
}
return r;
}
/**
* Returns the largest (closest to positive infinity)
* {@code long} value that is less than or equal to the algebraic quotient.
* There is one special case, if the dividend is the
* {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
* then integer overflow occurs and
* the result is equal to the {@code Long.MIN_VALUE}.
* <p>
* Normal integer division operates under the round to zero rounding mode
* (truncation). This operation instead acts under the round toward
* negative infinity (floor) rounding mode.
* The floor rounding mode gives different results than truncation
* when the exact result is negative.
* <p>
* For examples, see {@link #floorDiv(int, int)}.
*
* @param x the dividend
* @param y the divisor
* @return the largest (closest to positive infinity)
* {@code long} value that is less than or equal to the algebraic quotient.
* @throws ArithmeticException if the divisor {@code y} is zero
* @see #floorMod(long, long)
* @see #floor(double)
* @since 1.8
*/
public static long floorDiv(long x, long y) {
long r = x / y;
// if the signs are different and modulo not zero, round down
if ((x ^ y) < 0 && (r * y != x)) {
r--;
}
return r;
}
/**
* Returns the floor modulus of the {@code int} arguments.
* <p>
* The floor modulus is {@code x - (floorDiv(x, y) * y)},
* has the same sign as the divisor {@code y}, and
* is in the range of {@code -abs(y) < r < +abs(y)}.
*
* <p>
* The relationship between {@code floorDiv} and {@code floorMod} is such that:
* <ul>
* <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
* </ul>
* <p>
* The difference in values between {@code floorMod} and
* the {@code %} operator is due to the difference between
* {@code floorDiv} that returns the integer less than or equal to the quotient
* and the {@code /} operator that returns the integer closest to zero.
* <p>
* Examples:
* <ul>
* <li>If the signs of the arguments are the same, the results
* of {@code floorMod} and the {@code %} operator are the same. <br>
* <ul>
* <li>{@code floorMod(4, 3) == 1}; &nbsp; and {@code (4 % 3) == 1}</li>
* </ul>
* <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
* <ul>
* <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1} </li>
* <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1} </li>
* <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1 } </li>
* </ul>
* </li>
* </ul>
* <p>
* If the signs of arguments are unknown and a positive modulus
* is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
*
* @param x the dividend
* @param y the divisor
* @return the floor modulus {@code x - (floorDiv(x, y) * y)}
* @throws ArithmeticException if the divisor {@code y} is zero
* @see #floorDiv(int, int)
* @since 1.8
*/
public static int floorMod(int x, int y) {
int r = x - floorDiv(x, y) * y;
return r;
}
/**
* Returns the floor modulus of the {@code long} arguments.
* <p>
* The floor modulus is {@code x - (floorDiv(x, y) * y)},
* has the same sign as the divisor {@code y}, and
* is in the range of {@code -abs(y) < r < +abs(y)}.
*
* <p>
* The relationship between {@code floorDiv} and {@code floorMod} is such that:
* <ul>
* <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
* </ul>
* <p>
* For examples, see {@link #floorMod(int, int)}.
*
* @param x the dividend
* @param y the divisor
* @return the floor modulus {@code x - (floorDiv(x, y) * y)}
* @throws ArithmeticException if the divisor {@code y} is zero
* @see #floorDiv(long, long)
* @since 1.8
*/
public static long floorMod(long x, long y) {
return x - floorDiv(x, y) * y;
}
/**
* Returns the absolute value of an {@code int} value.
* If the argument is not negative, the argument is returned.
......
......@@ -365,7 +365,7 @@ public final class StrictMath {
* @param a the value to be floored or ceiled
* @param negativeBoundary result for values in (-1, 0)
* @param positiveBoundary result for values in (0, 1)
* @param sign the sign of the result
* @param increment value to add when the argument is non-integral
*/
private static double floorOrCeil(double a,
double negativeBoundary,
......@@ -702,7 +702,7 @@ public final class StrictMath {
* <p>This method is properly synchronized to allow correct use by
* more than one thread. However, if many threads need to generate
* pseudorandom numbers at a great rate, it may reduce contention
* for each thread to have its own pseudorandom number generator.
* for each thread to have its own pseudorandom-number generator.
*
* @return a pseudorandom {@code double} greater than or equal
* to {@code 0.0} and less than {@code 1.0}.
......@@ -745,7 +745,7 @@ public final class StrictMath {
}
/**
* Return the difference of the arguments,
* Returns the difference of the arguments,
* throwing an exception if the result overflows an {@code int}.
*
* @param x the first value
......@@ -760,7 +760,7 @@ public final class StrictMath {
}
/**
* Return the difference of the arguments,
* Returns the difference of the arguments,
* throwing an exception if the result overflows a {@code long}.
*
* @param x the first value
......@@ -775,7 +775,7 @@ public final class StrictMath {
}
/**
* Return the product of the arguments,
* Returns the product of the arguments,
* throwing an exception if the result overflows an {@code int}.
*
* @param x the first value
......@@ -790,7 +790,7 @@ public final class StrictMath {
}
/**
* Return the product of the arguments,
* Returns the product of the arguments,
* throwing an exception if the result overflows a {@code long}.
*
* @param x the first value
......@@ -805,7 +805,7 @@ public final class StrictMath {
}
/**
* Return the value of the {@code long} argument;
* Returns the value of the {@code long} argument;
* throwing an exception if the value overflows an {@code int}.
*
* @param value the long value
......@@ -818,6 +818,107 @@ public final class StrictMath {
return Math.toIntExact(value);
}
/**
* Returns the largest (closest to positive infinity)
* {@code int} value that is less than or equal to the algebraic quotient.
* There is one special case, if the dividend is the
* {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
* then integer overflow occurs and
* the result is equal to the {@code Integer.MIN_VALUE}.
* <p>
* See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
* a comparison to the integer division {@code /} operator.
*
* @param x the dividend
* @param y the divisor
* @return the largest (closest to positive infinity)
* {@code int} value that is less than or equal to the algebraic quotient.
* @throws ArithmeticException if the divisor {@code y} is zero
* @see Math#floorDiv(int, int)
* @see Math#floor(double)
* @since 1.8
*/
public static int floorDiv(int x, int y) {
return Math.floorDiv(x, y);
}
/**
* Returns the largest (closest to positive infinity)
* {@code long} value that is less than or equal to the algebraic quotient.
* There is one special case, if the dividend is the
* {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
* then integer overflow occurs and
* the result is equal to the {@code Long.MIN_VALUE}.
* <p>
* See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
* a comparison to the integer division {@code /} operator.
*
* @param x the dividend
* @param y the divisor
* @return the largest (closest to positive infinity)
* {@code long} value that is less than or equal to the algebraic quotient.
* @throws ArithmeticException if the divisor {@code y} is zero
* @see Math#floorDiv(long, long)
* @see Math#floor(double)
* @since 1.8
*/
public static long floorDiv(long x, long y) {
return Math.floorDiv(x, y);
}
/**
* Returns the floor modulus of the {@code int} arguments.
* <p>
* The floor modulus is {@code x - (floorDiv(x, y) * y)},
* has the same sign as the divisor {@code y}, and
* is in the range of {@code -abs(y) < r < +abs(y)}.
* <p>
* The relationship between {@code floorDiv} and {@code floorMod} is such that:
* <ul>
* <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
* </ul>
* <p>
* See {@link Math#floorMod(int, int) Math.floorMod} for examples and
* a comparison to the {@code %} operator.
*
* @param x the dividend
* @param y the divisor
* @return the floor modulus {@code x - (floorDiv(x, y) * y)}
* @throws ArithmeticException if the divisor {@code y} is zero
* @see Math#floorMod(int, int)
* @see StrictMath#floorDiv(int, int)
* @since 1.8
*/
public static int floorMod(int x, int y) {
return Math.floorMod(x , y);
}
/**
* Returns the floor modulus of the {@code long} arguments.
* <p>
* The floor modulus is {@code x - (floorDiv(x, y) * y)},
* has the same sign as the divisor {@code y}, and
* is in the range of {@code -abs(y) < r < +abs(y)}.
* <p>
* The relationship between {@code floorDiv} and {@code floorMod} is such that:
* <ul>
* <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
* </ul>
* <p>
* See {@link Math#floorMod(int, int) Math.floorMod} for examples and
* a comparison to the {@code %} operator.
*
* @param x the dividend
* @param y the divisor
* @return the floor modulus {@code x - (floorDiv(x, y) * y)}
* @throws ArithmeticException if the divisor {@code y} is zero
* @see Math#floorMod(long, long)
* @see StrictMath#floorDiv(long, long)
* @since 1.8
*/
public static long floorMod(long x, long y) {
return Math.floorMod(x, y);
}
/**
* Returns the absolute value of an {@code int} value.
* If the argument is not negative, the argument is returned.
......@@ -1543,7 +1644,7 @@ public final class StrictMath {
}
/**
* Return {@code d} &times;
* Returns {@code d} &times;
* 2<sup>{@code scaleFactor}</sup> rounded as if performed
* by a single correctly rounded floating-point multiply to a
* member of the double value set. See the Java
......@@ -1577,7 +1678,7 @@ public final class StrictMath {
}
/**
* Return {@code f} &times;
* Returns {@code f} &times;
* 2<sup>{@code scaleFactor}</sup> rounded as if performed
* by a single correctly rounded floating-point multiply to a
* member of the float value set. See the Java
......
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.math.BigDecimal;
import java.math.RoundingMode;
/**
* @test Test Math and StrictMath Floor Div / Modulo operations.
* @bug 6282196
* @summary Basic tests for Floor division and modulo methods for both Math
* and StrictMath for int and long datatypes.
*/
public class DivModTests {
/**
* The count of test errors.
*/
private static int errors = 0;
/**
* @param args the command line arguments are unused
*/
public static void main(String[] args) {
errors = 0;
testIntFloorDivMod();
testLongFloorDivMod();
if (errors > 0) {
throw new RuntimeException(errors + " errors found in DivMod methods.");
}
}
/**
* Report a test failure and increment the error count.
* @param message the formatting string
* @param args the variable number of arguments for the message.
*/
static void fail(String message, Object... args) {
errors++;
System.out.printf(message, args);
}
/**
* Test the integer floorDiv and floorMod methods.
* Math and StrictMath tested and the same results are expected for both.
*/
static void testIntFloorDivMod() {
testIntFloorDivMod(4, 0, new ArithmeticException("/ by zero"), new ArithmeticException("/ by zero")); // Should throw ArithmeticException
testIntFloorDivMod(4, 3, 1, 1);
testIntFloorDivMod(3, 3, 1, 0);
testIntFloorDivMod(2, 3, 0, 2);
testIntFloorDivMod(1, 3, 0, 1);
testIntFloorDivMod(0, 3, 0, 0);
testIntFloorDivMod(4, -3, -2, -2);
testIntFloorDivMod(3, -3, -1, 0);
testIntFloorDivMod(2, -3, -1, -1);
testIntFloorDivMod(1, -3, -1, -2);
testIntFloorDivMod(0, -3, 0, 0);
testIntFloorDivMod(-1, 3, -1, 2);
testIntFloorDivMod(-2, 3, -1, 1);
testIntFloorDivMod(-3, 3, -1, 0);
testIntFloorDivMod(-4, 3, -2, 2);
testIntFloorDivMod(-1, -3, 0, -1);
testIntFloorDivMod(-2, -3, 0, -2);
testIntFloorDivMod(-3, -3, 1, 0);
testIntFloorDivMod(-4, -3, 1, -1);
testIntFloorDivMod(Integer.MAX_VALUE, 1, Integer.MAX_VALUE, 0);
testIntFloorDivMod(Integer.MAX_VALUE, -1, -Integer.MAX_VALUE, 0);
testIntFloorDivMod(Integer.MAX_VALUE, 3, 715827882, 1);
testIntFloorDivMod(Integer.MAX_VALUE - 1, 3, 715827882, 0);
testIntFloorDivMod(Integer.MIN_VALUE, 3, -715827883, 1);
testIntFloorDivMod(Integer.MIN_VALUE + 1, 3, -715827883, 2);
testIntFloorDivMod(Integer.MIN_VALUE + 1, -1, Integer.MAX_VALUE, 0);
// Special case of integer overflow
testIntFloorDivMod(Integer.MIN_VALUE, -1, Integer.MIN_VALUE, 0);
}
/**
* Test FloorDiv and then FloorMod with int data.
*/
static void testIntFloorDivMod(int x, int y, Object divExpected, Object modExpected) {
testIntFloorDiv(x, y, divExpected);
testIntFloorMod(x, y, modExpected);
}
/**
* Test FloorDiv with int data.
*/
static void testIntFloorDiv(int x, int y, Object expected) {
Object result = doFloorDiv(x, y);
if (!resultEquals(result, expected)) {
fail("FAIL: Math.floorDiv(%d, %d) = %s; expected %s%n", x, y, result, expected);
}
Object strict_result = doStrictFloorDiv(x, y);
if (!resultEquals(strict_result, expected)) {
fail("FAIL: StrictMath.floorDiv(%d, %d) = %s; expected %s%n", x, y, strict_result, expected);
}
}
/**
* Test FloorMod with int data.
*/
static void testIntFloorMod(int x, int y, Object expected) {
Object result = doFloorMod(x, y);
if (!resultEquals(result, expected)) {
fail("FAIL: Math.floorMod(%d, %d) = %s; expected %s%n", x, y, result, expected);
}
Object strict_result = doStrictFloorMod(x, y);
if (!resultEquals(strict_result, expected)) {
fail("FAIL: StrictMath.floorMod(%d, %d) = %s; expected %s%n", x, y, strict_result, expected);
}
try {
// Verify result against double precision floor function
int tmp = x / y; // Force ArithmeticException for divide by zero
double ff = x - Math.floor((double)x / (double)y) * y;
int fr = (int)ff;
if (fr != result) {
fail("FAIL: Math.floorMod(%d, %d) = %s differs from Math.floor(x, y): %d%n", x, y, result, fr);
}
} catch (ArithmeticException ae) {
if (y != 0) {
fail("FAIL: Math.floorMod(%d, %d); unexpected %s%n", x, y, ae);
}
}
}
/**
* Test the floorDiv and floorMod methods for primitive long.
*/
static void testLongFloorDivMod() {
testLongFloorDivMod(4L, 0L, new ArithmeticException("/ by zero"), new ArithmeticException("/ by zero")); // Should throw ArithmeticException
testLongFloorDivMod(4L, 3L, 1L, 1L);
testLongFloorDivMod(3L, 3L, 1L, 0L);
testLongFloorDivMod(2L, 3L, 0L, 2L);
testLongFloorDivMod(1L, 3L, 0L, 1L);
testLongFloorDivMod(0L, 3L, 0L, 0L);
testLongFloorDivMod(4L, -3L, -2L, -2L);
testLongFloorDivMod(3L, -3L, -1L, 0l);
testLongFloorDivMod(2L, -3L, -1L, -1L);
testLongFloorDivMod(1L, -3L, -1L, -2L);
testLongFloorDivMod(0L, -3L, 0L, 0L);
testLongFloorDivMod(-1L, 3L, -1L, 2L);
testLongFloorDivMod(-2L, 3L, -1L, 1L);
testLongFloorDivMod(-3L, 3L, -1L, 0L);
testLongFloorDivMod(-4L, 3L, -2L, 2L);
testLongFloorDivMod(-1L, -3L, 0L, -1L);
testLongFloorDivMod(-2L, -3L, 0L, -2L);
testLongFloorDivMod(-3L, -3L, 1L, 0L);
testLongFloorDivMod(-4L, -3L, 1L, -1L);
testLongFloorDivMod(Long.MAX_VALUE, 1, Long.MAX_VALUE, 0L);
testLongFloorDivMod(Long.MAX_VALUE, -1, -Long.MAX_VALUE, 0L);
testLongFloorDivMod(Long.MAX_VALUE, 3L, Long.MAX_VALUE / 3L, 1L);
testLongFloorDivMod(Long.MAX_VALUE - 1L, 3L, (Long.MAX_VALUE - 1L) / 3L, 0L);
testLongFloorDivMod(Long.MIN_VALUE, 3L, Long.MIN_VALUE / 3L - 1L, 1L);
testLongFloorDivMod(Long.MIN_VALUE + 1L, 3L, Long.MIN_VALUE / 3L - 1L, 2L);
testLongFloorDivMod(Long.MIN_VALUE + 1, -1, Long.MAX_VALUE, 0L);
// Special case of integer overflow
testLongFloorDivMod(Long.MIN_VALUE, -1, Long.MIN_VALUE, 0L);
}
/**
* Test the integer floorDiv and floorMod methods.
* Math and StrictMath are tested and the same results are expected for both.
*/
static void testLongFloorDivMod(long x, long y, Object divExpected, Object modExpected) {
testLongFloorDiv(x, y, divExpected);
testLongFloorMod(x, y, modExpected);
}
/**
* Test FloorDiv with long arguments against expected value.
* The expected value is usually a Long but in some cases is
* an ArithmeticException.
*
* @param x dividend
* @param y modulus
* @param expected expected value,
*/
static void testLongFloorDiv(long x, long y, Object expected) {
Object result = doFloorDiv(x, y);
if (!resultEquals(result, expected)) {
fail("FAIL: long Math.floorDiv(%d, %d) = %s; expected %s%n", x, y, result, expected);
}
Object strict_result = doStrictFloorDiv(x, y);
if (!resultEquals(strict_result, expected)) {
fail("FAIL: long StrictMath.floorDiv(%d, %d) = %s; expected %s%n", x, y, strict_result, expected);
}
}
/**
* Test FloorMod of long arguments against expected value.
* The expected value is usually a Long but in some cases is
* an ArithmeticException.
*
* @param x dividend
* @param y modulus
* @param expected expected value
*/
static void testLongFloorMod(long x, long y, Object expected) {
Object result = doFloorMod(x, y);
if (!resultEquals(result, expected)) {
fail("FAIL: long Math.floorMod(%d, %d) = %s; expected %s%n", x, y, result, expected);
}
Object strict_result = doStrictFloorMod(x, y);
if (!resultEquals(strict_result, expected)) {
fail("FAIL: long StrictMath.floorMod(%d, %d) = %s; expected %s%n", x, y, strict_result, expected);
}
try {
// Verify the result against BigDecimal rounding mode.
BigDecimal xD = new BigDecimal(x);
BigDecimal yD = new BigDecimal(y);
BigDecimal resultD = xD.divide(yD, RoundingMode.FLOOR);
resultD = resultD.multiply(yD);
resultD = xD.subtract(resultD);
long fr = resultD.longValue();
if (fr != result) {
fail("FAIL: Long.floorMod(%d, %d) = %d is different than BigDecimal result: %d%n",x, y, result, fr);
}
} catch (ArithmeticException ae) {
if (y != 0) {
fail("FAIL: long Math.floorMod(%d, %d); unexpected ArithmeticException from bigdecimal");
}
}
}
/**
* Invoke floorDiv and return the result or any exception.
* @param x the x value
* @param y the y value
* @return the result Integer or an exception.
*/
static Object doFloorDiv(int x, int y) {
try {
return Math.floorDiv(x, y);
} catch (ArithmeticException ae) {
return ae;
}
}
/**
* Invoke floorDiv and return the result or any exception.
* @param x the x value
* @param y the y value
* @return the result Integer or an exception.
*/
static Object doFloorDiv(long x, long y) {
try {
return Math.floorDiv(x, y);
} catch (ArithmeticException ae) {
return ae;
}
}
/**
* Invoke floorDiv and return the result or any exception.
* @param x the x value
* @param y the y value
* @return the result Integer or an exception.
*/
static Object doFloorMod(int x, int y) {
try {
return Math.floorMod(x, y);
} catch (ArithmeticException ae) {
return ae;
}
}
/**
* Invoke floorDiv and return the result or any exception.
* @param x the x value
* @param y the y value
* @return the result Integer or an exception.
*/
static Object doFloorMod(long x, long y) {
try {
return Math.floorMod(x, y);
} catch (ArithmeticException ae) {
return ae;
}
}
/**
* Invoke floorDiv and return the result or any exception.
* @param x the x value
* @param y the y value
* @return the result Integer or an exception.
*/
static Object doStrictFloorDiv(int x, int y) {
try {
return StrictMath.floorDiv(x, y);
} catch (ArithmeticException ae) {
return ae;
}
}
/**
* Invoke floorDiv and return the result or any exception.
* @param x the x value
* @param y the y value
* @return the result Integer or an exception.
*/
static Object doStrictFloorDiv(long x, long y) {
try {
return StrictMath.floorDiv(x, y);
} catch (ArithmeticException ae) {
return ae;
}
}
/**
* Invoke floorDiv and return the result or any exception.
* @param x the x value
* @param y the y value
* @return the result Integer or an exception.
*/
static Object doStrictFloorMod(int x, int y) {
try {
return StrictMath.floorMod(x, y);
} catch (ArithmeticException ae) {
return ae;
}
}
/**
* Invoke floorDiv and return the result or any exception.
* @param x the x value
* @param y the y value
* @return the result Integer or an exception.
*/
static Object doStrictFloorMod(long x, long y) {
try {
return StrictMath.floorMod(x, y);
} catch (ArithmeticException ae) {
return ae;
}
}
/**
* Returns a boolean by comparing the result and the expected value.
* The equals method is not defined for ArithmeticException but it is
* desirable to have equals return true if the expected and the result
* both threw the same exception (class and message.)
*
* @param result the result from testing the method
* @param expected the expected value
* @return true if the result is equal to the expected values; false otherwise.
*/
static boolean resultEquals(Object result, Object expected) {
if (result.getClass() != expected.getClass()) {
fail("FAIL: Result type mismatch, %s; expected: %s%n",
result.getClass().getName(), expected.getClass().getName());
return false;
}
if (result.equals(expected)) {
return true;
}
// Handle special case to compare ArithmeticExceptions
if (result instanceof ArithmeticException && expected instanceof ArithmeticException) {
ArithmeticException ae1 = (ArithmeticException)result;
ArithmeticException ae2 = (ArithmeticException)expected;
return ae1.getMessage().equals(ae2.getMessage());
}
return false;
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册