assembler_x86.cpp 162.8 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25
#include "precompiled.hpp"
26 27
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
28 29 30 31 32 33 34 35 36 37 38
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/resourceArea.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
39 40
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
41 42 43
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
44
#endif // INCLUDE_ALL_GCS
D
duke 已提交
45

46 47 48 49 50 51 52 53 54
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
D
duke 已提交
55 56 57 58 59 60 61
// Implementation of AddressLiteral

AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  _is_lval = false;
  _target = target;
  switch (rtype) {
  case relocInfo::oop_type:
62
  case relocInfo::metadata_type:
D
duke 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    // Oops are a special case. Normally they would be their own section
    // but in cases like icBuffer they are literals in the code stream that
    // we don't have a section for. We use none so that we get a literal address
    // which is always patchable.
    break;
  case relocInfo::external_word_type:
    _rspec = external_word_Relocation::spec(target);
    break;
  case relocInfo::internal_word_type:
    _rspec = internal_word_Relocation::spec(target);
    break;
  case relocInfo::opt_virtual_call_type:
    _rspec = opt_virtual_call_Relocation::spec();
    break;
  case relocInfo::static_call_type:
    _rspec = static_call_Relocation::spec();
    break;
  case relocInfo::runtime_call_type:
    _rspec = runtime_call_Relocation::spec();
    break;
83 84 85 86
  case relocInfo::poll_type:
  case relocInfo::poll_return_type:
    _rspec = Relocation::spec_simple(rtype);
    break;
D
duke 已提交
87 88 89 90 91 92 93 94 95 96 97
  case relocInfo::none:
    break;
  default:
    ShouldNotReachHere();
    break;
  }
}

// Implementation of Address

#ifdef _LP64
98 99

Address Address::make_array(ArrayAddress adr) {
D
duke 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  // Not implementable on 64bit machines
  // Should have been handled higher up the call chain.
  ShouldNotReachHere();
  return Address();
}

// exceedingly dangerous constructor
Address::Address(int disp, address loc, relocInfo::relocType rtype) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = disp;
  switch (rtype) {
    case relocInfo::external_word_type:
      _rspec = external_word_Relocation::spec(loc);
      break;
    case relocInfo::internal_word_type:
      _rspec = internal_word_Relocation::spec(loc);
      break;
    case relocInfo::runtime_call_type:
      // HMM
      _rspec = runtime_call_Relocation::spec();
      break;
123 124 125 126
    case relocInfo::poll_type:
    case relocInfo::poll_return_type:
      _rspec = Relocation::spec_simple(rtype);
      break;
D
duke 已提交
127 128 129 130 131 132
    case relocInfo::none:
      break;
    default:
      ShouldNotReachHere();
  }
}
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
#else // LP64

Address Address::make_array(ArrayAddress adr) {
  AddressLiteral base = adr.base();
  Address index = adr.index();
  assert(index._disp == 0, "must not have disp"); // maybe it can?
  Address array(index._base, index._index, index._scale, (intptr_t) base.target());
  array._rspec = base._rspec;
  return array;
}

// exceedingly dangerous constructor
Address::Address(address loc, RelocationHolder spec) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = (intptr_t) loc;
  _rspec = spec;
}

#endif // _LP64


D
duke 已提交
156 157 158 159

// Convert the raw encoding form into the form expected by the constructor for
// Address.  An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
160
Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
161
  RelocationHolder rspec;
162 163
  if (disp_reloc != relocInfo::none) {
    rspec = Relocation::spec_simple(disp_reloc);
164
  }
D
duke 已提交
165 166 167
  bool valid_index = index != rsp->encoding();
  if (valid_index) {
    Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
168
    madr._rspec = rspec;
D
duke 已提交
169 170 171
    return madr;
  } else {
    Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
172
    madr._rspec = rspec;
D
duke 已提交
173 174 175 176 177
    return madr;
  }
}

// Implementation of Assembler
178

D
duke 已提交
179 180 181 182
int AbstractAssembler::code_fill_byte() {
  return (u_char)'\xF4'; // hlt
}

183 184 185
// make this go away someday
void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
  if (rtype == relocInfo::none)
186
        emit_int32(data);
187
  else  emit_data(data, Relocation::spec_simple(rtype), format);
D
duke 已提交
188 189
}

190 191
void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
D
duke 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  if (rspec.type() !=  relocInfo::none) {
    #ifdef ASSERT
      check_relocation(rspec, format);
    #endif
    // Do not use AbstractAssembler::relocate, which is not intended for
    // embedded words.  Instead, relocate to the enclosing instruction.

    // hack. call32 is too wide for mask so use disp32
    if (format == call32_operand)
      code_section()->relocate(inst_mark(), rspec, disp32_operand);
    else
      code_section()->relocate(inst_mark(), rspec, format);
  }
206
  emit_int32(data);
D
duke 已提交
207 208
}

209 210 211 212
static int encode(Register r) {
  int enc = r->encoding();
  if (enc >= 8) {
    enc -= 8;
D
duke 已提交
213
  }
214
  return enc;
D
duke 已提交
215 216
}

217 218 219 220 221 222
static int encode(XMMRegister r) {
  int enc = r->encoding();
  if (enc >= 8) {
    enc -= 8;
  }
  return enc;
D
duke 已提交
223 224 225
}

void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
226
  assert(dst->has_byte_register(), "must have byte register");
D
duke 已提交
227 228 229
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert(isByte(imm8), "not a byte");
  assert((op1 & 0x01) == 0, "should be 8bit operation");
230 231 232
  emit_int8(op1);
  emit_int8(op2 | encode(dst));
  emit_int8(imm8);
D
duke 已提交
233 234
}

235 236

void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
D
duke 已提交
237 238 239 240
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
241 242 243
    emit_int8(op1 | 0x02); // set sign bit
    emit_int8(op2 | encode(dst));
    emit_int8(imm32 & 0xFF);
D
duke 已提交
244
  } else {
245 246
    emit_int8(op1);
    emit_int8(op2 | encode(dst));
247
    emit_int32(imm32);
D
duke 已提交
248 249 250
  }
}

251 252 253 254 255
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
256 257
  emit_int8(op1);
  emit_int8(op2 | encode(dst));
258
  emit_int32(imm32);
259 260
}

D
duke 已提交
261
// immediate-to-memory forms
262
void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
D
duke 已提交
263 264 265
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
266
    emit_int8(op1 | 0x02); // set sign bit
D
duke 已提交
267
    emit_operand(rm, adr, 1);
268
    emit_int8(imm32 & 0xFF);
D
duke 已提交
269
  } else {
270
    emit_int8(op1);
D
duke 已提交
271
    emit_operand(rm, adr, 4);
272
    emit_int32(imm32);
D
duke 已提交
273 274 275 276 277 278
  }
}


void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
  assert(isByte(op1) && isByte(op2), "wrong opcode");
279 280
  emit_int8(op1);
  emit_int8(op2 | encode(dst) << 3 | encode(src));
D
duke 已提交
281 282
}

283

D
duke 已提交
284 285 286 287 288
void Assembler::emit_operand(Register reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
                             RelocationHolder const& rspec,
                             int rip_relative_correction) {
  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
289 290 291 292 293 294 295

  // Encode the registers as needed in the fields they are used in

  int regenc = encode(reg) << 3;
  int indexenc = index->is_valid() ? encode(index) << 3 : 0;
  int baseenc = base->is_valid() ? encode(base) : 0;

D
duke 已提交
296 297 298 299 300
  if (base->is_valid()) {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [base + index*scale + disp]
      if (disp == 0 && rtype == relocInfo::none  &&
301
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
302 303 304
        // [base + index*scale]
        // [00 reg 100][ss index base]
        assert(index != rsp, "illegal addressing mode");
305 306
        emit_int8(0x04 | regenc);
        emit_int8(scale << 6 | indexenc | baseenc);
D
duke 已提交
307 308 309 310
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + index*scale + imm8]
        // [01 reg 100][ss index base] imm8
        assert(index != rsp, "illegal addressing mode");
311 312 313
        emit_int8(0x44 | regenc);
        emit_int8(scale << 6 | indexenc | baseenc);
        emit_int8(disp & 0xFF);
D
duke 已提交
314 315 316 317
      } else {
        // [base + index*scale + disp32]
        // [10 reg 100][ss index base] disp32
        assert(index != rsp, "illegal addressing mode");
318 319
        emit_int8(0x84 | regenc);
        emit_int8(scale << 6 | indexenc | baseenc);
D
duke 已提交
320 321
        emit_data(disp, rspec, disp32_operand);
      }
322
    } else if (base == rsp LP64_ONLY(|| base == r12)) {
D
duke 已提交
323 324 325 326
      // [rsp + disp]
      if (disp == 0 && rtype == relocInfo::none) {
        // [rsp]
        // [00 reg 100][00 100 100]
327 328
        emit_int8(0x04 | regenc);
        emit_int8(0x24);
D
duke 已提交
329 330 331
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [rsp + imm8]
        // [01 reg 100][00 100 100] disp8
332 333 334
        emit_int8(0x44 | regenc);
        emit_int8(0x24);
        emit_int8(disp & 0xFF);
D
duke 已提交
335 336 337
      } else {
        // [rsp + imm32]
        // [10 reg 100][00 100 100] disp32
338 339
        emit_int8(0x84 | regenc);
        emit_int8(0x24);
D
duke 已提交
340 341 342 343
        emit_data(disp, rspec, disp32_operand);
      }
    } else {
      // [base + disp]
344
      assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
D
duke 已提交
345
      if (disp == 0 && rtype == relocInfo::none &&
346
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
347 348
        // [base]
        // [00 reg base]
349
        emit_int8(0x00 | regenc | baseenc);
D
duke 已提交
350 351 352
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + disp8]
        // [01 reg base] disp8
353 354
        emit_int8(0x40 | regenc | baseenc);
        emit_int8(disp & 0xFF);
D
duke 已提交
355 356 357
      } else {
        // [base + disp32]
        // [10 reg base] disp32
358
        emit_int8(0x80 | regenc | baseenc);
D
duke 已提交
359 360 361 362 363 364 365 366 367
        emit_data(disp, rspec, disp32_operand);
      }
    }
  } else {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [index*scale + disp]
      // [00 reg 100][ss index 101] disp32
      assert(index != rsp, "illegal addressing mode");
368 369
      emit_int8(0x04 | regenc);
      emit_int8(scale << 6 | indexenc | 0x05);
D
duke 已提交
370 371
      emit_data(disp, rspec, disp32_operand);
    } else if (rtype != relocInfo::none ) {
372
      // [disp] (64bit) RIP-RELATIVE (32bit) abs
D
duke 已提交
373 374
      // [00 000 101] disp32

375
      emit_int8(0x05 | regenc);
D
duke 已提交
376 377 378 379 380 381 382 383
      // Note that the RIP-rel. correction applies to the generated
      // disp field, but _not_ to the target address in the rspec.

      // disp was created by converting the target address minus the pc
      // at the start of the instruction. That needs more correction here.
      // intptr_t disp = target - next_ip;
      assert(inst_mark() != NULL, "must be inside InstructionMark");
      address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
384 385 386
      int64_t adjusted = disp;
      // Do rip-rel adjustment for 64bit
      LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
D
duke 已提交
387 388
      assert(is_simm32(adjusted),
             "must be 32bit offset (RIP relative address)");
389
      emit_data((int32_t) adjusted, rspec, disp32_operand);
D
duke 已提交
390 391

    } else {
392
      // 32bit never did this, did everything as the rip-rel/disp code above
D
duke 已提交
393 394
      // [disp] ABSOLUTE
      // [00 reg 100][00 100 101] disp32
395 396
      emit_int8(0x04 | regenc);
      emit_int8(0x25);
D
duke 已提交
397 398 399 400 401 402 403
      emit_data(disp, rspec, disp32_operand);
    }
  }
}

void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
404 405
                             RelocationHolder const& rspec) {
  emit_operand((Register)reg, base, index, scale, disp, rspec);
D
duke 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
}

// Secret local extension to Assembler::WhichOperand:
#define end_pc_operand (_WhichOperand_limit)

address Assembler::locate_operand(address inst, WhichOperand which) {
  // Decode the given instruction, and return the address of
  // an embedded 32-bit operand word.

  // If "which" is disp32_operand, selects the displacement portion
  // of an effective address specifier.
  // If "which" is imm64_operand, selects the trailing immediate constant.
  // If "which" is call32_operand, selects the displacement of a call or jump.
  // Caller is responsible for ensuring that there is such an operand,
  // and that it is 32/64 bits wide.

  // If "which" is end_pc_operand, find the end of the instruction.

  address ip = inst;
  bool is_64bit = false;

  debug_only(bool has_disp32 = false);
  int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn

  again_after_prefix:
  switch (0xFF & *ip++) {

  // These convenience macros generate groups of "case" labels for the switch.
#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
             case (x)+4: case (x)+5: case (x)+6: case (x)+7
#define REP16(x) REP8((x)+0): \
              case REP8((x)+8)

  case CS_segment:
  case SS_segment:
  case DS_segment:
  case ES_segment:
  case FS_segment:
  case GS_segment:
446 447 448
    // Seems dubious
    LP64_ONLY(assert(false, "shouldn't have that prefix"));
    assert(ip == inst+1, "only one prefix allowed");
D
duke 已提交
449 450 451 452 453 454 455 456 457 458 459
    goto again_after_prefix;

  case 0x67:
  case REX:
  case REX_B:
  case REX_X:
  case REX_XB:
  case REX_R:
  case REX_RB:
  case REX_RX:
  case REX_RXB:
460
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
461 462 463 464 465 466 467 468 469 470
    goto again_after_prefix;

  case REX_W:
  case REX_WB:
  case REX_WX:
  case REX_WXB:
  case REX_WR:
  case REX_WRB:
  case REX_WRX:
  case REX_WRXB:
471
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
472 473 474 475 476 477 478 479 480
    is_64bit = true;
    goto again_after_prefix;

  case 0xFF: // pushq a; decl a; incl a; call a; jmp a
  case 0x88: // movb a, r
  case 0x89: // movl a, r
  case 0x8A: // movb r, a
  case 0x8B: // movl r, a
  case 0x8F: // popl a
481
    debug_only(has_disp32 = true);
D
duke 已提交
482 483 484 485 486 487
    break;

  case 0x68: // pushq #32
    if (which == end_pc_operand) {
      return ip + 4;
    }
488 489
    assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
    return ip;                  // not produced by emit_operand
D
duke 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

  case 0x66: // movw ... (size prefix)
    again_after_size_prefix2:
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
510
      NOT_LP64(assert(false, "64bit prefix found"));
D
duke 已提交
511 512 513
      goto again_after_size_prefix2;
    case 0x8B: // movw r, a
    case 0x89: // movw a, r
514
      debug_only(has_disp32 = true);
D
duke 已提交
515 516
      break;
    case 0xC7: // movw a, #16
517
      debug_only(has_disp32 = true);
D
duke 已提交
518 519 520 521 522 523 524 525 526 527 528 529
      tail_size = 2;  // the imm16
      break;
    case 0x0F: // several SSE/SSE2 variants
      ip--;    // reparse the 0x0F
      goto again_after_prefix;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP8(0xB8): // movl/q r, #32/#64(oop?)
    if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
530 531
    // these asserts are somewhat nonsensical
#ifndef _LP64
532 533
    assert(which == imm_operand || which == disp32_operand,
           err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
534 535
#else
    assert((which == call32_operand || which == imm_operand) && is_64bit ||
536 537
           which == narrow_oop_operand && !is_64bit,
           err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
538
#endif // _LP64
D
duke 已提交
539 540 541 542 543 544 545 546 547 548
    return ip;

  case 0x69: // imul r, a, #32
  case 0xC7: // movl a, #32(oop?)
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x0F: // movx..., etc.
    switch (0xFF & *ip++) {
K
kvn 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561
    case 0x3A: // pcmpestri
      tail_size = 1;
    case 0x38: // ptest, pmovzxbw
      ip++; // skip opcode
      debug_only(has_disp32 = true); // has both kinds of operands!
      break;

    case 0x70: // pshufd r, r/a, #8
      debug_only(has_disp32 = true); // has both kinds of operands!
    case 0x73: // psrldq r, #8
      tail_size = 1;
      break;

D
duke 已提交
562 563 564 565 566
    case 0x12: // movlps
    case 0x28: // movaps
    case 0x2E: // ucomiss
    case 0x2F: // comiss
    case 0x54: // andps
567 568
    case 0x55: // andnps
    case 0x56: // orps
D
duke 已提交
569 570 571
    case 0x57: // xorps
    case 0x6E: // movd
    case 0x7E: // movd
K
kvn 已提交
572
    case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
573
      debug_only(has_disp32 = true);
D
duke 已提交
574
      break;
575

D
duke 已提交
576 577
    case 0xAD: // shrd r, a, %cl
    case 0xAF: // imul r, a
578 579 580 581
    case 0xBE: // movsbl r, a (movsxb)
    case 0xBF: // movswl r, a (movsxw)
    case 0xB6: // movzbl r, a (movzxb)
    case 0xB7: // movzwl r, a (movzxw)
D
duke 已提交
582 583 584 585 586 587 588 589 590
    case REP16(0x40): // cmovl cc, r, a
    case 0xB0: // cmpxchgb
    case 0xB1: // cmpxchg
    case 0xC1: // xaddl
    case 0xC7: // cmpxchg8
    case REP16(0x90): // setcc a
      debug_only(has_disp32 = true);
      // fall out of the switch to decode the address
      break;
591

K
kvn 已提交
592 593 594 595 596 597
    case 0xC4: // pinsrw r, a, #8
      debug_only(has_disp32 = true);
    case 0xC5: // pextrw r, r, #8
      tail_size = 1;  // the imm8
      break;

D
duke 已提交
598 599 600 601
    case 0xAC: // shrd r, a, #8
      debug_only(has_disp32 = true);
      tail_size = 1;  // the imm8
      break;
602

D
duke 已提交
603 604
    case REP16(0x80): // jcc rdisp32
      if (which == end_pc_operand)  return ip + 4;
605
      assert(which == call32_operand, "jcc has no disp32 or imm");
D
duke 已提交
606 607 608 609 610 611 612 613
      return ip;
    default:
      ShouldNotReachHere();
    }
    break;

  case 0x81: // addl a, #32; addl r, #32
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
614
    // on 32bit in the case of cmpl, the imm might be an oop
D
duke 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x83: // addl a, #8; addl r, #8
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1;
    break;

  case 0x9B:
    switch (0xFF & *ip++) {
    case 0xD9: // fnstcw a
      debug_only(has_disp32 = true);
      break;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
  case REP4(0x10): // adc...
  case REP4(0x20): // and...
  case REP4(0x30): // xor...
  case REP4(0x08): // or...
  case REP4(0x18): // sbb...
  case REP4(0x28): // sub...
  case 0xF7: // mull a
643
  case 0x8D: // lea r, a
D
duke 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657
  case 0x87: // xchg r, a
  case REP4(0x38): // cmp...
  case 0x85: // test r, a
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
  case 0xC6: // movb a, #8
  case 0x80: // cmpb a, #8
  case 0x6B: // imul r, a, #8
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1; // the imm8
    break;

K
kvn 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
  case 0xC4: // VEX_3bytes
  case 0xC5: // VEX_2bytes
    assert((UseAVX > 0), "shouldn't have VEX prefix");
    assert(ip == inst+1, "no prefixes allowed");
    // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
    // but they have prefix 0x0F and processed when 0x0F processed above.
    //
    // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
    // instructions (these instructions are not supported in 64-bit mode).
    // To distinguish them bits [7:6] are set in the VEX second byte since
    // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
    // those VEX bits REX and vvvv bits are inverted.
    //
    // Fortunately C2 doesn't generate these instructions so we don't need
    // to check for them in product version.

    // Check second byte
    NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));

    // First byte
    if ((0xFF & *inst) == VEX_3bytes) {
      ip++; // third byte
      is_64bit = ((VEX_W & *ip) == VEX_W);
    }
    ip++; // opcode
    // To find the end of instruction (which == end_pc_operand).
    switch (0xFF & *ip) {
    case 0x61: // pcmpestri r, r/a, #8
    case 0x70: // pshufd r, r/a, #8
    case 0x73: // psrldq r, #8
      tail_size = 1;  // the imm8
      break;
    default:
      break;
    }
    ip++; // skip opcode
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;
D
duke 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708

  case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
  case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
  case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
  case 0xDD: // fld_d a; fst_d a; fstp_d a
  case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
  case 0xDF: // fild_d a; fistp_d a
  case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
  case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
  case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
    debug_only(has_disp32 = true);
    break;

K
kvn 已提交
709 710 711 712 713 714
  case 0xE8: // call rdisp32
  case 0xE9: // jmp  rdisp32
    if (which == end_pc_operand)  return ip + 4;
    assert(which == call32_operand, "call has no disp32 or imm");
    return ip;

715 716 717 718
  case 0xF0:                    // Lock
    assert(os::is_MP(), "only on MP");
    goto again_after_prefix;

D
duke 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
  case 0xF3:                    // For SSE
  case 0xF2:                    // For SSE2
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
738
      NOT_LP64(assert(false, "found 64bit prefix"));
D
duke 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
      ip++;
    default:
      ip++;
    }
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  default:
    ShouldNotReachHere();

#undef REP8
#undef REP16
  }

  assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
754 755 756 757 758 759
#ifdef _LP64
  assert(which != imm_operand, "instruction is not a movq reg, imm64");
#else
  // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
  assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
#endif // LP64
D
duke 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
  assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");

  // parse the output of emit_operand
  int op2 = 0xFF & *ip++;
  int base = op2 & 0x07;
  int op3 = -1;
  const int b100 = 4;
  const int b101 = 5;
  if (base == b100 && (op2 >> 6) != 3) {
    op3 = 0xFF & *ip++;
    base = op3 & 0x07;   // refetch the base
  }
  // now ip points at the disp (if any)

  switch (op2 >> 6) {
  case 0:
    // [00 reg  100][ss index base]
    // [00 reg  100][00   100  esp]
    // [00 reg base]
    // [00 reg  100][ss index  101][disp32]
    // [00 reg  101]               [disp32]

    if (base == b101) {
      if (which == disp32_operand)
        return ip;              // caller wants the disp32
      ip += 4;                  // skip the disp32
    }
    break;

  case 1:
    // [01 reg  100][ss index base][disp8]
    // [01 reg  100][00   100  esp][disp8]
    // [01 reg base]               [disp8]
    ip += 1;                    // skip the disp8
    break;

  case 2:
    // [10 reg  100][ss index base][disp32]
    // [10 reg  100][00   100  esp][disp32]
    // [10 reg base]               [disp32]
    if (which == disp32_operand)
      return ip;                // caller wants the disp32
    ip += 4;                    // skip the disp32
    break;

  case 3:
    // [11 reg base]  (not a memory addressing mode)
    break;
  }

  if (which == end_pc_operand) {
    return ip + tail_size;
  }

814
#ifdef _LP64
815
  assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
816 817 818
#else
  assert(which == imm_operand, "instruction has only an imm field");
#endif // LP64
D
duke 已提交
819 820 821 822 823 824 825 826
  return ip;
}

address Assembler::locate_next_instruction(address inst) {
  // Secretly share code with locate_operand:
  return locate_operand(inst, end_pc_operand);
}

827

D
duke 已提交
828 829 830
#ifdef ASSERT
void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
  address inst = inst_mark();
831
  assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
D
duke 已提交
832 833 834 835 836 837
  address opnd;

  Relocation* r = rspec.reloc();
  if (r->type() == relocInfo::none) {
    return;
  } else if (r->is_call() || format == call32_operand) {
838
    // assert(format == imm32_operand, "cannot specify a nonzero format");
D
duke 已提交
839 840
    opnd = locate_operand(inst, call32_operand);
  } else if (r->is_data()) {
841 842 843
    assert(format == imm_operand || format == disp32_operand
           LP64_ONLY(|| format == narrow_oop_operand), "format ok");
    opnd = locate_operand(inst, (WhichOperand)format);
D
duke 已提交
844
  } else {
845
    assert(format == imm_operand, "cannot specify a format");
D
duke 已提交
846 847 848 849
    return;
  }
  assert(opnd == pc(), "must put operand where relocs can find it");
}
850
#endif // ASSERT
D
duke 已提交
851

852 853 854 855 856
void Assembler::emit_operand32(Register reg, Address adr) {
  assert(reg->encoding() < 8, "no extended registers");
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec);
D
duke 已提交
857 858 859 860 861 862 863 864 865
}

void Assembler::emit_operand(Register reg, Address adr,
                             int rip_relative_correction) {
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec,
               rip_relative_correction);
}

866
void Assembler::emit_operand(XMMRegister reg, Address adr) {
D
duke 已提交
867
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
868 869 870 871 872 873 874 875 876 877 878 879 880
               adr._rspec);
}

// MMX operations
void Assembler::emit_operand(MMXRegister reg, Address adr) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}

// work around gcc (3.2.1-7a) bug
void Assembler::emit_operand(Address adr, MMXRegister reg) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
D
duke 已提交
881 882
}

883

D
duke 已提交
884 885 886
void Assembler::emit_farith(int b1, int b2, int i) {
  assert(isByte(b1) && isByte(b2), "wrong opcode");
  assert(0 <= i &&  i < 8, "illegal stack offset");
887 888
  emit_int8(b1);
  emit_int8(b2 + i);
D
duke 已提交
889 890 891
}


892 893 894 895 896 897 898 899 900 901 902
// Now the Assembler instructions (identical for 32/64 bits)

void Assembler::adcl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rdx, dst, imm32);
}

void Assembler::adcl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
903
  emit_int8(0x11);
904 905
  emit_operand(src, dst);
}
D
duke 已提交
906

907 908 909
void Assembler::adcl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD0, dst, imm32);
D
duke 已提交
910 911
}

912 913 914
void Assembler::adcl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
915
  emit_int8(0x13);
916
  emit_operand(dst, src);
D
duke 已提交
917 918
}

919 920 921
void Assembler::adcl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x13, 0xC0, dst, src);
D
duke 已提交
922 923
}

924 925 926 927
void Assembler::addl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rax, dst, imm32);
D
duke 已提交
928 929
}

930 931 932
void Assembler::addl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
933
  emit_int8(0x01);
934
  emit_operand(src, dst);
D
duke 已提交
935 936
}

937 938 939 940
void Assembler::addl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC0, dst, imm32);
}
D
duke 已提交
941

942 943 944
void Assembler::addl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
945
  emit_int8(0x03);
946
  emit_operand(dst, src);
D
duke 已提交
947 948
}

949 950 951
void Assembler::addl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
D
duke 已提交
952 953
}

954
void Assembler::addr_nop_4() {
955
  assert(UseAddressNop, "no CPU support");
956
  // 4 bytes: NOP DWORD PTR [EAX+0]
957 958 959 960
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
  emit_int8(0);    // 8-bits offset (1 byte)
D
duke 已提交
961 962
}

963
void Assembler::addr_nop_5() {
964
  assert(UseAddressNop, "no CPU support");
965
  // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
966 967 968 969 970
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
  emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  emit_int8(0);    // 8-bits offset (1 byte)
D
duke 已提交
971 972
}

973
void Assembler::addr_nop_7() {
974
  assert(UseAddressNop, "no CPU support");
975
  // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
976 977 978 979
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8((unsigned char)0x80);
                   // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
980
  emit_int32(0);   // 32-bits offset (4 bytes)
D
duke 已提交
981 982
}

983
void Assembler::addr_nop_8() {
984
  assert(UseAddressNop, "no CPU support");
985
  // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
986 987 988 989 990
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8((unsigned char)0x84);
                   // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
  emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
991
  emit_int32(0);   // 32-bits offset (4 bytes)
992 993 994 995
}

void Assembler::addsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
996
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
997 998 999 1000
}

void Assembler::addsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1001
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
D
duke 已提交
1002 1003
}

1004 1005
void Assembler::addss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1006
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1007 1008 1009 1010
}

void Assembler::addss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1011
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1012 1013
}

1014 1015 1016 1017
void Assembler::aesdec(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1018
  emit_int8((unsigned char)0xDE);
1019 1020 1021 1022 1023 1024
  emit_operand(dst, src);
}

void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1025 1026
  emit_int8((unsigned char)0xDE);
  emit_int8(0xC0 | encode);
1027 1028 1029 1030 1031 1032
}

void Assembler::aesdeclast(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1033
  emit_int8((unsigned char)0xDF);
1034 1035 1036 1037 1038 1039
  emit_operand(dst, src);
}

void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1040 1041
  emit_int8((unsigned char)0xDF);
  emit_int8((unsigned char)(0xC0 | encode));
1042 1043 1044 1045 1046 1047
}

void Assembler::aesenc(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1048
  emit_int8((unsigned char)0xDC);
1049 1050 1051 1052 1053 1054
  emit_operand(dst, src);
}

void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1055 1056
  emit_int8((unsigned char)0xDC);
  emit_int8(0xC0 | encode);
1057 1058 1059 1060 1061 1062
}

void Assembler::aesenclast(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1063
  emit_int8((unsigned char)0xDD);
1064 1065 1066 1067 1068 1069
  emit_operand(dst, src);
}

void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1070 1071
  emit_int8((unsigned char)0xDD);
  emit_int8((unsigned char)(0xC0 | encode));
1072 1073 1074
}


K
kvn 已提交
1075 1076 1077
void Assembler::andl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
1078
  emit_int8((unsigned char)0x81);
K
kvn 已提交
1079
  emit_operand(rsp, dst, 4);
1080
  emit_int32(imm32);
K
kvn 已提交
1081 1082
}

1083
void Assembler::andl(Register dst, int32_t imm32) {
D
duke 已提交
1084
  prefix(dst);
1085
  emit_arith(0x81, 0xE0, dst, imm32);
D
duke 已提交
1086 1087
}

1088
void Assembler::andl(Register dst, Address src) {
D
duke 已提交
1089
  InstructionMark im(this);
1090
  prefix(src, dst);
1091
  emit_int8(0x23);
1092
  emit_operand(dst, src);
D
duke 已提交
1093 1094
}

1095 1096 1097
void Assembler::andl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x23, 0xC0, dst, src);
D
duke 已提交
1098 1099
}

1100 1101
void Assembler::bsfl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1102 1103 1104
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBC);
  emit_int8((unsigned char)(0xC0 | encode));
1105 1106 1107 1108 1109
}

void Assembler::bsrl(Register dst, Register src) {
  assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1110 1111 1112
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
1113 1114
}

1115 1116
void Assembler::bswapl(Register reg) { // bswap
  int encode = prefix_and_encode(reg->encoding());
1117 1118
  emit_int8(0x0F);
  emit_int8((unsigned char)(0xC8 | encode));
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
}

void Assembler::call(Label& L, relocInfo::relocType rtype) {
  // suspect disp32 is always good
  int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);

  if (L.is_bound()) {
    const int long_size = 5;
    int offs = (int)( target(L) - pc() );
    assert(offs <= 0, "assembler error");
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
1131
    emit_int8((unsigned char)0xE8);
1132 1133 1134 1135 1136 1137
    emit_data(offs - long_size, rtype, operand);
  } else {
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
    L.add_patch_at(code(), locator());

1138
    emit_int8((unsigned char)0xE8);
1139 1140 1141 1142 1143
    emit_data(int(0), rtype, operand);
  }
}

void Assembler::call(Register dst) {
K
kvn 已提交
1144
  int encode = prefix_and_encode(dst->encoding());
1145 1146
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xD0 | encode));
1147 1148 1149 1150
}


void Assembler::call(Address adr) {
D
duke 已提交
1151
  InstructionMark im(this);
1152
  prefix(adr);
1153
  emit_int8((unsigned char)0xFF);
1154
  emit_operand(rdx, adr);
D
duke 已提交
1155 1156
}

1157 1158 1159
void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  assert(entry != NULL, "call most probably wrong");
  InstructionMark im(this);
1160
  emit_int8((unsigned char)0xE8);
1161
  intptr_t disp = entry - (pc() + sizeof(int32_t));
1162 1163 1164 1165 1166 1167
  assert(is_simm32(disp), "must be 32bit offset (call2)");
  // Technically, should use call32_operand, but this format is
  // implied by the fact that we're emitting a call instruction.

  int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  emit_data((int) disp, rspec, operand);
D
duke 已提交
1168 1169
}

1170
void Assembler::cdql() {
1171
  emit_int8((unsigned char)0x99);
1172 1173
}

1174
void Assembler::cld() {
1175
  emit_int8((unsigned char)0xFC);
1176 1177
}

1178 1179
void Assembler::cmovl(Condition cc, Register dst, Register src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1180
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1181 1182 1183
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1184 1185
}

1186 1187 1188

void Assembler::cmovl(Condition cc, Register dst, Address src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1189
  prefix(src, dst);
1190 1191
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
D
duke 已提交
1192 1193 1194
  emit_operand(dst, src);
}

1195
void Assembler::cmpb(Address dst, int imm8) {
D
duke 已提交
1196 1197
  InstructionMark im(this);
  prefix(dst);
1198
  emit_int8((unsigned char)0x80);
1199
  emit_operand(rdi, dst, 1);
1200
  emit_int8(imm8);
D
duke 已提交
1201 1202
}

1203
void Assembler::cmpl(Address dst, int32_t imm32) {
D
duke 已提交
1204
  InstructionMark im(this);
1205
  prefix(dst);
1206
  emit_int8((unsigned char)0x81);
1207
  emit_operand(rdi, dst, 4);
1208
  emit_int32(imm32);
D
duke 已提交
1209 1210
}

1211 1212 1213
void Assembler::cmpl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF8, dst, imm32);
D
duke 已提交
1214 1215
}

1216 1217 1218
void Assembler::cmpl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
D
duke 已提交
1219 1220 1221
}


1222
void Assembler::cmpl(Register dst, Address  src) {
D
duke 已提交
1223
  InstructionMark im(this);
1224
  prefix(src, dst);
1225
  emit_int8((unsigned char)0x3B);
D
duke 已提交
1226 1227 1228
  emit_operand(dst, src);
}

1229
void Assembler::cmpw(Address dst, int imm16) {
D
duke 已提交
1230
  InstructionMark im(this);
1231
  assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1232 1233
  emit_int8(0x66);
  emit_int8((unsigned char)0x81);
1234
  emit_operand(rdi, dst, 2);
1235
  emit_int16(imm16);
D
duke 已提交
1236 1237
}

1238 1239 1240 1241
// The 32-bit cmpxchg compares the value at adr with the contents of rax,
// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
// The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
C
coleenp 已提交
1242 1243
  InstructionMark im(this);
  prefix(adr, reg);
1244 1245
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB1);
C
coleenp 已提交
1246
  emit_operand(reg, adr);
D
duke 已提交
1247 1248
}

1249 1250 1251 1252
void Assembler::comisd(XMMRegister dst, Address src) {
  // NOTE: dbx seems to decode this as comiss even though the
  // 0x66 is there. Strangly ucomisd comes out correct
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1253
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
K
kvn 已提交
1254 1255 1256 1257
}

void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1258
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
D
duke 已提交
1259 1260
}

1261 1262
void Assembler::comiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1263
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
D
duke 已提交
1264 1265
}

K
kvn 已提交
1266 1267
void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1268
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
K
kvn 已提交
1269 1270
}

1271
void Assembler::cpuid() {
1272 1273
  emit_int8(0x0F);
  emit_int8((unsigned char)0xA2);
1274 1275
}

1276 1277
void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1278
  emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
D
duke 已提交
1279 1280
}

1281 1282
void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1283
  emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
D
duke 已提交
1284 1285
}

1286 1287
void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1288
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
D
duke 已提交
1289 1290
}

K
kvn 已提交
1291 1292
void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1293
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
K
kvn 已提交
1294 1295
}

1296 1297
void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
1298
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1299 1300
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1301 1302
}

K
kvn 已提交
1303 1304
void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1305
  emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
K
kvn 已提交
1306 1307
}

1308 1309
void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
1310
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1311 1312
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1313 1314
}

K
kvn 已提交
1315 1316
void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1317
  emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
K
kvn 已提交
1318 1319
}

1320 1321
void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1322
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
D
duke 已提交
1323 1324
}

K
kvn 已提交
1325 1326
void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1327
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
K
kvn 已提交
1328 1329 1330
}


1331 1332
void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
1333
  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1334 1335
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1336 1337
}

1338 1339
void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
1340
  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1341 1342
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1343 1344
}

1345 1346 1347 1348
void Assembler::decl(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrement() instead.
  InstructionMark im(this);
  prefix(dst);
1349
  emit_int8((unsigned char)0xFF);
1350
  emit_operand(rcx, dst);
D
duke 已提交
1351 1352
}

1353 1354
void Assembler::divsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1355
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
D
duke 已提交
1356 1357
}

1358 1359
void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1360
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
D
duke 已提交
1361 1362
}

1363 1364
void Assembler::divss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1365
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
D
duke 已提交
1366 1367
}

1368 1369
void Assembler::divss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1370
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
D
duke 已提交
1371 1372
}

1373 1374
void Assembler::emms() {
  NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1375 1376
  emit_int8(0x0F);
  emit_int8(0x77);
D
duke 已提交
1377 1378
}

1379
void Assembler::hlt() {
1380
  emit_int8((unsigned char)0xF4);
D
duke 已提交
1381 1382
}

1383 1384
void Assembler::idivl(Register src) {
  int encode = prefix_and_encode(src->encoding());
1385 1386
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xF8 | encode));
D
duke 已提交
1387 1388
}

1389 1390
void Assembler::divl(Register src) { // Unsigned
  int encode = prefix_and_encode(src->encoding());
1391 1392
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xF0 | encode));
1393 1394
}

1395
void Assembler::imull(Register dst, Register src) {
D
duke 已提交
1396
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1397 1398 1399
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAF);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1400 1401 1402
}


1403
void Assembler::imull(Register dst, Register src, int value) {
D
duke 已提交
1404
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1405
  if (is8bit(value)) {
1406 1407 1408
    emit_int8(0x6B);
    emit_int8((unsigned char)(0xC0 | encode));
    emit_int8(value & 0xFF);
1409
  } else {
1410 1411
    emit_int8(0x69);
    emit_int8((unsigned char)(0xC0 | encode));
1412
    emit_int32(value);
1413
  }
D
duke 已提交
1414 1415
}

1416 1417
void Assembler::incl(Address dst) {
  // Don't use it directly. Use MacroAssembler::increment() instead.
D
duke 已提交
1418
  InstructionMark im(this);
1419
  prefix(dst);
1420
  emit_int8((unsigned char)0xFF);
1421
  emit_operand(rax, dst);
D
duke 已提交
1422 1423
}

1424
void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
D
duke 已提交
1425
  InstructionMark im(this);
1426 1427 1428 1429 1430 1431 1432
  assert((0 <= cc) && (cc < 16), "illegal cc");
  if (L.is_bound()) {
    address dst = target(L);
    assert(dst != NULL, "jcc most probably wrong");

    const int short_size = 2;
    const int long_size = 6;
1433
    intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1434
    if (maybe_short && is8bit(offs - short_size)) {
1435
      // 0111 tttn #8-bit disp
1436 1437
      emit_int8(0x70 | cc);
      emit_int8((offs - short_size) & 0xFF);
1438 1439 1440 1441
    } else {
      // 0000 1111 1000 tttn #32-bit disp
      assert(is_simm32(offs - long_size),
             "must be 32bit offset (call4)");
1442 1443
      emit_int8(0x0F);
      emit_int8((unsigned char)(0x80 | cc));
1444
      emit_int32(offs - long_size);
1445 1446 1447 1448 1449 1450 1451
    }
  } else {
    // Note: could eliminate cond. jumps to this jump if condition
    //       is the same however, seems to be rather unlikely case.
    // Note: use jccb() if label to be bound is very close to get
    //       an 8-bit displacement
    L.add_patch_at(code(), locator());
1452 1453
    emit_int8(0x0F);
    emit_int8((unsigned char)(0x80 | cc));
1454
    emit_int32(0);
1455
  }
D
duke 已提交
1456 1457
}

1458 1459 1460 1461
void Assembler::jccb(Condition cc, Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
1462
#ifdef ASSERT
1463
    intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1464 1465 1466 1467 1468 1469
    intptr_t delta = short_branch_delta();
    if (delta != 0) {
      dist += (dist < 0 ? (-delta) :delta);
    }
    assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
1470
    intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1471
    // 0111 tttn #8-bit disp
1472 1473
    emit_int8(0x70 | cc);
    emit_int8((offs - short_size) & 0xFF);
1474 1475 1476
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
1477 1478
    emit_int8(0x70 | cc);
    emit_int8(0);
1479
  }
D
duke 已提交
1480 1481
}

1482
void Assembler::jmp(Address adr) {
D
duke 已提交
1483
  InstructionMark im(this);
1484
  prefix(adr);
1485
  emit_int8((unsigned char)0xFF);
1486
  emit_operand(rsp, adr);
D
duke 已提交
1487 1488
}

1489
void Assembler::jmp(Label& L, bool maybe_short) {
1490 1491 1492 1493 1494 1495
  if (L.is_bound()) {
    address entry = target(L);
    assert(entry != NULL, "jmp most probably wrong");
    InstructionMark im(this);
    const int short_size = 2;
    const int long_size = 5;
1496
    intptr_t offs = entry - pc();
1497
    if (maybe_short && is8bit(offs - short_size)) {
1498 1499
      emit_int8((unsigned char)0xEB);
      emit_int8((offs - short_size) & 0xFF);
1500
    } else {
1501
      emit_int8((unsigned char)0xE9);
1502
      emit_int32(offs - long_size);
1503 1504 1505 1506 1507 1508 1509 1510
    }
  } else {
    // By default, forward jumps are always 32-bit displacements, since
    // we can't yet know where the label will be bound.  If you're sure that
    // the forward jump will not run beyond 256 bytes, use jmpb to
    // force an 8-bit displacement.
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
1511
    emit_int8((unsigned char)0xE9);
1512
    emit_int32(0);
1513
  }
D
duke 已提交
1514 1515
}

1516 1517
void Assembler::jmp(Register entry) {
  int encode = prefix_and_encode(entry->encoding());
1518 1519
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xE0 | encode));
D
duke 已提交
1520 1521
}

1522
void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
D
duke 已提交
1523
  InstructionMark im(this);
1524
  emit_int8((unsigned char)0xE9);
1525
  assert(dest != NULL, "must have a target");
1526
  intptr_t disp = dest - (pc() + sizeof(int32_t));
1527 1528
  assert(is_simm32(disp), "must be 32bit offset (jmp)");
  emit_data(disp, rspec.reloc(), call32_operand);
D
duke 已提交
1529 1530
}

1531 1532 1533 1534 1535
void Assembler::jmpb(Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
    assert(entry != NULL, "jmp most probably wrong");
1536
#ifdef ASSERT
1537
    intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1538 1539 1540 1541 1542 1543
    intptr_t delta = short_branch_delta();
    if (delta != 0) {
      dist += (dist < 0 ? (-delta) :delta);
    }
    assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
1544
    intptr_t offs = entry - pc();
1545 1546
    emit_int8((unsigned char)0xEB);
    emit_int8((offs - short_size) & 0xFF);
1547 1548 1549
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
1550 1551
    emit_int8((unsigned char)0xEB);
    emit_int8(0);
1552
  }
D
duke 已提交
1553 1554
}

1555 1556
void Assembler::ldmxcsr( Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1557
  InstructionMark im(this);
1558
  prefix(src);
1559 1560
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
1561
  emit_operand(as_Register(2), src);
D
duke 已提交
1562 1563
}

1564
void Assembler::leal(Register dst, Address src) {
D
duke 已提交
1565
  InstructionMark im(this);
1566
#ifdef _LP64
1567
  emit_int8(0x67); // addr32
1568 1569
  prefix(src, dst);
#endif // LP64
1570
  emit_int8((unsigned char)0x8D);
1571
  emit_operand(dst, src);
D
duke 已提交
1572 1573
}

1574
void Assembler::lfence() {
1575 1576 1577
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
  emit_int8((unsigned char)0xE8);
1578 1579
}

1580
void Assembler::lock() {
1581
  emit_int8((unsigned char)0xF0);
D
duke 已提交
1582 1583
}

1584 1585
void Assembler::lzcntl(Register dst, Register src) {
  assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1586
  emit_int8((unsigned char)0xF3);
1587
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1588 1589 1590
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
1591 1592
}

1593
// Emit mfence instruction
1594
void Assembler::mfence() {
1595
  NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1596 1597 1598
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
  emit_int8((unsigned char)0xF0);
D
duke 已提交
1599 1600
}

1601 1602
void Assembler::mov(Register dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
D
duke 已提交
1603 1604
}

1605 1606
void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1607
  emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
D
duke 已提交
1608 1609
}

1610 1611
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1612
  emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1613 1614
}

1615 1616 1617
void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1618 1619
  emit_int8(0x16);
  emit_int8((unsigned char)(0xC0 | encode));
1620 1621
}

1622 1623
void Assembler::movb(Register dst, Address src) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
D
duke 已提交
1624
  InstructionMark im(this);
1625
  prefix(src, dst, true);
1626
  emit_int8((unsigned char)0x8A);
D
duke 已提交
1627 1628 1629 1630
  emit_operand(dst, src);
}


1631
void Assembler::movb(Address dst, int imm8) {
D
duke 已提交
1632
  InstructionMark im(this);
1633
   prefix(dst);
1634
  emit_int8((unsigned char)0xC6);
1635
  emit_operand(rax, dst, 1);
1636
  emit_int8(imm8);
D
duke 已提交
1637 1638
}

1639 1640 1641

void Assembler::movb(Address dst, Register src) {
  assert(src->has_byte_register(), "must have byte register");
D
duke 已提交
1642
  InstructionMark im(this);
1643
  prefix(dst, src, true);
1644
  emit_int8((unsigned char)0x88);
D
duke 已提交
1645 1646 1647
  emit_operand(src, dst);
}

1648 1649
void Assembler::movdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
1650
  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1651 1652
  emit_int8(0x6E);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1653 1654
}

1655 1656 1657
void Assembler::movdl(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // swap src/dst to get correct prefix
K
kvn 已提交
1658
  int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1659 1660
  emit_int8(0x7E);
  emit_int8((unsigned char)(0xC0 | encode));
1661 1662
}

1663 1664 1665
void Assembler::movdl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
K
kvn 已提交
1666
  simd_prefix(dst, src, VEX_SIMD_66);
1667
  emit_int8(0x6E);
1668 1669 1670
  emit_operand(dst, src);
}

1671 1672 1673 1674
void Assembler::movdl(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  simd_prefix(dst, src, VEX_SIMD_66);
1675
  emit_int8(0x7E);
1676 1677 1678
  emit_operand(src, dst);
}

1679 1680
void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1681
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
D
duke 已提交
1682 1683
}

1684 1685
void Assembler::movdqu(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1686
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1687 1688 1689 1690
}

void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1691
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1692 1693 1694 1695 1696
}

void Assembler::movdqu(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
K
kvn 已提交
1697
  simd_prefix(dst, src, VEX_SIMD_F3);
1698
  emit_int8(0x7F);
1699 1700 1701
  emit_operand(src, dst);
}

1702 1703 1704 1705 1706
// Move Unaligned 256bit Vector
void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  assert(UseAVX, "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1707 1708
  emit_int8(0x6F);
  emit_int8((unsigned char)(0xC0 | encode));
1709 1710 1711 1712 1713 1714 1715
}

void Assembler::vmovdqu(XMMRegister dst, Address src) {
  assert(UseAVX, "");
  InstructionMark im(this);
  bool vector256 = true;
  vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1716
  emit_int8(0x6F);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
  emit_operand(dst, src);
}

void Assembler::vmovdqu(Address dst, XMMRegister src) {
  assert(UseAVX, "");
  InstructionMark im(this);
  bool vector256 = true;
  // swap src<->dst for encoding
  assert(src != xnoreg, "sanity");
  vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1727
  emit_int8(0x7F);
1728 1729 1730
  emit_operand(src, dst);
}

1731 1732 1733 1734
// Uses zero extension on 64bit

void Assembler::movl(Register dst, int32_t imm32) {
  int encode = prefix_and_encode(dst->encoding());
1735
  emit_int8((unsigned char)(0xB8 | encode));
1736
  emit_int32(imm32);
D
duke 已提交
1737 1738
}

1739 1740
void Assembler::movl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1741 1742
  emit_int8((unsigned char)0x8B);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1743 1744
}

1745
void Assembler::movl(Register dst, Address src) {
D
duke 已提交
1746
  InstructionMark im(this);
1747
  prefix(src, dst);
1748
  emit_int8((unsigned char)0x8B);
D
duke 已提交
1749 1750 1751
  emit_operand(dst, src);
}

1752 1753 1754
void Assembler::movl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
1755
  emit_int8((unsigned char)0xC7);
1756
  emit_operand(rax, dst, 4);
1757
  emit_int32(imm32);
D
duke 已提交
1758 1759
}

1760 1761 1762
void Assembler::movl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
1763
  emit_int8((unsigned char)0x89);
1764
  emit_operand(src, dst);
D
duke 已提交
1765 1766
}

1767 1768 1769 1770 1771
// New cpus require to use movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
void Assembler::movlpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1772
  emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
D
duke 已提交
1773 1774
}

1775 1776
void Assembler::movq( MMXRegister dst, Address src ) {
  assert( VM_Version::supports_mmx(), "" );
1777 1778
  emit_int8(0x0F);
  emit_int8(0x6F);
1779
  emit_operand(dst, src);
D
duke 已提交
1780 1781
}

1782 1783
void Assembler::movq( Address dst, MMXRegister src ) {
  assert( VM_Version::supports_mmx(), "" );
1784 1785
  emit_int8(0x0F);
  emit_int8(0x7F);
1786 1787 1788 1789 1790 1791 1792
  // workaround gcc (3.2.1-7a) bug
  // In that version of gcc with only an emit_operand(MMX, Address)
  // gcc will tail jump and try and reverse the parameters completely
  // obliterating dst in the process. By having a version available
  // that doesn't need to swap the args at the tail jump the bug is
  // avoided.
  emit_operand(dst, src);
D
duke 已提交
1793 1794
}

1795 1796
void Assembler::movq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1797
  InstructionMark im(this);
K
kvn 已提交
1798
  simd_prefix(dst, src, VEX_SIMD_F3);
1799
  emit_int8(0x7E);
D
duke 已提交
1800 1801 1802
  emit_operand(dst, src);
}

1803 1804
void Assembler::movq(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1805
  InstructionMark im(this);
K
kvn 已提交
1806
  simd_prefix(dst, src, VEX_SIMD_66);
1807
  emit_int8((unsigned char)0xD6);
1808
  emit_operand(src, dst);
D
duke 已提交
1809 1810
}

1811
void Assembler::movsbl(Register dst, Address src) { // movsxb
D
duke 已提交
1812
  InstructionMark im(this);
1813
  prefix(src, dst);
1814 1815
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
1816
  emit_operand(dst, src);
D
duke 已提交
1817 1818
}

1819 1820 1821
void Assembler::movsbl(Register dst, Register src) { // movsxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1822 1823 1824
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1825 1826
}

1827 1828
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1829
  emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
D
duke 已提交
1830 1831
}

1832 1833
void Assembler::movsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1834
  emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
D
duke 已提交
1835 1836
}

1837 1838
void Assembler::movsd(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1839
  InstructionMark im(this);
K
kvn 已提交
1840
  simd_prefix(dst, src, VEX_SIMD_F2);
1841
  emit_int8(0x11);
1842
  emit_operand(src, dst);
D
duke 已提交
1843 1844
}

1845 1846
void Assembler::movss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1847
  emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
D
duke 已提交
1848 1849
}

1850 1851
void Assembler::movss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1852
  emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
D
duke 已提交
1853 1854
}

1855 1856 1857
void Assembler::movss(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
K
kvn 已提交
1858
  simd_prefix(dst, src, VEX_SIMD_F3);
1859
  emit_int8(0x11);
1860
  emit_operand(src, dst);
D
duke 已提交
1861 1862
}

1863
void Assembler::movswl(Register dst, Address src) { // movsxw
D
duke 已提交
1864
  InstructionMark im(this);
1865
  prefix(src, dst);
1866 1867
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBF);
D
duke 已提交
1868 1869 1870
  emit_operand(dst, src);
}

1871
void Assembler::movswl(Register dst, Register src) { // movsxw
D
duke 已提交
1872
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1873 1874 1875
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBF);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1876 1877
}

1878 1879
void Assembler::movw(Address dst, int imm16) {
  InstructionMark im(this);
D
duke 已提交
1880

1881
  emit_int8(0x66); // switch to 16-bit mode
1882
  prefix(dst);
1883
  emit_int8((unsigned char)0xC7);
1884
  emit_operand(rax, dst, 2);
1885
  emit_int16(imm16);
D
duke 已提交
1886 1887
}

1888
void Assembler::movw(Register dst, Address src) {
D
duke 已提交
1889
  InstructionMark im(this);
1890
  emit_int8(0x66);
1891
  prefix(src, dst);
1892
  emit_int8((unsigned char)0x8B);
1893
  emit_operand(dst, src);
D
duke 已提交
1894 1895
}

1896 1897
void Assembler::movw(Address dst, Register src) {
  InstructionMark im(this);
1898
  emit_int8(0x66);
1899
  prefix(dst, src);
1900
  emit_int8((unsigned char)0x89);
1901
  emit_operand(src, dst);
D
duke 已提交
1902 1903
}

1904
void Assembler::movzbl(Register dst, Address src) { // movzxb
D
duke 已提交
1905
  InstructionMark im(this);
1906
  prefix(src, dst);
1907 1908
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB6);
1909
  emit_operand(dst, src);
D
duke 已提交
1910 1911
}

1912 1913 1914
void Assembler::movzbl(Register dst, Register src) { // movzxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1915 1916 1917
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB6);
  emit_int8(0xC0 | encode);
D
duke 已提交
1918 1919
}

1920 1921 1922
void Assembler::movzwl(Register dst, Address src) { // movzxw
  InstructionMark im(this);
  prefix(src, dst);
1923 1924
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB7);
1925
  emit_operand(dst, src);
D
duke 已提交
1926 1927
}

1928
void Assembler::movzwl(Register dst, Register src) { // movzxw
D
duke 已提交
1929
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1930 1931 1932
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB7);
  emit_int8(0xC0 | encode);
D
duke 已提交
1933 1934 1935 1936 1937
}

void Assembler::mull(Address src) {
  InstructionMark im(this);
  prefix(src);
1938
  emit_int8((unsigned char)0xF7);
D
duke 已提交
1939 1940 1941 1942 1943
  emit_operand(rsp, src);
}

void Assembler::mull(Register src) {
  int encode = prefix_and_encode(src->encoding());
1944 1945
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xE0 | encode));
D
duke 已提交
1946 1947
}

1948 1949
void Assembler::mulsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1950
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
D
duke 已提交
1951 1952
}

1953 1954
void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1955
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
D
duke 已提交
1956 1957
}

1958 1959
void Assembler::mulss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1960
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
D
duke 已提交
1961 1962
}

1963 1964
void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1965
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
D
duke 已提交
1966 1967
}

1968
void Assembler::negl(Register dst) {
D
duke 已提交
1969
  int encode = prefix_and_encode(dst->encoding());
1970 1971
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD8 | encode));
D
duke 已提交
1972 1973
}

1974 1975 1976 1977 1978 1979 1980
void Assembler::nop(int i) {
#ifdef ASSERT
  assert(i > 0, " ");
  // The fancy nops aren't currently recognized by debuggers making it a
  // pain to disassemble code while debugging. If asserts are on clearly
  // speed is not an issue so simply use the single byte traditional nop
  // to do alignment.
D
duke 已提交
1981

1982
  for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
1983
  return;
D
duke 已提交
1984

1985
#endif // ASSERT
D
duke 已提交
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
  if (UseAddressNop && VM_Version::is_intel()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
D
duke 已提交
2001

2002
    // The rest coding is Intel specific - don't use consecutive address nops
D
duke 已提交
2003

2004 2005 2006 2007
    // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
D
duke 已提交
2008

2009 2010 2011
    while(i >= 15) {
      // For Intel don't generate consecutive addess nops (mix with regular nops)
      i -= 15;
2012 2013 2014
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
2015
      addr_nop_8();
2016 2017 2018 2019 2020
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
      emit_int8((unsigned char)0x90);
                         // nop
2021 2022 2023
    }
    switch (i) {
      case 14:
2024
        emit_int8(0x66); // size prefix
2025
      case 13:
2026
        emit_int8(0x66); // size prefix
2027 2028
      case 12:
        addr_nop_8();
2029 2030 2031 2032 2033
        emit_int8(0x66); // size prefix
        emit_int8(0x66); // size prefix
        emit_int8(0x66); // size prefix
        emit_int8((unsigned char)0x90);
                         // nop
2034 2035
        break;
      case 11:
2036
        emit_int8(0x66); // size prefix
2037
      case 10:
2038
        emit_int8(0x66); // size prefix
2039
      case 9:
2040
        emit_int8(0x66); // size prefix
2041 2042 2043 2044 2045 2046 2047
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
2048
        emit_int8(0x66); // size prefix
2049 2050 2051 2052 2053 2054 2055 2056
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2057
        emit_int8(0x66); // size prefix
2058
      case 2:
2059
        emit_int8(0x66); // size prefix
2060
      case 1:
2061 2062
        emit_int8((unsigned char)0x90);
                         // nop
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }
  if (UseAddressNop && VM_Version::is_amd()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00

    // The rest coding is AMD specific - use consecutive address nops

    // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //     Size prefixes (0x66) are added for larger sizes

    while(i >= 22) {
      i -= 11;
2095 2096 2097
      emit_int8(0x66); // size prefix
      emit_int8(0x66); // size prefix
      emit_int8(0x66); // size prefix
2098 2099 2100 2101 2102 2103
      addr_nop_8();
    }
    // Generate first nop for size between 21-12
    switch (i) {
      case 21:
        i -= 1;
2104
        emit_int8(0x66); // size prefix
2105 2106 2107
      case 20:
      case 19:
        i -= 1;
2108
        emit_int8(0x66); // size prefix
2109 2110 2111
      case 18:
      case 17:
        i -= 1;
2112
        emit_int8(0x66); // size prefix
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
      case 16:
      case 15:
        i -= 8;
        addr_nop_8();
        break;
      case 14:
      case 13:
        i -= 7;
        addr_nop_7();
        break;
      case 12:
        i -= 6;
2125
        emit_int8(0x66); // size prefix
2126 2127 2128 2129 2130 2131 2132 2133 2134
        addr_nop_5();
        break;
      default:
        assert(i < 12, " ");
    }

    // Generate second nop for size between 11-1
    switch (i) {
      case 11:
2135
        emit_int8(0x66); // size prefix
2136
      case 10:
2137
        emit_int8(0x66); // size prefix
2138
      case 9:
2139
        emit_int8(0x66); // size prefix
2140 2141 2142 2143 2144 2145 2146
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
2147
        emit_int8(0x66); // size prefix
2148 2149 2150 2151 2152 2153 2154 2155
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2156
        emit_int8(0x66); // size prefix
2157
      case 2:
2158
        emit_int8(0x66); // size prefix
2159
      case 1:
2160 2161
        emit_int8((unsigned char)0x90);
                         // nop
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }

  // Using nops with size prefixes "0x66 0x90".
  // From AMD Optimization Guide:
  //  1: 0x90
  //  2: 0x66 0x90
  //  3: 0x66 0x66 0x90
  //  4: 0x66 0x66 0x66 0x90
  //  5: 0x66 0x66 0x90 0x66 0x90
  //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  //
  while(i > 12) {
    i -= 4;
2184 2185 2186 2187 2188
    emit_int8(0x66); // size prefix
    emit_int8(0x66);
    emit_int8(0x66);
    emit_int8((unsigned char)0x90);
                     // nop
2189 2190 2191 2192 2193
  }
  // 1 - 12 nops
  if(i > 8) {
    if(i > 9) {
      i -= 1;
2194
      emit_int8(0x66);
2195 2196
    }
    i -= 3;
2197 2198 2199
    emit_int8(0x66);
    emit_int8(0x66);
    emit_int8((unsigned char)0x90);
2200 2201 2202 2203 2204
  }
  // 1 - 8 nops
  if(i > 4) {
    if(i > 6) {
      i -= 1;
2205
      emit_int8(0x66);
2206 2207
    }
    i -= 3;
2208 2209 2210
    emit_int8(0x66);
    emit_int8(0x66);
    emit_int8((unsigned char)0x90);
2211 2212 2213
  }
  switch (i) {
    case 4:
2214
      emit_int8(0x66);
2215
    case 3:
2216
      emit_int8(0x66);
2217
    case 2:
2218
      emit_int8(0x66);
2219
    case 1:
2220
      emit_int8((unsigned char)0x90);
2221 2222 2223 2224
      break;
    default:
      assert(i == 0, " ");
  }
D
duke 已提交
2225 2226
}

2227 2228
void Assembler::notl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2229 2230
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD0 | encode));
D
duke 已提交
2231 2232
}

2233
void Assembler::orl(Address dst, int32_t imm32) {
D
duke 已提交
2234
  InstructionMark im(this);
2235
  prefix(dst);
2236
  emit_arith_operand(0x81, rcx, dst, imm32);
D
duke 已提交
2237 2238
}

2239 2240 2241
void Assembler::orl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC8, dst, imm32);
D
duke 已提交
2242 2243
}

2244
void Assembler::orl(Register dst, Address src) {
D
duke 已提交
2245
  InstructionMark im(this);
2246
  prefix(src, dst);
2247
  emit_int8(0x0B);
D
duke 已提交
2248 2249 2250
  emit_operand(dst, src);
}

2251 2252 2253
void Assembler::orl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
D
duke 已提交
2254 2255
}

K
kvn 已提交
2256 2257 2258
void Assembler::packuswb(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2259
  emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
K
kvn 已提交
2260 2261 2262 2263
}

void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2264
  emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
K
kvn 已提交
2265
}
C
cfang 已提交
2266

2267 2268 2269 2270 2271 2272
void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
2273 2274 2275 2276 2277
  assert(VM_Version::supports_avx2(), "");
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
  emit_int8(0x00);
  emit_int8(0xC0 | encode);
  emit_int8(imm8);
2278 2279
}

C
cfang 已提交
2280 2281 2282
void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  assert(VM_Version::supports_sse4_2(), "");
  InstructionMark im(this);
K
kvn 已提交
2283
  simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2284
  emit_int8(0x61);
C
cfang 已提交
2285
  emit_operand(dst, src);
2286
  emit_int8(imm8);
C
cfang 已提交
2287 2288 2289 2290
}

void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  assert(VM_Version::supports_sse4_2(), "");
2291
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2292 2293 2294
  emit_int8(0x61);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(imm8);
C
cfang 已提交
2295 2296
}

K
kvn 已提交
2297 2298 2299 2300
void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  assert(VM_Version::supports_sse4_1(), "");
  InstructionMark im(this);
  simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2301
  emit_int8(0x30);
K
kvn 已提交
2302 2303 2304 2305 2306
  emit_operand(dst, src);
}

void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");
2307
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2308 2309
  emit_int8(0x30);
  emit_int8((unsigned char)(0xC0 | encode));
K
kvn 已提交
2310 2311
}

2312 2313
// generic
void Assembler::pop(Register dst) {
D
duke 已提交
2314
  int encode = prefix_and_encode(dst->encoding());
2315
  emit_int8(0x58 | encode);
D
duke 已提交
2316 2317
}

2318 2319 2320
void Assembler::popcntl(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
2321
  emit_int8((unsigned char)0xF3);
2322
  prefix(src, dst);
2323 2324
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB8);
2325 2326 2327 2328 2329
  emit_operand(dst, src);
}

void Assembler::popcntl(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
2330
  emit_int8((unsigned char)0xF3);
2331
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
2332 2333 2334
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB8);
  emit_int8((unsigned char)(0xC0 | encode));
2335 2336
}

2337
void Assembler::popf() {
2338
  emit_int8((unsigned char)0x9D);
D
duke 已提交
2339 2340
}

R
roland 已提交
2341
#ifndef _LP64 // no 32bit push/pop on amd64
2342 2343 2344 2345
void Assembler::popl(Address dst) {
  // NOTE: this will adjust stack by 8byte on 64bits
  InstructionMark im(this);
  prefix(dst);
2346
  emit_int8((unsigned char)0x8F);
2347
  emit_operand(rax, dst);
D
duke 已提交
2348
}
R
roland 已提交
2349
#endif
D
duke 已提交
2350

2351 2352
void Assembler::prefetch_prefix(Address src) {
  prefix(src);
2353
  emit_int8(0x0F);
D
duke 已提交
2354 2355
}

2356
void Assembler::prefetchnta(Address src) {
2357
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2358 2359
  InstructionMark im(this);
  prefetch_prefix(src);
2360
  emit_int8(0x18);
2361
  emit_operand(rax, src); // 0, src
D
duke 已提交
2362 2363
}

2364
void Assembler::prefetchr(Address src) {
2365
  assert(VM_Version::supports_3dnow_prefetch(), "must support");
2366 2367
  InstructionMark im(this);
  prefetch_prefix(src);
2368
  emit_int8(0x0D);
2369
  emit_operand(rax, src); // 0, src
D
duke 已提交
2370 2371
}

2372 2373 2374 2375
void Assembler::prefetcht0(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
2376
  emit_int8(0x18);
2377
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2378 2379
}

2380 2381
void Assembler::prefetcht1(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
D
duke 已提交
2382
  InstructionMark im(this);
2383
  prefetch_prefix(src);
2384
  emit_int8(0x18);
2385
  emit_operand(rdx, src); // 2, src
D
duke 已提交
2386 2387
}

2388 2389 2390 2391
void Assembler::prefetcht2(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
2392
  emit_int8(0x18);
2393
  emit_operand(rbx, src); // 3, src
D
duke 已提交
2394 2395
}

2396
void Assembler::prefetchw(Address src) {
2397
  assert(VM_Version::supports_3dnow_prefetch(), "must support");
D
duke 已提交
2398
  InstructionMark im(this);
2399
  prefetch_prefix(src);
2400
  emit_int8(0x0D);
2401
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2402 2403
}

2404
void Assembler::prefix(Prefix p) {
2405
  emit_int8(p);
D
duke 已提交
2406 2407
}

2408 2409 2410
void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_ssse3(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2411 2412
  emit_int8(0x00);
  emit_int8((unsigned char)(0xC0 | encode));
2413 2414 2415 2416 2417 2418
}

void Assembler::pshufb(XMMRegister dst, Address src) {
  assert(VM_Version::supports_ssse3(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2419
  emit_int8(0x00);
2420 2421 2422
  emit_operand(dst, src);
}

2423 2424 2425
void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2426
  emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2427
  emit_int8(mode & 0xFF);
2428

D
duke 已提交
2429 2430
}

2431 2432 2433
void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
2434
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
D
duke 已提交
2435
  InstructionMark im(this);
K
kvn 已提交
2436
  simd_prefix(dst, src, VEX_SIMD_66);
2437
  emit_int8(0x70);
2438
  emit_operand(dst, src);
2439
  emit_int8(mode & 0xFF);
D
duke 已提交
2440 2441
}

2442 2443 2444
void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2445
  emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2446
  emit_int8(mode & 0xFF);
D
duke 已提交
2447 2448
}

2449 2450 2451
void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
2452
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
D
duke 已提交
2453
  InstructionMark im(this);
K
kvn 已提交
2454
  simd_prefix(dst, src, VEX_SIMD_F2);
2455
  emit_int8(0x70);
D
duke 已提交
2456
  emit_operand(dst, src);
2457
  emit_int8(mode & 0xFF);
D
duke 已提交
2458 2459
}

2460 2461 2462
void Assembler::psrldq(XMMRegister dst, int shift) {
  // Shift 128 bit value in xmm register by number of bytes.
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
2463
  int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2464 2465 2466
  emit_int8(0x73);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift);
2467 2468
}

C
cfang 已提交
2469 2470
void Assembler::ptest(XMMRegister dst, Address src) {
  assert(VM_Version::supports_sse4_1(), "");
K
kvn 已提交
2471
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
C
cfang 已提交
2472
  InstructionMark im(this);
K
kvn 已提交
2473
  simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2474
  emit_int8(0x17);
C
cfang 已提交
2475 2476 2477 2478 2479
  emit_operand(dst, src);
}

void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");
2480
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2481 2482
  emit_int8(0x17);
  emit_int8((unsigned char)(0xC0 | encode));
C
cfang 已提交
2483 2484
}

2485 2486 2487 2488 2489 2490 2491
void Assembler::vptest(XMMRegister dst, Address src) {
  assert(VM_Version::supports_avx(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(dst != xnoreg, "sanity");
  int dst_enc = dst->encoding();
  // swap src<->dst for encoding
2492
  vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
  emit_int8(0x17);
  emit_operand(dst, src);
}

void Assembler::vptest(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  emit_int8(0x17);
  emit_int8((unsigned char)(0xC0 | encode));
}

K
kvn 已提交
2505 2506 2507
void Assembler::punpcklbw(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2508
  emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
K
kvn 已提交
2509 2510
}

2511 2512
void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2513
  emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
D
duke 已提交
2514 2515
}

K
kvn 已提交
2516 2517 2518
void Assembler::punpckldq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2519
  emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
K
kvn 已提交
2520 2521 2522 2523
}

void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2524
  emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
K
kvn 已提交
2525 2526
}

K
kvn 已提交
2527 2528
void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2529
  emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
K
kvn 已提交
2530 2531
}

2532 2533 2534
void Assembler::push(int32_t imm32) {
  // in 64bits we push 64bits onto the stack but only
  // take a 32bit immediate
2535
  emit_int8(0x68);
2536
  emit_int32(imm32);
D
duke 已提交
2537 2538
}

2539 2540 2541
void Assembler::push(Register src) {
  int encode = prefix_and_encode(src->encoding());

2542
  emit_int8(0x50 | encode);
D
duke 已提交
2543 2544
}

2545
void Assembler::pushf() {
2546
  emit_int8((unsigned char)0x9C);
D
duke 已提交
2547 2548
}

R
roland 已提交
2549
#ifndef _LP64 // no 32bit push/pop on amd64
2550 2551 2552 2553
void Assembler::pushl(Address src) {
  // Note this will push 64bit on 64bit
  InstructionMark im(this);
  prefix(src);
2554
  emit_int8((unsigned char)0xFF);
2555
  emit_operand(rsi, src);
D
duke 已提交
2556
}
R
roland 已提交
2557
#endif
D
duke 已提交
2558

2559 2560 2561 2562
void Assembler::rcll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1) {
2563 2564
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xD0 | encode));
2565
  } else {
2566 2567 2568
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)0xD0 | encode);
    emit_int8(imm8);
2569
  }
D
duke 已提交
2570 2571
}

2572 2573 2574
// copies data from [esi] to [edi] using rcx pointer sized words
// generic
void Assembler::rep_mov() {
2575
  emit_int8((unsigned char)0xF3);
2576 2577
  // MOVSQ
  LP64_ONLY(prefix(REX_W));
2578
  emit_int8((unsigned char)0xA5);
D
duke 已提交
2579 2580
}

2581 2582 2583 2584 2585 2586 2587
// sets rcx bytes with rax, value at [edi]
void Assembler::rep_stosb() {
  emit_int8((unsigned char)0xF3); // REP
  LP64_ONLY(prefix(REX_W));
  emit_int8((unsigned char)0xAA); // STOSB
}

2588 2589
// sets rcx pointer sized words with rax, value at [edi]
// generic
2590 2591 2592
void Assembler::rep_stos() {
  emit_int8((unsigned char)0xF3); // REP
  LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
2593
  emit_int8((unsigned char)0xAB);
2594 2595 2596 2597 2598
}

// scans rcx pointer sized words at [edi] for occurance of rax,
// generic
void Assembler::repne_scan() { // repne_scan
2599
  emit_int8((unsigned char)0xF2);
2600 2601
  // SCASQ
  LP64_ONLY(prefix(REX_W));
2602
  emit_int8((unsigned char)0xAF);
2603 2604 2605 2606 2607 2608
}

#ifdef _LP64
// scans rcx 4 byte words at [edi] for occurance of rax,
// generic
void Assembler::repne_scanl() { // repne_scan
2609
  emit_int8((unsigned char)0xF2);
2610
  // SCASL
2611
  emit_int8((unsigned char)0xAF);
2612 2613 2614 2615 2616
}
#endif

void Assembler::ret(int imm16) {
  if (imm16 == 0) {
2617
    emit_int8((unsigned char)0xC3);
2618
  } else {
2619
    emit_int8((unsigned char)0xC2);
2620
    emit_int16(imm16);
2621 2622 2623 2624 2625 2626 2627 2628
  }
}

void Assembler::sahf() {
#ifdef _LP64
  // Not supported in 64bit mode
  ShouldNotReachHere();
#endif
2629
  emit_int8((unsigned char)0x9E);
2630 2631 2632 2633 2634 2635
}

void Assembler::sarl(Register dst, int imm8) {
  int encode = prefix_and_encode(dst->encoding());
  assert(isShiftCount(imm8), "illegal shift count");
  if (imm8 == 1) {
2636 2637
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xF8 | encode));
2638
  } else {
2639 2640 2641
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xF8 | encode));
    emit_int8(imm8);
2642 2643 2644 2645 2646
  }
}

void Assembler::sarl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2647 2648
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xF8 | encode));
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
}

void Assembler::sbbl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}

void Assembler::sbbl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD8, dst, imm32);
}


void Assembler::sbbl(Register dst, Address src) {
D
duke 已提交
2664 2665
  InstructionMark im(this);
  prefix(src, dst);
2666
  emit_int8(0x1B);
D
duke 已提交
2667 2668 2669
  emit_operand(dst, src);
}

2670 2671 2672
void Assembler::sbbl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
D
duke 已提交
2673 2674
}

2675 2676 2677
void Assembler::setb(Condition cc, Register dst) {
  assert(0 <= cc && cc < 16, "illegal cc");
  int encode = prefix_and_encode(dst->encoding(), true);
2678 2679 2680
  emit_int8(0x0F);
  emit_int8((unsigned char)0x90 | cc);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
2681 2682
}

2683 2684 2685 2686
void Assembler::shll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1 ) {
2687 2688
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xE0 | encode));
2689
  } else {
2690 2691 2692
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xE0 | encode));
    emit_int8(imm8);
2693
  }
D
duke 已提交
2694 2695
}

2696 2697
void Assembler::shll(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2698 2699
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xE0 | encode));
2700 2701 2702 2703 2704
}

void Assembler::shrl(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
2705 2706 2707
  emit_int8((unsigned char)0xC1);
  emit_int8((unsigned char)(0xE8 | encode));
  emit_int8(imm8);
2708 2709 2710 2711
}

void Assembler::shrl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2712 2713
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xE8 | encode));
2714 2715 2716 2717
}

// copies a single word from [esi] to [edi]
void Assembler::smovl() {
2718
  emit_int8((unsigned char)0xA5);
2719 2720 2721 2722
}

void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2723
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
D
duke 已提交
2724 2725
}

2726 2727
void Assembler::sqrtsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2728
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2729 2730 2731
}

void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
K
kvn 已提交
2732
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2733
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2734 2735
}

2736
void Assembler::std() {
2737
  emit_int8((unsigned char)0xFD);
2738 2739
}

2740
void Assembler::sqrtss(XMMRegister dst, Address src) {
K
kvn 已提交
2741
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2742
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2743 2744
}

2745 2746 2747 2748
void Assembler::stmxcsr( Address dst) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  prefix(dst);
2749 2750
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
2751
  emit_operand(as_Register(3), dst);
D
duke 已提交
2752 2753
}

2754 2755 2756
void Assembler::subl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
2757
  emit_arith_operand(0x81, rbp, dst, imm32);
2758 2759 2760 2761 2762
}

void Assembler::subl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
2763
  emit_int8(0x29);
2764 2765 2766
  emit_operand(src, dst);
}

2767 2768 2769 2770 2771
void Assembler::subl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xE8, dst, imm32);
}

2772 2773 2774 2775 2776 2777
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::subl_imm32(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith_imm32(0x81, 0xE8, dst, imm32);
}

2778
void Assembler::subl(Register dst, Address src) {
D
duke 已提交
2779 2780
  InstructionMark im(this);
  prefix(src, dst);
2781
  emit_int8(0x2B);
D
duke 已提交
2782 2783 2784
  emit_operand(dst, src);
}

2785 2786 2787 2788 2789 2790 2791
void Assembler::subl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2792
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
D
duke 已提交
2793 2794
}

2795 2796
void Assembler::subsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2797
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
D
duke 已提交
2798 2799
}

2800 2801
void Assembler::subss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2802
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
D
duke 已提交
2803 2804
}

2805 2806
void Assembler::subss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2807
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
D
duke 已提交
2808 2809
}

2810 2811 2812 2813
void Assembler::testb(Register dst, int imm8) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  (void) prefix_and_encode(dst->encoding(), true);
  emit_arith_b(0xF6, 0xC0, dst, imm8);
D
duke 已提交
2814 2815
}

2816 2817 2818 2819 2820 2821
void Assembler::testl(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
2822
    emit_int8((unsigned char)0xA9);
2823 2824
  } else {
    encode = prefix_and_encode(encode);
2825 2826
    emit_int8((unsigned char)0xF7);
    emit_int8((unsigned char)(0xC0 | encode));
2827
  }
2828
  emit_int32(imm32);
D
duke 已提交
2829 2830
}

2831 2832 2833 2834
void Assembler::testl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
}
D
duke 已提交
2835

2836 2837 2838
void Assembler::testl(Register dst, Address  src) {
  InstructionMark im(this);
  prefix(src, dst);
2839
  emit_int8((unsigned char)0x85);
2840
  emit_operand(dst, src);
D
duke 已提交
2841 2842
}

2843 2844
void Assembler::ucomisd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2845
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
D
duke 已提交
2846 2847
}

2848 2849
void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2850
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
D
duke 已提交
2851 2852
}

2853 2854
void Assembler::ucomiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2855
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2856 2857 2858 2859
}

void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2860
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2861 2862 2863 2864 2865 2866
}


void Assembler::xaddl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
2867 2868
  emit_int8(0x0F);
  emit_int8((unsigned char)0xC1);
2869 2870 2871 2872 2873 2874
  emit_operand(src, dst);
}

void Assembler::xchgl(Register dst, Address src) { // xchg
  InstructionMark im(this);
  prefix(src, dst);
2875
  emit_int8((unsigned char)0x87);
2876 2877 2878 2879 2880
  emit_operand(dst, src);
}

void Assembler::xchgl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
2881 2882
  emit_int8((unsigned char)0x87);
  emit_int8((unsigned char)(0xC0 | encode));
2883 2884
}

2885
void Assembler::xgetbv() {
2886 2887 2888
  emit_int8(0x0F);
  emit_int8(0x01);
  emit_int8((unsigned char)0xD0);
2889 2890
}

2891 2892 2893 2894 2895 2896 2897 2898
void Assembler::xorl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF0, dst, imm32);
}

void Assembler::xorl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
2899
  emit_int8(0x33);
2900 2901 2902 2903 2904 2905 2906 2907 2908
  emit_operand(dst, src);
}

void Assembler::xorl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
}


2909
// AVX 3-operands scalar float-point arithmetic instructions
2910 2911 2912

void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2913
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2914 2915 2916 2917
}

void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2918
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2919 2920 2921 2922
}

void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2923
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2924 2925 2926 2927
}

void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2928
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2929 2930 2931 2932
}

void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2933
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2934 2935 2936 2937
}

void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2938
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2939 2940 2941 2942
}

void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2943
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2944 2945 2946 2947
}

void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2948
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2949 2950 2951 2952
}

void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2953
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2954 2955 2956 2957
}

void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2958
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2959 2960 2961
}

void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
2962 2963
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2964 2965 2966 2967
}

void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2968
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2969 2970 2971 2972
}

void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2973
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2974 2975 2976 2977
}

void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2978
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2979 2980 2981 2982
}

void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2983
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2984 2985 2986 2987
}

void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2988
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2989 2990
}

2991 2992 2993 2994 2995 2996 2997
//====================VECTOR ARITHMETIC=====================================

// Float-point vector arithmetic

void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
2998 2999
}

3000 3001 3002
void Assembler::addps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3003 3004
}

3005
void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3006
  assert(VM_Version::supports_avx(), "");
3007
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3008 3009
}

3010
void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3011
  assert(VM_Version::supports_avx(), "");
3012
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3013 3014
}

3015 3016 3017
void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
K
kvn 已提交
3018 3019
}

3020
void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3021
  assert(VM_Version::supports_avx(), "");
3022
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3023 3024
}

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
}

void Assembler::subps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
}

void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
}

void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
}

void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
}

void Assembler::divps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
}

void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
}

void Assembler::andps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
}

void Assembler::andps(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
}

void Assembler::andpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
}

void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
}

void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
}

void Assembler::xorpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
}

void Assembler::xorps(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
}

void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
}


// Integer vector arithmetic
void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
}

void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
}

void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
}

void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
}

void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
}

void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
}

void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
}

void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
}

void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
}

void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3325 3326
  emit_int8(0x40);
  emit_int8((unsigned char)(0xC0 | encode));
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
}

void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3337 3338
  emit_int8(0x40);
  emit_int8((unsigned char)(0xC0 | encode));
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
}

void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  InstructionMark im(this);
  int dst_enc = dst->encoding();
  int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3352
  emit_int8(0x40);
3353 3354 3355 3356 3357 3358 3359 3360
  emit_operand(dst, src);
}

// Shift packed integers left by specified number of bits.
void Assembler::psllw(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3361 3362 3363
  emit_int8(0x71);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3364 3365 3366 3367 3368 3369
}

void Assembler::pslld(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3370 3371 3372
  emit_int8(0x72);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3373 3374 3375 3376 3377 3378
}

void Assembler::psllq(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3379 3380 3381
  emit_int8(0x73);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
}

void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
}

void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
}

void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
}

void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3403
  emit_int8(shift & 0xFF);
3404 3405 3406 3407 3408 3409
}

void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3410
  emit_int8(shift & 0xFF);
3411 3412 3413 3414 3415 3416
}

void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3417
  emit_int8(shift & 0xFF);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
}

void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
}

// Shift packed integers logically right by specified number of bits.
void Assembler::psrlw(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3440 3441 3442
  emit_int8(0x71);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3443 3444 3445 3446 3447 3448
}

void Assembler::psrld(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3449 3450 3451
  emit_int8(0x72);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3452 3453 3454 3455 3456 3457 3458 3459
}

void Assembler::psrlq(XMMRegister dst, int shift) {
  // Do not confuse it with psrldq SSE2 instruction which
  // shifts 128 bit value in xmm register by number of bytes.
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3460 3461 3462
  emit_int8(0x73);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
}

void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
}

void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
}

void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
}

void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3484
  emit_int8(shift & 0xFF);
3485 3486 3487 3488 3489 3490
}

void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3491
  emit_int8(shift & 0xFF);
3492 3493 3494 3495 3496 3497
}

void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3498
  emit_int8(shift & 0xFF);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
}

void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
}

// Shift packed integers arithmetically right by specified number of bits.
void Assembler::psraw(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3521 3522 3523
  emit_int8(0x71);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3524 3525 3526 3527 3528 3529
}

void Assembler::psrad(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3530 3531 3532
  emit_int8(0x72);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
}

void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
}

void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
}

void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3549
  emit_int8(shift & 0xFF);
3550 3551 3552 3553 3554 3555
}

void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3556
  emit_int8(shift & 0xFF);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
}

void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
}


// AND packed integers
void Assembler::pand(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
}

void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::por(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
}

void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
}

void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
}


void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3621 3622
  emit_int8(0x18);
  emit_int8((unsigned char)(0xC0 | encode));
3623 3624
  // 0x00 - insert into lower 128 bits
  // 0x01 - insert into upper 128 bits
3625
  emit_int8(0x01);
3626 3627
}

3628 3629 3630 3631 3632 3633 3634 3635
void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  assert(VM_Version::supports_avx(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(dst != xnoreg, "sanity");
  int dst_enc = dst->encoding();
  // swap src<->dst for encoding
  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3636
  emit_int8(0x18);
3637 3638
  emit_operand(dst, src);
  // 0x01 - insert into upper 128 bits
3639
  emit_int8(0x01);
3640 3641 3642 3643 3644 3645 3646 3647 3648
}

void Assembler::vextractf128h(Address dst, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(src != xnoreg, "sanity");
  int src_enc = src->encoding();
  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3649
  emit_int8(0x19);
3650 3651
  emit_operand(src, dst);
  // 0x01 - extract from upper 128 bits
3652
  emit_int8(0x01);
3653 3654
}

3655 3656 3657
void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx2(), "");
  bool vector256 = true;
K
kvn 已提交
3658
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3659 3660
  emit_int8(0x38);
  emit_int8((unsigned char)(0xC0 | encode));
K
kvn 已提交
3661 3662
  // 0x00 - insert into lower 128 bits
  // 0x01 - insert into upper 128 bits
3663
  emit_int8(0x01);
K
kvn 已提交
3664 3665
}

3666 3667 3668 3669 3670 3671 3672 3673
void Assembler::vinserti128h(XMMRegister dst, Address src) {
  assert(VM_Version::supports_avx2(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(dst != xnoreg, "sanity");
  int dst_enc = dst->encoding();
  // swap src<->dst for encoding
  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3674
  emit_int8(0x38);
3675 3676
  emit_operand(dst, src);
  // 0x01 - insert into upper 128 bits
3677
  emit_int8(0x01);
3678 3679 3680 3681 3682 3683 3684 3685 3686
}

void Assembler::vextracti128h(Address dst, XMMRegister src) {
  assert(VM_Version::supports_avx2(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(src != xnoreg, "sanity");
  int src_enc = src->encoding();
  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3687
  emit_int8(0x39);
3688 3689
  emit_operand(src, dst);
  // 0x01 - extract from upper 128 bits
3690
  emit_int8(0x01);
3691 3692
}

3693 3694 3695 3696 3697 3698 3699 3700 3701
// duplicate 4-bytes integer data from src into 8 locations in dest
void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_avx2(), "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  emit_int8(0x58);
  emit_int8((unsigned char)(0xC0 | encode));
}

3702 3703 3704
void Assembler::vzeroupper() {
  assert(VM_Version::supports_avx(), "");
  (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3705
  emit_int8(0x77);
3706 3707
}

3708

3709 3710 3711 3712 3713 3714
#ifndef _LP64
// 32bit only pieces of the assembler

void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT
  InstructionMark im(this);
3715 3716
  emit_int8((unsigned char)0x81);
  emit_int8((unsigned char)(0xF8 | src1->encoding()));
3717 3718 3719 3720 3721 3722
  emit_data(imm32, rspec, 0);
}

void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  InstructionMark im(this);
3723
  emit_int8((unsigned char)0x81);
3724 3725 3726 3727 3728 3729 3730 3731 3732
  emit_operand(rdi, src1);
  emit_data(imm32, rspec, 0);
}

// The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
// into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchg8(Address adr) {
  InstructionMark im(this);
3733 3734
  emit_int8(0x0F);
  emit_int8((unsigned char)0xC7);
3735 3736 3737 3738 3739
  emit_operand(rcx, adr);
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
3740
 emit_int8(0x48 | dst->encoding());
3741 3742 3743 3744 3745 3746 3747
}

#endif // _LP64

// 64bit typically doesn't use the x87 but needs to for the trig funcs

void Assembler::fabs() {
3748 3749
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE1);
3750 3751 3752 3753 3754 3755 3756 3757
}

void Assembler::fadd(int i) {
  emit_farith(0xD8, 0xC0, i);
}

void Assembler::fadd_d(Address src) {
  InstructionMark im(this);
3758
  emit_int8((unsigned char)0xDC);
3759 3760 3761 3762 3763
  emit_operand32(rax, src);
}

void Assembler::fadd_s(Address src) {
  InstructionMark im(this);
3764
  emit_int8((unsigned char)0xD8);
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
  emit_operand32(rax, src);
}

void Assembler::fadda(int i) {
  emit_farith(0xDC, 0xC0, i);
}

void Assembler::faddp(int i) {
  emit_farith(0xDE, 0xC0, i);
}

void Assembler::fchs() {
3777 3778
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE0);
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
}

void Assembler::fcom(int i) {
  emit_farith(0xD8, 0xD0, i);
}

void Assembler::fcomp(int i) {
  emit_farith(0xD8, 0xD8, i);
}

void Assembler::fcomp_d(Address src) {
  InstructionMark im(this);
3791
  emit_int8((unsigned char)0xDC);
3792 3793 3794 3795 3796
  emit_operand32(rbx, src);
}

void Assembler::fcomp_s(Address src) {
  InstructionMark im(this);
3797
  emit_int8((unsigned char)0xD8);
3798 3799 3800 3801
  emit_operand32(rbx, src);
}

void Assembler::fcompp() {
3802 3803
  emit_int8((unsigned char)0xDE);
  emit_int8((unsigned char)0xD9);
3804 3805 3806
}

void Assembler::fcos() {
3807 3808
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFF);
3809 3810 3811
}

void Assembler::fdecstp() {
3812 3813
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF6);
3814 3815 3816 3817 3818 3819 3820 3821
}

void Assembler::fdiv(int i) {
  emit_farith(0xD8, 0xF0, i);
}

void Assembler::fdiv_d(Address src) {
  InstructionMark im(this);
3822
  emit_int8((unsigned char)0xDC);
3823 3824 3825 3826 3827
  emit_operand32(rsi, src);
}

void Assembler::fdiv_s(Address src) {
  InstructionMark im(this);
3828
  emit_int8((unsigned char)0xD8);
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
  emit_operand32(rsi, src);
}

void Assembler::fdiva(int i) {
  emit_farith(0xDC, 0xF8, i);
}

// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
//       is erroneous for some of the floating-point instructions below.

void Assembler::fdivp(int i) {
  emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
}

void Assembler::fdivr(int i) {
  emit_farith(0xD8, 0xF8, i);
}

void Assembler::fdivr_d(Address src) {
  InstructionMark im(this);
3849
  emit_int8((unsigned char)0xDC);
3850 3851 3852 3853 3854
  emit_operand32(rdi, src);
}

void Assembler::fdivr_s(Address src) {
  InstructionMark im(this);
3855
  emit_int8((unsigned char)0xD8);
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
  emit_operand32(rdi, src);
}

void Assembler::fdivra(int i) {
  emit_farith(0xDC, 0xF0, i);
}

void Assembler::fdivrp(int i) {
  emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
}

void Assembler::ffree(int i) {
  emit_farith(0xDD, 0xC0, i);
}

void Assembler::fild_d(Address adr) {
  InstructionMark im(this);
3873
  emit_int8((unsigned char)0xDF);
3874 3875 3876 3877 3878
  emit_operand32(rbp, adr);
}

void Assembler::fild_s(Address adr) {
  InstructionMark im(this);
3879
  emit_int8((unsigned char)0xDB);
3880 3881 3882 3883
  emit_operand32(rax, adr);
}

void Assembler::fincstp() {
3884 3885
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF7);
3886 3887 3888
}

void Assembler::finit() {
3889 3890 3891
  emit_int8((unsigned char)0x9B);
  emit_int8((unsigned char)0xDB);
  emit_int8((unsigned char)0xE3);
3892 3893 3894 3895
}

void Assembler::fist_s(Address adr) {
  InstructionMark im(this);
3896
  emit_int8((unsigned char)0xDB);
3897 3898 3899 3900 3901
  emit_operand32(rdx, adr);
}

void Assembler::fistp_d(Address adr) {
  InstructionMark im(this);
3902
  emit_int8((unsigned char)0xDF);
3903 3904 3905 3906 3907
  emit_operand32(rdi, adr);
}

void Assembler::fistp_s(Address adr) {
  InstructionMark im(this);
3908
  emit_int8((unsigned char)0xDB);
3909 3910 3911 3912
  emit_operand32(rbx, adr);
}

void Assembler::fld1() {
3913 3914
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE8);
3915 3916 3917 3918
}

void Assembler::fld_d(Address adr) {
  InstructionMark im(this);
3919
  emit_int8((unsigned char)0xDD);
3920 3921 3922 3923 3924
  emit_operand32(rax, adr);
}

void Assembler::fld_s(Address adr) {
  InstructionMark im(this);
3925
  emit_int8((unsigned char)0xD9);
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
  emit_operand32(rax, adr);
}


void Assembler::fld_s(int index) {
  emit_farith(0xD9, 0xC0, index);
}

void Assembler::fld_x(Address adr) {
  InstructionMark im(this);
3936
  emit_int8((unsigned char)0xDB);
3937 3938 3939 3940 3941
  emit_operand32(rbp, adr);
}

void Assembler::fldcw(Address src) {
  InstructionMark im(this);
3942
  emit_int8((unsigned char)0xD9);
3943 3944 3945 3946 3947
  emit_operand32(rbp, src);
}

void Assembler::fldenv(Address src) {
  InstructionMark im(this);
3948
  emit_int8((unsigned char)0xD9);
3949 3950 3951 3952
  emit_operand32(rsp, src);
}

void Assembler::fldlg2() {
3953 3954
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xEC);
3955 3956 3957
}

void Assembler::fldln2() {
3958 3959
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xED);
3960 3961 3962
}

void Assembler::fldz() {
3963 3964
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xEE);
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
}

void Assembler::flog() {
  fldln2();
  fxch();
  fyl2x();
}

void Assembler::flog10() {
  fldlg2();
  fxch();
  fyl2x();
}

void Assembler::fmul(int i) {
  emit_farith(0xD8, 0xC8, i);
}

void Assembler::fmul_d(Address src) {
  InstructionMark im(this);
3985
  emit_int8((unsigned char)0xDC);
3986 3987 3988 3989 3990
  emit_operand32(rcx, src);
}

void Assembler::fmul_s(Address src) {
  InstructionMark im(this);
3991
  emit_int8((unsigned char)0xD8);
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
  emit_operand32(rcx, src);
}

void Assembler::fmula(int i) {
  emit_farith(0xDC, 0xC8, i);
}

void Assembler::fmulp(int i) {
  emit_farith(0xDE, 0xC8, i);
}

void Assembler::fnsave(Address dst) {
  InstructionMark im(this);
4005
  emit_int8((unsigned char)0xDD);
4006 4007 4008 4009 4010
  emit_operand32(rsi, dst);
}

void Assembler::fnstcw(Address src) {
  InstructionMark im(this);
4011 4012
  emit_int8((unsigned char)0x9B);
  emit_int8((unsigned char)0xD9);
4013 4014 4015 4016
  emit_operand32(rdi, src);
}

void Assembler::fnstsw_ax() {
4017 4018
  emit_int8((unsigned char)0xDF);
  emit_int8((unsigned char)0xE0);
4019 4020 4021
}

void Assembler::fprem() {
4022 4023
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF8);
4024 4025 4026
}

void Assembler::fprem1() {
4027 4028
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF5);
4029 4030 4031 4032
}

void Assembler::frstor(Address src) {
  InstructionMark im(this);
4033
  emit_int8((unsigned char)0xDD);
4034 4035 4036 4037
  emit_operand32(rsp, src);
}

void Assembler::fsin() {
4038 4039
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFE);
4040 4041 4042
}

void Assembler::fsqrt() {
4043 4044
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFA);
4045 4046 4047 4048
}

void Assembler::fst_d(Address adr) {
  InstructionMark im(this);
4049
  emit_int8((unsigned char)0xDD);
4050 4051 4052 4053 4054
  emit_operand32(rdx, adr);
}

void Assembler::fst_s(Address adr) {
  InstructionMark im(this);
4055
  emit_int8((unsigned char)0xD9);
4056 4057 4058 4059 4060
  emit_operand32(rdx, adr);
}

void Assembler::fstp_d(Address adr) {
  InstructionMark im(this);
4061
  emit_int8((unsigned char)0xDD);
4062 4063 4064 4065 4066 4067 4068 4069 4070
  emit_operand32(rbx, adr);
}

void Assembler::fstp_d(int index) {
  emit_farith(0xDD, 0xD8, index);
}

void Assembler::fstp_s(Address adr) {
  InstructionMark im(this);
4071
  emit_int8((unsigned char)0xD9);
4072 4073 4074 4075 4076
  emit_operand32(rbx, adr);
}

void Assembler::fstp_x(Address adr) {
  InstructionMark im(this);
4077
  emit_int8((unsigned char)0xDB);
4078 4079 4080 4081 4082 4083 4084 4085 4086
  emit_operand32(rdi, adr);
}

void Assembler::fsub(int i) {
  emit_farith(0xD8, 0xE0, i);
}

void Assembler::fsub_d(Address src) {
  InstructionMark im(this);
4087
  emit_int8((unsigned char)0xDC);
4088 4089 4090 4091 4092
  emit_operand32(rsp, src);
}

void Assembler::fsub_s(Address src) {
  InstructionMark im(this);
4093
  emit_int8((unsigned char)0xD8);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
  emit_operand32(rsp, src);
}

void Assembler::fsuba(int i) {
  emit_farith(0xDC, 0xE8, i);
}

void Assembler::fsubp(int i) {
  emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
}

void Assembler::fsubr(int i) {
  emit_farith(0xD8, 0xE8, i);
}

void Assembler::fsubr_d(Address src) {
  InstructionMark im(this);
4111
  emit_int8((unsigned char)0xDC);
4112 4113 4114 4115 4116
  emit_operand32(rbp, src);
}

void Assembler::fsubr_s(Address src) {
  InstructionMark im(this);
4117
  emit_int8((unsigned char)0xD8);
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
  emit_operand32(rbp, src);
}

void Assembler::fsubra(int i) {
  emit_farith(0xDC, 0xE0, i);
}

void Assembler::fsubrp(int i) {
  emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
}

void Assembler::ftan() {
4130 4131 4132 4133
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF2);
  emit_int8((unsigned char)0xDD);
  emit_int8((unsigned char)0xD8);
4134 4135 4136
}

void Assembler::ftst() {
4137 4138
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE4);
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
}

void Assembler::fucomi(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDB, 0xE8, i);
}

void Assembler::fucomip(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDF, 0xE8, i);
}

void Assembler::fwait() {
4154
  emit_int8((unsigned char)0x9B);
4155 4156 4157 4158 4159 4160 4161
}

void Assembler::fxch(int i) {
  emit_farith(0xD9, 0xC8, i);
}

void Assembler::fyl2x() {
4162 4163
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF1);
4164 4165
}

4166
void Assembler::frndint() {
4167 4168
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFC);
4169 4170 4171
}

void Assembler::f2xm1() {
4172 4173
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF0);
4174 4175 4176
}

void Assembler::fldl2e() {
4177 4178
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xEA);
4179 4180
}

K
kvn 已提交
4181 4182 4183 4184 4185 4186 4187 4188
// SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
// SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
static int simd_opc[4] = { 0,    0, 0x38, 0x3A };

// Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  if (pre > 0) {
4189
    emit_int8(simd_pre[pre]);
K
kvn 已提交
4190 4191 4192 4193 4194 4195 4196
  }
  if (rex_w) {
    prefixq(adr, xreg);
  } else {
    prefix(adr, xreg);
  }
  if (opc > 0) {
4197
    emit_int8(0x0F);
K
kvn 已提交
4198 4199
    int opc2 = simd_opc[opc];
    if (opc2 > 0) {
4200
      emit_int8(opc2);
K
kvn 已提交
4201 4202 4203 4204 4205 4206
    }
  }
}

int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  if (pre > 0) {
4207
    emit_int8(simd_pre[pre]);
K
kvn 已提交
4208 4209 4210 4211
  }
  int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
                          prefix_and_encode(dst_enc, src_enc);
  if (opc > 0) {
4212
    emit_int8(0x0F);
K
kvn 已提交
4213 4214
    int opc2 = simd_opc[opc];
    if (opc2 > 0) {
4215
      emit_int8(opc2);
K
kvn 已提交
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
    }
  }
  return encode;
}


void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
    prefix(VEX_3bytes);

    int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
    byte1 = (~byte1) & 0xE0;
    byte1 |= opc;
4229
    emit_int8(byte1);
K
kvn 已提交
4230 4231 4232

    int byte2 = ((~nds_enc) & 0xf) << 3;
    byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4233
    emit_int8(byte2);
K
kvn 已提交
4234 4235 4236 4237 4238 4239 4240
  } else {
    prefix(VEX_2bytes);

    int byte1 = vex_r ? VEX_R : 0;
    byte1 = (~byte1) & 0x80;
    byte1 |= ((~nds_enc) & 0xf) << 3;
    byte1 |= (vector256 ? 4 : 0) | pre;
4241
    emit_int8(byte1);
K
kvn 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
  }
}

void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  bool vex_r = (xreg_enc >= 8);
  bool vex_b = adr.base_needs_rex();
  bool vex_x = adr.index_needs_rex();
  vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
}

int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  bool vex_r = (dst_enc >= 8);
  bool vex_b = (src_enc >= 8);
  bool vex_x = false;
  vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  return (((dst_enc & 7) << 3) | (src_enc & 7));
}


void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  if (UseAVX > 0) {
    int xreg_enc = xreg->encoding();
    int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
    vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  } else {
    assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
    rex_prefix(adr, xreg, pre, opc, rex_w);
  }
}

int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  int dst_enc = dst->encoding();
  int src_enc = src->encoding();
  if (UseAVX > 0) {
    int nds_enc = nds->is_valid() ? nds->encoding() : 0;
    return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  } else {
    assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
    return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  }
}
4283

4284 4285 4286
void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  InstructionMark im(this);
  simd_prefix(dst, dst, src, pre);
4287
  emit_int8(opcode);
4288 4289 4290 4291 4292
  emit_operand(dst, src);
}

void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  int encode = simd_prefix_and_encode(dst, dst, src, pre);
4293 4294
  emit_int8(opcode);
  emit_int8((unsigned char)(0xC0 | encode));
4295 4296 4297 4298 4299 4300
}

// Versions with no second source register (non-destructive source).
void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  InstructionMark im(this);
  simd_prefix(dst, xnoreg, src, pre);
4301
  emit_int8(opcode);
4302 4303 4304 4305 4306
  emit_operand(dst, src);
}

void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4307 4308
  emit_int8(opcode);
  emit_int8((unsigned char)(0xC0 | encode));
4309 4310 4311 4312 4313 4314 4315
}

// 3-operands AVX instructions
void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                               Address src, VexSimdPrefix pre, bool vector256) {
  InstructionMark im(this);
  vex_prefix(dst, nds, src, pre, vector256);
4316
  emit_int8(opcode);
4317 4318 4319 4320 4321 4322
  emit_operand(dst, src);
}

void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                               XMMRegister src, VexSimdPrefix pre, bool vector256) {
  int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4323 4324
  emit_int8(opcode);
  emit_int8((unsigned char)(0xC0 | encode));
4325 4326
}

4327 4328 4329 4330
#ifndef _LP64

void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
4331
  emit_int8(0x40 | dst->encoding());
4332 4333 4334 4335 4336 4337 4338 4339
}

void Assembler::lea(Register dst, Address src) {
  leal(dst, src);
}

void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
4340
  emit_int8((unsigned char)0xC7);
4341 4342 4343 4344
  emit_operand(rax, dst);
  emit_data((int)imm32, rspec, 0);
}

4345 4346 4347
void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
4348
  emit_int8((unsigned char)(0xB8 | encode));
4349 4350
  emit_data((int)imm32, rspec, 0);
}
4351 4352

void Assembler::popa() { // 32bit
4353
  emit_int8(0x61);
4354 4355 4356 4357
}

void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
4358
  emit_int8(0x68);
4359 4360 4361 4362
  emit_data(imm32, rspec, 0);
}

void Assembler::pusha() { // 32bit
4363
  emit_int8(0x60);
4364 4365 4366
}

void Assembler::set_byte_if_not_zero(Register dst) {
4367 4368 4369
  emit_int8(0x0F);
  emit_int8((unsigned char)0x95);
  emit_int8((unsigned char)(0xE0 | dst->encoding()));
4370 4371 4372
}

void Assembler::shldl(Register dst, Register src) {
4373 4374 4375
  emit_int8(0x0F);
  emit_int8((unsigned char)0xA5);
  emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4376 4377 4378
}

void Assembler::shrdl(Register dst, Register src) {
4379 4380 4381
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAD);
  emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4382 4383 4384 4385
}

#else // LP64

I
iveresov 已提交
4386 4387
void Assembler::set_byte_if_not_zero(Register dst) {
  int enc = prefix_and_encode(dst->encoding(), true);
4388 4389 4390
  emit_int8(0x0F);
  emit_int8((unsigned char)0x95);
  emit_int8((unsigned char)(0xE0 | enc));
I
iveresov 已提交
4391 4392
}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
// 64bit only pieces of the assembler
// This should only be used by 64bit instructions that can use rip-relative
// it cannot be used by instructions that want an immediate value.

bool Assembler::reachable(AddressLiteral adr) {
  int64_t disp;
  // None will force a 64bit literal to the code stream. Likely a placeholder
  // for something that will be patched later and we need to certain it will
  // always be reachable.
  if (adr.reloc() == relocInfo::none) {
    return false;
  }
  if (adr.reloc() == relocInfo::internal_word_type) {
    // This should be rip relative and easily reachable.
    return true;
  }
  if (adr.reloc() == relocInfo::virtual_call_type ||
      adr.reloc() == relocInfo::opt_virtual_call_type ||
      adr.reloc() == relocInfo::static_call_type ||
      adr.reloc() == relocInfo::static_stub_type ) {
    // This should be rip relative within the code cache and easily
    // reachable until we get huge code caches. (At which point
    // ic code is going to have issues).
    return true;
  }
  if (adr.reloc() != relocInfo::external_word_type &&
      adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
      adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
      adr.reloc() != relocInfo::runtime_call_type ) {
    return false;
  }

  // Stress the correction code
  if (ForceUnreachable) {
    // Must be runtimecall reloc, see if it is in the codecache
    // Flipping stuff in the codecache to be unreachable causes issues
    // with things like inline caches where the additional instructions
    // are not handled.
    if (CodeCache::find_blob(adr._target) == NULL) {
      return false;
    }
  }
  // For external_word_type/runtime_call_type if it is reachable from where we
  // are now (possibly a temp buffer) and where we might end up
  // anywhere in the codeCache then we are always reachable.
  // This would have to change if we ever save/restore shared code
  // to be more pessimistic.
  disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;
  disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;

4445
  disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462

  // Because rip relative is a disp + address_of_next_instruction and we
  // don't know the value of address_of_next_instruction we apply a fudge factor
  // to make sure we will be ok no matter the size of the instruction we get placed into.
  // We don't have to fudge the checks above here because they are already worst case.

  // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  // + 4 because better safe than sorry.
  const int fudge = 12 + 4;
  if (disp < 0) {
    disp -= fudge;
  } else {
    disp += fudge;
  }
  return is_simm32(disp);
}

4463 4464 4465 4466
// Check if the polling page is not reachable from the code cache using rip-relative
// addressing.
bool Assembler::is_polling_page_far() {
  intptr_t addr = (intptr_t)os::get_polling_page();
4467 4468
  return ForceUnreachable ||
         !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4469 4470 4471
         !is_simm32(addr - (intptr_t)CodeCache::high_bound());
}

4472 4473 4474 4475
void Assembler::emit_data64(jlong data,
                            relocInfo::relocType rtype,
                            int format) {
  if (rtype == relocInfo::none) {
4476
    emit_int64(data);
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
  } else {
    emit_data64(data, Relocation::spec_simple(rtype), format);
  }
}

void Assembler::emit_data64(jlong data,
                            RelocationHolder const& rspec,
                            int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
  assert(imm_operand == format, "must be immediate");
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  // Do not use AbstractAssembler::relocate, which is not intended for
  // embedded words.  Instead, relocate to the enclosing instruction.
  code_section()->relocate(inst_mark(), rspec, format);
#ifdef ASSERT
  check_relocation(rspec, format);
#endif
4494
  emit_int64(data);
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
}

int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  if (reg_enc >= 8) {
    prefix(REX_B);
    reg_enc -= 8;
  } else if (byteinst && reg_enc >= 4) {
    prefix(REX);
  }
  return reg_enc;
}

int Assembler::prefixq_and_encode(int reg_enc) {
  if (reg_enc < 8) {
    prefix(REX_W);
  } else {
    prefix(REX_WB);
    reg_enc -= 8;
  }
  return reg_enc;
}

int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  if (dst_enc < 8) {
    if (src_enc >= 8) {
      prefix(REX_B);
      src_enc -= 8;
    } else if (byteinst && src_enc >= 4) {
      prefix(REX);
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_R);
    } else {
      prefix(REX_RB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  if (dst_enc < 8) {
    if (src_enc < 8) {
      prefix(REX_W);
    } else {
      prefix(REX_WB);
      src_enc -= 8;
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_WR);
    } else {
      prefix(REX_WRB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

void Assembler::prefix(Register reg) {
  if (reg->encoding() >= 8) {
    prefix(REX_B);
  }
}

void Assembler::prefix(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_XB);
    } else {
      prefix(REX_B);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_X);
    }
  }
}

void Assembler::prefixq(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_WXB);
    } else {
      prefix(REX_WB);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_WX);
    } else {
      prefix(REX_W);
    }
  }
}


void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
4605
      } else if (byteinst && reg->encoding() >= 4 ) {
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
        prefix(REX);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

void Assembler::prefixq(Address adr, Register src) {
  if (src->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WXB);
      } else {
        prefix(REX_WB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WX);
      } else {
        prefix(REX_W);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WRXB);
      } else {
        prefix(REX_WRB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WRX);
      } else {
        prefix(REX_WR);
      }
    }
  }
}

void Assembler::prefix(Address adr, XMMRegister reg) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

K
kvn 已提交
4688 4689
void Assembler::prefixq(Address adr, XMMRegister src) {
  if (src->encoding() < 8) {
4690 4691
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4692
        prefix(REX_WXB);
4693
      } else {
K
kvn 已提交
4694
        prefix(REX_WB);
4695 4696 4697
      }
    } else {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4698 4699 4700
        prefix(REX_WX);
      } else {
        prefix(REX_W);
4701 4702 4703 4704 4705
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4706
        prefix(REX_WRXB);
4707
      } else {
K
kvn 已提交
4708
        prefix(REX_WRB);
4709 4710 4711
      }
    } else {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4712
        prefix(REX_WRX);
4713
      } else {
K
kvn 已提交
4714
        prefix(REX_WR);
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
      }
    }
  }
}

void Assembler::adcq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD0, dst, imm32);
}

void Assembler::adcq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4728
  emit_int8(0x13);
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
  emit_operand(dst, src);
}

void Assembler::adcq(Register dst, Register src) {
  (int) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x13, 0xC0, dst, src);
}

void Assembler::addq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rax, dst,imm32);
}

void Assembler::addq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
4746
  emit_int8(0x01);
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
  emit_operand(src, dst);
}

void Assembler::addq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC0, dst, imm32);
}

void Assembler::addq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4758
  emit_int8(0x03);
4759 4760 4761 4762 4763 4764 4765 4766
  emit_operand(dst, src);
}

void Assembler::addq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
}

4767 4768 4769
void Assembler::andq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
4770
  emit_int8((unsigned char)0x81);
4771
  emit_operand(rsp, dst, 4);
4772
  emit_int32(imm32);
4773 4774
}

4775 4776 4777 4778 4779 4780 4781 4782
void Assembler::andq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE0, dst, imm32);
}

void Assembler::andq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4783
  emit_int8(0x23);
4784 4785 4786 4787 4788 4789 4790 4791
  emit_operand(dst, src);
}

void Assembler::andq(Register dst, Register src) {
  (int) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x23, 0xC0, dst, src);
}

4792 4793
void Assembler::bsfq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4794 4795 4796
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBC);
  emit_int8((unsigned char)(0xC0 | encode));
4797 4798 4799 4800 4801
}

void Assembler::bsrq(Register dst, Register src) {
  assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4802 4803 4804
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
4805 4806
}

4807 4808
void Assembler::bswapq(Register reg) {
  int encode = prefixq_and_encode(reg->encoding());
4809 4810
  emit_int8(0x0F);
  emit_int8((unsigned char)(0xC8 | encode));
4811 4812 4813 4814
}

void Assembler::cdqq() {
  prefix(REX_W);
4815
  emit_int8((unsigned char)0x99);
4816 4817 4818 4819
}

void Assembler::clflush(Address adr) {
  prefix(adr);
4820 4821
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
4822 4823 4824 4825 4826
  emit_operand(rdi, adr);
}

void Assembler::cmovq(Condition cc, Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4827 4828 4829
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
  emit_int8((unsigned char)(0xC0 | encode));
4830 4831 4832 4833 4834
}

void Assembler::cmovq(Condition cc, Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4835 4836
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
4837 4838 4839 4840 4841 4842
  emit_operand(dst, src);
}

void Assembler::cmpq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
4843
  emit_int8((unsigned char)0x81);
4844
  emit_operand(rdi, dst, 4);
4845
  emit_int32(imm32);
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
}

void Assembler::cmpq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xF8, dst, imm32);
}

void Assembler::cmpq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
4856
  emit_int8(0x3B);
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
  emit_operand(src, dst);
}

void Assembler::cmpq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
}

void Assembler::cmpq(Register dst, Address  src) {
  InstructionMark im(this);
  prefixq(src, dst);
4868
  emit_int8(0x3B);
4869 4870 4871 4872 4873 4874
  emit_operand(dst, src);
}

void Assembler::cmpxchgq(Register reg, Address adr) {
  InstructionMark im(this);
  prefixq(adr, reg);
4875 4876
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB1);
4877 4878 4879 4880 4881
  emit_operand(reg, adr);
}

void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
4882
  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
4883 4884
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
4885 4886
}

K
kvn 已提交
4887 4888 4889 4890
void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
4891
  emit_int8(0x2A);
K
kvn 已提交
4892 4893 4894
  emit_operand(dst, src);
}

4895 4896
void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
4897
  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
4898 4899
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
4900 4901
}

K
kvn 已提交
4902 4903 4904 4905
void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
4906
  emit_int8(0x2A);
K
kvn 已提交
4907 4908 4909
  emit_operand(dst, src);
}

4910 4911
void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
4912
  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
4913 4914
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
4915 4916 4917 4918
}

void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
4919
  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
4920 4921
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
4922 4923 4924 4925 4926 4927
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
  // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
4928 4929
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xC8 | encode));
4930 4931 4932 4933 4934 4935
}

void Assembler::decq(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
4936 4937
  emit_int8((unsigned char)0xFF);
  emit_int8(0xC8 | encode);
4938 4939 4940 4941 4942 4943
}

void Assembler::decq(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
4944
  emit_int8((unsigned char)0xFF);
4945 4946 4947 4948 4949
  emit_operand(rcx, dst);
}

void Assembler::fxrstor(Address src) {
  prefixq(src);
4950 4951
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
4952 4953 4954 4955 4956
  emit_operand(as_Register(1), src);
}

void Assembler::fxsave(Address dst) {
  prefixq(dst);
4957 4958
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
4959 4960 4961 4962 4963
  emit_operand(as_Register(0), dst);
}

void Assembler::idivq(Register src) {
  int encode = prefixq_and_encode(src->encoding());
4964 4965
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xF8 | encode));
4966 4967 4968 4969
}

void Assembler::imulq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4970 4971 4972
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAF);
  emit_int8((unsigned char)(0xC0 | encode));
4973 4974 4975 4976 4977
}

void Assembler::imulq(Register dst, Register src, int value) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  if (is8bit(value)) {
4978 4979 4980
    emit_int8(0x6B);
    emit_int8((unsigned char)(0xC0 | encode));
    emit_int8(value & 0xFF);
4981
  } else {
4982 4983
    emit_int8(0x69);
    emit_int8((unsigned char)(0xC0 | encode));
4984
    emit_int32(value);
4985 4986 4987 4988 4989 4990 4991
  }
}

void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
4992 4993
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xC0 | encode));
4994 4995 4996 4997 4998 4999
}

void Assembler::incq(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
5000 5001
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xC0 | encode));
5002 5003 5004 5005 5006 5007
}

void Assembler::incq(Address dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
5008
  emit_int8((unsigned char)0xFF);
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
  emit_operand(rax, dst);
}

void Assembler::lea(Register dst, Address src) {
  leaq(dst, src);
}

void Assembler::leaq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5019
  emit_int8((unsigned char)0x8D);
5020 5021 5022 5023 5024 5025
  emit_operand(dst, src);
}

void Assembler::mov64(Register dst, int64_t imm64) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
5026
  emit_int8((unsigned char)(0xB8 | encode));
5027
  emit_int64(imm64);
5028 5029 5030 5031 5032
}

void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
5033
  emit_int8(0xB8 | encode);
5034 5035 5036
  emit_data64(imm64, rspec);
}

5037 5038 5039
void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
5040
  emit_int8((unsigned char)(0xB8 | encode));
5041 5042 5043 5044 5045 5046
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(dst);
5047
  emit_int8((unsigned char)0xC7);
5048 5049 5050 5051 5052 5053 5054
  emit_operand(rax, dst, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(src1->encoding());
5055 5056
  emit_int8((unsigned char)0x81);
  emit_int8((unsigned char)(0xF8 | encode));
5057 5058 5059 5060 5061 5062
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(src1);
5063
  emit_int8((unsigned char)0x81);
5064 5065 5066 5067
  emit_operand(rax, src1, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

5068 5069
void Assembler::lzcntq(Register dst, Register src) {
  assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5070
  emit_int8((unsigned char)0xF3);
5071
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5072 5073 5074
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
5075 5076
}

5077 5078
void Assembler::movdq(XMMRegister dst, Register src) {
  // table D-1 says MMX/SSE2
K
kvn 已提交
5079 5080
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5081 5082
  emit_int8(0x6E);
  emit_int8((unsigned char)(0xC0 | encode));
5083 5084 5085 5086
}

void Assembler::movdq(Register dst, XMMRegister src) {
  // table D-1 says MMX/SSE2
K
kvn 已提交
5087
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5088
  // swap src/dst to get correct prefix
K
kvn 已提交
5089
  int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5090 5091
  emit_int8(0x7E);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
5092 5093
}

5094 5095
void Assembler::movq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5096 5097
  emit_int8((unsigned char)0x8B);
  emit_int8((unsigned char)(0xC0 | encode));
5098
}
D
duke 已提交
5099

5100 5101 5102
void Assembler::movq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5103
  emit_int8((unsigned char)0x8B);
5104 5105
  emit_operand(dst, src);
}
D
duke 已提交
5106

5107 5108 5109
void Assembler::movq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5110
  emit_int8((unsigned char)0x89);
5111 5112
  emit_operand(src, dst);
}
D
duke 已提交
5113

5114 5115 5116
void Assembler::movsbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5117 5118
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
5119 5120 5121 5122 5123
  emit_operand(dst, src);
}

void Assembler::movsbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5124 5125 5126
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
  emit_int8((unsigned char)(0xC0 | encode));
5127 5128
}

5129 5130 5131 5132 5133 5134 5135
void Assembler::movslq(Register dst, int32_t imm32) {
  // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  // as a result we shouldn't use until tested at runtime...
  ShouldNotReachHere();
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
5136
  emit_int8((unsigned char)(0xC7 | encode));
5137
  emit_int32(imm32);
5138 5139 5140 5141 5142 5143
}

void Assembler::movslq(Address dst, int32_t imm32) {
  assert(is_simm32(imm32), "lost bits");
  InstructionMark im(this);
  prefixq(dst);
5144
  emit_int8((unsigned char)0xC7);
5145
  emit_operand(rax, dst, 4);
5146
  emit_int32(imm32);
5147 5148 5149 5150 5151
}

void Assembler::movslq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5152
  emit_int8(0x63);
5153 5154 5155 5156 5157
  emit_operand(dst, src);
}

void Assembler::movslq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5158 5159
  emit_int8(0x63);
  emit_int8((unsigned char)(0xC0 | encode));
5160 5161
}

5162 5163 5164
void Assembler::movswq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5165 5166
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBF);
5167 5168 5169 5170 5171
  emit_operand(dst, src);
}

void Assembler::movswq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5172 5173 5174
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xBF);
  emit_int8((unsigned char)(0xC0 | encode));
5175 5176 5177 5178 5179
}

void Assembler::movzbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5180 5181
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB6);
5182 5183 5184 5185 5186
  emit_operand(dst, src);
}

void Assembler::movzbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5187 5188 5189
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB6);
  emit_int8(0xC0 | encode);
5190 5191 5192 5193 5194
}

void Assembler::movzwq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5195 5196
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB7);
5197 5198 5199 5200 5201
  emit_operand(dst, src);
}

void Assembler::movzwq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5202 5203 5204
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB7);
  emit_int8((unsigned char)(0xC0 | encode));
5205 5206
}

5207 5208
void Assembler::negq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5209 5210
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD8 | encode));
5211 5212 5213 5214
}

void Assembler::notq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5215 5216
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD0 | encode));
5217 5218 5219 5220 5221
}

void Assembler::orq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
5222
  emit_int8((unsigned char)0x81);
5223
  emit_operand(rcx, dst, 4);
5224
  emit_int32(imm32);
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
}

void Assembler::orq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC8, dst, imm32);
}

void Assembler::orq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5235
  emit_int8(0x0B);
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
  emit_operand(dst, src);
}

void Assembler::orq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
}

void Assembler::popa() { // 64bit
  movq(r15, Address(rsp, 0));
  movq(r14, Address(rsp, wordSize));
  movq(r13, Address(rsp, 2 * wordSize));
  movq(r12, Address(rsp, 3 * wordSize));
  movq(r11, Address(rsp, 4 * wordSize));
  movq(r10, Address(rsp, 5 * wordSize));
  movq(r9,  Address(rsp, 6 * wordSize));
  movq(r8,  Address(rsp, 7 * wordSize));
  movq(rdi, Address(rsp, 8 * wordSize));
  movq(rsi, Address(rsp, 9 * wordSize));
  movq(rbp, Address(rsp, 10 * wordSize));
  // skip rsp
  movq(rbx, Address(rsp, 12 * wordSize));
  movq(rdx, Address(rsp, 13 * wordSize));
  movq(rcx, Address(rsp, 14 * wordSize));
  movq(rax, Address(rsp, 15 * wordSize));

  addq(rsp, 16 * wordSize);
}

5265 5266 5267
void Assembler::popcntq(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
5268
  emit_int8((unsigned char)0xF3);
5269
  prefixq(src, dst);
5270 5271
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB8);
5272 5273 5274 5275 5276
  emit_operand(dst, src);
}

void Assembler::popcntq(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
5277
  emit_int8((unsigned char)0xF3);
5278
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5279 5280 5281
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB8);
  emit_int8((unsigned char)(0xC0 | encode));
5282 5283
}

5284 5285 5286
void Assembler::popq(Address dst) {
  InstructionMark im(this);
  prefixq(dst);
5287
  emit_int8((unsigned char)0x8F);
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
  emit_operand(rax, dst);
}

void Assembler::pusha() { // 64bit
  // we have to store original rsp.  ABI says that 128 bytes
  // below rsp are local scratch.
  movq(Address(rsp, -5 * wordSize), rsp);

  subq(rsp, 16 * wordSize);

  movq(Address(rsp, 15 * wordSize), rax);
  movq(Address(rsp, 14 * wordSize), rcx);
  movq(Address(rsp, 13 * wordSize), rdx);
  movq(Address(rsp, 12 * wordSize), rbx);
  // skip rsp
  movq(Address(rsp, 10 * wordSize), rbp);
  movq(Address(rsp, 9 * wordSize), rsi);
  movq(Address(rsp, 8 * wordSize), rdi);
  movq(Address(rsp, 7 * wordSize), r8);
  movq(Address(rsp, 6 * wordSize), r9);
  movq(Address(rsp, 5 * wordSize), r10);
  movq(Address(rsp, 4 * wordSize), r11);
  movq(Address(rsp, 3 * wordSize), r12);
  movq(Address(rsp, 2 * wordSize), r13);
  movq(Address(rsp, wordSize), r14);
  movq(Address(rsp, 0), r15);
}

void Assembler::pushq(Address src) {
  InstructionMark im(this);
  prefixq(src);
5319
  emit_int8((unsigned char)0xFF);
5320 5321 5322 5323 5324 5325 5326
  emit_operand(rsi, src);
}

void Assembler::rclq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
5327 5328
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xD0 | encode));
5329
  } else {
5330 5331 5332
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xD0 | encode));
    emit_int8(imm8);
D
duke 已提交
5333
  }
5334 5335 5336 5337 5338
}
void Assembler::sarq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
5339 5340
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xF8 | encode));
5341
  } else {
5342 5343 5344
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xF8 | encode));
    emit_int8(imm8);
5345 5346
  }
}
D
duke 已提交
5347

5348 5349
void Assembler::sarq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5350 5351
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xF8 | encode));
5352
}
5353

5354 5355 5356 5357 5358
void Assembler::sbbq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}
D
duke 已提交
5359

5360 5361 5362 5363
void Assembler::sbbq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD8, dst, imm32);
}
D
duke 已提交
5364

5365 5366 5367
void Assembler::sbbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5368
  emit_int8(0x1B);
5369 5370
  emit_operand(dst, src);
}
D
duke 已提交
5371

5372 5373 5374 5375
void Assembler::sbbq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
}
D
duke 已提交
5376

5377 5378 5379 5380
void Assembler::shlq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
5381 5382
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xE0 | encode));
5383
  } else {
5384 5385 5386
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xE0 | encode));
    emit_int8(imm8);
D
duke 已提交
5387
  }
5388 5389 5390 5391
}

void Assembler::shlq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5392 5393
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xE0 | encode));
5394 5395 5396 5397 5398
}

void Assembler::shrq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
5399 5400 5401
  emit_int8((unsigned char)0xC1);
  emit_int8((unsigned char)(0xE8 | encode));
  emit_int8(imm8);
5402 5403 5404 5405
}

void Assembler::shrq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5406 5407
  emit_int8((unsigned char)0xD3);
  emit_int8(0xE8 | encode);
5408 5409 5410 5411 5412
}

void Assembler::subq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
5413
  emit_arith_operand(0x81, rbp, dst, imm32);
5414 5415 5416 5417 5418
}

void Assembler::subq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5419
  emit_int8(0x29);
5420 5421 5422
  emit_operand(src, dst);
}

5423 5424 5425 5426 5427
void Assembler::subq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE8, dst, imm32);
}

5428 5429 5430 5431 5432 5433
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::subq_imm32(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith_imm32(0x81, 0xE8, dst, imm32);
}

5434 5435 5436
void Assembler::subq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5437
  emit_int8(0x2B);
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
  emit_operand(dst, src);
}

void Assembler::subq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::testq(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
    prefix(REX_W);
5453
    emit_int8((unsigned char)0xA9);
D
duke 已提交
5454
  } else {
5455
    encode = prefixq_and_encode(encode);
5456 5457
    emit_int8((unsigned char)0xF7);
    emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
5458
  }
5459
  emit_int32(imm32);
D
duke 已提交
5460 5461
}

5462 5463 5464
void Assembler::testq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
D
duke 已提交
5465 5466
}

5467 5468 5469
void Assembler::xaddq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5470 5471
  emit_int8(0x0F);
  emit_int8((unsigned char)0xC1);
5472
  emit_operand(src, dst);
D
duke 已提交
5473 5474
}

5475 5476 5477
void Assembler::xchgq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5478
  emit_int8((unsigned char)0x87);
5479
  emit_operand(dst, src);
D
duke 已提交
5480 5481
}

5482 5483
void Assembler::xchgq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5484 5485
  emit_int8((unsigned char)0x87);
  emit_int8((unsigned char)(0xc0 | encode));
D
duke 已提交
5486 5487
}

5488 5489 5490
void Assembler::xorq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
D
duke 已提交
5491 5492
}

5493 5494 5495
void Assembler::xorq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5496
  emit_int8(0x33);
5497
  emit_operand(dst, src);
5498 5499
}

5500
#endif // !LP64