g1CollectedHeap.cpp 215.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
31
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
32 33
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
34
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
35 36 37 38 39 40 41 42 43 44
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
45
#include "memory/referenceProcessor.hpp"
46 47 48 49
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
50

51 52
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

53 54 55
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
56
#define YOUNG_LIST_VERBOSE 0
57 58 59 60 61 62
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
63 64 65 66 67
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
83 84 85 86 87 88
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

155 156 157 158 159 160 161 162
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

163 164
YoungList::YoungList(G1CollectedHeap* g1h)
  : _g1h(g1h), _head(NULL),
165
    _length(0),
166
    _last_sampled_rs_lengths(0),
167
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
{
  guarantee( check_list_empty(false), "just making sure..." );
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

  hr->set_young();
  double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
185
  assert(hr->is_survivor(), "should be flagged as survivor region");
186 187 188 189
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
190
    _survivor_tail = hr;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
  }
  _survivor_head = hr;

  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
216
  _survivor_tail = NULL;
217 218 219 220 221 222 223 224 225 226 227 228 229 230
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

  size_t length = 0;
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
231
    if (!curr->is_young()) {
232
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
233
                             "incorrectly tagged (y: %d, surv: %d)",
234
                             curr->bottom(), curr->end(),
235
                             curr->is_young(), curr->is_survivor());
236 237 238 239 240 241 242 243 244 245 246 247 248 249
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
    gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
                           length, _length);
  }

250
  return ret;
251 252
}

253
bool YoungList::check_list_empty(bool check_sample) {
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  bool ret = true;

  if (_length != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

273
  return ret;
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
290 291 292 293 294 295 296 297 298 299 300 301
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

302 303 304 305 306 307 308 309 310 311 312 313 314 315
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
316
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
317

318 319 320 321
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    _g1h->g1_policy()->set_region_survivors(curr);
322 323 324 325 326

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
327 328 329
  }
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

330 331
  _head   = _survivor_head;
  _length = _survivor_length;
332
  if (_survivor_head != NULL) {
333 334 335
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
336 337
  }

338 339 340 341
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
342

343
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
344 345 346 347 348

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
349 350
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
351 352 353 354 355 356 357 358

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
      gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
359
                             "age: %4d, y: %d, surv: %d",
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
                             curr->bottom(), curr->end(),
                             curr->top(),
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
                             curr->top_at_conc_mark_count(),
                             curr->age_in_surv_rate_group_cond(),
                             curr->is_young(),
                             curr->is_survivor());
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

428
void G1CollectedHeap::stop_conc_gc_threads() {
429
  _cg1r->stop();
430 431 432
  _cmThread->stop();
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
// can move in an incremental collecction.
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
     // perm gen (or null)
     return false;
  } else {
    return !hr->isHumongous();
  }
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

515
HeapRegion*
T
tonyp 已提交
516
G1CollectedHeap::new_region_try_secondary_free_list() {
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "secondary_free_list has "SIZE_FORMAT" entries",
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notifed either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
553

554
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
555 556 557 558
  assert(!isHumongous(word_size) ||
                                  word_size <= (size_t) HeapRegion::GrainWords,
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
559

560 561 562 563 564 565 566
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
567
      res = new_region_try_secondary_free_list();
568 569 570 571 572 573 574 575 576 577 578
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
579
    res = new_region_try_secondary_free_list();
580
  }
581
  if (res == NULL && do_expand) {
582 583 584 585 586
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
587
    if (expand(word_size * HeapWordSize)) {
588 589 590 591
      // Even though the heap was expanded, it might not have reached
      // the desired size. So, we cannot assume that the allocation
      // will succeed.
      res = _free_list.remove_head_or_null();
592
    }
593 594 595 596
  }
  return res;
}

597 598
size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
                                                          size_t word_size) {
T
tonyp 已提交
599 600 601
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

602
  size_t first = G1_NULL_HRS_INDEX;
603 604 605 606
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
    // path. The caller will attempt the expasion if this fails, so
    // let's not try to expand here too.
607
    HeapRegion* hr = new_region(word_size, false /* do_expand */);
608 609 610
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
611
      first = G1_NULL_HRS_INDEX;
612 613 614 615 616 617 618 619 620 621 622
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
623
    append_secondary_free_list_if_not_empty_with_lock();
624 625

    if (free_regions() >= num_regions) {
626 627 628 629
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
        for (size_t i = first; i < first + num_regions; ++i) {
          HeapRegion* hr = region_at(i);
630
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
631
          assert(is_on_master_free_list(hr), "sanity");
632 633 634 635 636 637 638 639 640
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
641
HeapWord*
642
G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
T
tonyp 已提交
643 644
                                                           size_t num_regions,
                                                           size_t word_size) {
645
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
646 647 648 649
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
650
  size_t last = first + num_regions;
T
tonyp 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
  size_t word_size_sum = num_regions * HeapRegion::GrainWords;
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
665
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
  // should also match the end of the last region in the seriers.
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
700 701
  for (size_t i = first + 1; i < last; ++i) {
    hr = region_at(i);
T
tonyp 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
722 723 724 725 726 727 728 729 730 731 732
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
746 747
  for (size_t i = first + 1; i < last; ++i) {
    hr = region_at(i);
T
tonyp 已提交
748 749 750 751 752
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
753
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
754 755 756 757
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
758
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

774 775 776
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
777
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
778
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
779

780
  verify_region_sets_optional();
781 782

  size_t num_regions =
783
         round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
784
  size_t x_size = expansion_regions();
785 786 787
  size_t fs = _hrs.free_suffix();
  size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
  if (first == G1_NULL_HRS_INDEX) {
788
    // The only thing we can do now is attempt expansion.
789
    if (fs + x_size >= num_regions) {
790 791 792 793 794 795 796 797 798 799
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

800 801 802 803 804
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
805
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
806 807 808
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
809 810
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
811 812
    }
  }
813

T
tonyp 已提交
814
  HeapWord* result = NULL;
815
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
816 817 818
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
819 820 821 822 823

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
824
  }
825 826

  verify_region_sets_optional();
T
tonyp 已提交
827 828

  return result;
829 830
}

831 832 833
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
834

835 836
  unsigned int dummy_gc_count_before;
  return attempt_allocation(word_size, &dummy_gc_count_before);
837 838 839
}

HeapWord*
840 841 842
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
843

844 845 846
  // Loop until the allocation is satisified, or unsatisfied after GC.
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    unsigned int gc_count_before;
847

848 849 850
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
      result = attempt_allocation(word_size, &gc_count_before);
851
    } else {
852 853 854 855 856
      result = attempt_allocation_humongous(word_size, &gc_count_before);
    }
    if (result != NULL) {
      return result;
    }
857

858 859 860 861
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
862

863 864 865 866 867 868
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
869
        // Allocations that take place on VM operations do not do any
870 871
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
872 873 874
        dirty_young_block(result, word_size);
      }
      return result;
875 876 877
    } else {
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
878 879 880 881 882
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
883
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
884 885 886
    }
  }

887
  ShouldNotReachHere();
888 889 890
  return NULL;
}

891 892 893 894 895 896 897
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
                                           unsigned int *gc_count_before_ret) {
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
898

899 900 901 902 903 904 905
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
906
  HeapWord* result = NULL;
907 908 909
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
910

911 912 913 914 915 916 917
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
918
      }
919

920 921 922
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
923

924 925
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
926 927
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
928 929 930 931 932 933 934 935 936 937 938 939 940
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
        // Read the GC count while still holding the Heap_lock.
        gc_count_before = SharedHeap::heap()->total_collections();
        should_try_gc = true;
      }
    }
941

942 943
    if (should_try_gc) {
      bool succeeded;
944 945
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
946
        assert(succeeded, "only way to get back a non-NULL result");
947 948 949
        return result;
      }

950 951 952 953 954 955 956 957 958 959
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = SharedHeap::heap()->total_collections();
        return NULL;
      }
    } else {
      GC_locker::stall_until_clear();
960 961
    }

962 963 964 965 966 967 968 969 970 971 972 973
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
    if (result != NULL ){
      return result;
974 975
    }

976 977 978
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
979
      warning("G1CollectedHeap::attempt_allocation_slow() "
980
              "retries %d times", try_count);
981 982 983
    }
  }

984 985
  ShouldNotReachHere();
  return NULL;
986 987
}

988 989 990 991 992 993 994 995 996 997 998 999 1000
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                          unsigned int * gc_count_before_ret) {
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1001
  assert_heap_not_locked_and_not_at_safepoint();
1002 1003
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1004

1005 1006 1007 1008 1009
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1010
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1011
    bool should_try_gc;
1012
    unsigned int gc_count_before;
1013

1014
    {
1015
      MutexLockerEx x(Heap_lock);
1016

1017 1018 1019 1020 1021 1022 1023
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
      if (result != NULL) {
        return result;
      }
1024

1025 1026
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
1027
      } else {
1028 1029 1030
        // Read the GC count while still holding the Heap_lock.
        gc_count_before = SharedHeap::heap()->total_collections();
        should_try_gc = true;
1031 1032 1033
      }
    }

1034 1035 1036 1037
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
      bool succeeded;
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = SharedHeap::heap()->total_collections();
        return NULL;
1053 1054
      }
    } else {
1055
      GC_locker::stall_until_clear();
1056 1057
    }

1058 1059 1060 1061 1062 1063 1064
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1065 1066
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1067 1068
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1069 1070
    }
  }
1071 1072

  ShouldNotReachHere();
1073
  return NULL;
1074 1075
}

1076 1077
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1078
  assert_at_safepoint(true /* should_be_vm_thread */);
1079 1080 1081
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1082

1083 1084 1085 1086 1087
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
    return humongous_obj_allocate(word_size);
1088
  }
1089 1090

  ShouldNotReachHere();
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    r->reset_gc_time_stamp();
    if (r->continuesHumongous())
      return false;
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};


class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->used_region().word_size() != 0) {
      _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
    }
    return false;
  }
};

1127 1128 1129 1130 1131 1132
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1133
    _cl(g1->g1_rem_set(), worker_i),
1134 1135 1136
    _worker_i(worker_i),
    _g1h(g1)
  { }
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

  void work(int i) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
        if (hr->capacity() == (size_t) HeapRegion::GrainBytes) {
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1191
bool G1CollectedHeap::do_collection(bool explicit_gc,
1192
                                    bool clear_all_soft_refs,
1193
                                    size_t word_size) {
1194 1195
  assert_at_safepoint(true /* should_be_vm_thread */);

1196
  if (GC_locker::check_active_before_gc()) {
1197
    return false;
1198 1199
  }

1200
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1201 1202
  ResourceMark rm;

1203 1204 1205 1206
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

1207
  verify_region_sets_optional();
1208

1209 1210 1211 1212 1213
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1214 1215 1216 1217
  {
    IsGCActiveMark x;

    // Timing
1218 1219
    bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
    assert(!system_gc || explicit_gc, "invariant");
1220 1221
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1222
    TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1223
                PrintGC, true, gclog_or_tty);
1224

1225
    TraceCollectorStats tcs(g1mm()->full_collection_counters());
1226
    TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1227

1228 1229 1230
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

1231
    wait_while_free_regions_coming();
T
tonyp 已提交
1232
    append_secondary_free_list_if_not_empty_with_lock();
1233

1234
    gc_prologue(true);
1235
    increment_total_collections(true /* full gc */);
1236 1237 1238 1239 1240 1241 1242

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

    if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyBeforeGC:");
1243
      prepare_for_verify();
1244 1245 1246 1247
      Universe::verify(/* allow dirty */ true,
                       /* silent      */ false,
                       /* option      */ VerifyOption_G1UsePrevMarking);

1248
    }
1249
    pre_full_gc_dump();
1250 1251 1252

    COMPILER2_PRESENT(DerivedPointerTable::clear());

1253 1254 1255 1256 1257
    // Disable discovery and empty the discovered lists
    // for the CM ref processor.
    ref_processor_cm()->disable_discovery();
    ref_processor_cm()->abandon_partial_discovery();
    ref_processor_cm()->verify_no_references_recorded();
1258 1259 1260 1261 1262 1263

    // Abandon current iterations of concurrent marking and concurrent
    // refinement, if any are in progress.
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
1264
    release_mutator_alloc_region();
1265
    abandon_gc_alloc_regions();
1266
    g1_rem_set()->cleanupHRRS();
1267
    tear_down_region_lists();
1268

1269 1270 1271 1272 1273
    // We should call this after we retire any currently active alloc
    // regions so that all the ALLOC / RETIRE events are generated
    // before the start GC event.
    _hr_printer.start_gc(true /* full */, (size_t) total_collections());

1274 1275 1276 1277 1278 1279 1280 1281
    // We may have added regions to the current incremental collection
    // set between the last GC or pause and now. We need to clear the
    // incremental collection set and then start rebuilding it afresh
    // after this full GC.
    abandon_collection_set(g1_policy()->inc_cset_head());
    g1_policy()->clear_incremental_cset();
    g1_policy()->stop_incremental_cset_building();

1282 1283
    empty_young_list();
    g1_policy()->set_full_young_gcs(true);
1284

1285 1286
    // See the comments in g1CollectedHeap.hpp and
    // G1CollectedHeap::ref_processing_init() about
1287 1288
    // how reference processing currently works in G1.

1289 1290
    // Temporarily make discovery by the STW ref processor single threaded (non-MT).
    ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1291

1292 1293
    // Temporarily clear the STW ref processor's _is_alive_non_header field.
    ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1294

1295 1296
    ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
    ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1297 1298 1299 1300

    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
1301
      G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1302
    }
1303

1304
    assert(free_regions() == 0, "we should not have added any free regions");
1305 1306 1307 1308
    rebuild_region_lists();

    _summary_bytes_used = recalculate_used();

1309 1310 1311
    // Enqueue any discovered reference objects that have
    // not been removed from the discovered lists.
    ref_processor_stw()->enqueue_discovered_references();
1312 1313 1314

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1315 1316
    MemoryService::track_memory_usage();

1317 1318 1319
    if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyAfterGC:");
1320
      prepare_for_verify();
1321 1322 1323 1324
      Universe::verify(/* allow dirty */ false,
                       /* silent      */ false,
                       /* option      */ VerifyOption_G1UsePrevMarking);

1325
    }
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

    assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
    ref_processor_stw()->verify_no_references_recorded();

    // Note: since we've just done a full GC, concurrent
    // marking is no longer active. Therefore we need not
    // re-enable reference discovery for the CM ref processor.
    // That will be done at the start of the next marking cycle.
    assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
    ref_processor_cm()->verify_no_references_recorded();
1336 1337 1338

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1339 1340
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1341 1342 1343 1344
    PostMCRemSetClearClosure rs_clear(mr_bs());
    heap_region_iterate(&rs_clear);

    // Resize the heap if necessary.
1345
    resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
    if (_hr_printer.is_active()) {
      // We should do this after we potentially resize the heap so
      // that all the COMMIT / UNCOMMIT events are generated before
      // the end GC event.

      PostCompactionPrinterClosure cl(hr_printer());
      heap_region_iterate(&cl);

      _hr_printer.end_gc(true /* full */, (size_t) total_collections());
    }

1358 1359 1360 1361 1362
    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1363
    // Rebuild remembered sets of all regions.
1364 1365

    if (G1CollectedHeap::use_parallel_gc_threads()) {
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
      set_par_threads(workers()->total_workers());
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1380 1381 1382 1383 1384 1385 1386 1387 1388
    if (PrintGC) {
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
    }

1389 1390 1391 1392 1393 1394 1395 1396 1397
    // Start a new incremental collection set for the next pause
    assert(g1_policy()->collection_set() == NULL, "must be");
    g1_policy()->start_incremental_cset_building();

    // Clear the _cset_fast_test bitmap in anticipation of adding
    // regions to the incremental collection set for the next
    // evacuation pause.
    clear_cset_fast_test();

1398 1399
    init_mutator_alloc_region();

1400 1401 1402
    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1403 1404 1405 1406
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1407 1408
    gc_epilogue(true);

1409 1410
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1411 1412
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1413 1414
  }

1415 1416 1417 1418 1419
  _young_list->reset_sampled_info();
  // At this point there should be no regions in the
  // entire heap tagged as young.
  assert( check_young_list_empty(true /* check_heap */),
    "young list should be empty at this point");
1420

1421
  // Update the number of full collections that have been completed.
1422
  increment_full_collections_completed(false /* concurrent */);
1423

1424
  _hrs.verify_optional();
1425 1426
  verify_region_sets_optional();

1427 1428 1429
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
1430
  g1mm()->update_sizes();
1431
  post_full_gc_dump();
1432 1433

  return true;
1434 1435 1436
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1437 1438 1439 1440 1441 1442 1443 1444
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1459 1460 1461 1462
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1463
  // We don't have floating point command-line arguments
1464
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1465
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1466
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1467 1468
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1505

1506
  if (capacity_after_gc < minimum_desired_capacity) {
1507 1508
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1519 1520

    // No expansion, now see if we want to shrink
1521
  } else if (capacity_after_gc > maximum_desired_capacity) {
1522 1523
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1524 1525 1526 1527 1528 1529 1530 1531 1532
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1533 1534 1535 1536 1537 1538
    shrink(shrink_bytes);
  }
}


HeapWord*
1539 1540
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1541
  assert_at_safepoint(true /* should_be_vm_thread */);
1542 1543 1544

  *succeeded = true;
  // Let's attempt the allocation first.
1545 1546 1547
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1548 1549 1550 1551
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1552 1553 1554 1555 1556 1557 1558

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1559
    assert(*succeeded, "sanity");
1560 1561 1562
    return result;
  }

1563 1564 1565 1566 1567 1568 1569 1570
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1571

1572 1573
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1574
                                  true /* expect_null_mutator_alloc_region */);
1575
  if (result != NULL) {
1576
    assert(*succeeded, "sanity");
1577 1578 1579
    return result;
  }

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1591
                                  true /* expect_null_mutator_alloc_region */);
1592
  if (result != NULL) {
1593
    assert(*succeeded, "sanity");
1594 1595 1596
    return result;
  }

1597
  assert(!collector_policy()->should_clear_all_soft_refs(),
1598
         "Flag should have been handled and cleared prior to this point");
1599

1600 1601 1602 1603
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1604
  assert(*succeeded, "sanity");
1605 1606 1607 1608 1609 1610 1611 1612 1613
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1614 1615 1616
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1617

1618
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1619 1620 1621 1622 1623
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1624
  if (expand(expand_bytes)) {
1625
    _hrs.verify_optional();
1626 1627
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1628
                                 false /* expect_null_mutator_alloc_region */);
1629
  }
1630
  return NULL;
1631 1632
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
}

1646
bool G1CollectedHeap::expand(size_t expand_bytes) {
1647
  size_t old_mem_size = _g1_storage.committed_size();
1648
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1649 1650
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1651 1652 1653 1654 1655
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1656

1657 1658
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1659 1660
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1686
    }
1687
    _free_list.add_as_tail(&expansion_list);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1698
    g1_policy()->record_new_heap_size(n_regions());
1699
  } else {
1700 1701 1702
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1703 1704 1705 1706 1707 1708
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
      vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1709 1710
    }
  }
1711
  return successful;
1712 1713
}

1714
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1715 1716 1717 1718 1719 1720
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
  size_t num_regions_deleted = 0;
1721 1722 1723
  MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
  assert(mr.end() == old_end, "post-condition");
1724 1725 1726 1727 1728 1729 1730

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
                shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1731
  if (mr.byte_size() > 0) {
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.end();
      while (curr > mr.start()) {
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
      assert(curr == mr.start(), "post-condition");
    }

1742
    _g1_storage.shrink_by(mr.byte_size());
1743 1744 1745 1746 1747 1748
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    assert(mr.start() == new_end, "post-condition");

    _expansion_regions += num_regions_deleted;
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1749
    g1_policy()->record_new_heap_size(n_regions());
1750 1751 1752 1753
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1754 1755 1756 1757
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1758 1759
  verify_region_sets_optional();

1760 1761 1762 1763 1764
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1765 1766 1767
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
1768 1769 1770
  tear_down_region_lists();  // We will rebuild them in a moment.
  shrink_helper(shrink_bytes);
  rebuild_region_lists();
1771

1772
  _hrs.verify_optional();
1773
  verify_region_sets_optional();
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1786
  _dirty_card_queue_set(false),
J
johnc 已提交
1787
  _into_cset_dirty_card_queue_set(false),
1788 1789 1790 1791
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1792 1793 1794 1795 1796
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
1797
  _cg1r(NULL), _summary_bytes_used(0),
1798
  _g1mm(NULL),
1799 1800
  _refine_cte_cl(NULL),
  _full_collection(false),
1801 1802 1803 1804
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1805 1806
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1807
  _retained_old_gc_alloc_region(NULL),
1808
  _surviving_young_words(NULL),
1809
  _full_collections_completed(0),
1810
  _in_cset_fast_test(NULL),
1811 1812
  _in_cset_fast_test_base(NULL),
  _dirty_cards_region_list(NULL) {
1813 1814 1815 1816
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1817 1818 1819

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1843
  CollectedHeap::pre_initialize();
1844 1845 1846 1847 1848 1849
  os::enable_vtime();

  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1850 1851 1852 1853
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
  PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  // Includes the perm-gen.
1873

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

  // Since max_byte_size is aligned to the size of a heap region (checked
  // above), we also need to align the perm gen size as it might not be.
  const size_t total_reserved = max_byte_size +
                                align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");

1891 1892
  char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);

1893 1894
  ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
                            UseLargePages, addr);
1895 1896 1897 1898 1899 1900 1901

  if (UseCompressedOops) {
    if (addr != NULL && !heap_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1902 1903 1904 1905

      ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
                                 UseLargePages, addr);

1906 1907 1908 1909
      if (addr != NULL && !heap_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");
1910 1911 1912

        ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
                                   UseLargePages, addr);
1913 1914 1915 1916 1917 1918
        heap_rs = heap_rs1;
      } else {
        heap_rs = heap_rs0;
      }
    }
  }
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

  if (!heap_rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  _expansion_regions = max_byte_size/HeapRegion::GrainBytes;

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1945 1946
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1947
  } else {
1948 1949
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);
  ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);

  _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1963 1964 1965
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
                  (HeapWord*) _g1_reserved.end(),
                  _expansion_regions);
1966

1967 1968 1969 1970 1971 1972
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
  const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1973 1974 1975
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
            "too many cards per region");
1976

1977 1978
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

1979 1980 1981 1982 1983
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
   _in_cset_fast_test_length = max_regions();
   _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
                ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

1998 1999 2000 2001 2002 2003 2004 2005
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
  _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2006
  // Now expand into the initial heap size.
2007 2008 2009 2010
  if (!expand(init_byte_size)) {
    vm_exit_during_initialization("Failed to allocate initial heap.");
    return JNI_ENOMEM;
  }
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  g1_policy()->note_start_of_mark_thread();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2025
                                               G1SATBProcessCompletedThreshold,
2026
                                               Shared_SATB_Q_lock);
2027 2028 2029

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2030 2031
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2032 2033
                                                Shared_DirtyCardQ_lock);

2034 2035 2036
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2037 2038
                                      -1, // never trigger processing
                                      -1, // no limit on length
2039 2040 2041
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2052 2053 2054 2055 2056 2057 2058
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2059 2060 2061
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2062 2063 2064

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2076 2077
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2078
  _g1mm = new G1MonitoringSupport(this);
2079

2080 2081 2082 2083
  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2084 2085
  // Reference processing in G1 currently works as follows:
  //
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2118

2119 2120
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
                           &_is_alive_closure_cm,
                                // is alive closure
                                // (for efficiency/performance)
                           true);
                                // Setting next fields of discovered
                                // lists requires a barrier.

  // STW ref processor
  _ref_processor_stw =
2144
    new ReferenceProcessor(mr,    // span
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
                           &_is_alive_closure_stw,
                                // is alive closure
                                // (for efficiency/performance)
                           false);
                                // Setting next fields of discovered
                                // lists requires a barrier.
2161 2162 2163 2164 2165 2166
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

J
johnc 已提交
2167 2168 2169
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2170
                                                 int worker_i) {
2171
  // Clean cards in the hot card cache
J
johnc 已提交
2172
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2173

2174 2175
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2176
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
    n_completed_buffers++;
  }
  g1_policy()->record_update_rs_processed_buffers(worker_i,
                                                  (double) n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2189 2190
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2191
  size_t result = _summary_bytes_used;
2192
  // Read only once in case it is set to NULL concurrently
2193
  HeapRegion* hr = _mutator_alloc_region.get();
2194 2195
  if (hr != NULL)
    result += hr->used();
2196 2197 2198
  return result;
}

2199 2200 2201 2202 2203
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
2219
  heap_region_iterate(&blk);
2220 2221 2222 2223
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2224
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2235 2236
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2237 2238
    return 0;
  }
2239
  return hr->free();
2240 2241
}

2242 2243 2244 2245 2246 2247
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  return
    ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
     (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2270
void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2271 2272
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2273 2274 2275 2276 2277
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
  // We have already incremented _total_full_collections at the start
  // of the GC, so total_full_collections() represents how many full
  // collections have been started.
  unsigned int full_collections_started = total_full_collections();

  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2291
  assert(concurrent ||
2292 2293
         (full_collections_started == _full_collections_completed + 1) ||
         (full_collections_started == _full_collections_completed + 2),
2294
         err_msg("for inner caller (Full GC): full_collections_started = %u "
2295 2296 2297 2298
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  // This is the case for the outer caller, i.e. the concurrent cycle.
2299
  assert(!concurrent ||
2300
         (full_collections_started == _full_collections_completed + 1),
2301 2302
         err_msg("for outer caller (concurrent cycle): "
                 "full_collections_started = %u "
2303 2304 2305 2306 2307
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  _full_collections_completed += 1;

2308 2309 2310 2311
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2312
  if (concurrent) {
2313 2314 2315
    _cmThread->clear_in_progress();
  }

2316 2317 2318 2319 2320 2321 2322
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2323
void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2324
  assert_at_safepoint(true /* should_be_vm_thread */);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false);         // don't clear all soft refs
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

2338 2339 2340
void G1CollectedHeap::collect(GCCause::Cause cause) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2341

2342 2343
  unsigned int gc_count_before;
  unsigned int full_gc_count_before;
2344
  {
2345 2346
    MutexLocker ml(Heap_lock);

2347 2348 2349
    // Read the GC count while holding the Heap_lock
    gc_count_before = SharedHeap::heap()->total_collections();
    full_gc_count_before = SharedHeap::heap()->total_full_collections();
2350 2351 2352 2353
  }

  if (should_do_concurrent_full_gc(cause)) {
    // Schedule an initial-mark evacuation pause that will start a
2354 2355
    // concurrent cycle. We're setting word_size to 0 which means that
    // we are not requesting a post-GC allocation.
2356
    VM_G1IncCollectionPause op(gc_count_before,
2357 2358
                               0,     /* word_size */
                               true,  /* should_initiate_conc_mark */
2359 2360 2361 2362 2363 2364 2365
                               g1_policy()->max_pause_time_ms(),
                               cause);
    VMThread::execute(&op);
  } else {
    if (cause == GCCause::_gc_locker
        DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

2366 2367
      // Schedule a standard evacuation pause. We're setting word_size
      // to 0 which means that we are not requesting a post-GC allocation.
2368
      VM_G1IncCollectionPause op(gc_count_before,
2369
                                 0,     /* word_size */
2370 2371 2372
                                 false, /* should_initiate_conc_mark */
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2373
      VMThread::execute(&op);
2374 2375 2376
    } else {
      // Schedule a Full GC.
      VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2377 2378
      VMThread::execute(&op);
    }
2379 2380 2381 2382
  }
}

bool G1CollectedHeap::is_in(const void* p) const {
2383 2384
  HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
  if (hr != NULL) {
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
    return hr->is_in(p);
  } else {
    return _perm_gen->as_gen()->is_in(p);
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
  OopClosure* _cl;
public:
  IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2410
void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2411
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2412
  heap_region_iterate(&blk);
2413 2414 2415
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2416 2417
}

2418
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2419
  IterateOopClosureRegionClosure blk(mr, cl);
2420
  heap_region_iterate(&blk);
2421 2422 2423
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2440
void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2441
  IterateObjectClosureRegionClosure blk(cl);
2442
  heap_region_iterate(&blk);
2443 2444 2445
  if (do_perm) {
    perm_gen()->object_iterate(cl);
  }
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2467
  heap_region_iterate(&blk);
2468 2469
}

2470 2471
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2472 2473 2474
}

void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2475 2476
                                               HeapRegionClosure* cl) const {
  _hrs.iterate_from(r, cl);
2477 2478 2479 2480 2481 2482
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
                                                 int worker,
                                                 jint claim_value) {
2483
  const size_t regions = n_regions();
2484
  const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
  // try to spread out the starting points of the workers
  const size_t start_index = regions / worker_num * (size_t) worker;

  // each worker will actually look at all regions
  for (size_t count = 0; count < regions; ++count) {
    const size_t index = (start_index + count) % regions;
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2500
    if (r->claimHeapRegion(claim_value)) {
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
        for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2544
      }
2545 2546 2547 2548

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2549 2550 2551 2552
    }
  }
}

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

void
G1CollectedHeap::reset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
  size_t _failures;
  HeapRegion* _sh_region;
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                             "claim value = %d, should be %d",
                             r->bottom(), r->end(), r->claim_value(),
                             _claim_value);
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
        gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
                               r->bottom(), r->end(),
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
  size_t failures() {
    return _failures;
  }
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
#endif // ASSERT

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2631 2632 2633 2634 2635
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2659
  return n_regions() > 0 ? region_at(0) : NULL;
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  if (res == NULL)
    res = perm_gen()->space_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2701 2702 2703 2704
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

2705
  HeapRegion* hr = _mutator_alloc_region.get();
2706
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2707
  if (hr == NULL) {
2708
    return max_tlab_size;
2709
  } else {
2710
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2711 2712 2713 2714
  }
}

size_t G1CollectedHeap::max_capacity() const {
2715
  return _g1_reserved.byte_size();
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

class VerifyLivenessOopClosure: public OopClosure {
2731 2732
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
2733
public:
2734 2735 2736
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
2737 2738 2739 2740 2741
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
2742
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2743
              "Dead object referenced by a not dead object");
2744 2745 2746 2747
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
2748
private:
2749 2750 2751
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
2752
  VerifyOption _vo;
2753
public:
2754 2755 2756 2757 2758
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
2759 2760 2761
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
2762
    VerifyLivenessOopClosure isLive(_g1h, _vo);
2763
    assert(o != NULL, "Huh?");
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

2776
      o->oop_iterate(&isLive);
2777 2778 2779 2780
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
2816
private:
2817 2818 2819 2820
  bool         _allow_dirty;
  bool         _par;
  VerifyOption _vo;
  bool         _failures;
2821
public:
2822 2823 2824 2825
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2826 2827
    : _allow_dirty(allow_dirty),
      _par(par),
2828
      _vo(vo),
2829 2830 2831 2832 2833
      _failures(false) {}

  bool failures() {
    return _failures;
  }
2834

2835
  bool doHeapRegion(HeapRegion* r) {
2836 2837
    guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
              "Should be unclaimed at verify points.");
2838
    if (!r->continuesHumongous()) {
2839
      bool failures = false;
2840
      r->verify(_allow_dirty, _vo, &failures);
2841 2842 2843
      if (failures) {
        _failures = true;
      } else {
2844
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
        r->object_iterate(&not_dead_yet_cl);
        if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
          gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                 "max_live_bytes "SIZE_FORMAT" "
                                 "< calculated "SIZE_FORMAT,
                                 r->bottom(), r->end(),
                                 r->max_live_bytes(),
                                 not_dead_yet_cl.live_bytes());
          _failures = true;
        }
      }
2856
    }
2857
    return false; // stop the region iteration if we hit a failure
2858 2859 2860 2861 2862 2863
  }
};

class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
2864
  VerifyOption     _vo;
2865
  bool             _failures;
2866
public:
2867 2868 2869 2870
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
2871
    _g1h(G1CollectedHeap::heap()),
2872
    _vo(vo),
2873
    _failures(false) { }
2874 2875 2876

  bool failures() { return _failures; }

2877 2878 2879 2880
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2881
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
2882
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2883
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
2884 2885 2886
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
2887 2888 2889 2890 2891
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
2892 2893 2894

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
2895 2896
};

2897 2898 2899 2900 2901
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
2902 2903 2904
  bool             _allow_dirty;
  VerifyOption     _vo;
  bool             _failures;
2905 2906

public:
2907 2908 2909 2910
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
2911
    AbstractGangTask("Parallel verify task"),
2912 2913
    _g1h(g1h),
    _allow_dirty(allow_dirty),
2914
    _vo(vo),
2915 2916 2917 2918 2919
    _failures(false) { }

  bool failures() {
    return _failures;
  }
2920 2921

  void work(int worker_i) {
2922
    HandleMark hm;
2923
    VerifyRegionClosure blk(_allow_dirty, true, _vo);
2924 2925
    _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
                                          HeapRegion::ParVerifyClaimValue);
2926 2927 2928
    if (blk.failures()) {
      _failures = true;
    }
2929 2930 2931
  }
};

2932
void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2933
  verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
2934 2935 2936 2937
}

void G1CollectedHeap::verify(bool allow_dirty,
                             bool silent,
2938
                             VerifyOption vo) {
2939
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2940
    if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
2941
    VerifyRootsClosure rootsCl(vo);
2942
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
2943

2944 2945 2946
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
    const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
2947

2948 2949 2950 2951
    process_strong_roots(true,      // activate StrongRootsScope
                         true,      // we set "collecting perm gen" to true,
                                    // so we don't reset the dirty cards in the perm gen.
                         SharedHeap::ScanningOption(so),  // roots scanning options
2952
                         &rootsCl,
2953
                         &blobsCl,
2954
                         &rootsCl);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968

    // If we're verifying after the marking phase of a Full GC then we can't
    // treat the perm gen as roots into the G1 heap. Some of the objects in
    // the perm gen may be dead and hence not marked. If one of these dead
    // objects is considered to be a root then we may end up with a false
    // "Root location <x> points to dead ob <y>" failure.
    if (vo != VerifyOption_G1UseMarkWord) {
      // Since we used "collecting_perm_gen" == true above, we will not have
      // checked the refs from perm into the G1-collected heap. We check those
      // references explicitly below. Whether the relevant cards are dirty
      // is checked further below in the rem set verification.
      if (!silent) { gclog_or_tty->print("Permgen roots "); }
      perm_gen()->oop_iterate(&rootsCl);
    }
2969
    bool failures = rootsCl.failures();
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

2980
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
2981 2982 2983 2984
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

2985
      G1ParVerifyTask task(this, allow_dirty, vo);
2986 2987 2988 2989
      int n_workers = workers()->total_workers();
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
2990 2991 2992
      if (task.failures()) {
        failures = true;
      }
2993 2994 2995 2996 2997 2998 2999 3000 3001

      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3002
      VerifyRegionClosure blk(allow_dirty, false, vo);
3003
      heap_region_iterate(&blk);
3004 3005 3006
      if (blk.failures()) {
        failures = true;
      }
3007
    }
3008
    if (!silent) gclog_or_tty->print("RemSet ");
3009
    rem_set()->verify();
3010 3011 3012 3013 3014

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
      print_on(gclog_or_tty, true /* extended */);
      gclog_or_tty->print_cr("");
3015
#ifndef PRODUCT
3016
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3017
        concurrent_mark()->print_reachable("at-verification-failure",
3018
                                           vo, false /* all */);
3019
      }
3020
#endif
3021 3022 3023
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3039
void G1CollectedHeap::print() const { print_on(tty); }
3040 3041

void G1CollectedHeap::print_on(outputStream* st) const {
3042 3043 3044 3045 3046 3047
  print_on(st, PrintHeapAtGCExtended);
}

void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3048
            capacity()/K, used_unlocked()/K);
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
  st->print("  region size " SIZE_FORMAT "K, ",
            HeapRegion::GrainBytes/K);
  size_t young_regions = _young_list->length();
  st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
            young_regions, young_regions * HeapRegion::GrainBytes / K);
  size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
            survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  st->cr();
  perm()->as_gen()->print_on(st);
  if (extended) {
3065
    st->cr();
3066 3067 3068 3069 3070
    print_on_extended(st);
  }
}

void G1CollectedHeap::print_on_extended(outputStream* st) const {
3071
  PrintRegionClosure blk(st);
3072
  heap_region_iterate(&blk);
3073 3074 3075
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3076
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3077
    workers()->print_worker_threads_on(st);
3078
  }
T
tonyp 已提交
3079
  _cmThread->print_on(st);
3080
  st->cr();
T
tonyp 已提交
3081 3082
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3083 3084 3085 3086
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3087
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3088 3089 3090
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3091
  _cg1r->threads_do(tc);
3092 3093 3094 3095 3096 3097 3098 3099 3100
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3101
  if (G1SummarizeRSetStats) {
3102 3103
    g1_rem_set()->print_summary_info();
  }
3104
  if (G1SummarizeConcMark) {
3105 3106 3107 3108 3109 3110
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr(msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3161 3162 3163 3164 3165 3166 3167
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3168
  // always_do_update_barrier = false;
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3182
  // always_do_update_barrier = true;
3183 3184 3185 3186

  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3187 3188
}

3189 3190 3191 3192
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3193
  g1_policy()->record_stop_world_start();
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3209 3210 3211 3212
}

void
G1CollectedHeap::doConcurrentMark() {
3213 3214 3215 3216
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
  }
}

// <NEW PREDICTION>

double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
                                                       bool young) {
  return _g1_policy->predict_region_elapsed_time_ms(hr, young);
}

void G1CollectedHeap::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();
  return buffer_size * buffer_num + extra_cards;
}

size_t G1CollectedHeap::max_pending_card_num() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num  = dcqs.completed_buffers_num();
  int thread_num  = Threads::number_of_threads();
  return (buffer_num + thread_num) * buffer_size;
}

size_t G1CollectedHeap::cards_scanned() {
3255
  return g1_rem_set()->cardsScanned();
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
}

void
G1CollectedHeap::setup_surviving_young_words() {
  guarantee( _surviving_young_words == NULL, "pre-condition" );
  size_t array_length = g1_policy()->young_cset_length();
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
  memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3268
#ifdef ASSERT
3269
  for (size_t i = 0;  i < array_length; ++i) {
3270
    assert( _surviving_young_words[i] == 0, "memset above" );
3271
  }
3272
#endif // !ASSERT
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  size_t array_length = g1_policy()->young_cset_length();
  for (size_t i = 0; i < array_length; ++i)
    _surviving_young_words[i] += surv_young_words[i];
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  _surviving_young_words = NULL;
}

// </NEW PREDICTION>

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3309 3310 3311
    return false;
  }
};
3312
#endif // ASSERT
3313

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3325
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3336
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3337 3338 3339 3340 3341 3342
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3343
bool
3344
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3345 3346 3347
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3348
  if (GC_locker::check_active_before_gc()) {
3349
    return false;
3350 3351
  }

3352
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3353 3354
  ResourceMark rm;

3355 3356
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
3357 3358
  }

3359
  verify_region_sets_optional();
3360
  verify_dirty_young_regions();
3361

3362
  {
3363 3364 3365 3366 3367
    // This call will decide whether this pause is an initial-mark
    // pause. If it is, during_initial_mark_pause() will return true
    // for the duration of this pause.
    g1_policy()->decide_on_conc_mark_initiation();

3368 3369 3370 3371 3372 3373 3374 3375
    // We do not allow initial-mark to be piggy-backed on a
    // partially-young GC.
    assert(!g1_policy()->during_initial_mark_pause() ||
            g1_policy()->full_young_gcs(), "sanity");

    // We also do not allow partially-young GCs during marking.
    assert(!mark_in_progress() || g1_policy()->full_young_gcs(), "sanity");

3376 3377
    char verbose_str[128];
    sprintf(verbose_str, "GC pause ");
3378 3379 3380 3381
    if (g1_policy()->full_young_gcs()) {
      strcat(verbose_str, "(young)");
    } else {
      strcat(verbose_str, "(partial)");
3382
    }
3383
    if (g1_policy()->during_initial_mark_pause()) {
3384
      strcat(verbose_str, " (initial-mark)");
3385 3386 3387 3388
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
      increment_total_full_collections();
    }
3389

3390 3391 3392 3393 3394 3395
    // if PrintGCDetails is on, we'll print long statistics information
    // in the collector policy code, so let's not print this as the output
    // is messy if we do.
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3396

3397
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3398
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3399

T
tonyp 已提交
3400 3401 3402 3403 3404 3405
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3406
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3407
      append_secondary_free_list_if_not_empty_with_lock();
3408
    }
3409

3410 3411
    assert(check_young_list_well_formed(),
      "young list should be well formed");
3412

3413 3414 3415 3416 3417
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3418
      increment_gc_time_stamp();
3419

3420 3421 3422
      if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyBeforeGC:");
3423
        prepare_for_verify();
3424 3425 3426 3427
        Universe::verify(/* allow dirty */ false,
                         /* silent      */ false,
                         /* option      */ VerifyOption_G1UsePrevMarking);

3428
      }
3429

3430
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3431

3432 3433 3434
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3435

3436 3437 3438
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
        double start_time_sec = os::elapsedTime();
        size_t start_used_bytes = used();
3460

3461
#if YOUNG_LIST_VERBOSE
3462 3463 3464
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3465 3466
#endif // YOUNG_LIST_VERBOSE

3467 3468
        g1_policy()->record_collection_pause_start(start_time_sec,
                                                   start_used_bytes);
3469

3470
#if YOUNG_LIST_VERBOSE
3471 3472
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
3473
#endif // YOUNG_LIST_VERBOSE
3474

3475 3476 3477 3478
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
        perm_gen()->save_marks();
3479

3480 3481 3482 3483
        // We must do this before any possible evacuation that should propagate
        // marks.
        if (mark_in_progress()) {
          double start_time_sec = os::elapsedTime();
3484

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
          _cm->drainAllSATBBuffers();
          double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
          g1_policy()->record_satb_drain_time(finish_mark_ms);
        }
        // Record the number of elements currently on the mark stack, so we
        // only iterate over these.  (Since evacuation may add to the mark
        // stack, doing more exposes race conditions.)  If no mark is in
        // progress, this will be zero.
        _cm->set_oops_do_bound();

        if (mark_in_progress()) {
          concurrent_mark()->newCSet();
        }
3498

3499
#if YOUNG_LIST_VERBOSE
3500 3501 3502
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3503
#endif // YOUNG_LIST_VERBOSE
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
        g1_policy()->choose_collection_set(target_pause_time_ms);

        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
3520 3521 3522
          }
        }

3523 3524 3525 3526 3527 3528 3529 3530 3531
        // We have chosen the complete collection set. If marking is
        // active then, we clear the region fields of any of the
        // concurrent marking tasks whose region fields point into
        // the collection set as these values will become stale. This
        // will cause the owning marking threads to claim a new region
        // when marking restarts.
        if (mark_in_progress()) {
          concurrent_mark()->reset_active_task_region_fields_in_cset();
        }
3532

3533
#ifdef ASSERT
3534 3535
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
3536
#endif // ASSERT
3537

3538
        setup_surviving_young_words();
3539

3540 3541
        // Initialize the GC alloc regions.
        init_gc_alloc_regions();
3542

3543 3544
        // Actually do the work...
        evacuate_collection_set();
3545

3546 3547
        free_collection_set(g1_policy()->collection_set());
        g1_policy()->clear_collection_set();
3548

3549
        cleanup_surviving_young_words();
3550

3551 3552
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
3553

3554 3555 3556 3557
        // Clear the _cset_fast_test bitmap in anticipation of adding
        // regions to the incremental collection set for the next
        // evacuation pause.
        clear_cset_fast_test();
3558

3559
        _young_list->reset_sampled_info();
3560

3561 3562 3563 3564 3565 3566
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
3567 3568

#if YOUNG_LIST_VERBOSE
3569 3570
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3571
#endif // YOUNG_LIST_VERBOSE
3572

3573 3574 3575
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
                                            _young_list->first_survivor_region(),
                                            _young_list->last_survivor_region());
3576

3577
        _young_list->reset_auxilary_lists();
3578

3579 3580 3581 3582 3583 3584 3585
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
3586

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
          // CAUTION: after the doConcurrentMark() call below,
          // the concurrent marking thread(s) could be running
          // concurrently with us. Make sure that anything after
          // this point does not assume that we are the only GC thread
          // running. Note: of course, the actual marking work will
          // not start until the safepoint itself is released in
          // ConcurrentGCThread::safepoint_desynchronize().
          doConcurrentMark();
        }
3599

3600
        allocate_dummy_regions();
3601

3602
#if YOUNG_LIST_VERBOSE
3603 3604 3605
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3606
#endif // YOUNG_LIST_VERBOSE
3607

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
3620 3621 3622
          }
        }

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
        double end_time_sec = os::elapsedTime();
        double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
        g1_policy()->record_pause_time_ms(pause_time_ms);
        g1_policy()->record_collection_pause_end();

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

        if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
          HandleMark hm;  // Discard invalid handles created during verification
          gclog_or_tty->print(" VerifyAfterGC:");
          prepare_for_verify();
          Universe::verify(/* allow dirty */ true,
                           /* silent      */ false,
                           /* option      */ VerifyOption_G1UsePrevMarking);
        }
3661

3662 3663
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
3664

3665 3666
        // CM reference discovery will be re-enabled if necessary.
      }
3667

3668 3669 3670 3671
      {
        size_t expand_bytes = g1_policy()->expansion_amount();
        if (expand_bytes > 0) {
          size_t bytes_before = capacity();
3672 3673
          // No need for an ergo verbose message here,
          // expansion_amount() does this when it returns a value > 0.
3674 3675 3676 3677 3678 3679
          if (!expand(expand_bytes)) {
            // We failed to expand the heap so let's verify that
            // committed/uncommitted amount match the backing store
            assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
            assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
          }
3680
        }
3681
      }
3682 3683 3684 3685 3686 3687 3688

      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

3689 3690
      // We have to do this after we decide whether to expand the heap or not.
      g1_policy()->print_heap_transition();
3691

3692 3693 3694
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
3695 3696

#ifdef TRACESPINNING
3697
      ParallelTaskTerminator::print_termination_counts();
3698
#endif
3699

3700 3701 3702 3703 3704 3705 3706 3707 3708
      gc_epilogue(false);
    }

    if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
      gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
      print_tracing_info();
      vm_exit(-1);
    }
  }
3709

3710
  _hrs.verify_optional();
3711 3712
  verify_region_sets_optional();

3713 3714 3715
  TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());

3716 3717
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
3718
  }
3719
  g1mm()->update_sizes();
3720

3721 3722 3723 3724 3725
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
3726 3727

  return true;
3728 3729
}

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
      gclab_word_size = YoungPLABSize;
      break;
    case GCAllocForTenured:
      gclab_word_size = OldPLABSize;
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
      gclab_word_size = OldPLABSize;
      break;
  }
  return gclab_word_size;
}

3748 3749 3750 3751 3752 3753 3754 3755 3756
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
3757

3758
void G1CollectedHeap::init_gc_alloc_regions() {
3759
  assert_at_safepoint(true /* should_be_vm_thread */);
3760

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
  // has been subseqently used to allocate a humongous
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
  }
}

void G1CollectedHeap::release_gc_alloc_regions() {
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
3794 3795
}

3796 3797 3798 3799
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
3800 3801
}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
3813
  delete _evac_failure_scan_stack;
3814 3815 3816
  _evac_failure_scan_stack = NULL;
}

3817 3818 3819 3820 3821 3822 3823 3824 3825
class UpdateRSetDeferred : public OopsInHeapRegionClosure {
private:
  G1CollectedHeap* _g1;
  DirtyCardQueue *_dcq;
  CardTableModRefBS* _ct_bs;

public:
  UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3826

3827 3828 3829
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
3830
    assert(_from->is_in_reserved(p), "paranoia");
3831 3832
    if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
        !_from->is_survivor()) {
3833 3834 3835 3836
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {
        _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
      }
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
    }
  }
};

class RemoveSelfPointerClosure: public ObjectClosure {
private:
  G1CollectedHeap* _g1;
  ConcurrentMark* _cm;
  HeapRegion* _hr;
  size_t _prev_marked_bytes;
  size_t _next_marked_bytes;
3848
  OopsInHeapRegionClosure *_cl;
3849
public:
3850 3851 3852
  RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
                           OopsInHeapRegionClosure* cl) :
    _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3853
    _next_marked_bytes(0), _cl(cl) {}
3854 3855 3856 3857

  size_t prev_marked_bytes() { return _prev_marked_bytes; }
  size_t next_marked_bytes() { return _next_marked_bytes; }

3858
  // <original comment>
3859 3860 3861 3862 3863 3864 3865 3866 3867
  // The original idea here was to coalesce evacuated and dead objects.
  // However that caused complications with the block offset table (BOT).
  // In particular if there were two TLABs, one of them partially refined.
  // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  // The BOT entries of the unrefined part of TLAB_2 point to the start
  // of TLAB_2. If the last object of the TLAB_1 and the first object
  // of TLAB_2 are coalesced, then the cards of the unrefined part
  // would point into middle of the filler object.
  // The current approach is to not coalesce and leave the BOT contents intact.
3868 3869 3870 3871 3872 3873
  // </original comment>
  //
  // We now reset the BOT when we start the object iteration over the
  // region and refine its entries for every object we come across. So
  // the above comment is not really relevant and we should be able
  // to coalesce dead objects if we want to.
3874
  void do_object(oop obj) {
3875 3876 3877 3878
    HeapWord* obj_addr = (HeapWord*) obj;
    assert(_hr->is_in(obj_addr), "sanity");
    size_t obj_size = obj->size();
    _hr->update_bot_for_object(obj_addr, obj_size);
3879 3880 3881 3882 3883
    if (obj->is_forwarded() && obj->forwardee() == obj) {
      // The object failed to move.
      assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
      _cm->markPrev(obj);
      assert(_cm->isPrevMarked(obj), "Should be marked!");
3884
      _prev_marked_bytes += (obj_size * HeapWordSize);
3885 3886
      if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
        _cm->markAndGrayObjectIfNecessary(obj);
3887
      }
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
      obj->set_mark(markOopDesc::prototype());
      // While we were processing RSet buffers during the
      // collection, we actually didn't scan any cards on the
      // collection set, since we didn't want to update remebered
      // sets with entries that point into the collection set, given
      // that live objects fromthe collection set are about to move
      // and such entries will be stale very soon. This change also
      // dealt with a reliability issue which involved scanning a
      // card in the collection set and coming across an array that
      // was being chunked and looking malformed. The problem is
      // that, if evacuation fails, we might have remembered set
      // entries missing given that we skipped cards on the
      // collection set. So, we'll recreate such entries now.
3901
      obj->oop_iterate(_cl);
3902 3903 3904 3905
      assert(_cm->isPrevMarked(obj), "Should be marked!");
    } else {
      // The object has been either evacuated or is dead. Fill it with a
      // dummy object.
3906
      MemRegion mr((HeapWord*)obj, obj_size);
3907
      CollectedHeap::fill_with_object(mr);
3908
      _cm->clearRangeBothMaps(mr);
3909 3910 3911 3912 3913
    }
  }
};

void G1CollectedHeap::remove_self_forwarding_pointers() {
J
johnc 已提交
3914
  UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3915 3916 3917 3918 3919 3920 3921 3922
  DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  UpdateRSetDeferred deferred_update(_g1h, &dcq);
  OopsInHeapRegionClosure *cl;
  if (G1DeferredRSUpdate) {
    cl = &deferred_update;
  } else {
    cl = &immediate_update;
  }
3923 3924 3925
  HeapRegion* cur = g1_policy()->collection_set();
  while (cur != NULL) {
    assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3926
    assert(!cur->isHumongous(), "sanity");
3927 3928 3929

    if (cur->evacuation_failed()) {
      assert(cur->in_collection_set(), "bad CS");
3930 3931
      RemoveSelfPointerClosure rspc(_g1h, cur, cl);

3932 3933 3934 3935 3936 3937 3938 3939
      // In the common case we make sure that this is done when the
      // region is freed so that it is "ready-to-go" when it's
      // re-allocated. However, when evacuation failure happens, a
      // region will remain in the heap and might ultimately be added
      // to a CSet in the future. So we have to be careful here and
      // make sure the region's RSet is ready for parallel iteration
      // whenever this might be required in the future.
      cur->rem_set()->reset_for_par_iteration();
3940
      cur->reset_bot();
3941
      cl->set_region(cur);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
      cur->object_iterate(&rspc);

      // A number of manipulations to make the TAMS be the current top,
      // and the marked bytes be the ones observed in the iteration.
      if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
        // The comments below are the postconditions achieved by the
        // calls.  Note especially the last such condition, which says that
        // the count of marked bytes has been properly restored.
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        cur->add_to_marked_bytes(rspc.prev_marked_bytes());
        // _next_marked_bytes == prev_marked_bytes.
        cur->note_end_of_marking();
        // _prev_top_at_mark_start == top(),
        // _prev_marked_bytes == prev_marked_bytes
      }
      // If there is no mark in progress, we modified the _next variables
      // above needlessly, but harmlessly.
      if (_g1h->mark_in_progress()) {
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        // _next_marked_bytes == next_marked_bytes.
      }

      // Now make sure the region has the right index in the sorted array.
      g1_policy()->note_change_in_marked_bytes(cur);
    }
    cur = cur->next_in_collection_set();
  }
  assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4007 4008
                                               oop old,
                                               bool should_mark_root) {
4009 4010 4011
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4012 4013 4014 4015
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025

    // should_mark_root will be true when this routine is called
    // from a root scanning closure during an initial mark pause.
    // In this case the thread that succeeds in self-forwarding the
    // object is also responsible for marking the object.
    if (should_mark_root) {
      assert(!oopDesc::is_null(old), "shouldn't be");
      _cm->grayRoot(old);
    }

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4044 4045 4046 4047 4048 4049 4050
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4063
    _hr_printer.evac_failure(r);
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4077 4078 4079 4080
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
        new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
      _preserved_marks_of_objs =
        new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4095 4096 4097 4098
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4099
    } else {
4100 4101 4102
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4103
    }
4104 4105 4106 4107 4108
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4109
    } else {
4110 4111 4112
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4113 4114 4115
    }
  }

4116 4117 4118
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
}

#ifndef PRODUCT
bool GCLabBitMapClosure::do_bit(size_t offset) {
  HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  guarantee(_cm->isMarked(oop(addr)), "it should be!");
  return true;
}
#endif // PRODUCT

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  ParGCAllocBuffer(gclab_word_size),
  _should_mark_objects(false),
  _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  _retired(false)
{
  //_should_mark_objects is set to true when G1ParCopyHelper needs to
  // mark the forwarded location of an evacuated object.
  // We set _should_mark_objects to true if marking is active, i.e. when we
  // need to propagate a mark, or during an initial mark pause, i.e. when we
  // need to mark objects immediately reachable by the roots.
  if (G1CollectedHeap::heap()->mark_in_progress() ||
      G1CollectedHeap::heap()->g1_policy()->during_initial_mark_pause()) {
    _should_mark_objects = true;
  }
}

4146 4147 4148 4149 4150 4151 4152 4153
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4154 4155
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
    _alloc_buffer_waste(0), _undo_waste(0)
{
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
  size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  size_t array_length = PADDING_ELEM_NUM +
                        real_length +
                        PADDING_ELEM_NUM;
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  memset(_surviving_young_words, 0, real_length * sizeof(size_t));

4176 4177 4178
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4179 4180
  _start = os::elapsedTime();
}
4181

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
4247 4248 4249 4250
  assert(_evac_cl != NULL, "not set");
  assert(_evac_failure_cl != NULL, "not set");
  assert(_partial_scan_cl != NULL, "not set");

4251 4252 4253 4254 4255 4256
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
4257

4258 4259 4260 4261 4262 4263
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4264 4265
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4266 4267 4268
  _par_scan_state(par_scan_state),
  _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  _mark_in_progress(_g1->mark_in_progress()) { }
4269

4270 4271 4272 4273
template <class T> void G1ParCopyHelper::mark_object(T* p) {
  // This is called from do_oop_work for objects that are not
  // in the collection set. Objects in the collection set
  // are marked after they have been evacuated.
4274

4275 4276 4277 4278
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop(heap_oop);
    HeapWord* addr = (HeapWord*)obj;
4279
    if (_g1->is_in_g1_reserved(addr)) {
4280
      _cm->grayRoot(oop(addr));
4281
    }
4282 4283 4284
  }
}

4285 4286
oop G1ParCopyHelper::copy_to_survivor_space(oop old, bool should_mark_root,
                                                     bool should_mark_copy) {
4287 4288 4289 4290 4291 4292 4293 4294
  size_t    word_sz = old->size();
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
  assert( (from_region->is_young() && young_index > 0) ||
          (!from_region->is_young() && young_index == 0), "invariant" );
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4295 4296 4297
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4298 4299 4300 4301 4302 4303 4304 4305
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  oop       obj     = oop(obj_ptr);

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4306
    return _g1->handle_evacuation_failure_par(cl, old, should_mark_root);
4307 4308
  }

4309 4310 4311
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4312 4313 4314 4315
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4335
        obj->set_mark(m);
4336
      }
4337 4338 4339
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4340
    }
4341

4342 4343
    // Mark the evacuated object or propagate "next" mark bit
    if (should_mark_copy) {
4344 4345 4346 4347 4348 4349 4350
      if (!use_local_bitmaps ||
          !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
        // if we couldn't mark it on the local bitmap (this happens when
        // the object was not allocated in the GCLab), we have to bite
        // the bullet and do the standard parallel mark
        _cm->markAndGrayObjectIfNecessary(obj);
      }
4351

4352
      if (_g1->isMarkedNext(old)) {
4353 4354
        // Unmark the object's old location so that marking
        // doesn't think the old object is alive.
4355 4356 4357 4358 4359 4360 4361 4362 4363
        _cm->nextMarkBitMap()->parClear((HeapWord*)old);
      }
    }

    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
      arrayOop(old)->set_length(0);
4364 4365
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4366
    } else {
4367 4368 4369
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
      _scanner->set_region(_g1->heap_region_containing_raw(obj));
4370 4371 4372 4373 4374 4375 4376 4377 4378
      obj->oop_iterate_backwards(_scanner);
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4379
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4380
template <class T>
4381
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4382 4383
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4384 4385 4386
  assert(barrier != G1BarrierRS || obj != NULL,
         "Precondition: G1BarrierRS implies obj is nonNull");

4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
  // Marking:
  // If the object is in the collection set, then the thread
  // that copies the object should mark, or propagate the
  // mark to, the evacuated object.
  // If the object is not in the collection set then we
  // should call the mark_object() method depending on the
  // value of the template parameter do_mark_object (which will
  // be true for root scanning closures during an initial mark
  // pause).
  // The mark_object() method first checks whether the object
  // is marked and, if not, attempts to mark the object.

4399
  // here the null check is implicit in the cset_fast_test() test
4400
  if (_g1->in_cset_fast_test(obj)) {
4401
    if (obj->is_forwarded()) {
4402
      oopDesc::encode_store_heap_oop(p, obj->forwardee());
4403 4404 4405 4406 4407
      // If we are a root scanning closure during an initial
      // mark pause (i.e. do_mark_object will be true) then
      // we also need to handle marking of roots in the
      // event of an evacuation failure. In the event of an
      // evacuation failure, the object is forwarded to itself
4408 4409 4410 4411 4412 4413
      // and not copied. For root-scanning closures, the
      // object would be marked after a successful self-forward
      // but an object could be pointed to by both a root and non
      // root location and be self-forwarded by a non-root-scanning
      // closure. Therefore we also have to attempt to mark the
      // self-forwarded root object here.
4414 4415 4416
      if (do_mark_object && obj->forwardee() == obj) {
        mark_object(p);
      }
4417
    } else {
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
      // During an initial mark pause, objects that are pointed to
      // by the roots need to be marked - even in the event of an
      // evacuation failure. We pass the template parameter
      // do_mark_object (which is true for root scanning closures
      // during an initial mark pause) to copy_to_survivor_space
      // which will pass it on to the evacuation failure handling
      // code. The thread that successfully self-forwards a root
      // object to itself is responsible for marking the object.
      bool should_mark_root = do_mark_object;

4428 4429 4430 4431 4432 4433 4434 4435
      // We need to mark the copied object if we're a root scanning
      // closure during an initial mark pause (i.e. do_mark_object
      // will be true), or the object is already marked and we need
      // to propagate the mark to the evacuated copy.
      bool should_mark_copy = do_mark_object ||
                              _during_initial_mark ||
                              (_mark_in_progress && !_g1->is_obj_ill(obj));

4436 4437
      oop copy_oop = copy_to_survivor_space(obj, should_mark_root,
                                                 should_mark_copy);
4438
      oopDesc::encode_store_heap_oop(p, copy_oop);
4439
    }
4440 4441
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4442
      _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4443
    }
4444 4445 4446 4447 4448 4449 4450
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
    if (do_mark_object) {
      mark_object(p);
    }
4451
  }
4452

4453
  if (barrier == G1BarrierEvac && obj != NULL) {
4454
    _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4455 4456 4457 4458
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4459 4460 4461
  }
}

4462 4463
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4464

4465
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4466 4467
  assert(has_partial_array_mask(p), "invariant");
  oop old = clear_partial_array_mask(p);
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");

  objArrayOop obj = objArrayOop(old->forwardee());
  assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
4485 4486 4487
    oop* old_p = set_partial_array_mask(old);
    assert(arrayOop(old)->length() < obj->length(), "Empty push?");
    _par_scan_state->push_on_queue(old_p);
4488 4489 4490 4491 4492
  } else {
    // Restore length so that the heap remains parsable in
    // case of evacuation failure.
    arrayOop(old)->set_length(end);
  }
4493
  _scanner.set_region(_g1->heap_region_containing_raw(obj));
4494
  // process our set of indices (include header in first chunk)
4495
  obj->oop_iterate_range(&_scanner, start, end);
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4517
  void do_void();
4518

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4540
        pss->deal_with_reference((narrowOop*) stolen_task);
4541
      } else {
4542
        pss->deal_with_reference((oop*) stolen_task);
4543
      }
4544 4545 4546 4547

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4548
      pss->trim_queue();
4549
    }
4550 4551 4552 4553
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4554 4555 4556 4557 4558 4559

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4560
  int _n_workers;
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
  G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
      _terminator(workers, _queues),
4576 4577
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
      _n_workers(workers)
4578 4579 4580 4581 4582 4583 4584 4585 4586
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

  void work(int i) {
4587
    if (i >= _n_workers) return;  // no work needed this round
4588 4589 4590 4591

    double start_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);

4592 4593 4594
    ResourceMark rm;
    HandleMark   hm;

4595 4596
    ReferenceProcessor*             rp = _g1h->ref_processor_stw();

4597
    G1ParScanThreadState            pss(_g1h, i);
4598 4599 4600
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4601 4602 4603 4604 4605

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

4606 4607
    G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
    G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4608

4609 4610
    G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
    G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4611

4612 4613
    OopClosure*                    scan_root_cl = &only_scan_root_cl;
    OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4614

4615
    if (_g1h->g1_policy()->during_initial_mark_pause()) {
4616
      // We also need to mark copied objects.
4617 4618 4619 4620
      scan_root_cl = &scan_mark_root_cl;
      scan_perm_cl = &scan_mark_perm_cl;
    }

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
    // The following closure is used to scan RSets looking for reference
    // fields that point into the collection set. The actual field iteration
    // is performed by a FilterIntoCSClosure, whose do_oop method calls the
    // do_oop method of the following closure.
    // Therefore we want to record the reference processor in the
    // FilterIntoCSClosure. To do so we record the STW reference
    // processor into the following closure and pass it to the
    // FilterIntoCSClosure in HeapRegionDCTOC::walk_mem_region_with_cl.
    G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss, rp);

4631 4632 4633 4634
    pss.start_strong_roots();
    _g1h->g1_process_strong_roots(/* not collecting perm */ false,
                                  SharedHeap::SO_AllClasses,
                                  scan_root_cl,
4635
                                  &push_heap_rs_cl,
4636 4637 4638
                                  scan_perm_cl,
                                  i);
    pss.end_strong_roots();
4639

4640 4641 4642 4643 4644 4645 4646
    {
      double start = os::elapsedTime();
      G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
      evac.do_void();
      double elapsed_ms = (os::elapsedTime()-start)*1000.0;
      double term_ms = pss.term_time()*1000.0;
      _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4647
      _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4648
    }
4649
    _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4650 4651 4652 4653 4654 4655
    _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

    // Clean up any par-expanded rem sets.
    HeapRegionRemSet::par_cleanup();

    if (ParallelGCVerbose) {
4656 4657
      MutexLocker x(stats_lock());
      pss.print_termination_stats(i);
4658 4659
    }

4660
    assert(pss.refs()->is_empty(), "should be empty");
4661 4662
    double end_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4663 4664 4665 4666 4667
  }
};

// *** Common G1 Evacuation Stuff

4668 4669
// This method is run in a GC worker.

4670 4671 4672 4673 4674 4675 4676 4677
void
G1CollectedHeap::
g1_process_strong_roots(bool collecting_perm_gen,
                        SharedHeap::ScanningOption so,
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
                        OopsInGenClosure* scan_perm,
                        int worker_i) {
4678

4679 4680 4681 4682 4683 4684 4685 4686
  // First scan the strong roots, including the perm gen.
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  buf_scan_perm.set_generation(perm_gen());

4687 4688 4689 4690 4691 4692
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);

  process_strong_roots(false, // no scoping; this is parallel code
                       collecting_perm_gen, so,
4693
                       &buf_scan_non_heap_roots,
4694
                       &eager_scan_code_roots,
4695
                       &buf_scan_perm);
4696

4697
  // Now the CM ref_processor roots.
4698
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4699 4700 4701 4702 4703
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4704 4705 4706
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
4707 4708
  buf_scan_non_heap_roots.done();
  buf_scan_perm.done();
4709

4710
  double ext_roots_end = os::elapsedTime();
4711

4712
  g1_policy()->reset_obj_copy_time(worker_i);
4713 4714
  double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
                                buf_scan_non_heap_roots.closure_app_seconds();
4715
  g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4716

4717 4718
  double ext_root_time_ms =
    ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4719

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
  g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);

  // Scan strong roots in mark stack.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
    concurrent_mark()->oops_do(scan_non_heap_roots);
  }
  double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);

  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
4733

4734 4735 4736 4737 4738 4739
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
4740 4741
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4742 4743
}

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
  OopsInHeapRegionClosure* _copy_perm_obj_cl;
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
                            OopsInHeapRegionClosure* perm_obj_cl,
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
    _copy_perm_obj_cl(perm_obj_cl),
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
      // use the the non-heap or perm closures directly to copy
      // the refernt object and update the pointer, while avoiding
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
        // The reference field is not in the G1 heap.
        if (_g1h->perm_gen()->is_in(p)) {
          _copy_perm_obj_cl->do_oop(p);
        } else {
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
  }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
  WorkGang*          _workers;
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
                        WorkGang* workers,
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

  virtual void work(int i) {
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

    G1ParScanThreadState pss(_g1h, i);

    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
    OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
      copy_perm_cl = &copy_mark_perm_cl;
    }

    // Keep alive closure.
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
    _proc_task.work(i, is_alive, keep_alive, drain_queue);

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

  virtual void work(int i) {
    _enq_task.work(i);
  }
};

// Driver routine for parallel reference enqueing.
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
  int _n_workers;

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

  void work(int i) {
    ResourceMark rm;
    HandleMark   hm;

    G1ParScanThreadState            pss(_g1h, i);
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    assert(pss.refs()->is_empty(), "both queue and overflow should be empty");


    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
    OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
      copy_perm_cl = &copy_mark_perm_cl;
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

    int limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    int stride = MIN2(MAX2(_n_workers, 1), limit);

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
    assert(0 <= i && i < limit, "sanity");
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
    for (int idx = i; idx < limit; idx += stride) {
      DiscoveredList& ref_list = rp->discovered_soft_refs()[idx];

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss.refs()->is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
void G1CollectedHeap::process_discovered_references() {
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
  // As a reult the copy closure would not have been applied to the
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        workers()->total_workers() : 1);

  set_par_threads(n_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this, n_workers, _task_queues);

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
  G1ParScanThreadState pss(this, 0);

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);

  pss.set_evac_closure(&scan_evac_cl);
  pss.set_evac_failure_closure(&evac_failure_cl);
  pss.set_partial_scan_closure(&partial_scan_cl);

  assert(pss.refs()->is_empty(), "pre-condition");

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
    copy_perm_cl = &copy_mark_perm_cl;
  }

  // Keep alive closure.
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->process_discovered_references(&is_alive,
                                      &keep_alive,
                                      &drain_queue,
                                      NULL);
  } else {
    // Parallel reference processing
    int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
    assert(rp->num_q() == active_workers, "sanity");
    assert(active_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
    rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  }

  // We have completed copying any necessary live referent objects
  // (that were not copied during the actual pause) so we can
  // retire any active alloc buffers
  pss.retire_alloc_buffers();
  assert(pss.refs()->is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
  g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
}

// Weak Reference processing during an evacuation pause (part 2).
void G1CollectedHeap::enqueue_discovered_references() {
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
    // Parallel reference enqueuing

    int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
    assert(rp->num_q() == active_workers, "sanity");
    assert(active_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
  // and could signicantly increase the pause time.

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
  g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
}

5262 5263 5264 5265 5266
void G1CollectedHeap::evacuate_collection_set() {
  set_evacuation_failed(false);

  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
5267 5268
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

5269 5270 5271 5272 5273 5274 5275 5276
  int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  set_par_threads(n_workers);
  G1ParTask g1_par_task(this, n_workers, _task_queues);

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5277 5278
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  double start_par = os::elapsedTime();
5279

5280
  if (G1CollectedHeap::use_parallel_gc_threads()) {
5281
    // The individual threads will set their evac-failure closures.
5282
    StrongRootsScope srs(this);
5283
    if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5284 5285
    workers()->run_task(&g1_par_task);
  } else {
5286
    StrongRootsScope srs(this);
5287 5288 5289 5290 5291 5292
    g1_par_task.work(0);
  }

  double par_time = (os::elapsedTime() - start_par) * 1000.0;
  g1_policy()->record_par_time(par_time);
  set_par_threads(0);
5293

5294 5295 5296 5297 5298 5299 5300
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
  process_discovered_references();

5301 5302 5303 5304
  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
5305
  {
5306
    G1STWIsAliveClosure is_alive(this);
5307 5308 5309
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
5310

5311
  release_gc_alloc_regions();
5312
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5313

5314
  concurrent_g1_refine()->clear_hot_cache();
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  // Must do this before removing self-forwarding pointers, which clears
  // the per-region evac-failure flags.
  concurrent_mark()->complete_marking_in_collection_set();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
    if (PrintGCDetails) {
5326
      gclog_or_tty->print(" (to-space overflow)");
5327 5328 5329 5330 5331
    } else if (PrintGC) {
      gclog_or_tty->print("--");
    }
  }

5332 5333 5334 5335 5336 5337 5338 5339 5340
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
  // the act of enqueuing entries on to the pending list
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
  enqueue_discovered_references();

5341 5342 5343 5344
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5345 5346 5347

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
5348 5349
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
5350 5351 5352
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
5353
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5354 5355 5356
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
5357
                                     HRRSCleanupTask* hrrs_cleanup_task,
5358 5359 5360 5361 5362 5363 5364 5365
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
5366 5367
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5368 5369 5370
  }
}

5371 5372 5373
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
5374
                                  bool par) {
5375 5376 5377 5378 5379 5380
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
5381
  free_list->add_as_head(hr);
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

5400
  size_t i = hr->hrs_index() + 1;
5401
  size_t num = 1;
5402 5403
  while (i < n_regions()) {
    HeapRegion* curr_hr = region_at(i);
5404 5405
    if (!curr_hr->continuesHumongous()) {
      break;
5406
    }
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    num += 1;
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5424
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5425 5426 5427 5428
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
5429
    _summary_bytes_used -= pre_used;
5430 5431 5432
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5433
    _free_list.add_as_head(free_list);
5434 5435 5436 5437
  }
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
5438 5439 5440
  }
}

5441 5442 5443
class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
5444
  HeapRegion* volatile _su_head;
5445 5446
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5447
                     G1CollectedHeap* g1h) :
5448
    AbstractGangTask("G1 Par Cleanup CT Task"),
5449
    _ct_bs(ct_bs), _g1h(g1h) { }
5450 5451 5452 5453 5454 5455 5456

  void work(int i) {
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
5457

5458
  void clear_cards(HeapRegion* r) {
5459
    // Cards of the survivors should have already been dirtied.
5460
    if (!r->is_survivor()) {
5461 5462 5463 5464 5465
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

5466 5467
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
5468
  G1CollectedHeap* _g1h;
5469 5470
  CardTableModRefBS* _ct_bs;
public:
5471 5472
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
    : _g1h(g1h), _ct_bs(ct_bs) { }
5473
  virtual bool doHeapRegion(HeapRegion* r) {
5474
    if (r->is_survivor()) {
5475
      _g1h->verify_dirty_region(r);
5476
    } else {
5477
      _g1h->verify_not_dirty_region(r);
5478 5479 5480 5481
    }
    return false;
  }
};
5482

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  ct_bs->verify_dirty_region(mr);
}

5503
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5504
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5505
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5506
    verify_dirty_region(hr);
5507 5508 5509 5510 5511 5512 5513
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
  verify_dirty_young_list(_young_list->first_survivor_region());
}
5514 5515
#endif

5516 5517 5518 5519
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

5520
  // Iterate over the dirty cards region list.
5521
  G1ParCleanupCTTask cleanup_task(ct_bs, this);
5522

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
  if (ParallelGCThreads > 0) {
    set_par_threads(workers()->total_workers());
    workers()->run_task(&cleanup_task);
    set_par_threads(0);
  } else {
    while (_dirty_cards_region_list) {
      HeapRegion* r = _dirty_cards_region_list;
      cleanup_task.clear_cards(r);
      _dirty_cards_region_list = r->get_next_dirty_cards_region();
      if (_dirty_cards_region_list == r) {
        // The last region.
        _dirty_cards_region_list = NULL;
      }
      r->set_next_dirty_cards_region(NULL);
    }
  }
5539

5540
  double elapsed = os::elapsedTime() - start;
5541
  g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5542 5543
#ifndef PRODUCT
  if (G1VerifyCTCleanup || VerifyAfterGC) {
5544
    G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5545 5546 5547
    heap_region_iterate(&cleanup_verifier);
  }
#endif
5548 5549 5550
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5551 5552 5553
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

5554 5555 5556
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5557 5558 5559 5560 5561
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
5572
    assert(!is_on_master_free_list(cur), "sanity");
5573

5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
5584 5585 5586
      double end_sec = os::elapsedTime();
      double elapsed_ms = (end_sec - start_sec) * 1000.0;
      young_time_ms += elapsed_ms;
5587

5588 5589
      start_sec = os::elapsedTime();
      non_young = true;
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
      guarantee( index != -1, "invariant" );
      guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5605 5606 5607 5608 5609 5610

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
    } else {
      int index = cur->young_index_in_cset();
      guarantee( index == -1, "invariant" );
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
      // And the region is empty.
5622 5623
      assert(!cur->is_empty(), "Should not have empty regions in a CS.");
      free_region(cur, &pre_used, &local_free_list, false /* par */);
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
    } else {
      cur->uninstall_surv_rate_group();
      if (cur->is_young())
        cur->set_young_index_in_cset(-1);
      cur->set_not_young();
      cur->set_evacuation_failed(false);
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
  if (non_young)
    non_young_time_ms += elapsed_ms;
  else
    young_time_ms += elapsed_ms;

5644 5645 5646
  update_sets_after_freeing_regions(pre_used, &local_free_list,
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
5647 5648 5649 5650
  policy->record_young_free_cset_time_ms(young_time_ms);
  policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}

5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

5672 5673 5674 5675
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
5676 5677
  }

5678 5679
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
5680 5681
}

5682 5683 5684 5685 5686 5687
void G1CollectedHeap::reset_free_regions_coming() {
  {
    assert(free_regions_coming(), "pre-condition");
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
5688 5689
  }

5690 5691 5692
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
5693 5694 5695
  }
}

5696 5697 5698 5699 5700
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
5701 5702
  }

5703 5704 5705
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
5706 5707 5708
  }

  {
5709 5710 5711
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5712 5713 5714
    }
  }

5715 5716 5717
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
  g1_policy()->set_region_short_lived(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

5744 5745
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
5746

5747
  if (check_heap) {
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

void G1CollectedHeap::empty_young_list() {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");

  _young_list->empty_list();
}

// Done at the start of full GC.
void G1CollectedHeap::tear_down_region_lists() {
5765
  _free_list.remove_all();
5766 5767 5768
}

class RegionResetter: public HeapRegionClosure {
5769 5770 5771
  G1CollectedHeap* _g1h;
  FreeRegionList _local_free_list;

5772
public:
5773 5774 5775
  RegionResetter() : _g1h(G1CollectedHeap::heap()),
                     _local_free_list("Local Free List for RegionResetter") { }

5776 5777 5778 5779 5780 5781 5782 5783 5784
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->top() > r->bottom()) {
      if (r->top() < r->end()) {
        Copy::fill_to_words(r->top(),
                          pointer_delta(r->end(), r->top()));
      }
    } else {
      assert(r->is_empty(), "tautology");
5785
      _local_free_list.add_as_tail(r);
5786 5787 5788 5789
    }
    return false;
  }

5790 5791 5792 5793
  void update_free_lists() {
    _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
                                            false /* par */);
  }
5794 5795 5796 5797 5798 5799 5800
};

// Done at the end of full GC.
void G1CollectedHeap::rebuild_region_lists() {
  // This needs to go at the end of the full GC.
  RegionResetter rs;
  heap_region_iterate(&rs);
5801
  rs.update_free_lists();
5802 5803 5804 5805 5806 5807
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

5808 5809 5810 5811 5812 5813
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
    return is_in_permanent(p);
  } else {
    return hr->is_in(p);
5814
  }
5815 5816
}

5817 5818
// Methods for the mutator alloc region

5819 5820 5821 5822 5823
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
5824 5825
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
5826 5827 5828 5829 5830
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      g1_policy()->update_region_num(true /* next_is_young */);
      set_region_short_lived_locked(new_alloc_region);
5831
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
5845
  _hr_printer.retire(alloc_region);
5846 5847 5848 5849
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
                                                 size_t count,
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
      if (ap == GCAllocForSurvived) {
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
  alloc_region->note_end_of_copying();
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
5925 5926
// Heap region set verification

5927 5928 5929 5930 5931
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  HumongousRegionSet* _humongous_set;
  FreeRegionList*     _free_list;
  size_t              _region_count;
5932 5933

public:
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
  VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
                           FreeRegionList* free_list) :
    _humongous_set(humongous_set), _free_list(free_list),
    _region_count(0) { }

  size_t region_count()      { return _region_count;      }

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
    }
5955 5956 5957 5958
    return false;
  }
};

5959 5960 5961 5962 5963 5964 5965 5966 5967
HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
  return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
}

5968 5969
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5970

5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
5995

T
tonyp 已提交
5996 5997 5998 5999
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6000

6001 6002 6003 6004
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
  _humongous_set.verify_start();
  _free_list.verify_start();
6005

6006 6007
  VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  heap_region_iterate(&cl);
6008

6009 6010
  _humongous_set.verify_end();
  _free_list.verify_end();
6011
}