psParallelCompact.cpp 133.5 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/codeCache.hpp"
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
#include "gc_implementation/parallelScavenge/generationSizer.hpp"
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
#include "gc_implementation/parallelScavenge/pcTasks.hpp"
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
#include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
#include "gc_implementation/parallelScavenge/psYoungGen.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "gc_interface/gcCause.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/referenceProcessor.hpp"
47
#include "oops/methodData.hpp"
48 49 50 51 52 53 54
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/vmThread.hpp"
#include "services/management.hpp"
#include "services/memoryService.hpp"
Z
zgu 已提交
55
#include "services/memTracker.hpp"
56 57
#include "utilities/events.hpp"
#include "utilities/stack.inline.hpp"
D
duke 已提交
58 59 60 61

#include <math.h>

// All sizes are in HeapWords.
62 63 64 65 66 67 68
const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
const size_t ParallelCompactData::RegionSizeBytes =
  RegionSize << LogHeapWordSize;
const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
D
duke 已提交
69

70 71
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_shift = 27;
D
duke 已提交
72

73 74
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
D
duke 已提交
75

76 77
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
D
duke 已提交
78

79 80
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::los_mask = ~dc_mask;
D
duke 已提交
81

82 83
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
D
duke 已提交
84

85 86
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
D
duke 已提交
87 88 89 90 91

SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
bool      PSParallelCompact::_print_phases = false;

ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
92
Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
D
duke 已提交
93 94 95 96 97 98 99 100 101 102

double PSParallelCompact::_dwl_mean;
double PSParallelCompact::_dwl_std_dev;
double PSParallelCompact::_dwl_first_term;
double PSParallelCompact::_dwl_adjustment;
#ifdef  ASSERT
bool   PSParallelCompact::_dwl_initialized = false;
#endif  // #ifdef ASSERT

#ifdef VALIDATE_MARK_SWEEP
103
GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
D
duke 已提交
104 105 106 107
GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
size_t                  PSParallelCompact::_live_oops_index = 0;
108 109
GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
D
duke 已提交
110 111 112 113 114 115 116 117 118 119 120
bool                    PSParallelCompact::_pointer_tracking = false;
bool                    PSParallelCompact::_root_tracking = true;

GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
#endif

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
                       HeapWord* destination)
{
  assert(src_region_idx != 0, "invalid src_region_idx");
  assert(partial_obj_size != 0, "invalid partial_obj_size argument");
  assert(destination != NULL, "invalid destination argument");

  _src_region_idx = src_region_idx;
  _partial_obj_size = partial_obj_size;
  _destination = destination;

  // These fields may not be updated below, so make sure they're clear.
  assert(_dest_region_addr == NULL, "should have been cleared");
  assert(_first_src_addr == NULL, "should have been cleared");

  // Determine the number of destination regions for the partial object.
  HeapWord* const last_word = destination + partial_obj_size - 1;
  const ParallelCompactData& sd = PSParallelCompact::summary_data();
  HeapWord* const beg_region_addr = sd.region_align_down(destination);
  HeapWord* const end_region_addr = sd.region_align_down(last_word);

  if (beg_region_addr == end_region_addr) {
    // One destination region.
    _destination_count = 1;
    if (end_region_addr == destination) {
      // The destination falls on a region boundary, thus the first word of the
      // partial object will be the first word copied to the destination region.
      _dest_region_addr = end_region_addr;
      _first_src_addr = sd.region_to_addr(src_region_idx);
    }
  } else {
    // Two destination regions.  When copied, the partial object will cross a
    // destination region boundary, so a word somewhere within the partial
    // object will be the first word copied to the second destination region.
    _destination_count = 2;
    _dest_region_addr = end_region_addr;
    const size_t ofs = pointer_delta(end_region_addr, destination);
    assert(ofs < _partial_obj_size, "sanity");
    _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
  }
}

void SplitInfo::clear()
{
  _src_region_idx = 0;
  _partial_obj_size = 0;
  _destination = NULL;
  _destination_count = 0;
  _dest_region_addr = NULL;
  _first_src_addr = NULL;
  assert(!is_valid(), "sanity");
}

#ifdef  ASSERT
void SplitInfo::verify_clear()
{
  assert(_src_region_idx == 0, "not clear");
  assert(_partial_obj_size == 0, "not clear");
  assert(_destination == NULL, "not clear");
  assert(_destination_count == 0, "not clear");
  assert(_dest_region_addr == NULL, "not clear");
  assert(_first_src_addr == NULL, "not clear");
}
#endif  // #ifdef ASSERT


D
duke 已提交
187 188
#ifndef PRODUCT
const char* PSParallelCompact::space_names[] = {
189
  "old ", "eden", "from", "to  "
D
duke 已提交
190 191
};

192
void PSParallelCompact::print_region_ranges()
D
duke 已提交
193 194 195 196 197 198 199
{
  tty->print_cr("space  bottom     top        end        new_top");
  tty->print_cr("------ ---------- ---------- ---------- ----------");

  for (unsigned int id = 0; id < last_space_id; ++id) {
    const MutableSpace* space = _space_info[id].space();
    tty->print_cr("%u %s "
200 201
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
D
duke 已提交
202
                  id, space_names[id],
203 204 205 206
                  summary_data().addr_to_region_idx(space->bottom()),
                  summary_data().addr_to_region_idx(space->top()),
                  summary_data().addr_to_region_idx(space->end()),
                  summary_data().addr_to_region_idx(_space_info[id].new_top()));
D
duke 已提交
207 208 209 210
  }
}

void
211
print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
D
duke 已提交
212
{
213 214
#define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
#define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
D
duke 已提交
215 216

  ParallelCompactData& sd = PSParallelCompact::summary_data();
217 218 219 220 221
  size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
  tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
                REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
D
duke 已提交
222 223
                i, c->data_location(), dci, c->destination(),
                c->partial_obj_size(), c->live_obj_size(),
224
                c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
225

226 227
#undef  REGION_IDX_FORMAT
#undef  REGION_DATA_FORMAT
D
duke 已提交
228 229 230 231 232 233 234 235
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           HeapWord* const beg_addr,
                           HeapWord* const end_addr)
{
  size_t total_words = 0;
236 237
  size_t i = summary_data.addr_to_region_idx(beg_addr);
  const size_t last = summary_data.addr_to_region_idx(end_addr);
D
duke 已提交
238 239 240
  HeapWord* pdest = 0;

  while (i <= last) {
241
    ParallelCompactData::RegionData* c = summary_data.region(i);
D
duke 已提交
242
    if (c->data_size() != 0 || c->destination() != pdest) {
243
      print_generic_summary_region(i, c);
D
duke 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
      total_words += c->data_size();
      pdest = c->destination();
    }
    ++i;
  }

  tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info)
{
  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
    const MutableSpace* space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(),
                               MAX2(space->top(), space_info[id].new_top()));
  }
}

void
265 266 267
print_initial_summary_region(size_t i,
                             const ParallelCompactData::RegionData* c,
                             bool newline = true)
D
duke 已提交
268
{
269 270 271
  tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
D
duke 已提交
272 273
             i, c->destination(),
             c->partial_obj_size(), c->live_obj_size(),
274
             c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
275 276 277 278 279 280 281 282 283 284
  if (newline) tty->cr();
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           const MutableSpace* space) {
  if (space->top() == space->bottom()) {
    return;
  }

285 286 287 288 289
  const size_t region_size = ParallelCompactData::RegionSize;
  typedef ParallelCompactData::RegionData RegionData;
  HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
  const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
  const RegionData* c = summary_data.region(end_region - 1);
D
duke 已提交
290 291 292
  HeapWord* end_addr = c->destination() + c->data_size();
  const size_t live_in_space = pointer_delta(end_addr, space->bottom());

293 294 295 296 297 298
  // Print (and count) the full regions at the beginning of the space.
  size_t full_region_count = 0;
  size_t i = summary_data.addr_to_region_idx(space->bottom());
  while (i < end_region && summary_data.region(i)->data_size() == region_size) {
    print_initial_summary_region(i, summary_data.region(i));
    ++full_region_count;
D
duke 已提交
299 300 301
    ++i;
  }

302
  size_t live_to_right = live_in_space - full_region_count * region_size;
D
duke 已提交
303 304

  double max_reclaimed_ratio = 0.0;
305
  size_t max_reclaimed_ratio_region = 0;
D
duke 已提交
306 307 308
  size_t max_dead_to_right = 0;
  size_t max_live_to_right = 0;

309 310
  // Print the 'reclaimed ratio' for regions while there is something live in
  // the region or to the right of it.  The remaining regions are empty (and
D
duke 已提交
311
  // uninteresting), and computing the ratio will result in division by 0.
312 313 314 315
  while (i < end_region && live_to_right > 0) {
    c = summary_data.region(i);
    HeapWord* const region_addr = summary_data.region_to_addr(i);
    const size_t used_to_right = pointer_delta(space->top(), region_addr);
D
duke 已提交
316 317 318 319 320
    const size_t dead_to_right = used_to_right - live_to_right;
    const double reclaimed_ratio = double(dead_to_right) / live_to_right;

    if (reclaimed_ratio > max_reclaimed_ratio) {
            max_reclaimed_ratio = reclaimed_ratio;
321
            max_reclaimed_ratio_region = i;
D
duke 已提交
322 323 324 325
            max_dead_to_right = dead_to_right;
            max_live_to_right = live_to_right;
    }

326
    print_initial_summary_region(i, c, false);
327
    tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
D
duke 已提交
328 329 330 331 332 333
                  reclaimed_ratio, dead_to_right, live_to_right);

    live_to_right -= c->data_size();
    ++i;
  }

334 335 336
  // Any remaining regions are empty.  Print one more if there is one.
  if (i < end_region) {
    print_initial_summary_region(i, summary_data.region(i));
D
duke 已提交
337 338
  }

339 340
  tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
                "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
341
                max_reclaimed_ratio_region, max_dead_to_right,
D
duke 已提交
342 343 344 345 346 347
                max_live_to_right, max_reclaimed_ratio);
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info) {
348
  unsigned int id = PSParallelCompact::old_space_id;
D
duke 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  const MutableSpace* space;
  do {
    space = space_info[id].space();
    print_initial_summary_data(summary_data, space);
  } while (++id < PSParallelCompact::eden_space_id);

  do {
    space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(), space->top());
  } while (++id < PSParallelCompact::last_space_id);
}
#endif  // #ifndef PRODUCT

#ifdef  ASSERT
size_t add_obj_count;
size_t add_obj_size;
size_t mark_bitmap_count;
size_t mark_bitmap_size;
#endif  // #ifdef ASSERT

ParallelCompactData::ParallelCompactData()
{
  _region_start = 0;

373 374 375
  _region_vspace = 0;
  _region_data = 0;
  _region_count = 0;
D
duke 已提交
376 377 378 379 380 381 382 383
}

bool ParallelCompactData::initialize(MemRegion covered_region)
{
  _region_start = covered_region.start();
  const size_t region_size = covered_region.word_size();
  DEBUG_ONLY(_region_end = _region_start + region_size;)

384
  assert(region_align_down(_region_start) == _region_start,
D
duke 已提交
385
         "region start not aligned");
386 387
  assert((region_size & RegionSizeOffsetMask) == 0,
         "region size not a multiple of RegionSize");
D
duke 已提交
388

389
  bool result = initialize_region_data(region_size);
D
duke 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403

  return result;
}

PSVirtualSpace*
ParallelCompactData::create_vspace(size_t count, size_t element_size)
{
  const size_t raw_bytes = count * element_size;
  const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
  const size_t granularity = os::vm_allocation_granularity();
  const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));

  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
    MAX2(page_sz, granularity);
404
  ReservedSpace rs(bytes, rs_align, rs_align > 0);
D
duke 已提交
405 406
  os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
                       rs.size());
Z
zgu 已提交
407 408 409

  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);

D
duke 已提交
410 411 412 413 414 415
  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
  if (vspace != 0) {
    if (vspace->expand_by(bytes)) {
      return vspace;
    }
    delete vspace;
416 417
    // Release memory reserved in the space.
    rs.release();
D
duke 已提交
418 419 420 421 422
  }

  return 0;
}

423
bool ParallelCompactData::initialize_region_data(size_t region_size)
D
duke 已提交
424
{
425 426 427 428 429
  const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
  _region_vspace = create_vspace(count, sizeof(RegionData));
  if (_region_vspace != 0) {
    _region_data = (RegionData*)_region_vspace->reserved_low_addr();
    _region_count = count;
D
duke 已提交
430 431 432 433 434 435 436
    return true;
  }
  return false;
}

void ParallelCompactData::clear()
{
437
  memset(_region_data, 0, _region_vspace->committed_size());
D
duke 已提交
438 439
}

440 441 442
void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
  assert(beg_region <= _region_count, "beg_region out of range");
  assert(end_region <= _region_count, "end_region out of range");
D
duke 已提交
443

444 445
  const size_t region_cnt = end_region - beg_region;
  memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
D
duke 已提交
446 447
}

448
HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
D
duke 已提交
449
{
450 451
  const RegionData* cur_cp = region(region_idx);
  const RegionData* const end_cp = region(region_count() - 1);
D
duke 已提交
452

453
  HeapWord* result = region_to_addr(region_idx);
D
duke 已提交
454 455 456
  if (cur_cp < end_cp) {
    do {
      result += cur_cp->partial_obj_size();
457
    } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
D
duke 已提交
458 459 460 461 462 463 464
  }
  return result;
}

void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
{
  const size_t obj_ofs = pointer_delta(addr, _region_start);
465 466
  const size_t beg_region = obj_ofs >> Log2RegionSize;
  const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
D
duke 已提交
467 468 469 470

  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)

471 472 473
  if (beg_region == end_region) {
    // All in one region.
    _region_data[beg_region].add_live_obj(len);
D
duke 已提交
474 475 476
    return;
  }

477 478 479
  // First region.
  const size_t beg_ofs = region_offset(addr);
  _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
D
duke 已提交
480

481
  Klass* klass = ((oop)addr)->klass();
482 483 484 485
  // Middle regions--completely spanned by this object.
  for (size_t region = beg_region + 1; region < end_region; ++region) {
    _region_data[region].set_partial_obj_size(RegionSize);
    _region_data[region].set_partial_obj_addr(addr);
D
duke 已提交
486 487
  }

488 489 490 491
  // Last region.
  const size_t end_ofs = region_offset(addr + len - 1);
  _region_data[end_region].set_partial_obj_size(end_ofs + 1);
  _region_data[end_region].set_partial_obj_addr(addr);
D
duke 已提交
492 493 494 495 496
}

void
ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
{
497 498
  assert(region_offset(beg) == 0, "not RegionSize aligned");
  assert(region_offset(end) == 0, "not RegionSize aligned");
D
duke 已提交
499

500 501
  size_t cur_region = addr_to_region_idx(beg);
  const size_t end_region = addr_to_region_idx(end);
D
duke 已提交
502
  HeapWord* addr = beg;
503 504 505 506 507
  while (cur_region < end_region) {
    _region_data[cur_region].set_destination(addr);
    _region_data[cur_region].set_destination_count(0);
    _region_data[cur_region].set_source_region(cur_region);
    _region_data[cur_region].set_data_location(addr);
D
duke 已提交
508

509 510 511
    // Update live_obj_size so the region appears completely full.
    size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
    _region_data[cur_region].set_live_obj_size(live_size);
D
duke 已提交
512

513 514
    ++cur_region;
    addr += RegionSize;
D
duke 已提交
515 516 517
  }
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
// Find the point at which a space can be split and, if necessary, record the
// split point.
//
// If the current src region (which overflowed the destination space) doesn't
// have a partial object, the split point is at the beginning of the current src
// region (an "easy" split, no extra bookkeeping required).
//
// If the current src region has a partial object, the split point is in the
// region where that partial object starts (call it the split_region).  If
// split_region has a partial object, then the split point is just after that
// partial object (a "hard" split where we have to record the split data and
// zero the partial_obj_size field).  With a "hard" split, we know that the
// partial_obj ends within split_region because the partial object that caused
// the overflow starts in split_region.  If split_region doesn't have a partial
// obj, then the split is at the beginning of split_region (another "easy"
// split).
HeapWord*
ParallelCompactData::summarize_split_space(size_t src_region,
                                           SplitInfo& split_info,
                                           HeapWord* destination,
                                           HeapWord* target_end,
                                           HeapWord** target_next)
{
  assert(destination <= target_end, "sanity");
  assert(destination + _region_data[src_region].data_size() > target_end,
    "region should not fit into target space");
544
  assert(is_region_aligned(target_end), "sanity");
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

  size_t split_region = src_region;
  HeapWord* split_destination = destination;
  size_t partial_obj_size = _region_data[src_region].partial_obj_size();

  if (destination + partial_obj_size > target_end) {
    // The split point is just after the partial object (if any) in the
    // src_region that contains the start of the object that overflowed the
    // destination space.
    //
    // Find the start of the "overflow" object and set split_region to the
    // region containing it.
    HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
    split_region = addr_to_region_idx(overflow_obj);

    // Clear the source_region field of all destination regions whose first word
    // came from data after the split point (a non-null source_region field
    // implies a region must be filled).
    //
    // An alternative to the simple loop below:  clear during post_compact(),
    // which uses memcpy instead of individual stores, and is easy to
    // parallelize.  (The downside is that it clears the entire RegionData
    // object as opposed to just one field.)
    //
    // post_compact() would have to clear the summary data up to the highest
    // address that was written during the summary phase, which would be
    //
    //         max(top, max(new_top, clear_top))
    //
    // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
575
    // to target_end.
576 577 578 579
    const RegionData* const sr = region(split_region);
    const size_t beg_idx =
      addr_to_region_idx(region_align_up(sr->destination() +
                                         sr->partial_obj_size()));
580
    const size_t end_idx = addr_to_region_idx(target_end);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

    if (TraceParallelOldGCSummaryPhase) {
        gclog_or_tty->print_cr("split:  clearing source_region field in ["
                               SIZE_FORMAT ", " SIZE_FORMAT ")",
                               beg_idx, end_idx);
    }
    for (size_t idx = beg_idx; idx < end_idx; ++idx) {
      _region_data[idx].set_source_region(0);
    }

    // Set split_destination and partial_obj_size to reflect the split region.
    split_destination = sr->destination();
    partial_obj_size = sr->partial_obj_size();
  }

  // The split is recorded only if a partial object extends onto the region.
  if (partial_obj_size != 0) {
    _region_data[split_region].set_partial_obj_size(0);
    split_info.record(split_region, partial_obj_size, split_destination);
  }

  // Setup the continuation addresses.
  *target_next = split_destination + partial_obj_size;
  HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
D
duke 已提交
605 606

  if (TraceParallelOldGCSummaryPhase) {
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
    gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
                           " pos=" SIZE_FORMAT,
                           split_type, source_next, split_region,
                           partial_obj_size);
    gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
                           " tn=" PTR_FORMAT,
                           split_type, split_destination,
                           addr_to_region_idx(split_destination),
                           *target_next);

    if (partial_obj_size != 0) {
      HeapWord* const po_beg = split_info.destination();
      HeapWord* const po_end = po_beg + split_info.partial_obj_size();
      gclog_or_tty->print_cr("%s split:  "
                             "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
                             "po_end=" PTR_FORMAT " " SIZE_FORMAT,
                             split_type,
                             po_beg, addr_to_region_idx(po_beg),
                             po_end, addr_to_region_idx(po_end));
    }
  }

  return source_next;
}

bool ParallelCompactData::summarize(SplitInfo& split_info,
                                    HeapWord* source_beg, HeapWord* source_end,
                                    HeapWord** source_next,
                                    HeapWord* target_beg, HeapWord* target_end,
                                    HeapWord** target_next)
{
  if (TraceParallelOldGCSummaryPhase) {
    HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
    tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
                  "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
                  source_beg, source_end, source_next_val,
                  target_beg, target_end, *target_next);
D
duke 已提交
645 646
  }

647 648
  size_t cur_region = addr_to_region_idx(source_beg);
  const size_t end_region = addr_to_region_idx(region_align_up(source_end));
D
duke 已提交
649 650

  HeapWord *dest_addr = target_beg;
651
  while (cur_region < end_region) {
652
    // The destination must be set even if the region has no data.
653
    _region_data[cur_region].set_destination(dest_addr);
D
duke 已提交
654

655
    size_t words = _region_data[cur_region].data_size();
D
duke 已提交
656
    if (words > 0) {
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
      // If cur_region does not fit entirely into the target space, find a point
      // at which the source space can be 'split' so that part is copied to the
      // target space and the rest is copied elsewhere.
      if (dest_addr + words > target_end) {
        assert(source_next != NULL, "source_next is NULL when splitting");
        *source_next = summarize_split_space(cur_region, split_info, dest_addr,
                                             target_end, target_next);
        return false;
      }

      // Compute the destination_count for cur_region, and if necessary, update
      // source_region for a destination region.  The source_region field is
      // updated if cur_region is the first (left-most) region to be copied to a
      // destination region.
      //
      // The destination_count calculation is a bit subtle.  A region that has
      // data that compacts into itself does not count itself as a destination.
      // This maintains the invariant that a zero count means the region is
      // available and can be claimed and then filled.
      uint destination_count = 0;
      if (split_info.is_split(cur_region)) {
        // The current region has been split:  the partial object will be copied
        // to one destination space and the remaining data will be copied to
        // another destination space.  Adjust the initial destination_count and,
        // if necessary, set the source_region field if the partial object will
        // cross a destination region boundary.
        destination_count = split_info.destination_count();
        if (destination_count == 2) {
          size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
          _region_data[dest_idx].set_source_region(cur_region);
        }
      }

D
duke 已提交
690
      HeapWord* const last_addr = dest_addr + words - 1;
691 692
      const size_t dest_region_1 = addr_to_region_idx(dest_addr);
      const size_t dest_region_2 = addr_to_region_idx(last_addr);
693

694
      // Initially assume that the destination regions will be the same and
D
duke 已提交
695
      // adjust the value below if necessary.  Under this assumption, if
696 697
      // cur_region == dest_region_2, then cur_region will be compacted
      // completely into itself.
698
      destination_count += cur_region == dest_region_2 ? 0 : 1;
699 700
      if (dest_region_1 != dest_region_2) {
        // Destination regions differ; adjust destination_count.
D
duke 已提交
701
        destination_count += 1;
702 703 704 705 706 707
        // Data from cur_region will be copied to the start of dest_region_2.
        _region_data[dest_region_2].set_source_region(cur_region);
      } else if (region_offset(dest_addr) == 0) {
        // Data from cur_region will be copied to the start of the destination
        // region.
        _region_data[dest_region_1].set_source_region(cur_region);
D
duke 已提交
708 709
      }

710 711
      _region_data[cur_region].set_destination_count(destination_count);
      _region_data[cur_region].set_data_location(region_to_addr(cur_region));
D
duke 已提交
712 713 714
      dest_addr += words;
    }

715
    ++cur_region;
D
duke 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  }

  *target_next = dest_addr;
  return true;
}

HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
  assert(addr != NULL, "Should detect NULL oop earlier");
  assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
#ifdef ASSERT
  if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
    gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
  }
#endif
  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");

732 733 734 735
  // Region covering the object.
  size_t region_index = addr_to_region_idx(addr);
  const RegionData* const region_ptr = region(region_index);
  HeapWord* const region_addr = region_align_down(addr);
D
duke 已提交
736

737 738
  assert(addr < region_addr + RegionSize, "Region does not cover object");
  assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
D
duke 已提交
739

740
  HeapWord* result = region_ptr->destination();
D
duke 已提交
741

742 743 744 745 746
  // If all the data in the region is live, then the new location of the object
  // can be calculated from the destination of the region plus the offset of the
  // object in the region.
  if (region_ptr->data_size() == RegionSize) {
    result += pointer_delta(addr, region_addr);
747
    DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
D
duke 已提交
748 749 750 751
    return result;
  }

  // The new location of the object is
752 753 754 755 756
  //    region destination +
  //    size of the partial object extending onto the region +
  //    sizes of the live objects in the Region that are to the left of addr
  const size_t partial_obj_size = region_ptr->partial_obj_size();
  HeapWord* const search_start = region_addr + partial_obj_size;
D
duke 已提交
757 758 759 760 761

  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
  size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));

  result += partial_obj_size + live_to_left;
762
  DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
D
duke 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
  return result;
}

#ifdef  ASSERT
void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
{
  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
  const size_t* const end = (const size_t*)vspace->committed_high_addr();
  for (const size_t* p = beg; p < end; ++p) {
    assert(*p == 0, "not zero");
  }
}

void ParallelCompactData::verify_clear()
{
778
  verify_clear(_region_vspace);
D
duke 已提交
779 780 781 782
}
#endif  // #ifdef ASSERT

#ifdef NOT_PRODUCT
783
ParallelCompactData::RegionData* debug_region(size_t region_index) {
D
duke 已提交
784
  ParallelCompactData& sd = PSParallelCompact::summary_data();
785
  return sd.region(region_index);
D
duke 已提交
786 787 788 789 790 791 792 793 794 795 796 797
}
#endif

elapsedTimer        PSParallelCompact::_accumulated_time;
unsigned int        PSParallelCompact::_total_invocations = 0;
unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
jlong               PSParallelCompact::_time_of_last_gc = 0;
CollectorCounters*  PSParallelCompact::_counters = NULL;
ParMarkBitMap       PSParallelCompact::_mark_bitmap;
ParallelCompactData PSParallelCompact::_summary_data;

PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
798 799 800 801 802 803 804

void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }

void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }

D
duke 已提交
805 806
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
807
PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
D
duke 已提交
808

809 810
void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
D
duke 已提交
811

812
void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
D
duke 已提交
813

814 815 816
void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
  mark_and_push(_compaction_manager, p);
}
817
void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
D
duke 已提交
818

819 820 821 822 823 824 825
void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
  klass->oops_do(_mark_and_push_closure);
}
void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
  klass->oops_do(&PSParallelCompact::_adjust_root_pointer_closure);
}

D
duke 已提交
826 827 828 829 830
void PSParallelCompact::post_initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  MemRegion mr = heap->reserved_region();
831 832 833 834 835 836 837 838 839
  _ref_processor =
    new ReferenceProcessor(mr,            // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
                           (int) ParallelGCThreads, // mt processing degree
                           true,          // mt discovery
                           (int) ParallelGCThreads, // mt discovery degree
                           true,          // atomic_discovery
                           &_is_alive_closure, // non-header is alive closure
                           false);        // write barrier for next field updates
D
duke 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
  _counters = new CollectorCounters("PSParallelCompact", 1);

  // Initialize static fields in ParCompactionManager.
  ParCompactionManager::initialize(mark_bitmap());
}

bool PSParallelCompact::initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  MemRegion mr = heap->reserved_region();

  // Was the old gen get allocated successfully?
  if (!heap->old_gen()->is_allocated()) {
    return false;
  }

  initialize_space_info();
  initialize_dead_wood_limiter();

  if (!_mark_bitmap.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate bit map for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  if (!_summary_data.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate tables for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  return true;
}

void PSParallelCompact::initialize_space_info()
{
  memset(&_space_info, 0, sizeof(_space_info));

  ParallelScavengeHeap* heap = gc_heap();
  PSYoungGen* young_gen = heap->young_gen();

  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
  _space_info[eden_space_id].set_space(young_gen->eden_space());
  _space_info[from_space_id].set_space(young_gen->from_space());
  _space_info[to_space_id].set_space(young_gen->to_space());

  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
}

void PSParallelCompact::initialize_dead_wood_limiter()
{
  const size_t max = 100;
  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
  DEBUG_ONLY(_dwl_initialized = true;)
  _dwl_adjustment = normal_distribution(1.0);
}

// Simple class for storing info about the heap at the start of GC, to be used
// after GC for comparison/printing.
class PreGCValues {
public:
  PreGCValues() { }
  PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }

  void fill(ParallelScavengeHeap* heap) {
    _heap_used      = heap->used();
    _young_gen_used = heap->young_gen()->used_in_bytes();
    _old_gen_used   = heap->old_gen()->used_in_bytes();
910
    _metadata_used  = MetaspaceAux::used_in_bytes();
D
duke 已提交
911 912 913 914 915
  };

  size_t heap_used() const      { return _heap_used; }
  size_t young_gen_used() const { return _young_gen_used; }
  size_t old_gen_used() const   { return _old_gen_used; }
916
  size_t metadata_used() const  { return _metadata_used; }
D
duke 已提交
917 918 919 920 921

private:
  size_t _heap_used;
  size_t _young_gen_used;
  size_t _old_gen_used;
922
  size_t _metadata_used;
D
duke 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
};

void
PSParallelCompact::clear_data_covering_space(SpaceId id)
{
  // At this point, top is the value before GC, new_top() is the value that will
  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
  // should be marked above top.  The summary data is cleared to the larger of
  // top & new_top.
  MutableSpace* const space = _space_info[id].space();
  HeapWord* const bot = space->bottom();
  HeapWord* const top = space->top();
  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());

  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
  _mark_bitmap.clear_range(beg_bit, end_bit);

941 942 943 944
  const size_t beg_region = _summary_data.addr_to_region_idx(bot);
  const size_t end_region =
    _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
  _summary_data.clear_range(beg_region, end_region);
945 946 947 948 949 950 951

  // Clear the data used to 'split' regions.
  SplitInfo& split_info = _space_info[id].split_info();
  if (split_info.is_valid()) {
    split_info.clear();
  }
  DEBUG_ONLY(split_info.verify_clear();)
D
duke 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
}

void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
{
  // Update the from & to space pointers in space_info, since they are swapped
  // at each young gen gc.  Do the update unconditionally (even though a
  // promotion failure does not swap spaces) because an unknown number of minor
  // collections will have swapped the spaces an unknown number of times.
  TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
  ParallelScavengeHeap* heap = gc_heap();
  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
  _space_info[to_space_id].set_space(heap->young_gen()->to_space());

  pre_gc_values->fill(heap);

  NOT_PRODUCT(_mark_bitmap.reset_counters());
  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)

  // Increment the invocation count
972
  heap->increment_total_collections(true);
D
duke 已提交
973 974 975 976

  // We need to track unique mark sweep invocations as well.
  _total_invocations++;

977
  heap->print_heap_before_gc();
D
duke 已提交
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

  // Fill in TLABs
  heap->accumulate_statistics_all_tlabs();
  heap->ensure_parsability(true);  // retire TLABs

  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyBeforeGC:");
    Universe::verify(true);
  }

  // Verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyBeforeGC) {
    heap->old_gen()->verify_object_start_array();
  }

  DEBUG_ONLY(mark_bitmap()->verify_clear();)
  DEBUG_ONLY(summary_data().verify_clear();)
J
jcoomes 已提交
997 998 999

  // Have worker threads release resources the next time they run a task.
  gc_task_manager()->release_all_resources();
D
duke 已提交
1000 1001 1002 1003 1004 1005
}

void PSParallelCompact::post_compact()
{
  TraceTime tm("post compact", print_phases(), true, gclog_or_tty);

1006
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1007
    // Clear the marking bitmap, summary data and split info.
D
duke 已提交
1008
    clear_data_covering_space(SpaceId(id));
1009 1010
    // Update top().  Must be done after clearing the bitmap and summary data.
    _space_info[id].publish_new_top();
D
duke 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
  }

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  MutableSpace* const to_space   = _space_info[to_space_id].space();

  ParallelScavengeHeap* heap = gc_heap();
  bool eden_empty = eden_space->is_empty();
  if (!eden_empty) {
    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
                                            heap->young_gen(), heap->old_gen());
  }

  // Update heap occupancy information which is used as input to the soft ref
  // clearing policy at the next gc.
  Universe::update_heap_info_at_gc();

  bool young_gen_empty = eden_empty && from_space->is_empty() &&
    to_space->is_empty();

  BarrierSet* bs = heap->barrier_set();
  if (bs->is_a(BarrierSet::ModRef)) {
    ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
    MemRegion old_mr = heap->old_gen()->reserved();

    if (young_gen_empty) {
1037
      modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
D
duke 已提交
1038
    } else {
1039
      modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
D
duke 已提交
1040 1041 1042
    }
  }

1043 1044 1045
  // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  ClassLoaderDataGraph::purge();

D
duke 已提交
1046 1047
  Threads::gc_epilogue();
  CodeCache::gc_epilogue();
1048
  JvmtiExport::gc_epilogue();
D
duke 已提交
1049 1050 1051 1052 1053

  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

  ref_processor()->enqueue_discovered_references(NULL);

1054 1055 1056 1057
  if (ZapUnusedHeapArea) {
    heap->gen_mangle_unused_area();
  }

D
duke 已提交
1058 1059 1060 1061 1062 1063 1064 1065
  // Update time of last GC
  reset_millis_since_last_gc();
}

HeapWord*
PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
                                                    bool maximum_compaction)
{
1066
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1067 1068 1069
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
1070 1071 1072
  HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
1073

1074
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
1075 1076
  // of the dense prefix.
  size_t full_count = 0;
1077 1078
  const RegionData* cp;
  for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
D
duke 已提交
1079 1080 1081 1082 1083 1084 1085 1086
    ++full_count;
  }

  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  if (maximum_compaction || cp == end_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
1087
    return sd.region_to_addr(cp);
D
duke 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
  }

  HeapWord* const new_top = _space_info[id].new_top();
  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double cur_density = double(space_live) / space_capacity;
  const double deadwood_density =
    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
                  cur_density, deadwood_density, deadwood_goal);
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
  }

  // XXX - Use binary search?
1110 1111 1112
  HeapWord* dense_prefix = sd.region_to_addr(cp);
  const RegionData* full_cp = cp;
  const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
D
duke 已提交
1113
  while (cp < end_cp) {
1114 1115
    HeapWord* region_destination = cp->destination();
    const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
D
duke 已提交
1116
    if (TraceParallelOldGCDensePrefix && Verbose) {
1117 1118
      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
                    "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
1119
                    sd.region(cp), region_destination,
D
duke 已提交
1120 1121 1122 1123
                    dense_prefix, cur_deadwood);
    }

    if (cur_deadwood >= deadwood_goal) {
1124 1125 1126 1127 1128
      // Found the region that has the correct amount of deadwood to the left.
      // This typically occurs after crossing a fairly sparse set of regions, so
      // iterate backwards over those sparse regions, looking for the region
      // that has the lowest density of live objects 'to the right.'
      size_t space_to_left = sd.region(cp) * region_size;
D
duke 已提交
1129 1130 1131 1132 1133 1134
      size_t live_to_left = space_to_left - cur_deadwood;
      size_t space_to_right = space_capacity - space_to_left;
      size_t live_to_right = space_live - live_to_left;
      double density_to_right = double(live_to_right) / space_to_right;
      while (cp > full_cp) {
        --cp;
1135 1136 1137 1138 1139 1140
        const size_t prev_region_live_to_right = live_to_right -
          cp->data_size();
        const size_t prev_region_space_to_right = space_to_right + region_size;
        double prev_region_density_to_right =
          double(prev_region_live_to_right) / prev_region_space_to_right;
        if (density_to_right <= prev_region_density_to_right) {
D
duke 已提交
1141 1142 1143
          return dense_prefix;
        }
        if (TraceParallelOldGCDensePrefix && Verbose) {
1144
          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1145 1146
                        "pc_d2r=%10.8f", sd.region(cp), density_to_right,
                        prev_region_density_to_right);
D
duke 已提交
1147
        }
1148 1149 1150 1151
        dense_prefix -= region_size;
        live_to_right = prev_region_live_to_right;
        space_to_right = prev_region_space_to_right;
        density_to_right = prev_region_density_to_right;
D
duke 已提交
1152 1153 1154 1155
      }
      return dense_prefix;
    }

1156
    dense_prefix += region_size;
D
duke 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
    ++cp;
  }

  return dense_prefix;
}

#ifndef PRODUCT
void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
                                                 const SpaceId id,
                                                 const bool maximum_compaction,
                                                 HeapWord* const addr)
{
1169 1170
  const size_t region_idx = summary_data().addr_to_region_idx(addr);
  RegionData* const cp = summary_data().region(region_idx);
D
duke 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const new_top = _space_info[id].new_top();

  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t dead_to_left = pointer_delta(addr, cp->destination());
  const size_t space_cap = space->capacity_in_words();
  const double dead_to_left_pct = double(dead_to_left) / space_cap;
  const size_t live_to_right = new_top - cp->destination();
  const size_t dead_to_right = space->top() - addr - live_to_right;

1181
  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
D
duke 已提交
1182 1183 1184 1185
                "spl=" SIZE_FORMAT " "
                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
                " ratio=%10.8f",
1186
                algorithm, addr, region_idx,
D
duke 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
                space_live,
                dead_to_left, dead_to_left_pct,
                dead_to_right, live_to_right,
                double(dead_to_right) / live_to_right);
}
#endif  // #ifndef PRODUCT

// Return a fraction indicating how much of the generation can be treated as
// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
// based on the density of live objects in the generation to determine a limit,
// which is then adjusted so the return value is min_percent when the density is
// 1.
//
// The following table shows some return values for a different values of the
// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
// min_percent is 1.
//
//                          fraction allowed as dead wood
//         -----------------------------------------------------------------
// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
// ------- ---------- ---------- ---------- ---------- ---------- ----------
// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000

double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
{
  assert(_dwl_initialized, "uninitialized");

  // The raw limit is the value of the normal distribution at x = density.
  const double raw_limit = normal_distribution(density);

  // Adjust the raw limit so it becomes the minimum when the density is 1.
  //
  // First subtract the adjustment value (which is simply the precomputed value
  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  // Then add the minimum value, so the minimum is returned when the density is
  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  const double min = double(min_percent) / 100.0;
  const double limit = raw_limit - _dwl_adjustment + min;
  return MAX2(limit, 0.0);
}

1248 1249 1250
ParallelCompactData::RegionData*
PSParallelCompact::first_dead_space_region(const RegionData* beg,
                                           const RegionData* end)
D
duke 已提交
1251
{
1252
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1253
  ParallelCompactData& sd = summary_data();
1254 1255
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1256 1257 1258 1259 1260

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1261
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1262
    HeapWord* const dest = middle_ptr->destination();
1263
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1264 1265 1266 1267 1268
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    if (middle > left && dest < addr) {
      right = middle - 1;
1269
    } else if (middle < right && middle_ptr->data_size() == region_size) {
D
duke 已提交
1270 1271 1272 1273 1274
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1275
  return sd.region(left);
D
duke 已提交
1276 1277
}

1278 1279 1280 1281
ParallelCompactData::RegionData*
PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
                                          const RegionData* end,
                                          size_t dead_words)
D
duke 已提交
1282 1283
{
  ParallelCompactData& sd = summary_data();
1284 1285
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1286 1287 1288 1289 1290

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1291
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1292
    HeapWord* const dest = middle_ptr->destination();
1293
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    const size_t dead_to_left = pointer_delta(addr, dest);
    if (middle > left && dead_to_left > dead_words) {
      right = middle - 1;
    } else if (middle < right && dead_to_left < dead_words) {
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1306
  return sd.region(left);
D
duke 已提交
1307 1308 1309 1310 1311
}

// The result is valid during the summary phase, after the initial summarization
// of each space into itself, and before final summarization.
inline double
1312
PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
D
duke 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
                                   HeapWord* const bottom,
                                   HeapWord* const top,
                                   HeapWord* const new_top)
{
  ParallelCompactData& sd = summary_data();

  assert(cp != NULL, "sanity");
  assert(bottom != NULL, "sanity");
  assert(top != NULL, "sanity");
  assert(new_top != NULL, "sanity");
  assert(top >= new_top, "summary data problem?");
  assert(new_top > bottom, "space is empty; should not be here");
  assert(new_top >= cp->destination(), "sanity");
1326
  assert(top >= sd.region_to_addr(cp), "sanity");
D
duke 已提交
1327 1328 1329 1330

  HeapWord* const destination = cp->destination();
  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  const size_t compacted_region_live = pointer_delta(new_top, destination);
1331 1332
  const size_t compacted_region_used = pointer_delta(top,
                                                     sd.region_to_addr(cp));
D
duke 已提交
1333 1334 1335 1336 1337 1338 1339
  const size_t reclaimable = compacted_region_used - compacted_region_live;

  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  return double(reclaimable) / divisor;
}

// Return the address of the end of the dense prefix, a.k.a. the start of the
1340
// compacted region.  The address is always on a region boundary.
D
duke 已提交
1341
//
1342 1343 1344 1345 1346 1347 1348
// Completely full regions at the left are skipped, since no compaction can
// occur in those regions.  Then the maximum amount of dead wood to allow is
// computed, based on the density (amount live / capacity) of the generation;
// the region with approximately that amount of dead space to the left is
// identified as the limit region.  Regions between the last completely full
// region and the limit region are scanned and the one that has the best
// (maximum) reclaimed_ratio() is selected.
D
duke 已提交
1349 1350 1351 1352
HeapWord*
PSParallelCompact::compute_dense_prefix(const SpaceId id,
                                        bool maximum_compaction)
{
1353 1354 1355 1356 1357 1358 1359
  if (ParallelOldGCSplitALot) {
    if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
      // The value was chosen to provoke splitting a young gen space; use it.
      return _space_info[id].dense_prefix();
    }
  }

1360
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1361 1362 1363 1364
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const top = space->top();
1365
  HeapWord* const top_aligned_up = sd.region_align_up(top);
D
duke 已提交
1366
  HeapWord* const new_top = _space_info[id].new_top();
1367
  HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
D
duke 已提交
1368
  HeapWord* const bottom = space->bottom();
1369 1370 1371 1372
  const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  const RegionData* const new_top_cp =
    sd.addr_to_region_ptr(new_top_aligned_up);
D
duke 已提交
1373

1374
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
1375
  // of the dense prefix.
1376 1377
  const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
D
duke 已提交
1378
         space->is_empty(), "no dead space allowed to the left");
1379 1380
  assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
         "region must have dead space");
D
duke 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

  // The gc number is saved whenever a maximum compaction is done, and used to
  // determine when the maximum compaction interval has expired.  This avoids
  // successive max compactions for different reasons.
  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
    total_invocations() == HeapFirstMaximumCompactionCount;
  if (maximum_compaction || full_cp == top_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
1391
    return sd.region_to_addr(full_cp);
D
duke 已提交
1392 1393 1394 1395 1396 1397 1398
  }

  const size_t space_live = pointer_delta(new_top, bottom);
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double density = double(space_live) / double(space_capacity);
1399
  const size_t min_percent_free = MarkSweepDeadRatio;
D
duke 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
  const double limiter = dead_wood_limiter(density, min_percent_free);
  const size_t dead_wood_max = space_used - space_live;
  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
                                      dead_wood_max);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
    tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
                  density, min_percent_free, limiter,
                  dead_wood_max, dead_wood_limit);
  }

1416 1417 1418
  // Locate the region with the desired amount of dead space to the left.
  const RegionData* const limit_cp =
    dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
D
duke 已提交
1419

1420
  // Scan from the first region with dead space to the limit region and find the
D
duke 已提交
1421 1422
  // one with the best (largest) reclaimed ratio.
  double best_ratio = 0.0;
1423 1424
  const RegionData* best_cp = full_cp;
  for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
D
duke 已提交
1425 1426 1427 1428 1429 1430 1431 1432
    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
    if (tmp_ratio > best_ratio) {
      best_cp = cp;
      best_ratio = tmp_ratio;
    }
  }

#if     0
1433 1434 1435
  // Something to consider:  if the region with the best ratio is 'close to' the
  // first region w/free space, choose the first region with free space
  // ("first-free").  The first-free region is usually near the start of the
D
duke 已提交
1436 1437
  // heap, which means we are copying most of the heap already, so copy a bit
  // more to get complete compaction.
1438
  if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
D
duke 已提交
1439 1440 1441 1442 1443
    _maximum_compaction_gc_num = total_invocations();
    best_cp = full_cp;
  }
#endif  // #if 0

1444
  return sd.region_to_addr(best_cp);
D
duke 已提交
1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
#ifndef PRODUCT
void
PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
                                          size_t words)
{
  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
                  SIZE_FORMAT, start, start + words, words);
  }

  ObjectStartArray* const start_array = _space_info[id].start_array();
  CollectedHeap::fill_with_objects(start, words);
  for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
    _mark_bitmap.mark_obj(p, words);
    _summary_data.add_obj(p, words);
    start_array->allocate_block(p);
  }
}

void
PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
{
  ParallelCompactData& sd = summary_data();
  MutableSpace* space = _space_info[id].space();

  // Find the source and destination start addresses.
  HeapWord* const src_addr = sd.region_align_down(start);
  HeapWord* dst_addr;
  if (src_addr < start) {
    dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  } else if (src_addr > space->bottom()) {
    // The start (the original top() value) is aligned to a region boundary so
    // the associated region does not have a destination.  Compute the
    // destination from the previous region.
    RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
    dst_addr = cp->destination() + cp->data_size();
  } else {
    // Filling the entire space.
    dst_addr = space->bottom();
  }
  assert(dst_addr != NULL, "sanity");

  // Update the summary data.
  bool result = _summary_data.summarize(_space_info[id].split_info(),
                                        src_addr, space->top(), NULL,
                                        dst_addr, space->end(),
                                        _space_info[id].new_top_addr());
  assert(result, "should not fail:  bad filler object size");
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
void
PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
{
  if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
    return;
  }

  MutableSpace* const space = _space_info[id].space();
  if (space->is_empty()) {
    HeapWord* b = space->bottom();
    HeapWord* t = b + space->capacity_in_words() / 2;
    space->set_top(t);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }

1513 1514
    size_t min_size = CollectedHeap::min_fill_size();
    size_t obj_len = min_size;
1515 1516 1517 1518 1519
    while (b + obj_len <= t) {
      CollectedHeap::fill_with_object(b, obj_len);
      mark_bitmap()->mark_obj(b, obj_len);
      summary_data().add_obj(b, obj_len);
      b += obj_len;
1520
      obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    }
    if (b < t) {
      // The loop didn't completely fill to t (top); adjust top downward.
      space->set_top(b);
      if (ZapUnusedHeapArea) {
        space->set_top_for_allocations();
      }
    }

    HeapWord** nta = _space_info[id].new_top_addr();
    bool result = summary_data().summarize(_space_info[id].split_info(),
                                           space->bottom(), space->top(), NULL,
                                           space->bottom(), space->end(), nta);
    assert(result, "space must fit into itself");
  }
}

1538 1539 1540
void
PSParallelCompact::provoke_split(bool & max_compaction)
{
1541 1542 1543 1544
  if (total_invocations() % ParallelOldGCSplitInterval != 0) {
    return;
  }

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
  const size_t region_size = ParallelCompactData::RegionSize;
  ParallelCompactData& sd = summary_data();

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  const size_t eden_live = pointer_delta(eden_space->top(),
                                         _space_info[eden_space_id].new_top());
  const size_t from_live = pointer_delta(from_space->top(),
                                         _space_info[from_space_id].new_top());

  const size_t min_fill_size = CollectedHeap::min_fill_size();
  const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;

  // Choose the space to split; need at least 2 regions live (or fillable).
  SpaceId id;
  MutableSpace* space;
  size_t live_words;
  size_t fill_words;
  if (eden_live + eden_fillable >= region_size * 2) {
    id = eden_space_id;
    space = eden_space;
    live_words = eden_live;
    fill_words = eden_fillable;
  } else if (from_live + from_fillable >= region_size * 2) {
    id = from_space_id;
    space = from_space;
    live_words = from_live;
    fill_words = from_fillable;
  } else {
    return; // Give up.
  }
  assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");

  if (live_words < region_size * 2) {
    // Fill from top() to end() w/live objects of mixed sizes.
    HeapWord* const fill_start = space->top();
    live_words += fill_words;

    space->set_top(fill_start + fill_words);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }

    HeapWord* cur_addr = fill_start;
    while (fill_words > 0) {
      const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
      size_t cur_size = MIN2(align_object_size_(r), fill_words);
      if (fill_words - cur_size < min_fill_size) {
        cur_size = fill_words; // Avoid leaving a fragment too small to fill.
      }

      CollectedHeap::fill_with_object(cur_addr, cur_size);
      mark_bitmap()->mark_obj(cur_addr, cur_size);
      sd.add_obj(cur_addr, cur_size);

      cur_addr += cur_size;
      fill_words -= cur_size;
    }

    summarize_new_objects(id, fill_start);
  }

  max_compaction = false;

  // Manipulate the old gen so that it has room for about half of the live data
  // in the target young gen space (live_words / 2).
  id = old_space_id;
  space = _space_info[id].space();
  const size_t free_at_end = space->free_in_words();
  const size_t free_target = align_object_size(live_words / 2);
  const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());

  if (free_at_end >= free_target + min_fill_size) {
    // Fill space above top() and set the dense prefix so everything survives.
    HeapWord* const fill_start = space->top();
    const size_t fill_size = free_at_end - free_target;
    space->set_top(space->top() + fill_size);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }
    fill_with_live_objects(id, fill_start, fill_size);
    summarize_new_objects(id, fill_start);
    _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  } else if (dead + free_at_end > free_target) {
    // Find a dense prefix that makes the right amount of space available.
    HeapWord* cur = sd.region_align_down(space->top());
    HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
    size_t dead_to_right = pointer_delta(space->end(), cur_destination);
    while (dead_to_right < free_target) {
      cur -= region_size;
      cur_destination = sd.addr_to_region_ptr(cur)->destination();
      dead_to_right = pointer_delta(space->end(), cur_destination);
    }
    _space_info[id].set_dense_prefix(cur);
  }
}
#endif // #ifndef PRODUCT

D
duke 已提交
1646 1647 1648 1649
void PSParallelCompact::summarize_spaces_quick()
{
  for (unsigned int i = 0; i < last_space_id; ++i) {
    const MutableSpace* space = _space_info[i].space();
1650 1651 1652 1653 1654
    HeapWord** nta = _space_info[i].new_top_addr();
    bool result = _summary_data.summarize(_space_info[i].split_info(),
                                          space->bottom(), space->top(), NULL,
                                          space->bottom(), space->end(), nta);
    assert(result, "space must fit into itself");
D
duke 已提交
1655 1656
    _space_info[i].set_dense_prefix(space->bottom());
  }
1657 1658 1659 1660 1661 1662

#ifndef PRODUCT
  if (ParallelOldGCSplitALot) {
    provoke_split_fill_survivor(to_space_id);
  }
#endif // #ifndef PRODUCT
D
duke 已提交
1663 1664 1665 1666 1667
}

void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
{
  HeapWord* const dense_prefix_end = dense_prefix(id);
1668
  const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
D
duke 已提交
1669
  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1670
  if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
D
duke 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
    // Only enough dead space is filled so that any remaining dead space to the
    // left is larger than the minimum filler object.  (The remainder is filled
    // during the copy/update phase.)
    //
    // The size of the dead space to the right of the boundary is not a
    // concern, since compaction will be able to use whatever space is
    // available.
    //
    // Here '||' is the boundary, 'x' represents a don't care bit and a box
    // surrounds the space to be filled with an object.
    //
    // In the 32-bit VM, each bit represents two 32-bit words:
    //                              +---+
    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //                              +---+
    //
    // In the 64-bit VM, each bit represents one 64-bit word:
    //                              +------------+
    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
    //                              +------------+
    //                          +-------+
    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
    //                          +-------+
    //                      +-----------+
    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
    //                      +-----------+
    //                          +-------+
    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //                          +-------+

    // Initially assume case a, c or e will apply.
1707
    size_t obj_len = CollectedHeap::min_fill_size();
D
duke 已提交
1708 1709 1710
    HeapWord* obj_beg = dense_prefix_end - obj_len;

#ifdef  _LP64
1711 1712 1713
    if (MinObjAlignment > 1) { // object alignment > heap word size
      // Cases a, c or e.
    } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
D
duke 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
      // Case b above.
      obj_beg = dense_prefix_end - 1;
    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
      // Case d above.
      obj_beg = dense_prefix_end - 3;
      obj_len = 3;
    }
#endif  // #ifdef _LP64

1724
    CollectedHeap::fill_with_object(obj_beg, obj_len);
D
duke 已提交
1725 1726 1727 1728 1729 1730 1731
    _mark_bitmap.mark_obj(obj_beg, obj_len);
    _summary_data.add_obj(obj_beg, obj_len);
    assert(start_array(id) != NULL, "sanity");
    start_array(id)->allocate_block(obj_beg);
  }
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
void
PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
{
  RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
    cur->set_source_region(0);
  }
}

D
duke 已提交
1743 1744 1745 1746
void
PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
{
  assert(id < last_space_id, "id out of range");
1747 1748 1749
  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
         ParallelOldGCSplitALot && id == old_space_id,
         "should have been reset in summarize_spaces_quick()");
D
duke 已提交
1750 1751

  const MutableSpace* space = _space_info[id].space();
1752 1753 1754
  if (_space_info[id].new_top() != space->bottom()) {
    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
    _space_info[id].set_dense_prefix(dense_prefix_end);
D
duke 已提交
1755 1756

#ifndef PRODUCT
1757 1758 1759 1760 1761 1762
    if (TraceParallelOldGCDensePrefix) {
      print_dense_prefix_stats("ratio", id, maximum_compaction,
                               dense_prefix_end);
      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
      print_dense_prefix_stats("density", id, maximum_compaction, addr);
    }
D
duke 已提交
1763 1764
#endif  // #ifndef PRODUCT

1765 1766 1767
    // Recompute the summary data, taking into account the dense prefix.  If
    // every last byte will be reclaimed, then the existing summary data which
    // compacts everything can be left in place.
1768
    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1769 1770 1771
      // If dead space crosses the dense prefix boundary, it is (at least
      // partially) filled with a dummy object, marked live and added to the
      // summary data.  This simplifies the copy/update phase and must be done
1772 1773
      // before the final locations of objects are determined, to prevent
      // leaving a fragment of dead space that is too small to fill.
1774
      fill_dense_prefix_end(id);
D
duke 已提交
1775

1776 1777 1778 1779 1780 1781 1782
      // Compute the destination of each Region, and thus each object.
      _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
      _summary_data.summarize(_space_info[id].split_info(),
                              dense_prefix_end, space->top(), NULL,
                              dense_prefix_end, space->end(),
                              _space_info[id].new_top_addr());
    }
1783
  }
D
duke 已提交
1784 1785

  if (TraceParallelOldGCSummaryPhase) {
1786
    const size_t region_size = ParallelCompactData::RegionSize;
1787
    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1788
    const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
D
duke 已提交
1789
    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1790
    HeapWord* const new_top = _space_info[id].new_top();
1791
    const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
D
duke 已提交
1792 1793
    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
    tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1794
                  "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
D
duke 已提交
1795 1796
                  "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
                  id, space->capacity_in_words(), dense_prefix_end,
1797 1798
                  dp_region, dp_words / region_size,
                  cr_words / region_size, new_top);
D
duke 已提交
1799 1800 1801
  }
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
#ifndef PRODUCT
void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
                                          HeapWord* dst_beg, HeapWord* dst_end,
                                          SpaceId src_space_id,
                                          HeapWord* src_beg, HeapWord* src_end)
{
  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summarizing %d [%s] into %d [%s]:  "
                  "src=" PTR_FORMAT "-" PTR_FORMAT " "
                  SIZE_FORMAT "-" SIZE_FORMAT " "
                  "dst=" PTR_FORMAT "-" PTR_FORMAT " "
                  SIZE_FORMAT "-" SIZE_FORMAT,
                  src_space_id, space_names[src_space_id],
                  dst_space_id, space_names[dst_space_id],
                  src_beg, src_end,
                  _summary_data.addr_to_region_idx(src_beg),
                  _summary_data.addr_to_region_idx(src_end),
                  dst_beg, dst_end,
                  _summary_data.addr_to_region_idx(dst_beg),
                  _summary_data.addr_to_region_idx(dst_end));
  }
}
#endif  // #ifndef PRODUCT

D
duke 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
void PSParallelCompact::summary_phase(ParCompactionManager* cm,
                                      bool maximum_compaction)
{
  TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  // trace("2");

#ifdef  ASSERT
  if (TraceParallelOldGCMarkingPhase) {
    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
                  "add_obj_bytes=" SIZE_FORMAT,
                  add_obj_count, add_obj_size * HeapWordSize);
    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
                  "mark_bitmap_bytes=" SIZE_FORMAT,
                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  }
#endif  // #ifdef ASSERT

  // Quick summarization of each space into itself, to see how much is live.
  summarize_spaces_quick();

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after summarizing each space to self");
    Universe::print();
1849
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1850 1851 1852 1853 1854 1855 1856
    if (Verbose) {
      NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
    }
  }

  // The amount of live data that will end up in old space (assuming it fits).
  size_t old_space_total_live = 0;
1857
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
D
duke 已提交
1858 1859 1860 1861
    old_space_total_live += pointer_delta(_space_info[id].new_top(),
                                          _space_info[id].space()->bottom());
  }

1862
  MutableSpace* const old_space = _space_info[old_space_id].space();
1863 1864
  const size_t old_capacity = old_space->capacity_in_words();
  if (old_space_total_live > old_capacity) {
D
duke 已提交
1865 1866 1867
    // XXX - should also try to expand
    maximum_compaction = true;
  }
1868 1869
#ifndef PRODUCT
  if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1870
    provoke_split(maximum_compaction);
1871 1872
  }
#endif // #ifndef PRODUCT
D
duke 已提交
1873

1874
  // Old generations.
D
duke 已提交
1875 1876
  summarize_space(old_space_id, maximum_compaction);

1877 1878 1879 1880 1881 1882 1883 1884
  // Summarize the remaining spaces in the young gen.  The initial target space
  // is the old gen.  If a space does not fit entirely into the target, then the
  // remainder is compacted into the space itself and that space becomes the new
  // target.
  SpaceId dst_space_id = old_space_id;
  HeapWord* dst_space_end = old_space->end();
  HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
D
duke 已提交
1885 1886 1887
    const MutableSpace* space = _space_info[id].space();
    const size_t live = pointer_delta(_space_info[id].new_top(),
                                      space->bottom());
1888 1889 1890 1891
    const size_t available = pointer_delta(dst_space_end, *new_top_addr);

    NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
                                  SpaceId(id), space->bottom(), space->top());)
1892
    if (live > 0 && live <= available) {
D
duke 已提交
1893
      // All the live data will fit.
1894 1895 1896 1897 1898 1899 1900
      bool done = _summary_data.summarize(_space_info[id].split_info(),
                                          space->bottom(), space->top(),
                                          NULL,
                                          *new_top_addr, dst_space_end,
                                          new_top_addr);
      assert(done, "space must fit into old gen");

1901 1902
      // Reset the new_top value for the space.
      _space_info[id].set_new_top(space->bottom());
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
    } else if (live > 0) {
      // Attempt to fit part of the source space into the target space.
      HeapWord* next_src_addr = NULL;
      bool done = _summary_data.summarize(_space_info[id].split_info(),
                                          space->bottom(), space->top(),
                                          &next_src_addr,
                                          *new_top_addr, dst_space_end,
                                          new_top_addr);
      assert(!done, "space should not fit into old gen");
      assert(next_src_addr != NULL, "sanity");

      // The source space becomes the new target, so the remainder is compacted
      // within the space itself.
      dst_space_id = SpaceId(id);
      dst_space_end = space->end();
      new_top_addr = _space_info[id].new_top_addr();
      NOT_PRODUCT(summary_phase_msg(dst_space_id,
                                    space->bottom(), dst_space_end,
                                    SpaceId(id), next_src_addr, space->top());)
      done = _summary_data.summarize(_space_info[id].split_info(),
                                     next_src_addr, space->top(),
                                     NULL,
                                     space->bottom(), dst_space_end,
                                     new_top_addr);
      assert(done, "space must fit when compacted into itself");
      assert(*new_top_addr <= space->top(), "usage should not grow");
D
duke 已提交
1929 1930 1931 1932 1933 1934
    }
  }

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after final summarization");
    Universe::print();
1935
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
    if (Verbose) {
      NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
    }
  }
}

// This method should contain all heap-specific policy for invoking a full
// collection.  invoke_no_policy() will only attempt to compact the heap; it
// will do nothing further.  If we need to bail out for policy reasons, scavenge
// before full gc, or any other specialized behavior, it needs to be added here.
//
// Note that this method should only be called from the vm_thread while at a
// safepoint.
1949 1950 1951 1952 1953
//
// Note that the all_soft_refs_clear flag in the collector policy
// may be true because this method can be called without intervening
// activity.  For example when the heap space is tight and full measure
// are being taken to free space.
D
duke 已提交
1954 1955 1956 1957
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
         "should be in vm thread");
1958

D
duke 已提交
1959 1960 1961 1962 1963
  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  assert(!heap->is_gc_active(), "not reentrant");

  PSAdaptiveSizePolicy* policy = heap->size_policy();
1964
  IsGCActiveMark mark;
D
duke 已提交
1965

1966 1967
  if (ScavengeBeforeFullGC) {
    PSScavenge::invoke_no_policy();
D
duke 已提交
1968
  }
1969 1970 1971 1972 1973 1974

  const bool clear_all_soft_refs =
    heap->collector_policy()->should_clear_all_soft_refs();

  PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
                                      maximum_heap_compaction);
D
duke 已提交
1975 1976
}

1977 1978 1979
bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  size_t addr_region_index = addr_to_region_idx(addr);
  return region_index == addr_region_index;
D
duke 已提交
1980 1981 1982 1983
}

// This method contains no policy. You should probably
// be calling invoke() instead.
1984
bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
D
duke 已提交
1985 1986 1987
  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  assert(ref_processor() != NULL, "Sanity");

1988
  if (GC_locker::check_active_before_gc()) {
1989
    return false;
D
duke 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
  }

  TimeStamp marking_start;
  TimeStamp compaction_start;
  TimeStamp collection_exit;

  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();
  PSAdaptiveSizePolicy* size_policy = heap->size_policy();

2002 2003 2004 2005 2006
  // The scope of casr should end after code that can change
  // CollectorPolicy::_should_clear_all_soft_refs.
  ClearedAllSoftRefs casr(maximum_heap_compaction,
                          heap->collector_policy());

2007 2008 2009 2010 2011
  if (ZapUnusedHeapArea) {
    // Save information needed to minimize mangling
    heap->record_gen_tops_before_GC();
  }

2012 2013
  heap->pre_full_gc_dump();

D
duke 已提交
2014 2015 2016 2017 2018 2019 2020
  _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;

  // Make sure data structures are sane, make the heap parsable, and do other
  // miscellaneous bookkeeping.
  PreGCValues pre_gc_values;
  pre_compact(&pre_gc_values);

J
jcoomes 已提交
2021 2022 2023 2024
  // Get the compaction manager reserved for the VM thread.
  ParCompactionManager* const vmthread_cm =
    ParCompactionManager::manager_array(gc_task_manager()->workers());

D
duke 已提交
2025 2026 2027 2028 2029 2030 2031
  // Place after pre_compact() where the number of invocations is incremented.
  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());

  {
    ResourceMark rm;
    HandleMark hm;

2032 2033 2034 2035 2036
    // Set the number of GC threads to be used in this collection
    gc_task_manager()->set_active_gang();
    gc_task_manager()->task_idle_workers();
    heap->set_par_threads(gc_task_manager()->active_workers());

D
duke 已提交
2037 2038
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2039
    TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
D
duke 已提交
2040
    TraceCollectorStats tcs(counters());
2041
    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
D
duke 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

    if (TraceGen1Time) accumulated_time()->start();

    // Let the size policy know we're starting
    size_policy->major_collection_begin();

    CodeCache::gc_prologue();
    Threads::gc_prologue();

    COMPILER2_PRESENT(DerivedPointerTable::clear());

2053
    ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
2054
    ref_processor()->setup_policy(maximum_heap_compaction);
D
duke 已提交
2055 2056 2057 2058

    bool marked_for_unloading = false;

    marking_start.update();
J
jcoomes 已提交
2059
    marking_phase(vmthread_cm, maximum_heap_compaction);
D
duke 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

#ifndef PRODUCT
    if (TraceParallelOldGCMarkingPhase) {
      gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
        "cas_by_another %d",
        mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
        mark_bitmap()->cas_by_another());
    }
#endif  // #ifndef PRODUCT

2070 2071
    bool max_on_system_gc = UseMaximumCompactionOnSystemGC
      && gc_cause == GCCause::_java_lang_system_gc;
J
jcoomes 已提交
2072
    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
D
duke 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081

    COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
    COMPILER2_PRESENT(DerivedPointerTable::set_active(false));

    // adjust_roots() updates Universe::_intArrayKlassObj which is
    // needed by the compaction for filling holes in the dense prefix.
    adjust_roots();

    compaction_start.update();
2082
    compact();
D
duke 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
    // done before resizing.
    post_compact();

    // Let the size policy know we're done
    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);

    if (UseAdaptiveSizePolicy) {
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print("AdaptiveSizeStart: ");
        gclog_or_tty->stamp();
        gclog_or_tty->print_cr(" collection: %d ",
                       heap->total_collections());
        if (Verbose) {
2098 2099
          gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
D
duke 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
        }
      }

      // Don't check if the size_policy is ready here.  Let
      // the size_policy check that internally.
      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
          ((gc_cause != GCCause::_java_lang_system_gc) ||
            UseAdaptiveSizePolicyWithSystemGC)) {
        // Calculate optimal free space amounts
        assert(young_gen->max_size() >
          young_gen->from_space()->capacity_in_bytes() +
          young_gen->to_space()->capacity_in_bytes(),
          "Sizes of space in young gen are out-of-bounds");
        size_t max_eden_size = young_gen->max_size() -
          young_gen->from_space()->capacity_in_bytes() -
          young_gen->to_space()->capacity_in_bytes();
2116 2117 2118 2119 2120 2121 2122 2123
        size_policy->compute_generation_free_space(
                              young_gen->used_in_bytes(),
                              young_gen->eden_space()->used_in_bytes(),
                              old_gen->used_in_bytes(),
                              young_gen->eden_space()->capacity_in_bytes(),
                              old_gen->max_gen_size(),
                              max_eden_size,
                              true /* full gc*/,
2124 2125
                              gc_cause,
                              heap->collector_policy());
2126 2127 2128

        heap->resize_old_gen(
          size_policy->calculated_old_free_size_in_bytes());
D
duke 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

        // Don't resize the young generation at an major collection.  A
        // desired young generation size may have been calculated but
        // resizing the young generation complicates the code because the
        // resizing of the old generation may have moved the boundary
        // between the young generation and the old generation.  Let the
        // young generation resizing happen at the minor collections.
      }
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
                       heap->total_collections());
      }
    }

    if (UsePerfData) {
      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
      counters->update_counters();
      counters->update_old_capacity(old_gen->capacity_in_bytes());
      counters->update_young_capacity(young_gen->capacity_in_bytes());
    }

    heap->resize_all_tlabs();

2152 2153
    // Resize the metaspace capactiy after a collection
    MetaspaceGC::compute_new_size();
D
duke 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162

    if (TraceGen1Time) accumulated_time()->stop();

    if (PrintGC) {
      if (PrintGCDetails) {
        // No GC timestamp here.  This is after GC so it would be confusing.
        young_gen->print_used_change(pre_gc_values.young_gen_used());
        old_gen->print_used_change(pre_gc_values.old_gen_used());
        heap->print_heap_change(pre_gc_values.heap_used());
2163
        MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
D
duke 已提交
2164 2165 2166 2167 2168 2169 2170 2171
      } else {
        heap->print_heap_change(pre_gc_values.heap_used());
      }
    }

    // Track memory usage and detect low memory
    MemoryService::track_memory_usage();
    heap->update_counters();
2172
    gc_task_manager()->release_idle_workers();
D
duke 已提交
2173 2174
  }

2175 2176 2177 2178 2179
#ifdef ASSERT
  for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
    ParCompactionManager* const cm =
      ParCompactionManager::manager_array(int(i));
    assert(cm->marking_stack()->is_empty(),       "should be empty");
2180
    assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2181 2182 2183
  }
#endif // ASSERT

D
duke 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyAfterGC:");
    Universe::verify(false);
  }

  // Re-verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyAfterGC) {
    old_gen->verify_object_start_array();
  }

2196 2197 2198 2199
  if (ZapUnusedHeapArea) {
    old_gen->object_space()->check_mangled_unused_area_complete();
  }

D
duke 已提交
2200 2201 2202 2203
  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

  collection_exit.update();

2204
  heap->print_heap_after_gc();
D
duke 已提交
2205 2206 2207 2208 2209 2210 2211
  if (PrintGCTaskTimeStamps) {
    gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
                           INT64_FORMAT,
                           marking_start.ticks(), compaction_start.ticks(),
                           collection_exit.ticks());
    gc_task_manager()->print_task_time_stamps();
  }
2212

2213 2214
  heap->post_full_gc_dump();

2215 2216 2217
#ifdef TRACESPINNING
  ParallelTaskTerminator::print_termination_counts();
#endif
2218 2219

  return true;
D
duke 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
}

bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
                                             PSYoungGen* young_gen,
                                             PSOldGen* old_gen) {
  MutableSpace* const eden_space = young_gen->eden_space();
  assert(!eden_space->is_empty(), "eden must be non-empty");
  assert(young_gen->virtual_space()->alignment() ==
         old_gen->virtual_space()->alignment(), "alignments do not match");

  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
    return false;
  }

  // Both generations must be completely committed.
  if (young_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }
  if (old_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }

  // Figure out how much to take from eden.  Include the average amount promoted
  // in the total; otherwise the next young gen GC will simply bail out to a
  // full GC.
  const size_t alignment = old_gen->virtual_space()->alignment();
  const size_t eden_used = eden_space->used_in_bytes();
  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  const size_t eden_capacity = eden_space->capacity_in_bytes();

  if (absorb_size >= eden_capacity) {
    return false; // Must leave some space in eden.
  }

  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  if (new_young_size < young_gen->min_gen_size()) {
    return false; // Respect young gen minimum size.
  }

  if (TraceAdaptiveGCBoundary && Verbose) {
    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
                        absorb_size / K,
                        eden_capacity / K, (eden_capacity - absorb_size) / K,
                        young_gen->from_space()->used_in_bytes() / K,
                        young_gen->to_space()->used_in_bytes() / K,
                        young_gen->capacity_in_bytes() / K, new_young_size / K);
  }

  // Fill the unused part of the old gen.
  MutableSpace* const old_space = old_gen->object_space();
2274 2275 2276 2277 2278 2279 2280 2281
  HeapWord* const unused_start = old_space->top();
  size_t const unused_words = pointer_delta(old_space->end(), unused_start);

  if (unused_words > 0) {
    if (unused_words < CollectedHeap::min_fill_size()) {
      return false;  // If the old gen cannot be filled, must give up.
    }
    CollectedHeap::fill_with_objects(unused_start, unused_words);
D
duke 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
  }

  // Take the live data from eden and set both top and end in the old gen to
  // eden top.  (Need to set end because reset_after_change() mangles the region
  // from end to virtual_space->high() in debug builds).
  HeapWord* const new_top = eden_space->top();
  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
                                        absorb_size);
  young_gen->reset_after_change();
  old_space->set_top(new_top);
  old_space->set_end(new_top);
  old_gen->reset_after_change();

  // Update the object start array for the filler object and the data from eden.
  ObjectStartArray* const start_array = old_gen->start_array();
2297 2298
  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
    start_array->allocate_block(p);
D
duke 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
  }

  // Could update the promoted average here, but it is not typically updated at
  // full GCs and the value to use is unclear.  Something like
  //
  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.

  size_policy->set_bytes_absorbed_from_eden(absorb_size);
  return true;
}

GCTaskManager* const PSParallelCompact::gc_task_manager() {
  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
    "shouldn't return NULL");
  return ParallelScavengeHeap::gc_task_manager();
}

void PSParallelCompact::marking_phase(ParCompactionManager* cm,
                                      bool maximum_heap_compaction) {
  // Recursively traverse all live objects and mark them
  TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = gc_heap();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2323
  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2324
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2325
  ParallelTaskTerminator terminator(active_gc_threads, qset);
D
duke 已提交
2326 2327 2328 2329

  PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  PSParallelCompact::FollowStackClosure follow_stack_closure(cm);

2330 2331 2332
  // Need new claim bits before marking starts.
  ClassLoaderDataGraph::clear_claimed_marks();

D
duke 已提交
2333 2334
  {
    TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
2335
    ParallelScavengeHeap::ParStrongRootsScope psrs;
D
duke 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

    GCTaskQueue* q = GCTaskQueue::create();

    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
    // We scan the thread roots in parallel
    Threads::create_thread_roots_marking_tasks(q);
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2348
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
D
duke 已提交
2349

2350 2351
    if (active_gc_threads > 1) {
      for (uint j = 0; j < active_gc_threads; j++) {
D
duke 已提交
2352 2353 2354 2355
        q->enqueue(new StealMarkingTask(&terminator));
      }
    }

2356
    gc_task_manager()->execute_and_wait(q);
D
duke 已提交
2357 2358 2359 2360 2361 2362 2363 2364
  }

  // Process reference objects found during marking
  {
    TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
    if (ref_processor()->processing_is_mt()) {
      RefProcTaskExecutor task_executor;
      ref_processor()->process_discovered_references(
2365 2366
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
        &task_executor);
D
duke 已提交
2367 2368
    } else {
      ref_processor()->process_discovered_references(
2369
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
D
duke 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
    }
  }

  TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  // Follow system dictionary roots and unload classes.
  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());

  // Follow code cache roots.
  CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
                          purged_class);
2380
  cm->follow_marking_stacks(); // Flush marking stack.
D
duke 已提交
2381 2382

  // Update subklass/sibling/implementor links of live klasses
2383
  Klass::clean_weak_klass_links(is_alive_closure());
D
duke 已提交
2384

2385
  // Visit interned string tables and delete unmarked oops
D
duke 已提交
2386
  StringTable::unlink(is_alive_closure());
2387 2388
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
D
duke 已提交
2389

2390
  assert(cm->marking_stacks_empty(), "marking stacks should be empty");
D
duke 已提交
2391 2392
}

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
  ClassLoaderData* cld = klass->class_loader_data();
  assert(cld->has_defined(klass), "inconsistency!");

  // The actual processing of the klass is done when we
  // traverse the list of Klasses in the class loader data.
  PSParallelCompact::follow_class_loader(cm, cld);
}

void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
  ClassLoaderData* cld = klass->class_loader_data();
  assert(cld->has_defined(klass), "inconsistency!");

  // The actual processing of the klass is done when we
  // traverse the list of Klasses in the class loader data.
  PSParallelCompact::adjust_class_loader(cm, cld);
}

void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
                                            ClassLoaderData* cld) {
  PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);

  cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
}

void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
                                            ClassLoaderData* cld) {
  cld->oops_do(PSParallelCompact::adjust_root_pointer_closure(),
               PSParallelCompact::adjust_klass_closure(),
               true);
}

D
duke 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
// This should be moved to the shared markSweep code!
class PSAlwaysTrueClosure: public BoolObjectClosure {
public:
  void do_object(oop p) { ShouldNotReachHere(); }
  bool do_object_b(oop p) { return true; }
};
static PSAlwaysTrueClosure always_true;

void PSParallelCompact::adjust_roots() {
  // Adjust the pointers to reflect the new locations
  TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);

2438 2439 2440
  // Need new claim bits when tracing through and adjusting pointers.
  ClassLoaderDataGraph::clear_claimed_marks();

D
duke 已提交
2441 2442 2443
  // General strong roots.
  Universe::oops_do(adjust_root_pointer_closure());
  JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
2444
  Threads::oops_do(adjust_root_pointer_closure(), NULL);
D
duke 已提交
2445 2446 2447 2448 2449 2450
  ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  FlatProfiler::oops_do(adjust_root_pointer_closure());
  Management::oops_do(adjust_root_pointer_closure());
  JvmtiExport::oops_do(adjust_root_pointer_closure());
  // SO_AllClasses
  SystemDictionary::oops_do(adjust_root_pointer_closure());
2451
  ClassLoaderDataGraph::oops_do(adjust_root_pointer_closure(), adjust_klass_closure(), true);
D
duke 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

  // Now adjust pointers in remaining weak roots.  (All of which should
  // have been cleared if they pointed to non-surviving objects.)
  // Global (weak) JNI handles
  JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());

  CodeCache::oops_do(adjust_pointer_closure());
  StringTable::oops_do(adjust_root_pointer_closure());
  ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  // Roots were visited so references into the young gen in roots
  // may have been scanned.  Process them also.
  // Should the reference processor have a span that excludes
  // young gen objects?
  PSScavenge::reference_processor()->weak_oops_do(
                                              adjust_root_pointer_closure());
}

2469 2470 2471
void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
                                                      uint parallel_gc_threads)
{
D
duke 已提交
2472 2473
  TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);

2474 2475 2476 2477 2478
  // Find the threads that are active
  unsigned int which = 0;

  const uint task_count = MAX2(parallel_gc_threads, 1U);
  for (uint j = 0; j < task_count; j++) {
2479
    q->enqueue(new DrainStacksCompactionTask(j));
2480 2481 2482 2483 2484 2485 2486 2487
    ParCompactionManager::verify_region_list_empty(j);
    // Set the region stacks variables to "no" region stack values
    // so that they will be recognized and needing a region stack
    // in the stealing tasks if they do not get one by executing
    // a draining stack.
    ParCompactionManager* cm = ParCompactionManager::manager_array(j);
    cm->set_region_stack(NULL);
    cm->set_region_stack_index((uint)max_uintx);
D
duke 已提交
2488
  }
2489
  ParCompactionManager::reset_recycled_stack_index();
D
duke 已提交
2490

2491
  // Find all regions that are available (can be filled immediately) and
D
duke 已提交
2492
  // distribute them to the thread stacks.  The iteration is done in reverse
2493
  // order (high to low) so the regions will be removed in ascending order.
D
duke 已提交
2494 2495 2496

  const ParallelCompactData& sd = PSParallelCompact::summary_data();

2497
  size_t fillable_regions = 0;   // A count for diagnostic purposes.
2498 2499
  // A region index which corresponds to the tasks created above.
  // "which" must be 0 <= which < task_count
D
duke 已提交
2500

2501
  which = 0;
2502 2503 2504
  // id + 1 is used to test termination so unsigned  can
  // be used with an old_space_id == 0.
  for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
D
duke 已提交
2505 2506 2507 2508
    SpaceInfo* const space_info = _space_info + id;
    MutableSpace* const space = space_info->space();
    HeapWord* const new_top = space_info->new_top();

2509 2510 2511
    const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
    const size_t end_region =
      sd.addr_to_region_idx(sd.region_align_up(new_top));
D
duke 已提交
2512

2513
    for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2514
      if (sd.region(cur)->claim_unsafe()) {
2515
        ParCompactionManager::region_list_push(which, cur);
D
duke 已提交
2516 2517

        if (TraceParallelOldGCCompactionPhase && Verbose) {
2518
          const size_t count_mod_8 = fillable_regions & 7;
D
duke 已提交
2519
          if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2520
          gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
D
duke 已提交
2521 2522 2523
          if (count_mod_8 == 7) gclog_or_tty->cr();
        }

2524
        NOT_PRODUCT(++fillable_regions;)
D
duke 已提交
2525

2526
        // Assign regions to tasks in round-robin fashion.
D
duke 已提交
2527
        if (++which == task_count) {
2528 2529
          assert(which <= parallel_gc_threads,
            "Inconsistent number of workers");
D
duke 已提交
2530 2531 2532 2533 2534 2535 2536
          which = 0;
        }
      }
    }
  }

  if (TraceParallelOldGCCompactionPhase) {
2537 2538
    if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
    gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
D
duke 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
  }
}

#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4

void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
                                                    uint parallel_gc_threads) {
  TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);

  ParallelCompactData& sd = PSParallelCompact::summary_data();

  // Iterate over all the spaces adding tasks for updating
2551
  // regions in the dense prefix.  Assume that 1 gc thread
D
duke 已提交
2552 2553
  // will work on opening the gaps and the remaining gc threads
  // will work on the dense prefix.
2554 2555
  unsigned int space_id;
  for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
D
duke 已提交
2556 2557 2558 2559 2560 2561 2562 2563
    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
    const MutableSpace* const space = _space_info[space_id].space();

    if (dense_prefix_end == space->bottom()) {
      // There is no dense prefix for this space.
      continue;
    }

2564 2565 2566 2567 2568
    // The dense prefix is before this region.
    size_t region_index_end_dense_prefix =
        sd.addr_to_region_idx(dense_prefix_end);
    RegionData* const dense_prefix_cp =
      sd.region(region_index_end_dense_prefix);
D
duke 已提交
2569 2570 2571
    assert(dense_prefix_end == space->end() ||
           dense_prefix_cp->available() ||
           dense_prefix_cp->claimed(),
2572
           "The region after the dense prefix should always be ready to fill");
D
duke 已提交
2573

2574
    size_t region_index_start = sd.addr_to_region_idx(space->bottom());
D
duke 已提交
2575 2576

    // Is there dense prefix work?
2577 2578 2579
    size_t total_dense_prefix_regions =
      region_index_end_dense_prefix - region_index_start;
    // How many regions of the dense prefix should be given to
D
duke 已提交
2580
    // each thread?
2581
    if (total_dense_prefix_regions > 0) {
D
duke 已提交
2582
      uint tasks_for_dense_prefix = 1;
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
      if (total_dense_prefix_regions <=
          (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
        // Don't over partition.  This assumes that
        // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
        // so there are not many regions to process.
        tasks_for_dense_prefix = parallel_gc_threads;
      } else {
        // Over partition
        tasks_for_dense_prefix = parallel_gc_threads *
          PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
D
duke 已提交
2593
      }
2594
      size_t regions_per_thread = total_dense_prefix_regions /
D
duke 已提交
2595
        tasks_for_dense_prefix;
2596 2597 2598
      // Give each thread at least 1 region.
      if (regions_per_thread == 0) {
        regions_per_thread = 1;
D
duke 已提交
2599 2600 2601
      }

      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2602
        if (region_index_start >= region_index_end_dense_prefix) {
D
duke 已提交
2603 2604
          break;
        }
2605 2606 2607
        // region_index_end is not processed
        size_t region_index_end = MIN2(region_index_start + regions_per_thread,
                                       region_index_end_dense_prefix);
2608 2609 2610
        q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
                                             region_index_start,
                                             region_index_end));
2611
        region_index_start = region_index_end;
D
duke 已提交
2612 2613 2614 2615
      }
    }
    // This gets any part of the dense prefix that did not
    // fit evenly.
2616
    if (region_index_start < region_index_end_dense_prefix) {
2617 2618 2619
      q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
                                           region_index_start,
                                           region_index_end_dense_prefix));
D
duke 已提交
2620
    }
2621
  }
D
duke 已提交
2622 2623
}

2624
void PSParallelCompact::enqueue_region_stealing_tasks(
D
duke 已提交
2625 2626 2627 2628 2629
                                     GCTaskQueue* q,
                                     ParallelTaskTerminator* terminator_ptr,
                                     uint parallel_gc_threads) {
  TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);

2630
  // Once a thread has drained it's stack, it should try to steal regions from
D
duke 已提交
2631 2632 2633
  // other threads.
  if (parallel_gc_threads > 1) {
    for (uint j = 0; j < parallel_gc_threads; j++) {
2634
      q->enqueue(new StealRegionCompactionTask(terminator_ptr));
D
duke 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
    }
  }
}

void PSParallelCompact::compact() {
  // trace("5");
  TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  PSOldGen* old_gen = heap->old_gen();
  old_gen->start_array()->reset();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2648
  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2649
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2650
  ParallelTaskTerminator terminator(active_gc_threads, qset);
D
duke 已提交
2651 2652

  GCTaskQueue* q = GCTaskQueue::create();
2653 2654 2655
  enqueue_region_draining_tasks(q, active_gc_threads);
  enqueue_dense_prefix_tasks(q, active_gc_threads);
  enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
D
duke 已提交
2656 2657 2658 2659

  {
    TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);

2660
    gc_task_manager()->execute_and_wait(q);
D
duke 已提交
2661 2662

#ifdef  ASSERT
2663
    // Verify that all regions have been processed before the deferred updates.
D
duke 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      verify_complete(SpaceId(id));
    }
#endif
  }

  {
    // Update the deferred objects, if any.  Any compaction manager can be used.
    TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      update_deferred_objects(cm, SpaceId(id));
    }
  }
}

#ifdef  ASSERT
void PSParallelCompact::verify_complete(SpaceId space_id) {
2682 2683
  // All Regions between space bottom() to new_top() should be marked as filled
  // and all Regions between new_top() and top() should be available (i.e.,
D
duke 已提交
2684 2685 2686
  // should have been emptied).
  ParallelCompactData& sd = summary_data();
  SpaceInfo si = _space_info[space_id];
2687 2688 2689 2690 2691
  HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
D
duke 已提交
2692 2693 2694

  bool issued_a_warning = false;

2695 2696 2697
  size_t cur_region;
  for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2698
    if (!c->completed()) {
2699
      warning("region " SIZE_FORMAT " not filled:  "
D
duke 已提交
2700
              "destination_count=" SIZE_FORMAT,
2701
              cur_region, c->destination_count());
D
duke 已提交
2702 2703 2704 2705
      issued_a_warning = true;
    }
  }

2706 2707
  for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2708
    if (!c->available()) {
2709
      warning("region " SIZE_FORMAT " not empty:   "
D
duke 已提交
2710
              "destination_count=" SIZE_FORMAT,
2711
              cur_region, c->destination_count());
D
duke 已提交
2712 2713 2714 2715 2716
      issued_a_warning = true;
    }
  }

  if (issued_a_warning) {
2717
    print_region_ranges();
D
duke 已提交
2718 2719 2720 2721
  }
}
#endif  // #ifdef ASSERT

Y
ysr 已提交
2722

D
duke 已提交
2723 2724
#ifdef VALIDATE_MARK_SWEEP

2725
void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
D
duke 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
  if (!ValidateMarkSweep)
    return;

  if (!isroot) {
    if (_pointer_tracking) {
      guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
      _adjusted_pointers->remove(p);
    }
  } else {
    ptrdiff_t index = _root_refs_stack->find(p);
    if (index != -1) {
      int l = _root_refs_stack->length();
      if (l > 0 && l - 1 != index) {
2739
        void* last = _root_refs_stack->pop();
D
duke 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
        assert(last != p, "should be different");
        _root_refs_stack->at_put(index, last);
      } else {
        _root_refs_stack->remove(p);
      }
    }
  }
}


2750
void PSParallelCompact::check_adjust_pointer(void* p) {
D
duke 已提交
2751 2752 2753 2754 2755 2756 2757
  _adjusted_pointers->push(p);
}


class AdjusterTracker: public OopClosure {
 public:
  AdjusterTracker() {};
2758 2759
  void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
D
duke 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768
};


void PSParallelCompact::track_interior_pointers(oop obj) {
  if (ValidateMarkSweep) {
    _adjusted_pointers->clear();
    _pointer_tracking = true;

    AdjusterTracker checker;
2769
    obj->oop_iterate_no_header(&checker);
D
duke 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
  }
}


void PSParallelCompact::check_interior_pointers() {
  if (ValidateMarkSweep) {
    _pointer_tracking = false;
    guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  }
}


2782
void PSParallelCompact::reset_live_oop_tracking() {
D
duke 已提交
2783 2784
  if (ValidateMarkSweep) {
    guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
2785
    _live_oops_index = 0;
D
duke 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
  }
}


void PSParallelCompact::register_live_oop(oop p, size_t size) {
  if (ValidateMarkSweep) {
    _live_oops->push(p);
    _live_oops_size->push(size);
    _live_oops_index++;
  }
}

void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  if (ValidateMarkSweep) {
    oop obj = _live_oops->at((int)_live_oops_index);
    guarantee(obj == p, "should be the same object");
    guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
    _live_oops_index++;
  }
}

void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
                                  HeapWord* compaction_top) {
  assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
         "should be moved to forwarded location");
  if (ValidateMarkSweep) {
    PSParallelCompact::validate_live_oop(oop(q), size);
    _live_oops_moved_to->push(oop(compaction_top));
  }
  if (RecordMarkSweepCompaction) {
    _cur_gc_live_oops->push(q);
    _cur_gc_live_oops_moved_to->push(compaction_top);
    _cur_gc_live_oops_size->push(size);
  }
}


void PSParallelCompact::compaction_complete() {
  if (RecordMarkSweepCompaction) {
    GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
    GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
    GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;

    _cur_gc_live_oops           = _last_gc_live_oops;
    _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
    _cur_gc_live_oops_size      = _last_gc_live_oops_size;
    _last_gc_live_oops          = _tmp_live_oops;
    _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
    _last_gc_live_oops_size     = _tmp_live_oops_size;
  }
}


void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  if (!RecordMarkSweepCompaction) {
    tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
    return;
  }

  if (_last_gc_live_oops == NULL) {
    tty->print_cr("No compaction information gathered yet");
    return;
  }

  for (int i = 0; i < _last_gc_live_oops->length(); i++) {
    HeapWord* old_oop = _last_gc_live_oops->at(i);
    size_t    sz      = _last_gc_live_oops_size->at(i);
    if (old_oop <= q && q < (old_oop + sz)) {
      HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
      size_t offset = (q - old_oop);
      tty->print_cr("Address " PTR_FORMAT, q);
      tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
      tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
      return;
    }
  }

  tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
}
#endif //VALIDATE_MARK_SWEEP

2867
// Update interior oops in the ranges of regions [beg_region, end_region).
D
duke 已提交
2868 2869 2870
void
PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
                                                       SpaceId space_id,
2871 2872
                                                       size_t beg_region,
                                                       size_t end_region) {
D
duke 已提交
2873 2874 2875
  ParallelCompactData& sd = summary_data();
  ParMarkBitMap* const mbm = mark_bitmap();

2876 2877 2878
  HeapWord* beg_addr = sd.region_to_addr(beg_region);
  HeapWord* const end_addr = sd.region_to_addr(end_region);
  assert(beg_region <= end_region, "bad region range");
D
duke 已提交
2879 2880 2881
  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");

#ifdef  ASSERT
2882
  // Claim the regions to avoid triggering an assert when they are marked as
D
duke 已提交
2883
  // filled.
2884 2885
  for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
    assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
D
duke 已提交
2886 2887 2888 2889 2890
  }
#endif  // #ifdef ASSERT

  if (beg_addr != space(space_id)->bottom()) {
    // Find the first live object or block of dead space that *starts* in this
2891 2892 2893 2894 2895 2896
    // range of regions.  If a partial object crosses onto the region, skip it;
    // it will be marked for 'deferred update' when the object head is
    // processed.  If dead space crosses onto the region, it is also skipped; it
    // will be filled when the prior region is processed.  If neither of those
    // apply, the first word in the region is the start of a live object or dead
    // space.
D
duke 已提交
2897
    assert(beg_addr > space(space_id)->bottom(), "sanity");
2898
    const RegionData* const cp = sd.region(beg_region);
D
duke 已提交
2899
    if (cp->partial_obj_size() != 0) {
2900
      beg_addr = sd.partial_obj_end(beg_region);
D
duke 已提交
2901 2902 2903 2904 2905 2906
    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
    }
  }

  if (beg_addr < end_addr) {
2907
    // A live object or block of dead space starts in this range of Regions.
D
duke 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
     HeapWord* const dense_prefix_end = dense_prefix(space_id);

    // Create closures and iterate.
    UpdateOnlyClosure update_closure(mbm, cm, space_id);
    FillClosure fill_closure(cm, space_id);
    ParMarkBitMap::IterationStatus status;
    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
                          dense_prefix_end);
    if (status == ParMarkBitMap::incomplete) {
      update_closure.do_addr(update_closure.source());
    }
  }

2921 2922 2923 2924
  // Mark the regions as filled.
  RegionData* const beg_cp = sd.region(beg_region);
  RegionData* const end_cp = sd.region(end_region);
  for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
D
duke 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
    cp->set_completed();
  }
}

// Return the SpaceId for the space containing addr.  If addr is not in the
// heap, last_space_id is returned.  In debug mode it expects the address to be
// in the heap and asserts such.
PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");

2935
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
D
duke 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
    if (_space_info[id].space()->contains(addr)) {
      return SpaceId(id);
    }
  }

  assert(false, "no space contains the addr");
  return last_space_id;
}

void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
                                                SpaceId id) {
  assert(id < last_space_id, "bad space id");

  ParallelCompactData& sd = summary_data();
  const SpaceInfo* const space_info = _space_info + id;
  ObjectStartArray* const start_array = space_info->start_array();

  const MutableSpace* const space = space_info->space();
  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  HeapWord* const beg_addr = space_info->dense_prefix();
2956
  HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
D
duke 已提交
2957

2958 2959 2960 2961 2962
  const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  const RegionData* cur_region;
  for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
    HeapWord* const addr = cur_region->deferred_obj_addr();
D
duke 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
    if (addr != NULL) {
      if (start_array != NULL) {
        start_array->allocate_block(addr);
      }
      oop(addr)->update_contents(cm);
      assert(oop(addr)->is_oop_or_null(), "should be an oop now");
    }
  }
}

// Skip over count live words starting from beg, and return the address of the
// next live word.  Unless marked, the word corresponding to beg is assumed to
// be dead.  Callers must either ensure beg does not correspond to the middle of
// an object, or account for those live words in some other way.  Callers must
// also ensure that there are enough live words in the range [beg, end) to skip.
HeapWord*
PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
{
  assert(count > 0, "sanity");

  ParMarkBitMap* m = mark_bitmap();
  idx_t bits_to_skip = m->words_to_bits(count);
  idx_t cur_beg = m->addr_to_bit(beg);
  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));

  do {
    cur_beg = m->find_obj_beg(cur_beg, search_end);
    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
    const size_t obj_bits = cur_end - cur_beg + 1;
    if (obj_bits > bits_to_skip) {
      return m->bit_to_addr(cur_beg + bits_to_skip);
    }
    bits_to_skip -= obj_bits;
    cur_beg = cur_end + 1;
  } while (bits_to_skip > 0);

  // Skipping the desired number of words landed just past the end of an object.
  // Find the start of the next object.
  cur_beg = m->find_obj_beg(cur_beg, search_end);
  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  return m->bit_to_addr(cur_beg);
}

3006 3007 3008
HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
                                            SpaceId src_space_id,
                                            size_t src_region_idx)
D
duke 已提交
3009
{
3010 3011 3012 3013 3014 3015 3016 3017 3018
  assert(summary_data().is_region_aligned(dest_addr), "not aligned");

  const SplitInfo& split_info = _space_info[src_space_id].split_info();
  if (split_info.dest_region_addr() == dest_addr) {
    // The partial object ending at the split point contains the first word to
    // be copied to dest_addr.
    return split_info.first_src_addr();
  }

D
duke 已提交
3019
  const ParallelCompactData& sd = summary_data();
3020
  ParMarkBitMap* const bitmap = mark_bitmap();
3021
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
3022

3023 3024 3025 3026
  assert(sd.is_region_aligned(dest_addr), "not aligned");
  const RegionData* const src_region_ptr = sd.region(src_region_idx);
  const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  HeapWord* const src_region_destination = src_region_ptr->destination();
D
duke 已提交
3027

3028 3029
  assert(dest_addr >= src_region_destination, "wrong src region");
  assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
D
duke 已提交
3030

3031 3032
  HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  HeapWord* const src_region_end = src_region_beg + RegionSize;
D
duke 已提交
3033

3034 3035 3036
  HeapWord* addr = src_region_beg;
  if (dest_addr == src_region_destination) {
    // Return the first live word in the source region.
D
duke 已提交
3037
    if (partial_obj_size == 0) {
3038 3039
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "no objects start in src region");
D
duke 已提交
3040 3041 3042 3043 3044
    }
    return addr;
  }

  // Must skip some live data.
3045 3046
  size_t words_to_skip = dest_addr - src_region_destination;
  assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
D
duke 已提交
3047 3048 3049 3050 3051 3052

  if (partial_obj_size >= words_to_skip) {
    // All the live words to skip are part of the partial object.
    addr += words_to_skip;
    if (partial_obj_size == words_to_skip) {
      // Find the first live word past the partial object.
3053 3054
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "wrong src region");
D
duke 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
    }
    return addr;
  }

  // Skip over the partial object (if any).
  if (partial_obj_size != 0) {
    words_to_skip -= partial_obj_size;
    addr += partial_obj_size;
  }

3065 3066 3067
  // Skip over live words due to objects that start in the region.
  addr = skip_live_words(addr, src_region_end, words_to_skip);
  assert(addr < src_region_end, "wrong src region");
D
duke 已提交
3068 3069 3070 3071
  return addr;
}

void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
3072
                                                     SpaceId src_space_id,
3073
                                                     size_t beg_region,
D
duke 已提交
3074 3075 3076
                                                     HeapWord* end_addr)
{
  ParallelCompactData& sd = summary_data();
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086

#ifdef ASSERT
  MutableSpace* const src_space = _space_info[src_space_id].space();
  HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
         "src_space_id does not match beg_addr");
  assert(src_space->contains(end_addr) || end_addr == src_space->end(),
         "src_space_id does not match end_addr");
#endif // #ifdef ASSERT

3087
  RegionData* const beg = sd.region(beg_region);
3088 3089 3090 3091 3092 3093 3094 3095
  RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));

  // Regions up to new_top() are enqueued if they become available.
  HeapWord* const new_top = _space_info[src_space_id].new_top();
  RegionData* const enqueue_end =
    sd.addr_to_region_ptr(sd.region_align_up(new_top));

  for (RegionData* cur = beg; cur < end; ++cur) {
3096
    assert(cur->data_size() > 0, "region must have live data");
D
duke 已提交
3097
    cur->decrement_destination_count();
3098
    if (cur < enqueue_end && cur->available() && cur->claim()) {
3099
      cm->push_region(sd.region(cur));
D
duke 已提交
3100 3101 3102 3103
    }
  }
}

3104 3105 3106 3107
size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
                                          SpaceId& src_space_id,
                                          HeapWord*& src_space_top,
                                          HeapWord* end_addr)
D
duke 已提交
3108
{
3109
  typedef ParallelCompactData::RegionData RegionData;
D
duke 已提交
3110 3111

  ParallelCompactData& sd = PSParallelCompact::summary_data();
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
  const size_t region_size = ParallelCompactData::RegionSize;

  size_t src_region_idx = 0;

  // Skip empty regions (if any) up to the top of the space.
  HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  const RegionData* const top_region_ptr =
    sd.addr_to_region_ptr(top_aligned_up);
  while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
    ++src_region_ptr;
  }

  if (src_region_ptr < top_region_ptr) {
    // The next source region is in the current space.  Update src_region_idx
    // and the source address to match src_region_ptr.
    src_region_idx = sd.region(src_region_ptr);
    HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
    if (src_region_addr > closure.source()) {
      closure.set_source(src_region_addr);
D
duke 已提交
3133
    }
3134
    return src_region_idx;
D
duke 已提交
3135 3136
  }

3137
  // Switch to a new source space and find the first non-empty region.
D
duke 已提交
3138 3139 3140 3141 3142 3143 3144 3145
  unsigned int space_id = src_space_id + 1;
  assert(space_id < last_space_id, "not enough spaces");

  HeapWord* const destination = closure.destination();

  do {
    MutableSpace* space = _space_info[space_id].space();
    HeapWord* const bottom = space->bottom();
3146
    const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
D
duke 已提交
3147 3148 3149

    // Iterate over the spaces that do not compact into themselves.
    if (bottom_cp->destination() != bottom) {
3150 3151
      HeapWord* const top_aligned_up = sd.region_align_up(space->top());
      const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
3152

3153
      for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
D
duke 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162
        if (src_cp->live_obj_size() > 0) {
          // Found it.
          assert(src_cp->destination() == destination,
                 "first live obj in the space must match the destination");
          assert(src_cp->partial_obj_size() == 0,
                 "a space cannot begin with a partial obj");

          src_space_id = SpaceId(space_id);
          src_space_top = space->top();
3163 3164 3165
          const size_t src_region_idx = sd.region(src_cp);
          closure.set_source(sd.region_to_addr(src_region_idx));
          return src_region_idx;
D
duke 已提交
3166 3167 3168 3169 3170 3171 3172
        } else {
          assert(src_cp->data_size() == 0, "sanity");
        }
      }
    }
  } while (++space_id < last_space_id);

3173
  assert(false, "no source region was found");
D
duke 已提交
3174 3175 3176
  return 0;
}

3177
void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
D
duke 已提交
3178 3179
{
  typedef ParMarkBitMap::IterationStatus IterationStatus;
3180
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
3181 3182
  ParMarkBitMap* const bitmap = mark_bitmap();
  ParallelCompactData& sd = summary_data();
3183
  RegionData* const region_ptr = sd.region(region_idx);
D
duke 已提交
3184 3185

  // Get the items needed to construct the closure.
3186
  HeapWord* dest_addr = sd.region_to_addr(region_idx);
D
duke 已提交
3187 3188 3189 3190
  SpaceId dest_space_id = space_id(dest_addr);
  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  HeapWord* new_top = _space_info[dest_space_id].new_top();
  assert(dest_addr < new_top, "sanity");
3191
  const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
D
duke 已提交
3192

3193 3194 3195
  // Get the source region and related info.
  size_t src_region_idx = region_ptr->source_region();
  SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
D
duke 已提交
3196 3197 3198
  HeapWord* src_space_top = _space_info[src_space_id].space()->top();

  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3199
  closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
D
duke 已提交
3200

3201 3202 3203 3204
  // Adjust src_region_idx to prepare for decrementing destination counts (the
  // destination count is not decremented when a region is copied to itself).
  if (src_region_idx == region_idx) {
    src_region_idx += 1;
D
duke 已提交
3205 3206 3207 3208 3209 3210 3211 3212 3213
  }

  if (bitmap->is_unmarked(closure.source())) {
    // The first source word is in the middle of an object; copy the remainder
    // of the object or as much as will fit.  The fact that pointer updates were
    // deferred will be noted when the object header is processed.
    HeapWord* const old_src_addr = closure.source();
    closure.copy_partial_obj();
    if (closure.is_full()) {
3214 3215
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3216 3217
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
3218 3219 3220
      return;
    }

3221 3222 3223
    HeapWord* const end_addr = sd.region_align_down(closure.source());
    if (sd.region_align_down(old_src_addr) != end_addr) {
      // The partial object was copied from more than one source region.
3224
      decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
D
duke 已提交
3225

3226
      // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
3227
      // args except end_addr may be modified.
3228 3229
      src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                       end_addr);
D
duke 已提交
3230 3231 3232 3233 3234
    }
  }

  do {
    HeapWord* const cur_addr = closure.source();
3235
    HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
D
duke 已提交
3236 3237 3238 3239
                                    src_space_top);
    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);

    if (status == ParMarkBitMap::incomplete) {
3240 3241
      // The last obj that starts in the source region does not end in the
      // region.
3242
      assert(closure.source() < end_addr, "sanity");
D
duke 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
      HeapWord* const obj_beg = closure.source();
      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
                                       src_space_top);
      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
      if (obj_end < range_end) {
        // The end was found; the entire object will fit.
        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
        assert(status != ParMarkBitMap::would_overflow, "sanity");
      } else {
        // The end was not found; the object will not fit.
        assert(range_end < src_space_top, "obj cannot cross space boundary");
        status = ParMarkBitMap::would_overflow;
      }
    }

    if (status == ParMarkBitMap::would_overflow) {
      // The last object did not fit.  Note that interior oop updates were
3260 3261
      // deferred, then copy enough of the object to fill the region.
      region_ptr->set_deferred_obj_addr(closure.destination());
D
duke 已提交
3262 3263
      status = closure.copy_until_full(); // copies from closure.source()

3264 3265
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3266
      region_ptr->set_completed();
D
duke 已提交
3267 3268 3269 3270
      return;
    }

    if (status == ParMarkBitMap::full) {
3271 3272
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3273 3274
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
3275 3276 3277
      return;
    }

3278
    decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
D
duke 已提交
3279

3280
    // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
3281
    // args except end_addr may be modified.
3282 3283
    src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                     end_addr);
D
duke 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
  } while (true);
}

void
PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  const MutableSpace* sp = space(space_id);
  if (sp->is_empty()) {
    return;
  }

  ParallelCompactData& sd = PSParallelCompact::summary_data();
  ParMarkBitMap* const bitmap = mark_bitmap();
  HeapWord* const dp_addr = dense_prefix(space_id);
  HeapWord* beg_addr = sp->bottom();
  HeapWord* end_addr = sp->top();

  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");

3302 3303 3304 3305
  const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  if (beg_region < dp_region) {
    update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
D
duke 已提交
3306 3307
  }

3308 3309 3310
  // The destination of the first live object that starts in the region is one
  // past the end of the partial object entering the region (if any).
  HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
D
duke 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
  HeapWord* const new_top = _space_info[space_id].new_top();
  assert(new_top >= dest_addr, "bad new_top value");
  const size_t words = pointer_delta(new_top, dest_addr);

  if (words > 0) {
    ObjectStartArray* start_array = _space_info[space_id].start_array();
    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);

    ParMarkBitMap::IterationStatus status;
    status = bitmap->iterate(&closure, dest_addr, end_addr);
    assert(status == ParMarkBitMap::full, "iteration not complete");
    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
           "live objects skipped because closure is full");
  }
}

jlong PSParallelCompact::millis_since_last_gc() {
3328 3329 3330 3331
  // We need a monotonically non-deccreasing time in ms but
  // os::javaTimeMillis() does not guarantee monotonicity.
  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  jlong ret_val = now - _time_of_last_gc;
D
duke 已提交
3332 3333
  // XXX See note in genCollectedHeap::millis_since_last_gc().
  if (ret_val < 0) {
3334
    NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
D
duke 已提交
3335 3336 3337 3338 3339 3340
    return 0;
  }
  return ret_val;
}

void PSParallelCompact::reset_millis_since_last_gc() {
3341 3342 3343
  // We need a monotonically non-deccreasing time in ms but
  // os::javaTimeMillis() does not guarantee monotonicity.
  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
D
duke 已提交
3344 3345 3346 3347 3348
}

ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
{
  if (source() != destination()) {
3349
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  }
  update_state(words_remaining());
  assert(is_full(), "sanity");
  return ParMarkBitMap::full;
}

void MoveAndUpdateClosure::copy_partial_obj()
{
  size_t words = words_remaining();

  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  if (end_addr < range_end) {
    words = bitmap()->obj_size(source(), end_addr);
  }

  // This test is necessary; if omitted, the pointer updates to a partial object
  // that crosses the dense prefix boundary could be overwritten.
  if (source() != destination()) {
3370
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
    Copy::aligned_conjoint_words(source(), destination(), words);
  }
  update_state(words);
}

ParMarkBitMapClosure::IterationStatus
MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  assert(destination() != NULL, "sanity");
  assert(bitmap()->obj_size(addr) == words, "bad size");

  _source = addr;
  assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
         destination(), "wrong destination");

  if (words > words_remaining()) {
    return ParMarkBitMap::would_overflow;
  }

  // The start_array must be updated even if the object is not moving.
  if (_start_array != NULL) {
    _start_array->allocate_block(destination());
  }

  if (destination() != source()) {
3395
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
    Copy::aligned_conjoint_words(source(), destination(), words);
  }

  oop moved_oop = (oop) destination();
  moved_oop->update_contents(compaction_manager());
  assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");

  update_state(words);
  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
}

UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
                                     ParCompactionManager* cm,
                                     PSParallelCompact::SpaceId space_id) :
  ParMarkBitMapClosure(mbm, cm),
  _space_id(space_id),
  _start_array(PSParallelCompact::start_array(space_id))
{
}

// Updates the references in the object to their new values.
ParMarkBitMapClosure::IterationStatus
UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  do_addr(addr);
  return ParMarkBitMap::incomplete;
}