psParallelCompact.cpp 136.7 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/codeCache.hpp"
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
#include "gc_implementation/parallelScavenge/generationSizer.hpp"
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
#include "gc_implementation/parallelScavenge/pcTasks.hpp"
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
#include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
#include "gc_implementation/parallelScavenge/psPermGen.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
#include "gc_implementation/parallelScavenge/psYoungGen.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "gc_interface/gcCause.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/referenceProcessor.hpp"
#include "oops/methodDataOop.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/vmThread.hpp"
#include "services/management.hpp"
#include "services/memoryService.hpp"
#include "utilities/events.hpp"
#include "utilities/stack.inline.hpp"
D
duke 已提交
58 59 60 61

#include <math.h>

// All sizes are in HeapWords.
62 63 64 65 66 67 68
const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
const size_t ParallelCompactData::RegionSizeBytes =
  RegionSize << LogHeapWordSize;
const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
D
duke 已提交
69

70 71
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_shift = 27;
D
duke 已提交
72

73 74
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
D
duke 已提交
75

76 77
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
D
duke 已提交
78

79 80
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::los_mask = ~dc_mask;
D
duke 已提交
81

82 83
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
D
duke 已提交
84

85 86
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
D
duke 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
bool      PSParallelCompact::_print_phases = false;

ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;

double PSParallelCompact::_dwl_mean;
double PSParallelCompact::_dwl_std_dev;
double PSParallelCompact::_dwl_first_term;
double PSParallelCompact::_dwl_adjustment;
#ifdef  ASSERT
bool   PSParallelCompact::_dwl_initialized = false;
#endif  // #ifdef ASSERT

#ifdef VALIDATE_MARK_SWEEP
103
GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
D
duke 已提交
104 105 106 107 108
GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
size_t                  PSParallelCompact::_live_oops_index = 0;
size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
109 110
GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
D
duke 已提交
111 112 113 114 115 116 117 118 119 120 121
bool                    PSParallelCompact::_pointer_tracking = false;
bool                    PSParallelCompact::_root_tracking = true;

GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
#endif

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
                       HeapWord* destination)
{
  assert(src_region_idx != 0, "invalid src_region_idx");
  assert(partial_obj_size != 0, "invalid partial_obj_size argument");
  assert(destination != NULL, "invalid destination argument");

  _src_region_idx = src_region_idx;
  _partial_obj_size = partial_obj_size;
  _destination = destination;

  // These fields may not be updated below, so make sure they're clear.
  assert(_dest_region_addr == NULL, "should have been cleared");
  assert(_first_src_addr == NULL, "should have been cleared");

  // Determine the number of destination regions for the partial object.
  HeapWord* const last_word = destination + partial_obj_size - 1;
  const ParallelCompactData& sd = PSParallelCompact::summary_data();
  HeapWord* const beg_region_addr = sd.region_align_down(destination);
  HeapWord* const end_region_addr = sd.region_align_down(last_word);

  if (beg_region_addr == end_region_addr) {
    // One destination region.
    _destination_count = 1;
    if (end_region_addr == destination) {
      // The destination falls on a region boundary, thus the first word of the
      // partial object will be the first word copied to the destination region.
      _dest_region_addr = end_region_addr;
      _first_src_addr = sd.region_to_addr(src_region_idx);
    }
  } else {
    // Two destination regions.  When copied, the partial object will cross a
    // destination region boundary, so a word somewhere within the partial
    // object will be the first word copied to the second destination region.
    _destination_count = 2;
    _dest_region_addr = end_region_addr;
    const size_t ofs = pointer_delta(end_region_addr, destination);
    assert(ofs < _partial_obj_size, "sanity");
    _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
  }
}

void SplitInfo::clear()
{
  _src_region_idx = 0;
  _partial_obj_size = 0;
  _destination = NULL;
  _destination_count = 0;
  _dest_region_addr = NULL;
  _first_src_addr = NULL;
  assert(!is_valid(), "sanity");
}

#ifdef  ASSERT
void SplitInfo::verify_clear()
{
  assert(_src_region_idx == 0, "not clear");
  assert(_partial_obj_size == 0, "not clear");
  assert(_destination == NULL, "not clear");
  assert(_destination_count == 0, "not clear");
  assert(_dest_region_addr == NULL, "not clear");
  assert(_first_src_addr == NULL, "not clear");
}
#endif  // #ifdef ASSERT


D
duke 已提交
188 189 190 191 192
#ifndef PRODUCT
const char* PSParallelCompact::space_names[] = {
  "perm", "old ", "eden", "from", "to  "
};

193
void PSParallelCompact::print_region_ranges()
D
duke 已提交
194 195 196 197 198 199 200
{
  tty->print_cr("space  bottom     top        end        new_top");
  tty->print_cr("------ ---------- ---------- ---------- ----------");

  for (unsigned int id = 0; id < last_space_id; ++id) {
    const MutableSpace* space = _space_info[id].space();
    tty->print_cr("%u %s "
201 202
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
D
duke 已提交
203
                  id, space_names[id],
204 205 206 207
                  summary_data().addr_to_region_idx(space->bottom()),
                  summary_data().addr_to_region_idx(space->top()),
                  summary_data().addr_to_region_idx(space->end()),
                  summary_data().addr_to_region_idx(_space_info[id].new_top()));
D
duke 已提交
208 209 210 211
  }
}

void
212
print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
D
duke 已提交
213
{
214 215
#define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
#define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
D
duke 已提交
216 217

  ParallelCompactData& sd = PSParallelCompact::summary_data();
218 219 220 221 222
  size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
  tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
                REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
D
duke 已提交
223 224
                i, c->data_location(), dci, c->destination(),
                c->partial_obj_size(), c->live_obj_size(),
225
                c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
226

227 228
#undef  REGION_IDX_FORMAT
#undef  REGION_DATA_FORMAT
D
duke 已提交
229 230 231 232 233 234 235 236
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           HeapWord* const beg_addr,
                           HeapWord* const end_addr)
{
  size_t total_words = 0;
237 238
  size_t i = summary_data.addr_to_region_idx(beg_addr);
  const size_t last = summary_data.addr_to_region_idx(end_addr);
D
duke 已提交
239 240 241
  HeapWord* pdest = 0;

  while (i <= last) {
242
    ParallelCompactData::RegionData* c = summary_data.region(i);
D
duke 已提交
243
    if (c->data_size() != 0 || c->destination() != pdest) {
244
      print_generic_summary_region(i, c);
D
duke 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      total_words += c->data_size();
      pdest = c->destination();
    }
    ++i;
  }

  tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info)
{
  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
    const MutableSpace* space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(),
                               MAX2(space->top(), space_info[id].new_top()));
  }
}

void
266 267 268
print_initial_summary_region(size_t i,
                             const ParallelCompactData::RegionData* c,
                             bool newline = true)
D
duke 已提交
269
{
270 271 272
  tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
D
duke 已提交
273 274
             i, c->destination(),
             c->partial_obj_size(), c->live_obj_size(),
275
             c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
276 277 278 279 280 281 282 283 284 285
  if (newline) tty->cr();
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           const MutableSpace* space) {
  if (space->top() == space->bottom()) {
    return;
  }

286 287 288 289 290
  const size_t region_size = ParallelCompactData::RegionSize;
  typedef ParallelCompactData::RegionData RegionData;
  HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
  const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
  const RegionData* c = summary_data.region(end_region - 1);
D
duke 已提交
291 292 293
  HeapWord* end_addr = c->destination() + c->data_size();
  const size_t live_in_space = pointer_delta(end_addr, space->bottom());

294 295 296 297 298 299
  // Print (and count) the full regions at the beginning of the space.
  size_t full_region_count = 0;
  size_t i = summary_data.addr_to_region_idx(space->bottom());
  while (i < end_region && summary_data.region(i)->data_size() == region_size) {
    print_initial_summary_region(i, summary_data.region(i));
    ++full_region_count;
D
duke 已提交
300 301 302
    ++i;
  }

303
  size_t live_to_right = live_in_space - full_region_count * region_size;
D
duke 已提交
304 305

  double max_reclaimed_ratio = 0.0;
306
  size_t max_reclaimed_ratio_region = 0;
D
duke 已提交
307 308 309
  size_t max_dead_to_right = 0;
  size_t max_live_to_right = 0;

310 311
  // Print the 'reclaimed ratio' for regions while there is something live in
  // the region or to the right of it.  The remaining regions are empty (and
D
duke 已提交
312
  // uninteresting), and computing the ratio will result in division by 0.
313 314 315 316
  while (i < end_region && live_to_right > 0) {
    c = summary_data.region(i);
    HeapWord* const region_addr = summary_data.region_to_addr(i);
    const size_t used_to_right = pointer_delta(space->top(), region_addr);
D
duke 已提交
317 318 319 320 321
    const size_t dead_to_right = used_to_right - live_to_right;
    const double reclaimed_ratio = double(dead_to_right) / live_to_right;

    if (reclaimed_ratio > max_reclaimed_ratio) {
            max_reclaimed_ratio = reclaimed_ratio;
322
            max_reclaimed_ratio_region = i;
D
duke 已提交
323 324 325 326
            max_dead_to_right = dead_to_right;
            max_live_to_right = live_to_right;
    }

327
    print_initial_summary_region(i, c, false);
328
    tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
D
duke 已提交
329 330 331 332 333 334
                  reclaimed_ratio, dead_to_right, live_to_right);

    live_to_right -= c->data_size();
    ++i;
  }

335 336 337
  // Any remaining regions are empty.  Print one more if there is one.
  if (i < end_region) {
    print_initial_summary_region(i, summary_data.region(i));
D
duke 已提交
338 339
  }

340 341
  tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
                "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
342
                max_reclaimed_ratio_region, max_dead_to_right,
D
duke 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                max_live_to_right, max_reclaimed_ratio);
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info) {
  unsigned int id = PSParallelCompact::perm_space_id;
  const MutableSpace* space;
  do {
    space = space_info[id].space();
    print_initial_summary_data(summary_data, space);
  } while (++id < PSParallelCompact::eden_space_id);

  do {
    space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(), space->top());
  } while (++id < PSParallelCompact::last_space_id);
}
#endif  // #ifndef PRODUCT

#ifdef  ASSERT
size_t add_obj_count;
size_t add_obj_size;
size_t mark_bitmap_count;
size_t mark_bitmap_size;
#endif  // #ifdef ASSERT

ParallelCompactData::ParallelCompactData()
{
  _region_start = 0;

374 375 376
  _region_vspace = 0;
  _region_data = 0;
  _region_count = 0;
D
duke 已提交
377 378 379 380 381 382 383 384
}

bool ParallelCompactData::initialize(MemRegion covered_region)
{
  _region_start = covered_region.start();
  const size_t region_size = covered_region.word_size();
  DEBUG_ONLY(_region_end = _region_start + region_size;)

385
  assert(region_align_down(_region_start) == _region_start,
D
duke 已提交
386
         "region start not aligned");
387 388
  assert((region_size & RegionSizeOffsetMask) == 0,
         "region size not a multiple of RegionSize");
D
duke 已提交
389

390
  bool result = initialize_region_data(region_size);
D
duke 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404

  return result;
}

PSVirtualSpace*
ParallelCompactData::create_vspace(size_t count, size_t element_size)
{
  const size_t raw_bytes = count * element_size;
  const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
  const size_t granularity = os::vm_allocation_granularity();
  const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));

  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
    MAX2(page_sz, granularity);
405
  ReservedSpace rs(bytes, rs_align, rs_align > 0);
D
duke 已提交
406 407 408 409 410 411 412 413
  os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
                       rs.size());
  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
  if (vspace != 0) {
    if (vspace->expand_by(bytes)) {
      return vspace;
    }
    delete vspace;
414 415
    // Release memory reserved in the space.
    rs.release();
D
duke 已提交
416 417 418 419 420
  }

  return 0;
}

421
bool ParallelCompactData::initialize_region_data(size_t region_size)
D
duke 已提交
422
{
423 424 425 426 427
  const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
  _region_vspace = create_vspace(count, sizeof(RegionData));
  if (_region_vspace != 0) {
    _region_data = (RegionData*)_region_vspace->reserved_low_addr();
    _region_count = count;
D
duke 已提交
428 429 430 431 432 433 434
    return true;
  }
  return false;
}

void ParallelCompactData::clear()
{
435
  memset(_region_data, 0, _region_vspace->committed_size());
D
duke 已提交
436 437
}

438 439 440
void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
  assert(beg_region <= _region_count, "beg_region out of range");
  assert(end_region <= _region_count, "end_region out of range");
D
duke 已提交
441

442 443
  const size_t region_cnt = end_region - beg_region;
  memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
D
duke 已提交
444 445
}

446
HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
D
duke 已提交
447
{
448 449
  const RegionData* cur_cp = region(region_idx);
  const RegionData* const end_cp = region(region_count() - 1);
D
duke 已提交
450

451
  HeapWord* result = region_to_addr(region_idx);
D
duke 已提交
452 453 454
  if (cur_cp < end_cp) {
    do {
      result += cur_cp->partial_obj_size();
455
    } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
D
duke 已提交
456 457 458 459 460 461 462
  }
  return result;
}

void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
{
  const size_t obj_ofs = pointer_delta(addr, _region_start);
463 464
  const size_t beg_region = obj_ofs >> Log2RegionSize;
  const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
D
duke 已提交
465 466 467 468

  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)

469 470 471
  if (beg_region == end_region) {
    // All in one region.
    _region_data[beg_region].add_live_obj(len);
D
duke 已提交
472 473 474
    return;
  }

475 476 477
  // First region.
  const size_t beg_ofs = region_offset(addr);
  _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
D
duke 已提交
478 479

  klassOop klass = ((oop)addr)->klass();
480 481 482 483
  // Middle regions--completely spanned by this object.
  for (size_t region = beg_region + 1; region < end_region; ++region) {
    _region_data[region].set_partial_obj_size(RegionSize);
    _region_data[region].set_partial_obj_addr(addr);
D
duke 已提交
484 485
  }

486 487 488 489
  // Last region.
  const size_t end_ofs = region_offset(addr + len - 1);
  _region_data[end_region].set_partial_obj_size(end_ofs + 1);
  _region_data[end_region].set_partial_obj_addr(addr);
D
duke 已提交
490 491 492 493 494
}

void
ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
{
495 496
  assert(region_offset(beg) == 0, "not RegionSize aligned");
  assert(region_offset(end) == 0, "not RegionSize aligned");
D
duke 已提交
497

498 499
  size_t cur_region = addr_to_region_idx(beg);
  const size_t end_region = addr_to_region_idx(end);
D
duke 已提交
500
  HeapWord* addr = beg;
501 502 503 504 505
  while (cur_region < end_region) {
    _region_data[cur_region].set_destination(addr);
    _region_data[cur_region].set_destination_count(0);
    _region_data[cur_region].set_source_region(cur_region);
    _region_data[cur_region].set_data_location(addr);
D
duke 已提交
506

507 508 509
    // Update live_obj_size so the region appears completely full.
    size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
    _region_data[cur_region].set_live_obj_size(live_size);
D
duke 已提交
510

511 512
    ++cur_region;
    addr += RegionSize;
D
duke 已提交
513 514 515
  }
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
// Find the point at which a space can be split and, if necessary, record the
// split point.
//
// If the current src region (which overflowed the destination space) doesn't
// have a partial object, the split point is at the beginning of the current src
// region (an "easy" split, no extra bookkeeping required).
//
// If the current src region has a partial object, the split point is in the
// region where that partial object starts (call it the split_region).  If
// split_region has a partial object, then the split point is just after that
// partial object (a "hard" split where we have to record the split data and
// zero the partial_obj_size field).  With a "hard" split, we know that the
// partial_obj ends within split_region because the partial object that caused
// the overflow starts in split_region.  If split_region doesn't have a partial
// obj, then the split is at the beginning of split_region (another "easy"
// split).
HeapWord*
ParallelCompactData::summarize_split_space(size_t src_region,
                                           SplitInfo& split_info,
                                           HeapWord* destination,
                                           HeapWord* target_end,
                                           HeapWord** target_next)
{
  assert(destination <= target_end, "sanity");
  assert(destination + _region_data[src_region].data_size() > target_end,
    "region should not fit into target space");
542
  assert(is_region_aligned(target_end), "sanity");
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

  size_t split_region = src_region;
  HeapWord* split_destination = destination;
  size_t partial_obj_size = _region_data[src_region].partial_obj_size();

  if (destination + partial_obj_size > target_end) {
    // The split point is just after the partial object (if any) in the
    // src_region that contains the start of the object that overflowed the
    // destination space.
    //
    // Find the start of the "overflow" object and set split_region to the
    // region containing it.
    HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
    split_region = addr_to_region_idx(overflow_obj);

    // Clear the source_region field of all destination regions whose first word
    // came from data after the split point (a non-null source_region field
    // implies a region must be filled).
    //
    // An alternative to the simple loop below:  clear during post_compact(),
    // which uses memcpy instead of individual stores, and is easy to
    // parallelize.  (The downside is that it clears the entire RegionData
    // object as opposed to just one field.)
    //
    // post_compact() would have to clear the summary data up to the highest
    // address that was written during the summary phase, which would be
    //
    //         max(top, max(new_top, clear_top))
    //
    // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
573
    // to target_end.
574 575 576 577
    const RegionData* const sr = region(split_region);
    const size_t beg_idx =
      addr_to_region_idx(region_align_up(sr->destination() +
                                         sr->partial_obj_size()));
578
    const size_t end_idx = addr_to_region_idx(target_end);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

    if (TraceParallelOldGCSummaryPhase) {
        gclog_or_tty->print_cr("split:  clearing source_region field in ["
                               SIZE_FORMAT ", " SIZE_FORMAT ")",
                               beg_idx, end_idx);
    }
    for (size_t idx = beg_idx; idx < end_idx; ++idx) {
      _region_data[idx].set_source_region(0);
    }

    // Set split_destination and partial_obj_size to reflect the split region.
    split_destination = sr->destination();
    partial_obj_size = sr->partial_obj_size();
  }

  // The split is recorded only if a partial object extends onto the region.
  if (partial_obj_size != 0) {
    _region_data[split_region].set_partial_obj_size(0);
    split_info.record(split_region, partial_obj_size, split_destination);
  }

  // Setup the continuation addresses.
  *target_next = split_destination + partial_obj_size;
  HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
D
duke 已提交
603 604

  if (TraceParallelOldGCSummaryPhase) {
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
    gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
                           " pos=" SIZE_FORMAT,
                           split_type, source_next, split_region,
                           partial_obj_size);
    gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
                           " tn=" PTR_FORMAT,
                           split_type, split_destination,
                           addr_to_region_idx(split_destination),
                           *target_next);

    if (partial_obj_size != 0) {
      HeapWord* const po_beg = split_info.destination();
      HeapWord* const po_end = po_beg + split_info.partial_obj_size();
      gclog_or_tty->print_cr("%s split:  "
                             "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
                             "po_end=" PTR_FORMAT " " SIZE_FORMAT,
                             split_type,
                             po_beg, addr_to_region_idx(po_beg),
                             po_end, addr_to_region_idx(po_end));
    }
  }

  return source_next;
}

bool ParallelCompactData::summarize(SplitInfo& split_info,
                                    HeapWord* source_beg, HeapWord* source_end,
                                    HeapWord** source_next,
                                    HeapWord* target_beg, HeapWord* target_end,
                                    HeapWord** target_next)
{
  if (TraceParallelOldGCSummaryPhase) {
    HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
    tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
                  "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
                  source_beg, source_end, source_next_val,
                  target_beg, target_end, *target_next);
D
duke 已提交
643 644
  }

645 646
  size_t cur_region = addr_to_region_idx(source_beg);
  const size_t end_region = addr_to_region_idx(region_align_up(source_end));
D
duke 已提交
647 648

  HeapWord *dest_addr = target_beg;
649
  while (cur_region < end_region) {
650
    // The destination must be set even if the region has no data.
651
    _region_data[cur_region].set_destination(dest_addr);
D
duke 已提交
652

653
    size_t words = _region_data[cur_region].data_size();
D
duke 已提交
654
    if (words > 0) {
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
      // If cur_region does not fit entirely into the target space, find a point
      // at which the source space can be 'split' so that part is copied to the
      // target space and the rest is copied elsewhere.
      if (dest_addr + words > target_end) {
        assert(source_next != NULL, "source_next is NULL when splitting");
        *source_next = summarize_split_space(cur_region, split_info, dest_addr,
                                             target_end, target_next);
        return false;
      }

      // Compute the destination_count for cur_region, and if necessary, update
      // source_region for a destination region.  The source_region field is
      // updated if cur_region is the first (left-most) region to be copied to a
      // destination region.
      //
      // The destination_count calculation is a bit subtle.  A region that has
      // data that compacts into itself does not count itself as a destination.
      // This maintains the invariant that a zero count means the region is
      // available and can be claimed and then filled.
      uint destination_count = 0;
      if (split_info.is_split(cur_region)) {
        // The current region has been split:  the partial object will be copied
        // to one destination space and the remaining data will be copied to
        // another destination space.  Adjust the initial destination_count and,
        // if necessary, set the source_region field if the partial object will
        // cross a destination region boundary.
        destination_count = split_info.destination_count();
        if (destination_count == 2) {
          size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
          _region_data[dest_idx].set_source_region(cur_region);
        }
      }

D
duke 已提交
688
      HeapWord* const last_addr = dest_addr + words - 1;
689 690
      const size_t dest_region_1 = addr_to_region_idx(dest_addr);
      const size_t dest_region_2 = addr_to_region_idx(last_addr);
691

692
      // Initially assume that the destination regions will be the same and
D
duke 已提交
693
      // adjust the value below if necessary.  Under this assumption, if
694 695
      // cur_region == dest_region_2, then cur_region will be compacted
      // completely into itself.
696
      destination_count += cur_region == dest_region_2 ? 0 : 1;
697 698
      if (dest_region_1 != dest_region_2) {
        // Destination regions differ; adjust destination_count.
D
duke 已提交
699
        destination_count += 1;
700 701 702 703 704 705
        // Data from cur_region will be copied to the start of dest_region_2.
        _region_data[dest_region_2].set_source_region(cur_region);
      } else if (region_offset(dest_addr) == 0) {
        // Data from cur_region will be copied to the start of the destination
        // region.
        _region_data[dest_region_1].set_source_region(cur_region);
D
duke 已提交
706 707
      }

708 709
      _region_data[cur_region].set_destination_count(destination_count);
      _region_data[cur_region].set_data_location(region_to_addr(cur_region));
D
duke 已提交
710 711 712
      dest_addr += words;
    }

713
    ++cur_region;
D
duke 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
  }

  *target_next = dest_addr;
  return true;
}

HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
  assert(addr != NULL, "Should detect NULL oop earlier");
  assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
#ifdef ASSERT
  if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
    gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
  }
#endif
  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");

730 731 732 733
  // Region covering the object.
  size_t region_index = addr_to_region_idx(addr);
  const RegionData* const region_ptr = region(region_index);
  HeapWord* const region_addr = region_align_down(addr);
D
duke 已提交
734

735 736
  assert(addr < region_addr + RegionSize, "Region does not cover object");
  assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
D
duke 已提交
737

738
  HeapWord* result = region_ptr->destination();
D
duke 已提交
739

740 741 742 743 744
  // If all the data in the region is live, then the new location of the object
  // can be calculated from the destination of the region plus the offset of the
  // object in the region.
  if (region_ptr->data_size() == RegionSize) {
    result += pointer_delta(addr, region_addr);
745
    DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
D
duke 已提交
746 747 748 749
    return result;
  }

  // The new location of the object is
750 751 752 753 754
  //    region destination +
  //    size of the partial object extending onto the region +
  //    sizes of the live objects in the Region that are to the left of addr
  const size_t partial_obj_size = region_ptr->partial_obj_size();
  HeapWord* const search_start = region_addr + partial_obj_size;
D
duke 已提交
755 756 757 758 759

  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
  size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));

  result += partial_obj_size + live_to_left;
760
  DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
D
duke 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
  return result;
}

klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
  klassOop updated_klass;
  if (PSParallelCompact::should_update_klass(old_klass)) {
    updated_klass = (klassOop) calc_new_pointer(old_klass);
  } else {
    updated_klass = old_klass;
  }

  return updated_klass;
}

#ifdef  ASSERT
void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
{
  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
  const size_t* const end = (const size_t*)vspace->committed_high_addr();
  for (const size_t* p = beg; p < end; ++p) {
    assert(*p == 0, "not zero");
  }
}

void ParallelCompactData::verify_clear()
{
787
  verify_clear(_region_vspace);
D
duke 已提交
788 789 790 791
}
#endif  // #ifdef ASSERT

#ifdef NOT_PRODUCT
792
ParallelCompactData::RegionData* debug_region(size_t region_index) {
D
duke 已提交
793
  ParallelCompactData& sd = PSParallelCompact::summary_data();
794
  return sd.region(region_index);
D
duke 已提交
795 796 797 798 799 800 801 802 803 804 805 806
}
#endif

elapsedTimer        PSParallelCompact::_accumulated_time;
unsigned int        PSParallelCompact::_total_invocations = 0;
unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
jlong               PSParallelCompact::_time_of_last_gc = 0;
CollectorCounters*  PSParallelCompact::_counters = NULL;
ParMarkBitMap       PSParallelCompact::_mark_bitmap;
ParallelCompactData PSParallelCompact::_summary_data;

PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
807 808 809 810 811 812 813

void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }

void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }

D
duke 已提交
814 815 816
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);

817 818
void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
D
duke 已提交
819

820
void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
D
duke 已提交
821

822 823
void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
D
duke 已提交
824 825 826 827 828 829

void PSParallelCompact::post_initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  MemRegion mr = heap->reserved_region();
830 831 832 833 834 835 836 837 838
  _ref_processor =
    new ReferenceProcessor(mr,            // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
                           (int) ParallelGCThreads, // mt processing degree
                           true,          // mt discovery
                           (int) ParallelGCThreads, // mt discovery degree
                           true,          // atomic_discovery
                           &_is_alive_closure, // non-header is alive closure
                           false);        // write barrier for next field updates
D
duke 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
  _counters = new CollectorCounters("PSParallelCompact", 1);

  // Initialize static fields in ParCompactionManager.
  ParCompactionManager::initialize(mark_bitmap());
}

bool PSParallelCompact::initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  MemRegion mr = heap->reserved_region();

  // Was the old gen get allocated successfully?
  if (!heap->old_gen()->is_allocated()) {
    return false;
  }

  initialize_space_info();
  initialize_dead_wood_limiter();

  if (!_mark_bitmap.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate bit map for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  if (!_summary_data.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate tables for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  return true;
}

void PSParallelCompact::initialize_space_info()
{
  memset(&_space_info, 0, sizeof(_space_info));

  ParallelScavengeHeap* heap = gc_heap();
  PSYoungGen* young_gen = heap->young_gen();
  MutableSpace* perm_space = heap->perm_gen()->object_space();

  _space_info[perm_space_id].set_space(perm_space);
  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
  _space_info[eden_space_id].set_space(young_gen->eden_space());
  _space_info[from_space_id].set_space(young_gen->from_space());
  _space_info[to_space_id].set_space(young_gen->to_space());

  _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());

  _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
                  _space_info[perm_space_id].min_dense_prefix());
  }
}

void PSParallelCompact::initialize_dead_wood_limiter()
{
  const size_t max = 100;
  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
  DEBUG_ONLY(_dwl_initialized = true;)
  _dwl_adjustment = normal_distribution(1.0);
}

// Simple class for storing info about the heap at the start of GC, to be used
// after GC for comparison/printing.
class PreGCValues {
public:
  PreGCValues() { }
  PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }

  void fill(ParallelScavengeHeap* heap) {
    _heap_used      = heap->used();
    _young_gen_used = heap->young_gen()->used_in_bytes();
    _old_gen_used   = heap->old_gen()->used_in_bytes();
    _perm_gen_used  = heap->perm_gen()->used_in_bytes();
  };

  size_t heap_used() const      { return _heap_used; }
  size_t young_gen_used() const { return _young_gen_used; }
  size_t old_gen_used() const   { return _old_gen_used; }
  size_t perm_gen_used() const  { return _perm_gen_used; }

private:
  size_t _heap_used;
  size_t _young_gen_used;
  size_t _old_gen_used;
  size_t _perm_gen_used;
};

void
PSParallelCompact::clear_data_covering_space(SpaceId id)
{
  // At this point, top is the value before GC, new_top() is the value that will
  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
  // should be marked above top.  The summary data is cleared to the larger of
  // top & new_top.
  MutableSpace* const space = _space_info[id].space();
  HeapWord* const bot = space->bottom();
  HeapWord* const top = space->top();
  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());

  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
  _mark_bitmap.clear_range(beg_bit, end_bit);

949 950 951 952
  const size_t beg_region = _summary_data.addr_to_region_idx(bot);
  const size_t end_region =
    _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
  _summary_data.clear_range(beg_region, end_region);
953 954 955 956 957 958 959

  // Clear the data used to 'split' regions.
  SplitInfo& split_info = _space_info[id].split_info();
  if (split_info.is_valid()) {
    split_info.clear();
  }
  DEBUG_ONLY(split_info.verify_clear();)
D
duke 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
}

void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
{
  // Update the from & to space pointers in space_info, since they are swapped
  // at each young gen gc.  Do the update unconditionally (even though a
  // promotion failure does not swap spaces) because an unknown number of minor
  // collections will have swapped the spaces an unknown number of times.
  TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
  ParallelScavengeHeap* heap = gc_heap();
  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
  _space_info[to_space_id].set_space(heap->young_gen()->to_space());

  pre_gc_values->fill(heap);

  ParCompactionManager::reset();
  NOT_PRODUCT(_mark_bitmap.reset_counters());
  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)

  // Increment the invocation count
981
  heap->increment_total_collections(true);
D
duke 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

  // We need to track unique mark sweep invocations as well.
  _total_invocations++;

  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

  // Fill in TLABs
  heap->accumulate_statistics_all_tlabs();
  heap->ensure_parsability(true);  // retire TLABs

  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyBeforeGC:");
    Universe::verify(true);
  }

  // Verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyBeforeGC) {
    heap->old_gen()->verify_object_start_array();
    heap->perm_gen()->verify_object_start_array();
  }

  DEBUG_ONLY(mark_bitmap()->verify_clear();)
  DEBUG_ONLY(summary_data().verify_clear();)
J
jcoomes 已提交
1009 1010 1011

  // Have worker threads release resources the next time they run a task.
  gc_task_manager()->release_all_resources();
D
duke 已提交
1012 1013 1014 1015 1016 1017 1018
}

void PSParallelCompact::post_compact()
{
  TraceTime tm("post compact", print_phases(), true, gclog_or_tty);

  for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
1019
    // Clear the marking bitmap, summary data and split info.
D
duke 已提交
1020
    clear_data_covering_space(SpaceId(id));
1021 1022
    // Update top().  Must be done after clearing the bitmap and summary data.
    _space_info[id].publish_new_top();
D
duke 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
  }

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  MutableSpace* const to_space   = _space_info[to_space_id].space();

  ParallelScavengeHeap* heap = gc_heap();
  bool eden_empty = eden_space->is_empty();
  if (!eden_empty) {
    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
                                            heap->young_gen(), heap->old_gen());
  }

  // Update heap occupancy information which is used as input to the soft ref
  // clearing policy at the next gc.
  Universe::update_heap_info_at_gc();

  bool young_gen_empty = eden_empty && from_space->is_empty() &&
    to_space->is_empty();

  BarrierSet* bs = heap->barrier_set();
  if (bs->is_a(BarrierSet::ModRef)) {
    ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
    MemRegion old_mr = heap->old_gen()->reserved();
    MemRegion perm_mr = heap->perm_gen()->reserved();
    assert(perm_mr.end() <= old_mr.start(), "Generations out of order");

    if (young_gen_empty) {
      modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
    } else {
      modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
    }
  }

  Threads::gc_epilogue();
  CodeCache::gc_epilogue();
1059
  JvmtiExport::gc_epilogue();
D
duke 已提交
1060 1061 1062 1063 1064

  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

  ref_processor()->enqueue_discovered_references(NULL);

1065 1066 1067 1068
  if (ZapUnusedHeapArea) {
    heap->gen_mangle_unused_area();
  }

D
duke 已提交
1069 1070 1071 1072 1073 1074 1075 1076
  // Update time of last GC
  reset_millis_since_last_gc();
}

HeapWord*
PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
                                                    bool maximum_compaction)
{
1077
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1078 1079 1080
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
1081 1082 1083
  HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
1084

1085
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
1086 1087
  // of the dense prefix.
  size_t full_count = 0;
1088 1089
  const RegionData* cp;
  for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
D
duke 已提交
1090 1091 1092 1093 1094 1095 1096 1097
    ++full_count;
  }

  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  if (maximum_compaction || cp == end_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
1098
    return sd.region_to_addr(cp);
D
duke 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
  }

  HeapWord* const new_top = _space_info[id].new_top();
  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double cur_density = double(space_live) / space_capacity;
  const double deadwood_density =
    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
                  cur_density, deadwood_density, deadwood_goal);
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
  }

  // XXX - Use binary search?
1121 1122 1123
  HeapWord* dense_prefix = sd.region_to_addr(cp);
  const RegionData* full_cp = cp;
  const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
D
duke 已提交
1124
  while (cp < end_cp) {
1125 1126
    HeapWord* region_destination = cp->destination();
    const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
D
duke 已提交
1127
    if (TraceParallelOldGCDensePrefix && Verbose) {
1128 1129
      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
                    "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
1130
                    sd.region(cp), region_destination,
D
duke 已提交
1131 1132 1133 1134
                    dense_prefix, cur_deadwood);
    }

    if (cur_deadwood >= deadwood_goal) {
1135 1136 1137 1138 1139
      // Found the region that has the correct amount of deadwood to the left.
      // This typically occurs after crossing a fairly sparse set of regions, so
      // iterate backwards over those sparse regions, looking for the region
      // that has the lowest density of live objects 'to the right.'
      size_t space_to_left = sd.region(cp) * region_size;
D
duke 已提交
1140 1141 1142 1143 1144 1145
      size_t live_to_left = space_to_left - cur_deadwood;
      size_t space_to_right = space_capacity - space_to_left;
      size_t live_to_right = space_live - live_to_left;
      double density_to_right = double(live_to_right) / space_to_right;
      while (cp > full_cp) {
        --cp;
1146 1147 1148 1149 1150 1151
        const size_t prev_region_live_to_right = live_to_right -
          cp->data_size();
        const size_t prev_region_space_to_right = space_to_right + region_size;
        double prev_region_density_to_right =
          double(prev_region_live_to_right) / prev_region_space_to_right;
        if (density_to_right <= prev_region_density_to_right) {
D
duke 已提交
1152 1153 1154
          return dense_prefix;
        }
        if (TraceParallelOldGCDensePrefix && Verbose) {
1155
          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1156 1157
                        "pc_d2r=%10.8f", sd.region(cp), density_to_right,
                        prev_region_density_to_right);
D
duke 已提交
1158
        }
1159 1160 1161 1162
        dense_prefix -= region_size;
        live_to_right = prev_region_live_to_right;
        space_to_right = prev_region_space_to_right;
        density_to_right = prev_region_density_to_right;
D
duke 已提交
1163 1164 1165 1166
      }
      return dense_prefix;
    }

1167
    dense_prefix += region_size;
D
duke 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    ++cp;
  }

  return dense_prefix;
}

#ifndef PRODUCT
void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
                                                 const SpaceId id,
                                                 const bool maximum_compaction,
                                                 HeapWord* const addr)
{
1180 1181
  const size_t region_idx = summary_data().addr_to_region_idx(addr);
  RegionData* const cp = summary_data().region(region_idx);
D
duke 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const new_top = _space_info[id].new_top();

  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t dead_to_left = pointer_delta(addr, cp->destination());
  const size_t space_cap = space->capacity_in_words();
  const double dead_to_left_pct = double(dead_to_left) / space_cap;
  const size_t live_to_right = new_top - cp->destination();
  const size_t dead_to_right = space->top() - addr - live_to_right;

1192
  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
D
duke 已提交
1193 1194 1195 1196
                "spl=" SIZE_FORMAT " "
                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
                " ratio=%10.8f",
1197
                algorithm, addr, region_idx,
D
duke 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
                space_live,
                dead_to_left, dead_to_left_pct,
                dead_to_right, live_to_right,
                double(dead_to_right) / live_to_right);
}
#endif  // #ifndef PRODUCT

// Return a fraction indicating how much of the generation can be treated as
// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
// based on the density of live objects in the generation to determine a limit,
// which is then adjusted so the return value is min_percent when the density is
// 1.
//
// The following table shows some return values for a different values of the
// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
// min_percent is 1.
//
//                          fraction allowed as dead wood
//         -----------------------------------------------------------------
// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
// ------- ---------- ---------- ---------- ---------- ---------- ----------
// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000

double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
{
  assert(_dwl_initialized, "uninitialized");

  // The raw limit is the value of the normal distribution at x = density.
  const double raw_limit = normal_distribution(density);

  // Adjust the raw limit so it becomes the minimum when the density is 1.
  //
  // First subtract the adjustment value (which is simply the precomputed value
  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  // Then add the minimum value, so the minimum is returned when the density is
  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  const double min = double(min_percent) / 100.0;
  const double limit = raw_limit - _dwl_adjustment + min;
  return MAX2(limit, 0.0);
}

1259 1260 1261
ParallelCompactData::RegionData*
PSParallelCompact::first_dead_space_region(const RegionData* beg,
                                           const RegionData* end)
D
duke 已提交
1262
{
1263
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1264
  ParallelCompactData& sd = summary_data();
1265 1266
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1267 1268 1269 1270 1271

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1272
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1273
    HeapWord* const dest = middle_ptr->destination();
1274
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1275 1276 1277 1278 1279
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    if (middle > left && dest < addr) {
      right = middle - 1;
1280
    } else if (middle < right && middle_ptr->data_size() == region_size) {
D
duke 已提交
1281 1282 1283 1284 1285
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1286
  return sd.region(left);
D
duke 已提交
1287 1288
}

1289 1290 1291 1292
ParallelCompactData::RegionData*
PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
                                          const RegionData* end,
                                          size_t dead_words)
D
duke 已提交
1293 1294
{
  ParallelCompactData& sd = summary_data();
1295 1296
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1297 1298 1299 1300 1301

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1302
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1303
    HeapWord* const dest = middle_ptr->destination();
1304
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    const size_t dead_to_left = pointer_delta(addr, dest);
    if (middle > left && dead_to_left > dead_words) {
      right = middle - 1;
    } else if (middle < right && dead_to_left < dead_words) {
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1317
  return sd.region(left);
D
duke 已提交
1318 1319 1320 1321 1322
}

// The result is valid during the summary phase, after the initial summarization
// of each space into itself, and before final summarization.
inline double
1323
PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
D
duke 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
                                   HeapWord* const bottom,
                                   HeapWord* const top,
                                   HeapWord* const new_top)
{
  ParallelCompactData& sd = summary_data();

  assert(cp != NULL, "sanity");
  assert(bottom != NULL, "sanity");
  assert(top != NULL, "sanity");
  assert(new_top != NULL, "sanity");
  assert(top >= new_top, "summary data problem?");
  assert(new_top > bottom, "space is empty; should not be here");
  assert(new_top >= cp->destination(), "sanity");
1337
  assert(top >= sd.region_to_addr(cp), "sanity");
D
duke 已提交
1338 1339 1340 1341

  HeapWord* const destination = cp->destination();
  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  const size_t compacted_region_live = pointer_delta(new_top, destination);
1342 1343
  const size_t compacted_region_used = pointer_delta(top,
                                                     sd.region_to_addr(cp));
D
duke 已提交
1344 1345 1346 1347 1348 1349 1350
  const size_t reclaimable = compacted_region_used - compacted_region_live;

  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  return double(reclaimable) / divisor;
}

// Return the address of the end of the dense prefix, a.k.a. the start of the
1351
// compacted region.  The address is always on a region boundary.
D
duke 已提交
1352
//
1353 1354 1355 1356 1357 1358 1359
// Completely full regions at the left are skipped, since no compaction can
// occur in those regions.  Then the maximum amount of dead wood to allow is
// computed, based on the density (amount live / capacity) of the generation;
// the region with approximately that amount of dead space to the left is
// identified as the limit region.  Regions between the last completely full
// region and the limit region are scanned and the one that has the best
// (maximum) reclaimed_ratio() is selected.
D
duke 已提交
1360 1361 1362 1363
HeapWord*
PSParallelCompact::compute_dense_prefix(const SpaceId id,
                                        bool maximum_compaction)
{
1364 1365 1366 1367 1368 1369 1370
  if (ParallelOldGCSplitALot) {
    if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
      // The value was chosen to provoke splitting a young gen space; use it.
      return _space_info[id].dense_prefix();
    }
  }

1371
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1372 1373 1374 1375
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const top = space->top();
1376
  HeapWord* const top_aligned_up = sd.region_align_up(top);
D
duke 已提交
1377
  HeapWord* const new_top = _space_info[id].new_top();
1378
  HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
D
duke 已提交
1379
  HeapWord* const bottom = space->bottom();
1380 1381 1382 1383
  const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  const RegionData* const new_top_cp =
    sd.addr_to_region_ptr(new_top_aligned_up);
D
duke 已提交
1384

1385
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
1386
  // of the dense prefix.
1387 1388
  const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
D
duke 已提交
1389
         space->is_empty(), "no dead space allowed to the left");
1390 1391
  assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
         "region must have dead space");
D
duke 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

  // The gc number is saved whenever a maximum compaction is done, and used to
  // determine when the maximum compaction interval has expired.  This avoids
  // successive max compactions for different reasons.
  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
    total_invocations() == HeapFirstMaximumCompactionCount;
  if (maximum_compaction || full_cp == top_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
1402
    return sd.region_to_addr(full_cp);
D
duke 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
  }

  const size_t space_live = pointer_delta(new_top, bottom);
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double density = double(space_live) / double(space_capacity);
  const size_t min_percent_free =
          id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
  const double limiter = dead_wood_limiter(density, min_percent_free);
  const size_t dead_wood_max = space_used - space_live;
  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
                                      dead_wood_max);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
    tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
                  density, min_percent_free, limiter,
                  dead_wood_max, dead_wood_limit);
  }

1428 1429 1430
  // Locate the region with the desired amount of dead space to the left.
  const RegionData* const limit_cp =
    dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
D
duke 已提交
1431

1432
  // Scan from the first region with dead space to the limit region and find the
D
duke 已提交
1433 1434
  // one with the best (largest) reclaimed ratio.
  double best_ratio = 0.0;
1435 1436
  const RegionData* best_cp = full_cp;
  for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
D
duke 已提交
1437 1438 1439 1440 1441 1442 1443 1444
    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
    if (tmp_ratio > best_ratio) {
      best_cp = cp;
      best_ratio = tmp_ratio;
    }
  }

#if     0
1445 1446 1447
  // Something to consider:  if the region with the best ratio is 'close to' the
  // first region w/free space, choose the first region with free space
  // ("first-free").  The first-free region is usually near the start of the
D
duke 已提交
1448 1449
  // heap, which means we are copying most of the heap already, so copy a bit
  // more to get complete compaction.
1450
  if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
D
duke 已提交
1451 1452 1453 1454 1455
    _maximum_compaction_gc_num = total_invocations();
    best_cp = full_cp;
  }
#endif  // #if 0

1456
  return sd.region_to_addr(best_cp);
D
duke 已提交
1457 1458
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
#ifndef PRODUCT
void
PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
                                          size_t words)
{
  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
                  SIZE_FORMAT, start, start + words, words);
  }

  ObjectStartArray* const start_array = _space_info[id].start_array();
  CollectedHeap::fill_with_objects(start, words);
  for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
    _mark_bitmap.mark_obj(p, words);
    _summary_data.add_obj(p, words);
    start_array->allocate_block(p);
  }
}

void
PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
{
  ParallelCompactData& sd = summary_data();
  MutableSpace* space = _space_info[id].space();

  // Find the source and destination start addresses.
  HeapWord* const src_addr = sd.region_align_down(start);
  HeapWord* dst_addr;
  if (src_addr < start) {
    dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  } else if (src_addr > space->bottom()) {
    // The start (the original top() value) is aligned to a region boundary so
    // the associated region does not have a destination.  Compute the
    // destination from the previous region.
    RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
    dst_addr = cp->destination() + cp->data_size();
  } else {
    // Filling the entire space.
    dst_addr = space->bottom();
  }
  assert(dst_addr != NULL, "sanity");

  // Update the summary data.
  bool result = _summary_data.summarize(_space_info[id].split_info(),
                                        src_addr, space->top(), NULL,
                                        dst_addr, space->end(),
                                        _space_info[id].new_top_addr());
  assert(result, "should not fail:  bad filler object size");
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
void
PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
{
  if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
    return;
  }

  MutableSpace* const space = _space_info[id].space();
  if (space->is_empty()) {
    HeapWord* b = space->bottom();
    HeapWord* t = b + space->capacity_in_words() / 2;
    space->set_top(t);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }

1525 1526
    size_t min_size = CollectedHeap::min_fill_size();
    size_t obj_len = min_size;
1527 1528 1529 1530 1531
    while (b + obj_len <= t) {
      CollectedHeap::fill_with_object(b, obj_len);
      mark_bitmap()->mark_obj(b, obj_len);
      summary_data().add_obj(b, obj_len);
      b += obj_len;
1532
      obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    }
    if (b < t) {
      // The loop didn't completely fill to t (top); adjust top downward.
      space->set_top(b);
      if (ZapUnusedHeapArea) {
        space->set_top_for_allocations();
      }
    }

    HeapWord** nta = _space_info[id].new_top_addr();
    bool result = summary_data().summarize(_space_info[id].split_info(),
                                           space->bottom(), space->top(), NULL,
                                           space->bottom(), space->end(), nta);
    assert(result, "space must fit into itself");
  }
}

1550 1551 1552
void
PSParallelCompact::provoke_split(bool & max_compaction)
{
1553 1554 1555 1556
  if (total_invocations() % ParallelOldGCSplitInterval != 0) {
    return;
  }

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
  const size_t region_size = ParallelCompactData::RegionSize;
  ParallelCompactData& sd = summary_data();

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  const size_t eden_live = pointer_delta(eden_space->top(),
                                         _space_info[eden_space_id].new_top());
  const size_t from_live = pointer_delta(from_space->top(),
                                         _space_info[from_space_id].new_top());

  const size_t min_fill_size = CollectedHeap::min_fill_size();
  const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;

  // Choose the space to split; need at least 2 regions live (or fillable).
  SpaceId id;
  MutableSpace* space;
  size_t live_words;
  size_t fill_words;
  if (eden_live + eden_fillable >= region_size * 2) {
    id = eden_space_id;
    space = eden_space;
    live_words = eden_live;
    fill_words = eden_fillable;
  } else if (from_live + from_fillable >= region_size * 2) {
    id = from_space_id;
    space = from_space;
    live_words = from_live;
    fill_words = from_fillable;
  } else {
    return; // Give up.
  }
  assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");

  if (live_words < region_size * 2) {
    // Fill from top() to end() w/live objects of mixed sizes.
    HeapWord* const fill_start = space->top();
    live_words += fill_words;

    space->set_top(fill_start + fill_words);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }

    HeapWord* cur_addr = fill_start;
    while (fill_words > 0) {
      const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
      size_t cur_size = MIN2(align_object_size_(r), fill_words);
      if (fill_words - cur_size < min_fill_size) {
        cur_size = fill_words; // Avoid leaving a fragment too small to fill.
      }

      CollectedHeap::fill_with_object(cur_addr, cur_size);
      mark_bitmap()->mark_obj(cur_addr, cur_size);
      sd.add_obj(cur_addr, cur_size);

      cur_addr += cur_size;
      fill_words -= cur_size;
    }

    summarize_new_objects(id, fill_start);
  }

  max_compaction = false;

  // Manipulate the old gen so that it has room for about half of the live data
  // in the target young gen space (live_words / 2).
  id = old_space_id;
  space = _space_info[id].space();
  const size_t free_at_end = space->free_in_words();
  const size_t free_target = align_object_size(live_words / 2);
  const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());

  if (free_at_end >= free_target + min_fill_size) {
    // Fill space above top() and set the dense prefix so everything survives.
    HeapWord* const fill_start = space->top();
    const size_t fill_size = free_at_end - free_target;
    space->set_top(space->top() + fill_size);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }
    fill_with_live_objects(id, fill_start, fill_size);
    summarize_new_objects(id, fill_start);
    _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  } else if (dead + free_at_end > free_target) {
    // Find a dense prefix that makes the right amount of space available.
    HeapWord* cur = sd.region_align_down(space->top());
    HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
    size_t dead_to_right = pointer_delta(space->end(), cur_destination);
    while (dead_to_right < free_target) {
      cur -= region_size;
      cur_destination = sd.addr_to_region_ptr(cur)->destination();
      dead_to_right = pointer_delta(space->end(), cur_destination);
    }
    _space_info[id].set_dense_prefix(cur);
  }
}
#endif // #ifndef PRODUCT

D
duke 已提交
1658 1659 1660 1661
void PSParallelCompact::summarize_spaces_quick()
{
  for (unsigned int i = 0; i < last_space_id; ++i) {
    const MutableSpace* space = _space_info[i].space();
1662 1663 1664 1665 1666
    HeapWord** nta = _space_info[i].new_top_addr();
    bool result = _summary_data.summarize(_space_info[i].split_info(),
                                          space->bottom(), space->top(), NULL,
                                          space->bottom(), space->end(), nta);
    assert(result, "space must fit into itself");
D
duke 已提交
1667 1668
    _space_info[i].set_dense_prefix(space->bottom());
  }
1669 1670 1671 1672 1673 1674

#ifndef PRODUCT
  if (ParallelOldGCSplitALot) {
    provoke_split_fill_survivor(to_space_id);
  }
#endif // #ifndef PRODUCT
D
duke 已提交
1675 1676 1677 1678 1679
}

void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
{
  HeapWord* const dense_prefix_end = dense_prefix(id);
1680
  const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
D
duke 已提交
1681
  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1682
  if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
D
duke 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
    // Only enough dead space is filled so that any remaining dead space to the
    // left is larger than the minimum filler object.  (The remainder is filled
    // during the copy/update phase.)
    //
    // The size of the dead space to the right of the boundary is not a
    // concern, since compaction will be able to use whatever space is
    // available.
    //
    // Here '||' is the boundary, 'x' represents a don't care bit and a box
    // surrounds the space to be filled with an object.
    //
    // In the 32-bit VM, each bit represents two 32-bit words:
    //                              +---+
    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //                              +---+
    //
    // In the 64-bit VM, each bit represents one 64-bit word:
    //                              +------------+
    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
    //                              +------------+
    //                          +-------+
    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
    //                          +-------+
    //                      +-----------+
    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
    //                      +-----------+
    //                          +-------+
    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //                          +-------+

    // Initially assume case a, c or e will apply.
1719
    size_t obj_len = CollectedHeap::min_fill_size();
D
duke 已提交
1720 1721 1722
    HeapWord* obj_beg = dense_prefix_end - obj_len;

#ifdef  _LP64
1723 1724 1725
    if (MinObjAlignment > 1) { // object alignment > heap word size
      // Cases a, c or e.
    } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
D
duke 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
      // Case b above.
      obj_beg = dense_prefix_end - 1;
    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
      // Case d above.
      obj_beg = dense_prefix_end - 3;
      obj_len = 3;
    }
#endif  // #ifdef _LP64

1736
    CollectedHeap::fill_with_object(obj_beg, obj_len);
D
duke 已提交
1737 1738 1739 1740 1741 1742 1743
    _mark_bitmap.mark_obj(obj_beg, obj_len);
    _summary_data.add_obj(obj_beg, obj_len);
    assert(start_array(id) != NULL, "sanity");
    start_array(id)->allocate_block(obj_beg);
  }
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
void
PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
{
  RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
    cur->set_source_region(0);
  }
}

D
duke 已提交
1755 1756 1757 1758
void
PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
{
  assert(id < last_space_id, "id out of range");
1759 1760 1761
  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
         ParallelOldGCSplitALot && id == old_space_id,
         "should have been reset in summarize_spaces_quick()");
D
duke 已提交
1762 1763

  const MutableSpace* space = _space_info[id].space();
1764 1765 1766
  if (_space_info[id].new_top() != space->bottom()) {
    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
    _space_info[id].set_dense_prefix(dense_prefix_end);
D
duke 已提交
1767 1768

#ifndef PRODUCT
1769 1770 1771 1772 1773 1774
    if (TraceParallelOldGCDensePrefix) {
      print_dense_prefix_stats("ratio", id, maximum_compaction,
                               dense_prefix_end);
      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
      print_dense_prefix_stats("density", id, maximum_compaction, addr);
    }
D
duke 已提交
1775 1776
#endif  // #ifndef PRODUCT

1777 1778 1779
    // Recompute the summary data, taking into account the dense prefix.  If
    // every last byte will be reclaimed, then the existing summary data which
    // compacts everything can be left in place.
1780
    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1781 1782 1783
      // If dead space crosses the dense prefix boundary, it is (at least
      // partially) filled with a dummy object, marked live and added to the
      // summary data.  This simplifies the copy/update phase and must be done
1784 1785
      // before the final locations of objects are determined, to prevent
      // leaving a fragment of dead space that is too small to fill.
1786
      fill_dense_prefix_end(id);
D
duke 已提交
1787

1788 1789 1790 1791 1792 1793 1794
      // Compute the destination of each Region, and thus each object.
      _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
      _summary_data.summarize(_space_info[id].split_info(),
                              dense_prefix_end, space->top(), NULL,
                              dense_prefix_end, space->end(),
                              _space_info[id].new_top_addr());
    }
1795
  }
D
duke 已提交
1796 1797

  if (TraceParallelOldGCSummaryPhase) {
1798
    const size_t region_size = ParallelCompactData::RegionSize;
1799
    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1800
    const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
D
duke 已提交
1801
    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1802
    HeapWord* const new_top = _space_info[id].new_top();
1803
    const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
D
duke 已提交
1804 1805
    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
    tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1806
                  "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
D
duke 已提交
1807 1808
                  "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
                  id, space->capacity_in_words(), dense_prefix_end,
1809 1810
                  dp_region, dp_words / region_size,
                  cr_words / region_size, new_top);
D
duke 已提交
1811 1812 1813
  }
}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
#ifndef PRODUCT
void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
                                          HeapWord* dst_beg, HeapWord* dst_end,
                                          SpaceId src_space_id,
                                          HeapWord* src_beg, HeapWord* src_end)
{
  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summarizing %d [%s] into %d [%s]:  "
                  "src=" PTR_FORMAT "-" PTR_FORMAT " "
                  SIZE_FORMAT "-" SIZE_FORMAT " "
                  "dst=" PTR_FORMAT "-" PTR_FORMAT " "
                  SIZE_FORMAT "-" SIZE_FORMAT,
                  src_space_id, space_names[src_space_id],
                  dst_space_id, space_names[dst_space_id],
                  src_beg, src_end,
                  _summary_data.addr_to_region_idx(src_beg),
                  _summary_data.addr_to_region_idx(src_end),
                  dst_beg, dst_end,
                  _summary_data.addr_to_region_idx(dst_beg),
                  _summary_data.addr_to_region_idx(dst_end));
  }
}
#endif  // #ifndef PRODUCT

D
duke 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
void PSParallelCompact::summary_phase(ParCompactionManager* cm,
                                      bool maximum_compaction)
{
  EventMark m("2 summarize");
  TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  // trace("2");

#ifdef  ASSERT
  if (TraceParallelOldGCMarkingPhase) {
    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
                  "add_obj_bytes=" SIZE_FORMAT,
                  add_obj_count, add_obj_size * HeapWordSize);
    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
                  "mark_bitmap_bytes=" SIZE_FORMAT,
                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  }
#endif  // #ifdef ASSERT

  // Quick summarization of each space into itself, to see how much is live.
  summarize_spaces_quick();

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after summarizing each space to self");
    Universe::print();
1862
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1863 1864 1865 1866 1867 1868 1869
    if (Verbose) {
      NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
    }
  }

  // The amount of live data that will end up in old space (assuming it fits).
  size_t old_space_total_live = 0;
1870 1871
  assert(perm_space_id < old_space_id, "should not count perm data here");
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
D
duke 已提交
1872 1873 1874 1875
    old_space_total_live += pointer_delta(_space_info[id].new_top(),
                                          _space_info[id].space()->bottom());
  }

1876
  MutableSpace* const old_space = _space_info[old_space_id].space();
1877 1878
  const size_t old_capacity = old_space->capacity_in_words();
  if (old_space_total_live > old_capacity) {
D
duke 已提交
1879 1880 1881
    // XXX - should also try to expand
    maximum_compaction = true;
  }
1882 1883
#ifndef PRODUCT
  if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1884
    provoke_split(maximum_compaction);
1885 1886
  }
#endif // #ifndef PRODUCT
D
duke 已提交
1887 1888 1889 1890 1891

  // Permanent and Old generations.
  summarize_space(perm_space_id, maximum_compaction);
  summarize_space(old_space_id, maximum_compaction);

1892 1893 1894 1895 1896 1897 1898 1899
  // Summarize the remaining spaces in the young gen.  The initial target space
  // is the old gen.  If a space does not fit entirely into the target, then the
  // remainder is compacted into the space itself and that space becomes the new
  // target.
  SpaceId dst_space_id = old_space_id;
  HeapWord* dst_space_end = old_space->end();
  HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
D
duke 已提交
1900 1901 1902
    const MutableSpace* space = _space_info[id].space();
    const size_t live = pointer_delta(_space_info[id].new_top(),
                                      space->bottom());
1903 1904 1905 1906
    const size_t available = pointer_delta(dst_space_end, *new_top_addr);

    NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
                                  SpaceId(id), space->bottom(), space->top());)
1907
    if (live > 0 && live <= available) {
D
duke 已提交
1908
      // All the live data will fit.
1909 1910 1911 1912 1913 1914 1915
      bool done = _summary_data.summarize(_space_info[id].split_info(),
                                          space->bottom(), space->top(),
                                          NULL,
                                          *new_top_addr, dst_space_end,
                                          new_top_addr);
      assert(done, "space must fit into old gen");

1916 1917
      // Reset the new_top value for the space.
      _space_info[id].set_new_top(space->bottom());
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
    } else if (live > 0) {
      // Attempt to fit part of the source space into the target space.
      HeapWord* next_src_addr = NULL;
      bool done = _summary_data.summarize(_space_info[id].split_info(),
                                          space->bottom(), space->top(),
                                          &next_src_addr,
                                          *new_top_addr, dst_space_end,
                                          new_top_addr);
      assert(!done, "space should not fit into old gen");
      assert(next_src_addr != NULL, "sanity");

      // The source space becomes the new target, so the remainder is compacted
      // within the space itself.
      dst_space_id = SpaceId(id);
      dst_space_end = space->end();
      new_top_addr = _space_info[id].new_top_addr();
      NOT_PRODUCT(summary_phase_msg(dst_space_id,
                                    space->bottom(), dst_space_end,
                                    SpaceId(id), next_src_addr, space->top());)
      done = _summary_data.summarize(_space_info[id].split_info(),
                                     next_src_addr, space->top(),
                                     NULL,
                                     space->bottom(), dst_space_end,
                                     new_top_addr);
      assert(done, "space must fit when compacted into itself");
      assert(*new_top_addr <= space->top(), "usage should not grow");
D
duke 已提交
1944 1945 1946 1947 1948 1949
    }
  }

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after final summarization");
    Universe::print();
1950
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    if (Verbose) {
      NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
    }
  }
}

// This method should contain all heap-specific policy for invoking a full
// collection.  invoke_no_policy() will only attempt to compact the heap; it
// will do nothing further.  If we need to bail out for policy reasons, scavenge
// before full gc, or any other specialized behavior, it needs to be added here.
//
// Note that this method should only be called from the vm_thread while at a
// safepoint.
1964 1965 1966 1967 1968
//
// Note that the all_soft_refs_clear flag in the collector policy
// may be true because this method can be called without intervening
// activity.  For example when the heap space is tight and full measure
// are being taken to free space.
D
duke 已提交
1969 1970 1971 1972
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
         "should be in vm thread");
1973

D
duke 已提交
1974 1975 1976 1977 1978
  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  assert(!heap->is_gc_active(), "not reentrant");

  PSAdaptiveSizePolicy* policy = heap->size_policy();
1979
  IsGCActiveMark mark;
D
duke 已提交
1980

1981 1982
  if (ScavengeBeforeFullGC) {
    PSScavenge::invoke_no_policy();
D
duke 已提交
1983
  }
1984 1985 1986 1987 1988 1989

  const bool clear_all_soft_refs =
    heap->collector_policy()->should_clear_all_soft_refs();

  PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
                                      maximum_heap_compaction);
D
duke 已提交
1990 1991
}

1992 1993 1994
bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  size_t addr_region_index = addr_to_region_idx(addr);
  return region_index == addr_region_index;
D
duke 已提交
1995 1996 1997 1998 1999 2000 2001 2002
}

// This method contains no policy. You should probably
// be calling invoke() instead.
void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  assert(ref_processor() != NULL, "Sanity");

2003
  if (GC_locker::check_active_before_gc()) {
D
duke 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
    return;
  }

  TimeStamp marking_start;
  TimeStamp compaction_start;
  TimeStamp collection_exit;

  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();
  PSPermGen* perm_gen = heap->perm_gen();
  PSAdaptiveSizePolicy* size_policy = heap->size_policy();

2018 2019 2020 2021 2022
  // The scope of casr should end after code that can change
  // CollectorPolicy::_should_clear_all_soft_refs.
  ClearedAllSoftRefs casr(maximum_heap_compaction,
                          heap->collector_policy());

2023 2024 2025 2026 2027
  if (ZapUnusedHeapArea) {
    // Save information needed to minimize mangling
    heap->record_gen_tops_before_GC();
  }

2028 2029
  heap->pre_full_gc_dump();

D
duke 已提交
2030 2031 2032 2033 2034 2035 2036
  _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;

  // Make sure data structures are sane, make the heap parsable, and do other
  // miscellaneous bookkeeping.
  PreGCValues pre_gc_values;
  pre_compact(&pre_gc_values);

J
jcoomes 已提交
2037 2038 2039 2040
  // Get the compaction manager reserved for the VM thread.
  ParCompactionManager* const vmthread_cm =
    ParCompactionManager::manager_array(gc_task_manager()->workers());

D
duke 已提交
2041 2042 2043 2044 2045 2046 2047
  // Place after pre_compact() where the number of invocations is incremented.
  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());

  {
    ResourceMark rm;
    HandleMark hm;

2048 2049 2050 2051 2052
    // Set the number of GC threads to be used in this collection
    gc_task_manager()->set_active_gang();
    gc_task_manager()->task_idle_workers();
    heap->set_par_threads(gc_task_manager()->active_workers());

D
duke 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;

    // This is useful for debugging but don't change the output the
    // the customer sees.
    const char* gc_cause_str = "Full GC";
    if (is_system_gc && PrintGCDetails) {
      gc_cause_str = "Full GC (System)";
    }
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
    TraceCollectorStats tcs(counters());
2065
    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
D
duke 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

    if (TraceGen1Time) accumulated_time()->start();

    // Let the size policy know we're starting
    size_policy->major_collection_begin();

    // When collecting the permanent generation methodOops may be moving,
    // so we either have to flush all bcp data or convert it into bci.
    CodeCache::gc_prologue();
    Threads::gc_prologue();

    COMPILER2_PRESENT(DerivedPointerTable::clear());

2079
    ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
2080
    ref_processor()->setup_policy(maximum_heap_compaction);
D
duke 已提交
2081 2082 2083 2084

    bool marked_for_unloading = false;

    marking_start.update();
J
jcoomes 已提交
2085
    marking_phase(vmthread_cm, maximum_heap_compaction);
D
duke 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

#ifndef PRODUCT
    if (TraceParallelOldGCMarkingPhase) {
      gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
        "cas_by_another %d",
        mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
        mark_bitmap()->cas_by_another());
    }
#endif  // #ifndef PRODUCT

    bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
J
jcoomes 已提交
2097
    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
D
duke 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

    COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
    COMPILER2_PRESENT(DerivedPointerTable::set_active(false));

    // adjust_roots() updates Universe::_intArrayKlassObj which is
    // needed by the compaction for filling holes in the dense prefix.
    adjust_roots();

    compaction_start.update();
    // Does the perm gen always have to be done serially because
    // klasses are used in the update of an object?
J
jcoomes 已提交
2109
    compact_perm(vmthread_cm);
D
duke 已提交
2110

2111
    compact();
D
duke 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
    // done before resizing.
    post_compact();

    // Let the size policy know we're done
    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);

    if (UseAdaptiveSizePolicy) {
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print("AdaptiveSizeStart: ");
        gclog_or_tty->stamp();
        gclog_or_tty->print_cr(" collection: %d ",
                       heap->total_collections());
        if (Verbose) {
          gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
            " perm_gen_capacity: %d ",
            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
            perm_gen->capacity_in_bytes());
        }
      }

      // Don't check if the size_policy is ready here.  Let
      // the size_policy check that internally.
      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
          ((gc_cause != GCCause::_java_lang_system_gc) ||
            UseAdaptiveSizePolicyWithSystemGC)) {
        // Calculate optimal free space amounts
        assert(young_gen->max_size() >
          young_gen->from_space()->capacity_in_bytes() +
          young_gen->to_space()->capacity_in_bytes(),
          "Sizes of space in young gen are out-of-bounds");
        size_t max_eden_size = young_gen->max_size() -
          young_gen->from_space()->capacity_in_bytes() -
          young_gen->to_space()->capacity_in_bytes();
2147 2148 2149 2150 2151 2152 2153 2154 2155
        size_policy->compute_generation_free_space(
                              young_gen->used_in_bytes(),
                              young_gen->eden_space()->used_in_bytes(),
                              old_gen->used_in_bytes(),
                              perm_gen->used_in_bytes(),
                              young_gen->eden_space()->capacity_in_bytes(),
                              old_gen->max_gen_size(),
                              max_eden_size,
                              true /* full gc*/,
2156 2157
                              gc_cause,
                              heap->collector_policy());
2158 2159 2160

        heap->resize_old_gen(
          size_policy->calculated_old_free_size_in_bytes());
D
duke 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

        // Don't resize the young generation at an major collection.  A
        // desired young generation size may have been calculated but
        // resizing the young generation complicates the code because the
        // resizing of the old generation may have moved the boundary
        // between the young generation and the old generation.  Let the
        // young generation resizing happen at the minor collections.
      }
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
                       heap->total_collections());
      }
    }

    if (UsePerfData) {
      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
      counters->update_counters();
      counters->update_old_capacity(old_gen->capacity_in_bytes());
      counters->update_young_capacity(young_gen->capacity_in_bytes());
    }

    heap->resize_all_tlabs();

    // We collected the perm gen, so we'll resize it here.
    perm_gen->compute_new_size(pre_gc_values.perm_gen_used());

    if (TraceGen1Time) accumulated_time()->stop();

    if (PrintGC) {
      if (PrintGCDetails) {
        // No GC timestamp here.  This is after GC so it would be confusing.
        young_gen->print_used_change(pre_gc_values.young_gen_used());
        old_gen->print_used_change(pre_gc_values.old_gen_used());
        heap->print_heap_change(pre_gc_values.heap_used());
        // Print perm gen last (print_heap_change() excludes the perm gen).
        perm_gen->print_used_change(pre_gc_values.perm_gen_used());
      } else {
        heap->print_heap_change(pre_gc_values.heap_used());
      }
    }

    // Track memory usage and detect low memory
    MemoryService::track_memory_usage();
    heap->update_counters();
2205
    gc_task_manager()->release_idle_workers();
D
duke 已提交
2206 2207
  }

2208 2209 2210 2211 2212
#ifdef ASSERT
  for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
    ParCompactionManager* const cm =
      ParCompactionManager::manager_array(int(i));
    assert(cm->marking_stack()->is_empty(),       "should be empty");
2213
    assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2214 2215 2216 2217
    assert(cm->revisit_klass_stack()->is_empty(), "should be empty");
  }
#endif // ASSERT

D
duke 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyAfterGC:");
    Universe::verify(false);
  }

  // Re-verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyAfterGC) {
    old_gen->verify_object_start_array();
    perm_gen->verify_object_start_array();
  }

2231 2232 2233 2234 2235
  if (ZapUnusedHeapArea) {
    old_gen->object_space()->check_mangled_unused_area_complete();
    perm_gen->object_space()->check_mangled_unused_area_complete();
  }

D
duke 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

  collection_exit.update();

  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
  if (PrintGCTaskTimeStamps) {
    gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
                           INT64_FORMAT,
                           marking_start.ticks(), compaction_start.ticks(),
                           collection_exit.ticks());
    gc_task_manager()->print_task_time_stamps();
  }
2250

2251 2252
  heap->post_full_gc_dump();

2253 2254 2255
#ifdef TRACESPINNING
  ParallelTaskTerminator::print_termination_counts();
#endif
D
duke 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
}

bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
                                             PSYoungGen* young_gen,
                                             PSOldGen* old_gen) {
  MutableSpace* const eden_space = young_gen->eden_space();
  assert(!eden_space->is_empty(), "eden must be non-empty");
  assert(young_gen->virtual_space()->alignment() ==
         old_gen->virtual_space()->alignment(), "alignments do not match");

  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
    return false;
  }

  // Both generations must be completely committed.
  if (young_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }
  if (old_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }

  // Figure out how much to take from eden.  Include the average amount promoted
  // in the total; otherwise the next young gen GC will simply bail out to a
  // full GC.
  const size_t alignment = old_gen->virtual_space()->alignment();
  const size_t eden_used = eden_space->used_in_bytes();
  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  const size_t eden_capacity = eden_space->capacity_in_bytes();

  if (absorb_size >= eden_capacity) {
    return false; // Must leave some space in eden.
  }

  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  if (new_young_size < young_gen->min_gen_size()) {
    return false; // Respect young gen minimum size.
  }

  if (TraceAdaptiveGCBoundary && Verbose) {
    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
                        absorb_size / K,
                        eden_capacity / K, (eden_capacity - absorb_size) / K,
                        young_gen->from_space()->used_in_bytes() / K,
                        young_gen->to_space()->used_in_bytes() / K,
                        young_gen->capacity_in_bytes() / K, new_young_size / K);
  }

  // Fill the unused part of the old gen.
  MutableSpace* const old_space = old_gen->object_space();
2310 2311 2312 2313 2314 2315 2316 2317
  HeapWord* const unused_start = old_space->top();
  size_t const unused_words = pointer_delta(old_space->end(), unused_start);

  if (unused_words > 0) {
    if (unused_words < CollectedHeap::min_fill_size()) {
      return false;  // If the old gen cannot be filled, must give up.
    }
    CollectedHeap::fill_with_objects(unused_start, unused_words);
D
duke 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
  }

  // Take the live data from eden and set both top and end in the old gen to
  // eden top.  (Need to set end because reset_after_change() mangles the region
  // from end to virtual_space->high() in debug builds).
  HeapWord* const new_top = eden_space->top();
  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
                                        absorb_size);
  young_gen->reset_after_change();
  old_space->set_top(new_top);
  old_space->set_end(new_top);
  old_gen->reset_after_change();

  // Update the object start array for the filler object and the data from eden.
  ObjectStartArray* const start_array = old_gen->start_array();
2333 2334
  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
    start_array->allocate_block(p);
D
duke 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
  }

  // Could update the promoted average here, but it is not typically updated at
  // full GCs and the value to use is unclear.  Something like
  //
  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.

  size_policy->set_bytes_absorbed_from_eden(absorb_size);
  return true;
}

GCTaskManager* const PSParallelCompact::gc_task_manager() {
  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
    "shouldn't return NULL");
  return ParallelScavengeHeap::gc_task_manager();
}

void PSParallelCompact::marking_phase(ParCompactionManager* cm,
                                      bool maximum_heap_compaction) {
  // Recursively traverse all live objects and mark them
  EventMark m("1 mark object");
  TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = gc_heap();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2360
  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2361
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2362
  ParallelTaskTerminator terminator(active_gc_threads, qset);
D
duke 已提交
2363 2364 2365 2366 2367 2368

  PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  PSParallelCompact::FollowStackClosure follow_stack_closure(cm);

  {
    TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
2369
    ParallelScavengeHeap::ParStrongRootsScope psrs;
D
duke 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

    GCTaskQueue* q = GCTaskQueue::create();

    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
    // We scan the thread roots in parallel
    Threads::create_thread_roots_marking_tasks(q);
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2382
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
D
duke 已提交
2383

2384 2385
    if (active_gc_threads > 1) {
      for (uint j = 0; j < active_gc_threads; j++) {
D
duke 已提交
2386 2387 2388 2389
        q->enqueue(new StealMarkingTask(&terminator));
      }
    }

2390
    gc_task_manager()->execute_and_wait(q);
D
duke 已提交
2391 2392 2393 2394 2395 2396 2397 2398
  }

  // Process reference objects found during marking
  {
    TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
    if (ref_processor()->processing_is_mt()) {
      RefProcTaskExecutor task_executor;
      ref_processor()->process_discovered_references(
2399 2400
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
        &task_executor);
D
duke 已提交
2401 2402
    } else {
      ref_processor()->process_discovered_references(
2403
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
D
duke 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
    }
  }

  TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  // Follow system dictionary roots and unload classes.
  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());

  // Follow code cache roots.
  CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
                          purged_class);
2414
  cm->follow_marking_stacks(); // Flush marking stack.
D
duke 已提交
2415 2416 2417

  // Update subklass/sibling/implementor links of live klasses
  // revisit_klass_stack is used in follow_weak_klass_links().
Y
ysr 已提交
2418 2419 2420 2421
  follow_weak_klass_links();

  // Revisit memoized MDO's and clear any unmarked weak refs
  follow_mdo_weak_refs();
D
duke 已提交
2422

2423
  // Visit interned string tables and delete unmarked oops
D
duke 已提交
2424
  StringTable::unlink(is_alive_closure());
2425 2426
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
D
duke 已提交
2427

2428
  assert(cm->marking_stacks_empty(), "marking stacks should be empty");
D
duke 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
}

// This should be moved to the shared markSweep code!
class PSAlwaysTrueClosure: public BoolObjectClosure {
public:
  void do_object(oop p) { ShouldNotReachHere(); }
  bool do_object_b(oop p) { return true; }
};
static PSAlwaysTrueClosure always_true;

void PSParallelCompact::adjust_roots() {
  // Adjust the pointers to reflect the new locations
  EventMark m("3 adjust roots");
  TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);

  // General strong roots.
  Universe::oops_do(adjust_root_pointer_closure());
  JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
2447
  Threads::oops_do(adjust_root_pointer_closure(), NULL);
D
duke 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
  ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  FlatProfiler::oops_do(adjust_root_pointer_closure());
  Management::oops_do(adjust_root_pointer_closure());
  JvmtiExport::oops_do(adjust_root_pointer_closure());
  // SO_AllClasses
  SystemDictionary::oops_do(adjust_root_pointer_closure());

  // Now adjust pointers in remaining weak roots.  (All of which should
  // have been cleared if they pointed to non-surviving objects.)
  // Global (weak) JNI handles
  JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());

  CodeCache::oops_do(adjust_pointer_closure());
  StringTable::oops_do(adjust_root_pointer_closure());
  ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  // Roots were visited so references into the young gen in roots
  // may have been scanned.  Process them also.
  // Should the reference processor have a span that excludes
  // young gen objects?
  PSScavenge::reference_processor()->weak_oops_do(
                                              adjust_root_pointer_closure());
}

void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
  EventMark m("4 compact perm");
  TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
  // trace("4");

  gc_heap()->perm_gen()->start_array()->reset();
  move_and_update(cm, perm_space_id);
}

2480 2481 2482
void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
                                                      uint parallel_gc_threads)
{
D
duke 已提交
2483 2484
  TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);

2485 2486 2487 2488 2489
  // Find the threads that are active
  unsigned int which = 0;

  const uint task_count = MAX2(parallel_gc_threads, 1U);
  for (uint j = 0; j < task_count; j++) {
2490
    q->enqueue(new DrainStacksCompactionTask(j));
2491 2492 2493 2494 2495 2496 2497 2498
    ParCompactionManager::verify_region_list_empty(j);
    // Set the region stacks variables to "no" region stack values
    // so that they will be recognized and needing a region stack
    // in the stealing tasks if they do not get one by executing
    // a draining stack.
    ParCompactionManager* cm = ParCompactionManager::manager_array(j);
    cm->set_region_stack(NULL);
    cm->set_region_stack_index((uint)max_uintx);
D
duke 已提交
2499
  }
2500
  ParCompactionManager::reset_recycled_stack_index();
D
duke 已提交
2501

2502
  // Find all regions that are available (can be filled immediately) and
D
duke 已提交
2503
  // distribute them to the thread stacks.  The iteration is done in reverse
2504
  // order (high to low) so the regions will be removed in ascending order.
D
duke 已提交
2505 2506 2507

  const ParallelCompactData& sd = PSParallelCompact::summary_data();

2508
  size_t fillable_regions = 0;   // A count for diagnostic purposes.
2509 2510
  // A region index which corresponds to the tasks created above.
  // "which" must be 0 <= which < task_count
D
duke 已提交
2511

2512
  which = 0;
D
duke 已提交
2513 2514 2515 2516 2517
  for (unsigned int id = to_space_id; id > perm_space_id; --id) {
    SpaceInfo* const space_info = _space_info + id;
    MutableSpace* const space = space_info->space();
    HeapWord* const new_top = space_info->new_top();

2518 2519 2520 2521
    const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
    const size_t end_region =
      sd.addr_to_region_idx(sd.region_align_up(new_top));
    assert(end_region > 0, "perm gen cannot be empty");
D
duke 已提交
2522

2523 2524
    for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
      if (sd.region(cur)->claim_unsafe()) {
2525
        ParCompactionManager::region_list_push(which, cur);
D
duke 已提交
2526 2527

        if (TraceParallelOldGCCompactionPhase && Verbose) {
2528
          const size_t count_mod_8 = fillable_regions & 7;
D
duke 已提交
2529
          if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2530
          gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
D
duke 已提交
2531 2532 2533
          if (count_mod_8 == 7) gclog_or_tty->cr();
        }

2534
        NOT_PRODUCT(++fillable_regions;)
D
duke 已提交
2535

2536
        // Assign regions to tasks in round-robin fashion.
D
duke 已提交
2537
        if (++which == task_count) {
2538 2539
          assert(which <= parallel_gc_threads,
            "Inconsistent number of workers");
D
duke 已提交
2540 2541 2542 2543 2544 2545 2546
          which = 0;
        }
      }
    }
  }

  if (TraceParallelOldGCCompactionPhase) {
2547 2548
    if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
    gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
D
duke 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
  }
}

#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4

void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
                                                    uint parallel_gc_threads) {
  TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);

  ParallelCompactData& sd = PSParallelCompact::summary_data();

  // Iterate over all the spaces adding tasks for updating
2561
  // regions in the dense prefix.  Assume that 1 gc thread
D
duke 已提交
2562 2563
  // will work on opening the gaps and the remaining gc threads
  // will work on the dense prefix.
2564 2565
  unsigned int space_id;
  for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
D
duke 已提交
2566 2567 2568 2569 2570 2571 2572 2573
    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
    const MutableSpace* const space = _space_info[space_id].space();

    if (dense_prefix_end == space->bottom()) {
      // There is no dense prefix for this space.
      continue;
    }

2574 2575 2576 2577 2578
    // The dense prefix is before this region.
    size_t region_index_end_dense_prefix =
        sd.addr_to_region_idx(dense_prefix_end);
    RegionData* const dense_prefix_cp =
      sd.region(region_index_end_dense_prefix);
D
duke 已提交
2579 2580 2581
    assert(dense_prefix_end == space->end() ||
           dense_prefix_cp->available() ||
           dense_prefix_cp->claimed(),
2582
           "The region after the dense prefix should always be ready to fill");
D
duke 已提交
2583

2584
    size_t region_index_start = sd.addr_to_region_idx(space->bottom());
D
duke 已提交
2585 2586

    // Is there dense prefix work?
2587 2588 2589
    size_t total_dense_prefix_regions =
      region_index_end_dense_prefix - region_index_start;
    // How many regions of the dense prefix should be given to
D
duke 已提交
2590
    // each thread?
2591
    if (total_dense_prefix_regions > 0) {
D
duke 已提交
2592
      uint tasks_for_dense_prefix = 1;
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
      if (total_dense_prefix_regions <=
          (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
        // Don't over partition.  This assumes that
        // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
        // so there are not many regions to process.
        tasks_for_dense_prefix = parallel_gc_threads;
      } else {
        // Over partition
        tasks_for_dense_prefix = parallel_gc_threads *
          PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
D
duke 已提交
2603
      }
2604
      size_t regions_per_thread = total_dense_prefix_regions /
D
duke 已提交
2605
        tasks_for_dense_prefix;
2606 2607 2608
      // Give each thread at least 1 region.
      if (regions_per_thread == 0) {
        regions_per_thread = 1;
D
duke 已提交
2609 2610 2611
      }

      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2612
        if (region_index_start >= region_index_end_dense_prefix) {
D
duke 已提交
2613 2614
          break;
        }
2615 2616 2617
        // region_index_end is not processed
        size_t region_index_end = MIN2(region_index_start + regions_per_thread,
                                       region_index_end_dense_prefix);
2618 2619 2620
        q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
                                             region_index_start,
                                             region_index_end));
2621
        region_index_start = region_index_end;
D
duke 已提交
2622 2623 2624 2625
      }
    }
    // This gets any part of the dense prefix that did not
    // fit evenly.
2626
    if (region_index_start < region_index_end_dense_prefix) {
2627 2628 2629
      q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
                                           region_index_start,
                                           region_index_end_dense_prefix));
D
duke 已提交
2630
    }
2631
  }
D
duke 已提交
2632 2633
}

2634
void PSParallelCompact::enqueue_region_stealing_tasks(
D
duke 已提交
2635 2636 2637 2638 2639
                                     GCTaskQueue* q,
                                     ParallelTaskTerminator* terminator_ptr,
                                     uint parallel_gc_threads) {
  TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);

2640
  // Once a thread has drained it's stack, it should try to steal regions from
D
duke 已提交
2641 2642 2643
  // other threads.
  if (parallel_gc_threads > 1) {
    for (uint j = 0; j < parallel_gc_threads; j++) {
2644
      q->enqueue(new StealRegionCompactionTask(terminator_ptr));
D
duke 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
    }
  }
}

void PSParallelCompact::compact() {
  EventMark m("5 compact");
  // trace("5");
  TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  PSOldGen* old_gen = heap->old_gen();
  old_gen->start_array()->reset();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2659
  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2660
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2661
  ParallelTaskTerminator terminator(active_gc_threads, qset);
D
duke 已提交
2662 2663

  GCTaskQueue* q = GCTaskQueue::create();
2664 2665 2666
  enqueue_region_draining_tasks(q, active_gc_threads);
  enqueue_dense_prefix_tasks(q, active_gc_threads);
  enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
D
duke 已提交
2667 2668 2669 2670

  {
    TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);

2671
    gc_task_manager()->execute_and_wait(q);
D
duke 已提交
2672 2673

#ifdef  ASSERT
2674
    // Verify that all regions have been processed before the deferred updates.
D
duke 已提交
2675
    // Note that perm_space_id is skipped; this type of verification is not
2676
    // valid until the perm gen is compacted by regions.
D
duke 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      verify_complete(SpaceId(id));
    }
#endif
  }

  {
    // Update the deferred objects, if any.  Any compaction manager can be used.
    TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      update_deferred_objects(cm, SpaceId(id));
    }
  }
}

#ifdef  ASSERT
void PSParallelCompact::verify_complete(SpaceId space_id) {
2695 2696
  // All Regions between space bottom() to new_top() should be marked as filled
  // and all Regions between new_top() and top() should be available (i.e.,
D
duke 已提交
2697 2698 2699
  // should have been emptied).
  ParallelCompactData& sd = summary_data();
  SpaceInfo si = _space_info[space_id];
2700 2701 2702 2703 2704
  HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
D
duke 已提交
2705 2706 2707

  bool issued_a_warning = false;

2708 2709 2710
  size_t cur_region;
  for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2711
    if (!c->completed()) {
2712
      warning("region " SIZE_FORMAT " not filled:  "
D
duke 已提交
2713
              "destination_count=" SIZE_FORMAT,
2714
              cur_region, c->destination_count());
D
duke 已提交
2715 2716 2717 2718
      issued_a_warning = true;
    }
  }

2719 2720
  for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2721
    if (!c->available()) {
2722
      warning("region " SIZE_FORMAT " not empty:   "
D
duke 已提交
2723
              "destination_count=" SIZE_FORMAT,
2724
              cur_region, c->destination_count());
D
duke 已提交
2725 2726 2727 2728 2729
      issued_a_warning = true;
    }
  }

  if (issued_a_warning) {
2730
    print_region_ranges();
D
duke 已提交
2731 2732 2733 2734 2735
  }
}
#endif  // #ifdef ASSERT

void
Y
ysr 已提交
2736
PSParallelCompact::follow_weak_klass_links() {
D
duke 已提交
2737 2738
  // All klasses on the revisit stack are marked at this point.
  // Update and follow all subklass, sibling and implementor links.
2739 2740 2741
  // Check all the stacks here even if not all the workers are active.
  // There is no accounting which indicates which stacks might have
  // contents to be followed.
Y
ysr 已提交
2742
  if (PrintRevisitStats) {
2743 2744
    gclog_or_tty->print_cr("#classes in system dictionary = %d",
                           SystemDictionary::number_of_classes());
Y
ysr 已提交
2745 2746
  }
  for (uint i = 0; i < ParallelGCThreads + 1; i++) {
D
duke 已提交
2747 2748
    ParCompactionManager* cm = ParCompactionManager::manager_array(i);
    KeepAliveClosure keep_alive_closure(cm);
2749
    Stack<Klass*>* const rks = cm->revisit_klass_stack();
Y
ysr 已提交
2750
    if (PrintRevisitStats) {
2751 2752
      gclog_or_tty->print_cr("Revisit klass stack[%u] length = " SIZE_FORMAT,
                             i, rks->size());
Y
ysr 已提交
2753
    }
2754 2755 2756
    while (!rks->is_empty()) {
      Klass* const k = rks->pop();
      k->follow_weak_klass_links(is_alive_closure(), &keep_alive_closure);
D
duke 已提交
2757
    }
2758

2759
    cm->follow_marking_stacks();
D
duke 已提交
2760 2761 2762 2763 2764 2765 2766 2767
  }
}

void
PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
  cm->revisit_klass_stack()->push(k);
}

Y
ysr 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776
void PSParallelCompact::revisit_mdo(ParCompactionManager* cm, DataLayout* p) {
  cm->revisit_mdo_stack()->push(p);
}

void PSParallelCompact::follow_mdo_weak_refs() {
  // All strongly reachable oops have been marked at this point;
  // we can visit and clear any weak references from MDO's which
  // we memoized during the strong marking phase.
  if (PrintRevisitStats) {
2777 2778
    gclog_or_tty->print_cr("#classes in system dictionary = %d",
                           SystemDictionary::number_of_classes());
Y
ysr 已提交
2779 2780 2781
  }
  for (uint i = 0; i < ParallelGCThreads + 1; i++) {
    ParCompactionManager* cm = ParCompactionManager::manager_array(i);
2782
    Stack<DataLayout*>* rms = cm->revisit_mdo_stack();
Y
ysr 已提交
2783
    if (PrintRevisitStats) {
2784 2785
      gclog_or_tty->print_cr("Revisit MDO stack[%u] size = " SIZE_FORMAT,
                             i, rms->size());
Y
ysr 已提交
2786
    }
2787 2788
    while (!rms->is_empty()) {
      rms->pop()->follow_weak_refs(is_alive_closure());
Y
ysr 已提交
2789
    }
2790

2791
    cm->follow_marking_stacks();
Y
ysr 已提交
2792 2793 2794 2795
  }
}


D
duke 已提交
2796 2797
#ifdef VALIDATE_MARK_SWEEP

2798
void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
D
duke 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
  if (!ValidateMarkSweep)
    return;

  if (!isroot) {
    if (_pointer_tracking) {
      guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
      _adjusted_pointers->remove(p);
    }
  } else {
    ptrdiff_t index = _root_refs_stack->find(p);
    if (index != -1) {
      int l = _root_refs_stack->length();
      if (l > 0 && l - 1 != index) {
2812
        void* last = _root_refs_stack->pop();
D
duke 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
        assert(last != p, "should be different");
        _root_refs_stack->at_put(index, last);
      } else {
        _root_refs_stack->remove(p);
      }
    }
  }
}


2823
void PSParallelCompact::check_adjust_pointer(void* p) {
D
duke 已提交
2824 2825 2826 2827 2828 2829 2830
  _adjusted_pointers->push(p);
}


class AdjusterTracker: public OopClosure {
 public:
  AdjusterTracker() {};
2831 2832
  void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
D
duke 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
};


void PSParallelCompact::track_interior_pointers(oop obj) {
  if (ValidateMarkSweep) {
    _adjusted_pointers->clear();
    _pointer_tracking = true;

    AdjusterTracker checker;
    obj->oop_iterate(&checker);
  }
}


void PSParallelCompact::check_interior_pointers() {
  if (ValidateMarkSweep) {
    _pointer_tracking = false;
    guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  }
}


void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
  if (ValidateMarkSweep) {
    guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
    _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
  }
}


void PSParallelCompact::register_live_oop(oop p, size_t size) {
  if (ValidateMarkSweep) {
    _live_oops->push(p);
    _live_oops_size->push(size);
    _live_oops_index++;
  }
}

void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  if (ValidateMarkSweep) {
    oop obj = _live_oops->at((int)_live_oops_index);
    guarantee(obj == p, "should be the same object");
    guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
    _live_oops_index++;
  }
}

void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
                                  HeapWord* compaction_top) {
  assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
         "should be moved to forwarded location");
  if (ValidateMarkSweep) {
    PSParallelCompact::validate_live_oop(oop(q), size);
    _live_oops_moved_to->push(oop(compaction_top));
  }
  if (RecordMarkSweepCompaction) {
    _cur_gc_live_oops->push(q);
    _cur_gc_live_oops_moved_to->push(compaction_top);
    _cur_gc_live_oops_size->push(size);
  }
}


void PSParallelCompact::compaction_complete() {
  if (RecordMarkSweepCompaction) {
    GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
    GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
    GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;

    _cur_gc_live_oops           = _last_gc_live_oops;
    _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
    _cur_gc_live_oops_size      = _last_gc_live_oops_size;
    _last_gc_live_oops          = _tmp_live_oops;
    _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
    _last_gc_live_oops_size     = _tmp_live_oops_size;
  }
}


void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  if (!RecordMarkSweepCompaction) {
    tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
    return;
  }

  if (_last_gc_live_oops == NULL) {
    tty->print_cr("No compaction information gathered yet");
    return;
  }

  for (int i = 0; i < _last_gc_live_oops->length(); i++) {
    HeapWord* old_oop = _last_gc_live_oops->at(i);
    size_t    sz      = _last_gc_live_oops_size->at(i);
    if (old_oop <= q && q < (old_oop + sz)) {
      HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
      size_t offset = (q - old_oop);
      tty->print_cr("Address " PTR_FORMAT, q);
      tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
      tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
      return;
    }
  }

  tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
}
#endif //VALIDATE_MARK_SWEEP

2940
// Update interior oops in the ranges of regions [beg_region, end_region).
D
duke 已提交
2941 2942 2943
void
PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
                                                       SpaceId space_id,
2944 2945
                                                       size_t beg_region,
                                                       size_t end_region) {
D
duke 已提交
2946 2947 2948
  ParallelCompactData& sd = summary_data();
  ParMarkBitMap* const mbm = mark_bitmap();

2949 2950 2951
  HeapWord* beg_addr = sd.region_to_addr(beg_region);
  HeapWord* const end_addr = sd.region_to_addr(end_region);
  assert(beg_region <= end_region, "bad region range");
D
duke 已提交
2952 2953 2954
  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");

#ifdef  ASSERT
2955
  // Claim the regions to avoid triggering an assert when they are marked as
D
duke 已提交
2956
  // filled.
2957 2958
  for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
    assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
D
duke 已提交
2959 2960 2961 2962 2963
  }
#endif  // #ifdef ASSERT

  if (beg_addr != space(space_id)->bottom()) {
    // Find the first live object or block of dead space that *starts* in this
2964 2965 2966 2967 2968 2969
    // range of regions.  If a partial object crosses onto the region, skip it;
    // it will be marked for 'deferred update' when the object head is
    // processed.  If dead space crosses onto the region, it is also skipped; it
    // will be filled when the prior region is processed.  If neither of those
    // apply, the first word in the region is the start of a live object or dead
    // space.
D
duke 已提交
2970
    assert(beg_addr > space(space_id)->bottom(), "sanity");
2971
    const RegionData* const cp = sd.region(beg_region);
D
duke 已提交
2972
    if (cp->partial_obj_size() != 0) {
2973
      beg_addr = sd.partial_obj_end(beg_region);
D
duke 已提交
2974 2975 2976 2977 2978 2979
    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
    }
  }

  if (beg_addr < end_addr) {
2980
    // A live object or block of dead space starts in this range of Regions.
D
duke 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
     HeapWord* const dense_prefix_end = dense_prefix(space_id);

    // Create closures and iterate.
    UpdateOnlyClosure update_closure(mbm, cm, space_id);
    FillClosure fill_closure(cm, space_id);
    ParMarkBitMap::IterationStatus status;
    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
                          dense_prefix_end);
    if (status == ParMarkBitMap::incomplete) {
      update_closure.do_addr(update_closure.source());
    }
  }

2994 2995 2996 2997
  // Mark the regions as filled.
  RegionData* const beg_cp = sd.region(beg_region);
  RegionData* const end_cp = sd.region(end_region);
  for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
D
duke 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
    cp->set_completed();
  }
}

// Return the SpaceId for the space containing addr.  If addr is not in the
// heap, last_space_id is returned.  In debug mode it expects the address to be
// in the heap and asserts such.
PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");

  for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
    if (_space_info[id].space()->contains(addr)) {
      return SpaceId(id);
    }
  }

  assert(false, "no space contains the addr");
  return last_space_id;
}

void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
                                                SpaceId id) {
  assert(id < last_space_id, "bad space id");

  ParallelCompactData& sd = summary_data();
  const SpaceInfo* const space_info = _space_info + id;
  ObjectStartArray* const start_array = space_info->start_array();

  const MutableSpace* const space = space_info->space();
  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  HeapWord* const beg_addr = space_info->dense_prefix();
3029
  HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
D
duke 已提交
3030

3031 3032 3033 3034 3035
  const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  const RegionData* cur_region;
  for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
    HeapWord* const addr = cur_region->deferred_obj_addr();
D
duke 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
    if (addr != NULL) {
      if (start_array != NULL) {
        start_array->allocate_block(addr);
      }
      oop(addr)->update_contents(cm);
      assert(oop(addr)->is_oop_or_null(), "should be an oop now");
    }
  }
}

// Skip over count live words starting from beg, and return the address of the
// next live word.  Unless marked, the word corresponding to beg is assumed to
// be dead.  Callers must either ensure beg does not correspond to the middle of
// an object, or account for those live words in some other way.  Callers must
// also ensure that there are enough live words in the range [beg, end) to skip.
HeapWord*
PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
{
  assert(count > 0, "sanity");

  ParMarkBitMap* m = mark_bitmap();
  idx_t bits_to_skip = m->words_to_bits(count);
  idx_t cur_beg = m->addr_to_bit(beg);
  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));

  do {
    cur_beg = m->find_obj_beg(cur_beg, search_end);
    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
    const size_t obj_bits = cur_end - cur_beg + 1;
    if (obj_bits > bits_to_skip) {
      return m->bit_to_addr(cur_beg + bits_to_skip);
    }
    bits_to_skip -= obj_bits;
    cur_beg = cur_end + 1;
  } while (bits_to_skip > 0);

  // Skipping the desired number of words landed just past the end of an object.
  // Find the start of the next object.
  cur_beg = m->find_obj_beg(cur_beg, search_end);
  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  return m->bit_to_addr(cur_beg);
}

3079 3080 3081
HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
                                            SpaceId src_space_id,
                                            size_t src_region_idx)
D
duke 已提交
3082
{
3083 3084 3085 3086 3087 3088 3089 3090 3091
  assert(summary_data().is_region_aligned(dest_addr), "not aligned");

  const SplitInfo& split_info = _space_info[src_space_id].split_info();
  if (split_info.dest_region_addr() == dest_addr) {
    // The partial object ending at the split point contains the first word to
    // be copied to dest_addr.
    return split_info.first_src_addr();
  }

D
duke 已提交
3092
  const ParallelCompactData& sd = summary_data();
3093
  ParMarkBitMap* const bitmap = mark_bitmap();
3094
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
3095

3096 3097 3098 3099
  assert(sd.is_region_aligned(dest_addr), "not aligned");
  const RegionData* const src_region_ptr = sd.region(src_region_idx);
  const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  HeapWord* const src_region_destination = src_region_ptr->destination();
D
duke 已提交
3100

3101 3102
  assert(dest_addr >= src_region_destination, "wrong src region");
  assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
D
duke 已提交
3103

3104 3105
  HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  HeapWord* const src_region_end = src_region_beg + RegionSize;
D
duke 已提交
3106

3107 3108 3109
  HeapWord* addr = src_region_beg;
  if (dest_addr == src_region_destination) {
    // Return the first live word in the source region.
D
duke 已提交
3110
    if (partial_obj_size == 0) {
3111 3112
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "no objects start in src region");
D
duke 已提交
3113 3114 3115 3116 3117
    }
    return addr;
  }

  // Must skip some live data.
3118 3119
  size_t words_to_skip = dest_addr - src_region_destination;
  assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
D
duke 已提交
3120 3121 3122 3123 3124 3125

  if (partial_obj_size >= words_to_skip) {
    // All the live words to skip are part of the partial object.
    addr += words_to_skip;
    if (partial_obj_size == words_to_skip) {
      // Find the first live word past the partial object.
3126 3127
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "wrong src region");
D
duke 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
    }
    return addr;
  }

  // Skip over the partial object (if any).
  if (partial_obj_size != 0) {
    words_to_skip -= partial_obj_size;
    addr += partial_obj_size;
  }

3138 3139 3140
  // Skip over live words due to objects that start in the region.
  addr = skip_live_words(addr, src_region_end, words_to_skip);
  assert(addr < src_region_end, "wrong src region");
D
duke 已提交
3141 3142 3143 3144
  return addr;
}

void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
3145
                                                     SpaceId src_space_id,
3146
                                                     size_t beg_region,
D
duke 已提交
3147 3148 3149
                                                     HeapWord* end_addr)
{
  ParallelCompactData& sd = summary_data();
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159

#ifdef ASSERT
  MutableSpace* const src_space = _space_info[src_space_id].space();
  HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
         "src_space_id does not match beg_addr");
  assert(src_space->contains(end_addr) || end_addr == src_space->end(),
         "src_space_id does not match end_addr");
#endif // #ifdef ASSERT

3160
  RegionData* const beg = sd.region(beg_region);
3161 3162 3163 3164 3165 3166 3167 3168
  RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));

  // Regions up to new_top() are enqueued if they become available.
  HeapWord* const new_top = _space_info[src_space_id].new_top();
  RegionData* const enqueue_end =
    sd.addr_to_region_ptr(sd.region_align_up(new_top));

  for (RegionData* cur = beg; cur < end; ++cur) {
3169
    assert(cur->data_size() > 0, "region must have live data");
D
duke 已提交
3170
    cur->decrement_destination_count();
3171
    if (cur < enqueue_end && cur->available() && cur->claim()) {
3172
      cm->push_region(sd.region(cur));
D
duke 已提交
3173 3174 3175 3176
    }
  }
}

3177 3178 3179 3180
size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
                                          SpaceId& src_space_id,
                                          HeapWord*& src_space_top,
                                          HeapWord* end_addr)
D
duke 已提交
3181
{
3182
  typedef ParallelCompactData::RegionData RegionData;
D
duke 已提交
3183 3184

  ParallelCompactData& sd = PSParallelCompact::summary_data();
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
  const size_t region_size = ParallelCompactData::RegionSize;

  size_t src_region_idx = 0;

  // Skip empty regions (if any) up to the top of the space.
  HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  const RegionData* const top_region_ptr =
    sd.addr_to_region_ptr(top_aligned_up);
  while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
    ++src_region_ptr;
  }

  if (src_region_ptr < top_region_ptr) {
    // The next source region is in the current space.  Update src_region_idx
    // and the source address to match src_region_ptr.
    src_region_idx = sd.region(src_region_ptr);
    HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
    if (src_region_addr > closure.source()) {
      closure.set_source(src_region_addr);
D
duke 已提交
3206
    }
3207
    return src_region_idx;
D
duke 已提交
3208 3209
  }

3210
  // Switch to a new source space and find the first non-empty region.
D
duke 已提交
3211 3212 3213 3214 3215 3216 3217 3218
  unsigned int space_id = src_space_id + 1;
  assert(space_id < last_space_id, "not enough spaces");

  HeapWord* const destination = closure.destination();

  do {
    MutableSpace* space = _space_info[space_id].space();
    HeapWord* const bottom = space->bottom();
3219
    const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
D
duke 已提交
3220 3221 3222

    // Iterate over the spaces that do not compact into themselves.
    if (bottom_cp->destination() != bottom) {
3223 3224
      HeapWord* const top_aligned_up = sd.region_align_up(space->top());
      const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
3225

3226
      for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
D
duke 已提交
3227 3228 3229 3230 3231 3232 3233 3234 3235
        if (src_cp->live_obj_size() > 0) {
          // Found it.
          assert(src_cp->destination() == destination,
                 "first live obj in the space must match the destination");
          assert(src_cp->partial_obj_size() == 0,
                 "a space cannot begin with a partial obj");

          src_space_id = SpaceId(space_id);
          src_space_top = space->top();
3236 3237 3238
          const size_t src_region_idx = sd.region(src_cp);
          closure.set_source(sd.region_to_addr(src_region_idx));
          return src_region_idx;
D
duke 已提交
3239 3240 3241 3242 3243 3244 3245
        } else {
          assert(src_cp->data_size() == 0, "sanity");
        }
      }
    }
  } while (++space_id < last_space_id);

3246
  assert(false, "no source region was found");
D
duke 已提交
3247 3248 3249
  return 0;
}

3250
void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
D
duke 已提交
3251 3252
{
  typedef ParMarkBitMap::IterationStatus IterationStatus;
3253
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
3254 3255
  ParMarkBitMap* const bitmap = mark_bitmap();
  ParallelCompactData& sd = summary_data();
3256
  RegionData* const region_ptr = sd.region(region_idx);
D
duke 已提交
3257 3258

  // Get the items needed to construct the closure.
3259
  HeapWord* dest_addr = sd.region_to_addr(region_idx);
D
duke 已提交
3260 3261 3262 3263
  SpaceId dest_space_id = space_id(dest_addr);
  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  HeapWord* new_top = _space_info[dest_space_id].new_top();
  assert(dest_addr < new_top, "sanity");
3264
  const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
D
duke 已提交
3265

3266 3267 3268
  // Get the source region and related info.
  size_t src_region_idx = region_ptr->source_region();
  SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
D
duke 已提交
3269 3270 3271
  HeapWord* src_space_top = _space_info[src_space_id].space()->top();

  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3272
  closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
D
duke 已提交
3273

3274 3275 3276 3277
  // Adjust src_region_idx to prepare for decrementing destination counts (the
  // destination count is not decremented when a region is copied to itself).
  if (src_region_idx == region_idx) {
    src_region_idx += 1;
D
duke 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286
  }

  if (bitmap->is_unmarked(closure.source())) {
    // The first source word is in the middle of an object; copy the remainder
    // of the object or as much as will fit.  The fact that pointer updates were
    // deferred will be noted when the object header is processed.
    HeapWord* const old_src_addr = closure.source();
    closure.copy_partial_obj();
    if (closure.is_full()) {
3287 3288
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3289 3290
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
3291 3292 3293
      return;
    }

3294 3295 3296
    HeapWord* const end_addr = sd.region_align_down(closure.source());
    if (sd.region_align_down(old_src_addr) != end_addr) {
      // The partial object was copied from more than one source region.
3297
      decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
D
duke 已提交
3298

3299
      // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
3300
      // args except end_addr may be modified.
3301 3302
      src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                       end_addr);
D
duke 已提交
3303 3304 3305 3306 3307
    }
  }

  do {
    HeapWord* const cur_addr = closure.source();
3308
    HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
D
duke 已提交
3309 3310 3311 3312
                                    src_space_top);
    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);

    if (status == ParMarkBitMap::incomplete) {
3313 3314
      // The last obj that starts in the source region does not end in the
      // region.
3315
      assert(closure.source() < end_addr, "sanity");
D
duke 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
      HeapWord* const obj_beg = closure.source();
      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
                                       src_space_top);
      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
      if (obj_end < range_end) {
        // The end was found; the entire object will fit.
        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
        assert(status != ParMarkBitMap::would_overflow, "sanity");
      } else {
        // The end was not found; the object will not fit.
        assert(range_end < src_space_top, "obj cannot cross space boundary");
        status = ParMarkBitMap::would_overflow;
      }
    }

    if (status == ParMarkBitMap::would_overflow) {
      // The last object did not fit.  Note that interior oop updates were
3333 3334
      // deferred, then copy enough of the object to fill the region.
      region_ptr->set_deferred_obj_addr(closure.destination());
D
duke 已提交
3335 3336
      status = closure.copy_until_full(); // copies from closure.source()

3337 3338
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3339
      region_ptr->set_completed();
D
duke 已提交
3340 3341 3342 3343
      return;
    }

    if (status == ParMarkBitMap::full) {
3344 3345
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3346 3347
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
3348 3349 3350
      return;
    }

3351
    decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
D
duke 已提交
3352

3353
    // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
3354
    // args except end_addr may be modified.
3355 3356
    src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                     end_addr);
D
duke 已提交
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
  } while (true);
}

void
PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  const MutableSpace* sp = space(space_id);
  if (sp->is_empty()) {
    return;
  }

  ParallelCompactData& sd = PSParallelCompact::summary_data();
  ParMarkBitMap* const bitmap = mark_bitmap();
  HeapWord* const dp_addr = dense_prefix(space_id);
  HeapWord* beg_addr = sp->bottom();
  HeapWord* end_addr = sp->top();

  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");

3375 3376 3377 3378
  const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  if (beg_region < dp_region) {
    update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
D
duke 已提交
3379 3380
  }

3381 3382 3383
  // The destination of the first live object that starts in the region is one
  // past the end of the partial object entering the region (if any).
  HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
D
duke 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
  HeapWord* const new_top = _space_info[space_id].new_top();
  assert(new_top >= dest_addr, "bad new_top value");
  const size_t words = pointer_delta(new_top, dest_addr);

  if (words > 0) {
    ObjectStartArray* start_array = _space_info[space_id].start_array();
    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);

    ParMarkBitMap::IterationStatus status;
    status = bitmap->iterate(&closure, dest_addr, end_addr);
    assert(status == ParMarkBitMap::full, "iteration not complete");
    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
           "live objects skipped because closure is full");
  }
}

jlong PSParallelCompact::millis_since_last_gc() {
3401 3402 3403 3404
  // We need a monotonically non-deccreasing time in ms but
  // os::javaTimeMillis() does not guarantee monotonicity.
  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  jlong ret_val = now - _time_of_last_gc;
D
duke 已提交
3405 3406
  // XXX See note in genCollectedHeap::millis_since_last_gc().
  if (ret_val < 0) {
3407
    NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
D
duke 已提交
3408 3409 3410 3411 3412 3413
    return 0;
  }
  return ret_val;
}

void PSParallelCompact::reset_millis_since_last_gc() {
3414 3415 3416
  // We need a monotonically non-deccreasing time in ms but
  // os::javaTimeMillis() does not guarantee monotonicity.
  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
D
duke 已提交
3417 3418 3419 3420 3421
}

ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
{
  if (source() != destination()) {
3422
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  }
  update_state(words_remaining());
  assert(is_full(), "sanity");
  return ParMarkBitMap::full;
}

void MoveAndUpdateClosure::copy_partial_obj()
{
  size_t words = words_remaining();

  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  if (end_addr < range_end) {
    words = bitmap()->obj_size(source(), end_addr);
  }

  // This test is necessary; if omitted, the pointer updates to a partial object
  // that crosses the dense prefix boundary could be overwritten.
  if (source() != destination()) {
3443
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
    Copy::aligned_conjoint_words(source(), destination(), words);
  }
  update_state(words);
}

ParMarkBitMapClosure::IterationStatus
MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  assert(destination() != NULL, "sanity");
  assert(bitmap()->obj_size(addr) == words, "bad size");

  _source = addr;
  assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
         destination(), "wrong destination");

  if (words > words_remaining()) {
    return ParMarkBitMap::would_overflow;
  }

  // The start_array must be updated even if the object is not moving.
  if (_start_array != NULL) {
    _start_array->allocate_block(destination());
  }

  if (destination() != source()) {
3468
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
    Copy::aligned_conjoint_words(source(), destination(), words);
  }

  oop moved_oop = (oop) destination();
  moved_oop->update_contents(compaction_manager());
  assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");

  update_state(words);
  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
}

UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
                                     ParCompactionManager* cm,
                                     PSParallelCompact::SpaceId space_id) :
  ParMarkBitMapClosure(mbm, cm),
  _space_id(space_id),
  _start_array(PSParallelCompact::start_array(space_id))
{
}

// Updates the references in the object to their new values.
ParMarkBitMapClosure::IterationStatus
UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  do_addr(addr);
  return ParMarkBitMap::incomplete;
}

// Prepare for compaction.  This method is executed once
// (i.e., by a single thread) before compaction.
// Save the updated location of the intArrayKlassObj for
// filling holes in the dense prefix.
void PSParallelCompact::compact_prologue() {
  _updated_int_array_klass_obj = (klassOop)
    summary_data().calc_new_pointer(Universe::intArrayKlassObj());
}