psParallelCompact.cpp 143.1 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_psParallelCompact.cpp.incl"

#include <math.h>

// All sizes are in HeapWords.
const size_t ParallelCompactData::Log2ChunkSize  = 9; // 512 words
const size_t ParallelCompactData::ChunkSize      = (size_t)1 << Log2ChunkSize;
const size_t ParallelCompactData::ChunkSizeBytes = ChunkSize << LogHeapWordSize;
const size_t ParallelCompactData::ChunkSizeOffsetMask = ChunkSize - 1;
const size_t ParallelCompactData::ChunkAddrOffsetMask = ChunkSizeBytes - 1;
const size_t ParallelCompactData::ChunkAddrMask  = ~ChunkAddrOffsetMask;

// 32-bit:  128 words covers 4 bitmap words
// 64-bit:  128 words covers 2 bitmap words
const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
const size_t ParallelCompactData::BlockOffsetMask = BlockSize - 1;
const size_t ParallelCompactData::BlockMask       = ~BlockOffsetMask;

const size_t ParallelCompactData::BlocksPerChunk = ChunkSize / BlockSize;

const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_shift = 27;

const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_mask = ~0U << dc_shift;

const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_one = 0x1U << dc_shift;

const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::los_mask = ~dc_mask;

const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_claimed = 0x8U << dc_shift;

const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_completed = 0xcU << dc_shift;

#ifdef ASSERT
short   ParallelCompactData::BlockData::_cur_phase = 0;
#endif

SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
bool      PSParallelCompact::_print_phases = false;

ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;

double PSParallelCompact::_dwl_mean;
double PSParallelCompact::_dwl_std_dev;
double PSParallelCompact::_dwl_first_term;
double PSParallelCompact::_dwl_adjustment;
#ifdef  ASSERT
bool   PSParallelCompact::_dwl_initialized = false;
#endif  // #ifdef ASSERT

#ifdef VALIDATE_MARK_SWEEP
84
GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
D
duke 已提交
85 86 87 88 89
GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
size_t                  PSParallelCompact::_live_oops_index = 0;
size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
90 91
GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
D
duke 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
bool                    PSParallelCompact::_pointer_tracking = false;
bool                    PSParallelCompact::_root_tracking = true;

GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
#endif

// XXX beg - verification code; only works while we also mark in object headers
static void
verify_mark_bitmap(ParMarkBitMap& _mark_bitmap)
{
  ParallelScavengeHeap* heap = PSParallelCompact::gc_heap();

  PSPermGen* perm_gen = heap->perm_gen();
  PSOldGen* old_gen = heap->old_gen();
  PSYoungGen* young_gen = heap->young_gen();

  MutableSpace* perm_space = perm_gen->object_space();
  MutableSpace* old_space = old_gen->object_space();
  MutableSpace* eden_space = young_gen->eden_space();
  MutableSpace* from_space = young_gen->from_space();
  MutableSpace* to_space = young_gen->to_space();

  // 'from_space' here is the survivor space at the lower address.
  if (to_space->bottom() < from_space->bottom()) {
    from_space = to_space;
    to_space = young_gen->from_space();
  }

  HeapWord* boundaries[12];
  unsigned int bidx = 0;
  const unsigned int bidx_max = sizeof(boundaries) / sizeof(boundaries[0]);

  boundaries[0] = perm_space->bottom();
  boundaries[1] = perm_space->top();
  boundaries[2] = old_space->bottom();
  boundaries[3] = old_space->top();
  boundaries[4] = eden_space->bottom();
  boundaries[5] = eden_space->top();
  boundaries[6] = from_space->bottom();
  boundaries[7] = from_space->top();
  boundaries[8] = to_space->bottom();
  boundaries[9] = to_space->top();
  boundaries[10] = to_space->end();
  boundaries[11] = to_space->end();

  BitMap::idx_t beg_bit = 0;
  BitMap::idx_t end_bit;
  BitMap::idx_t tmp_bit;
  const BitMap::idx_t last_bit = _mark_bitmap.size();
  do {
    HeapWord* addr = _mark_bitmap.bit_to_addr(beg_bit);
    if (_mark_bitmap.is_marked(beg_bit)) {
      oop obj = (oop)addr;
      assert(obj->is_gc_marked(), "obj header is not marked");
      end_bit = _mark_bitmap.find_obj_end(beg_bit, last_bit);
      const size_t size = _mark_bitmap.obj_size(beg_bit, end_bit);
      assert(size == (size_t)obj->size(), "end bit wrong?");
      beg_bit = _mark_bitmap.find_obj_beg(beg_bit + 1, last_bit);
      assert(beg_bit > end_bit, "bit set in middle of an obj");
    } else {
      if (addr >= boundaries[bidx] && addr < boundaries[bidx + 1]) {
        // a dead object in the current space.
        oop obj = (oop)addr;
        end_bit = _mark_bitmap.addr_to_bit(addr + obj->size());
        assert(!obj->is_gc_marked(), "obj marked in header, not in bitmap");
        tmp_bit = beg_bit + 1;
        beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
        assert(beg_bit == end_bit, "beg bit set in unmarked obj");
        beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
        assert(beg_bit == end_bit, "end bit set in unmarked obj");
      } else if (addr < boundaries[bidx + 2]) {
        // addr is between top in the current space and bottom in the next.
        end_bit = beg_bit + pointer_delta(boundaries[bidx + 2], addr);
        tmp_bit = beg_bit;
        beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
        assert(beg_bit == end_bit, "beg bit set above top");
        beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
        assert(beg_bit == end_bit, "end bit set above top");
        bidx += 2;
      } else if (bidx < bidx_max - 2) {
        bidx += 2; // ???
      } else {
        tmp_bit = beg_bit;
        beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, last_bit);
        assert(beg_bit == last_bit, "beg bit set outside heap");
        beg_bit = _mark_bitmap.find_obj_end(tmp_bit, last_bit);
        assert(beg_bit == last_bit, "end bit set outside heap");
      }
    }
  } while (beg_bit < last_bit);
}
// XXX end - verification code; only works while we also mark in object headers

#ifndef PRODUCT
const char* PSParallelCompact::space_names[] = {
  "perm", "old ", "eden", "from", "to  "
};

void PSParallelCompact::print_chunk_ranges()
{
  tty->print_cr("space  bottom     top        end        new_top");
  tty->print_cr("------ ---------- ---------- ---------- ----------");

  for (unsigned int id = 0; id < last_space_id; ++id) {
    const MutableSpace* space = _space_info[id].space();
    tty->print_cr("%u %s "
203 204
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
D
duke 已提交
205 206 207 208 209 210 211 212 213 214 215
                  id, space_names[id],
                  summary_data().addr_to_chunk_idx(space->bottom()),
                  summary_data().addr_to_chunk_idx(space->top()),
                  summary_data().addr_to_chunk_idx(space->end()),
                  summary_data().addr_to_chunk_idx(_space_info[id].new_top()));
  }
}

void
print_generic_summary_chunk(size_t i, const ParallelCompactData::ChunkData* c)
{
216 217
#define CHUNK_IDX_FORMAT        SIZE_FORMAT_W(7)
#define CHUNK_DATA_FORMAT       SIZE_FORMAT_W(5)
D
duke 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

  ParallelCompactData& sd = PSParallelCompact::summary_data();
  size_t dci = c->destination() ? sd.addr_to_chunk_idx(c->destination()) : 0;
  tty->print_cr(CHUNK_IDX_FORMAT " " PTR_FORMAT " "
                CHUNK_IDX_FORMAT " " PTR_FORMAT " "
                CHUNK_DATA_FORMAT " " CHUNK_DATA_FORMAT " "
                CHUNK_DATA_FORMAT " " CHUNK_IDX_FORMAT " %d",
                i, c->data_location(), dci, c->destination(),
                c->partial_obj_size(), c->live_obj_size(),
                c->data_size(), c->source_chunk(), c->destination_count());

#undef  CHUNK_IDX_FORMAT
#undef  CHUNK_DATA_FORMAT
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           HeapWord* const beg_addr,
                           HeapWord* const end_addr)
{
  size_t total_words = 0;
  size_t i = summary_data.addr_to_chunk_idx(beg_addr);
  const size_t last = summary_data.addr_to_chunk_idx(end_addr);
  HeapWord* pdest = 0;

  while (i <= last) {
    ParallelCompactData::ChunkData* c = summary_data.chunk(i);
    if (c->data_size() != 0 || c->destination() != pdest) {
      print_generic_summary_chunk(i, c);
      total_words += c->data_size();
      pdest = c->destination();
    }
    ++i;
  }

  tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info)
{
  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
    const MutableSpace* space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(),
                               MAX2(space->top(), space_info[id].new_top()));
  }
}

void
print_initial_summary_chunk(size_t i,
                            const ParallelCompactData::ChunkData* c,
                            bool newline = true)
{
272 273 274
  tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
D
duke 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
             i, c->destination(),
             c->partial_obj_size(), c->live_obj_size(),
             c->data_size(), c->source_chunk(), c->destination_count());
  if (newline) tty->cr();
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           const MutableSpace* space) {
  if (space->top() == space->bottom()) {
    return;
  }

  const size_t chunk_size = ParallelCompactData::ChunkSize;
  HeapWord* const top_aligned_up = summary_data.chunk_align_up(space->top());
  const size_t end_chunk = summary_data.addr_to_chunk_idx(top_aligned_up);
  const ParallelCompactData::ChunkData* c = summary_data.chunk(end_chunk - 1);
  HeapWord* end_addr = c->destination() + c->data_size();
  const size_t live_in_space = pointer_delta(end_addr, space->bottom());

  // Print (and count) the full chunks at the beginning of the space.
  size_t full_chunk_count = 0;
  size_t i = summary_data.addr_to_chunk_idx(space->bottom());
  while (i < end_chunk && summary_data.chunk(i)->data_size() == chunk_size) {
    print_initial_summary_chunk(i, summary_data.chunk(i));
    ++full_chunk_count;
    ++i;
  }

  size_t live_to_right = live_in_space - full_chunk_count * chunk_size;

  double max_reclaimed_ratio = 0.0;
  size_t max_reclaimed_ratio_chunk = 0;
  size_t max_dead_to_right = 0;
  size_t max_live_to_right = 0;

  // Print the 'reclaimed ratio' for chunks while there is something live in the
  // chunk or to the right of it.  The remaining chunks are empty (and
  // uninteresting), and computing the ratio will result in division by 0.
  while (i < end_chunk && live_to_right > 0) {
    c = summary_data.chunk(i);
    HeapWord* const chunk_addr = summary_data.chunk_to_addr(i);
    const size_t used_to_right = pointer_delta(space->top(), chunk_addr);
    const size_t dead_to_right = used_to_right - live_to_right;
    const double reclaimed_ratio = double(dead_to_right) / live_to_right;

    if (reclaimed_ratio > max_reclaimed_ratio) {
            max_reclaimed_ratio = reclaimed_ratio;
            max_reclaimed_ratio_chunk = i;
            max_dead_to_right = dead_to_right;
            max_live_to_right = live_to_right;
    }

    print_initial_summary_chunk(i, c, false);
329
    tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
D
duke 已提交
330 331 332 333 334 335 336 337 338 339 340
                  reclaimed_ratio, dead_to_right, live_to_right);

    live_to_right -= c->data_size();
    ++i;
  }

  // Any remaining chunks are empty.  Print one more if there is one.
  if (i < end_chunk) {
    print_initial_summary_chunk(i, summary_data.chunk(i));
  }

341 342
  tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
                "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
D
duke 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
                max_reclaimed_ratio_chunk, max_dead_to_right,
                max_live_to_right, max_reclaimed_ratio);
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info) {
  unsigned int id = PSParallelCompact::perm_space_id;
  const MutableSpace* space;
  do {
    space = space_info[id].space();
    print_initial_summary_data(summary_data, space);
  } while (++id < PSParallelCompact::eden_space_id);

  do {
    space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(), space->top());
  } while (++id < PSParallelCompact::last_space_id);
}
#endif  // #ifndef PRODUCT

#ifdef  ASSERT
size_t add_obj_count;
size_t add_obj_size;
size_t mark_bitmap_count;
size_t mark_bitmap_size;
#endif  // #ifdef ASSERT

ParallelCompactData::ParallelCompactData()
{
  _region_start = 0;

  _chunk_vspace = 0;
  _chunk_data = 0;
  _chunk_count = 0;

  _block_vspace = 0;
  _block_data = 0;
  _block_count = 0;
}

bool ParallelCompactData::initialize(MemRegion covered_region)
{
  _region_start = covered_region.start();
  const size_t region_size = covered_region.word_size();
  DEBUG_ONLY(_region_end = _region_start + region_size;)

  assert(chunk_align_down(_region_start) == _region_start,
         "region start not aligned");
  assert((region_size & ChunkSizeOffsetMask) == 0,
         "region size not a multiple of ChunkSize");

  bool result = initialize_chunk_data(region_size);

  // Initialize the block data if it will be used for updating pointers, or if
  // this is a debug build.
  if (!UseParallelOldGCChunkPointerCalc || trueInDebug) {
    result = result && initialize_block_data(region_size);
  }

  return result;
}

PSVirtualSpace*
ParallelCompactData::create_vspace(size_t count, size_t element_size)
{
  const size_t raw_bytes = count * element_size;
  const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
  const size_t granularity = os::vm_allocation_granularity();
  const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));

  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
    MAX2(page_sz, granularity);
416
  ReservedSpace rs(bytes, rs_align, rs_align > 0);
D
duke 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
  os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
                       rs.size());
  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
  if (vspace != 0) {
    if (vspace->expand_by(bytes)) {
      return vspace;
    }
    delete vspace;
  }

  return 0;
}

bool ParallelCompactData::initialize_chunk_data(size_t region_size)
{
  const size_t count = (region_size + ChunkSizeOffsetMask) >> Log2ChunkSize;
  _chunk_vspace = create_vspace(count, sizeof(ChunkData));
  if (_chunk_vspace != 0) {
    _chunk_data = (ChunkData*)_chunk_vspace->reserved_low_addr();
    _chunk_count = count;
    return true;
  }
  return false;
}

bool ParallelCompactData::initialize_block_data(size_t region_size)
{
  const size_t count = (region_size + BlockOffsetMask) >> Log2BlockSize;
  _block_vspace = create_vspace(count, sizeof(BlockData));
  if (_block_vspace != 0) {
    _block_data = (BlockData*)_block_vspace->reserved_low_addr();
    _block_count = count;
    return true;
  }
  return false;
}

void ParallelCompactData::clear()
{
  if (_block_data) {
    memset(_block_data, 0, _block_vspace->committed_size());
  }
  memset(_chunk_data, 0, _chunk_vspace->committed_size());
}

void ParallelCompactData::clear_range(size_t beg_chunk, size_t end_chunk) {
  assert(beg_chunk <= _chunk_count, "beg_chunk out of range");
  assert(end_chunk <= _chunk_count, "end_chunk out of range");
  assert(ChunkSize % BlockSize == 0, "ChunkSize not a multiple of BlockSize");

  const size_t chunk_cnt = end_chunk - beg_chunk;

  if (_block_data) {
    const size_t blocks_per_chunk = ChunkSize / BlockSize;
    const size_t beg_block = beg_chunk * blocks_per_chunk;
    const size_t block_cnt = chunk_cnt * blocks_per_chunk;
    memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
  }
  memset(_chunk_data + beg_chunk, 0, chunk_cnt * sizeof(ChunkData));
}

HeapWord* ParallelCompactData::partial_obj_end(size_t chunk_idx) const
{
  const ChunkData* cur_cp = chunk(chunk_idx);
  const ChunkData* const end_cp = chunk(chunk_count() - 1);

  HeapWord* result = chunk_to_addr(chunk_idx);
  if (cur_cp < end_cp) {
    do {
      result += cur_cp->partial_obj_size();
    } while (cur_cp->partial_obj_size() == ChunkSize && ++cur_cp < end_cp);
  }
  return result;
}

void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
{
  const size_t obj_ofs = pointer_delta(addr, _region_start);
  const size_t beg_chunk = obj_ofs >> Log2ChunkSize;
  const size_t end_chunk = (obj_ofs + len - 1) >> Log2ChunkSize;

  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)

  if (beg_chunk == end_chunk) {
    // All in one chunk.
    _chunk_data[beg_chunk].add_live_obj(len);
    return;
  }

  // First chunk.
  const size_t beg_ofs = chunk_offset(addr);
  _chunk_data[beg_chunk].add_live_obj(ChunkSize - beg_ofs);

  klassOop klass = ((oop)addr)->klass();
  // Middle chunks--completely spanned by this object.
  for (size_t chunk = beg_chunk + 1; chunk < end_chunk; ++chunk) {
    _chunk_data[chunk].set_partial_obj_size(ChunkSize);
    _chunk_data[chunk].set_partial_obj_addr(addr);
  }

  // Last chunk.
  const size_t end_ofs = chunk_offset(addr + len - 1);
  _chunk_data[end_chunk].set_partial_obj_size(end_ofs + 1);
  _chunk_data[end_chunk].set_partial_obj_addr(addr);
}

void
ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
{
  assert(chunk_offset(beg) == 0, "not ChunkSize aligned");
  assert(chunk_offset(end) == 0, "not ChunkSize aligned");

  size_t cur_chunk = addr_to_chunk_idx(beg);
  const size_t end_chunk = addr_to_chunk_idx(end);
  HeapWord* addr = beg;
  while (cur_chunk < end_chunk) {
    _chunk_data[cur_chunk].set_destination(addr);
    _chunk_data[cur_chunk].set_destination_count(0);
    _chunk_data[cur_chunk].set_source_chunk(cur_chunk);
    _chunk_data[cur_chunk].set_data_location(addr);

    // Update live_obj_size so the chunk appears completely full.
    size_t live_size = ChunkSize - _chunk_data[cur_chunk].partial_obj_size();
    _chunk_data[cur_chunk].set_live_obj_size(live_size);

    ++cur_chunk;
    addr += ChunkSize;
  }
}

bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
                                    HeapWord* source_beg, HeapWord* source_end,
                                    HeapWord** target_next,
                                    HeapWord** source_next) {
  // This is too strict.
  // assert(chunk_offset(source_beg) == 0, "not ChunkSize aligned");

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("tb=" PTR_FORMAT " te=" PTR_FORMAT " "
                  "sb=" PTR_FORMAT " se=" PTR_FORMAT " "
                  "tn=" PTR_FORMAT " sn=" PTR_FORMAT,
                  target_beg, target_end,
                  source_beg, source_end,
                  target_next != 0 ? *target_next : (HeapWord*) 0,
                  source_next != 0 ? *source_next : (HeapWord*) 0);
  }

  size_t cur_chunk = addr_to_chunk_idx(source_beg);
  const size_t end_chunk = addr_to_chunk_idx(chunk_align_up(source_end));

  HeapWord *dest_addr = target_beg;
  while (cur_chunk < end_chunk) {
    size_t words = _chunk_data[cur_chunk].data_size();

#if     1
    assert(pointer_delta(target_end, dest_addr) >= words,
           "source region does not fit into target region");
#else
    // XXX - need some work on the corner cases here.  If the chunk does not
    // fit, then must either make sure any partial_obj from the chunk fits, or
    // 'undo' the initial part of the partial_obj that is in the previous chunk.
    if (dest_addr + words >= target_end) {
      // Let the caller know where to continue.
      *target_next = dest_addr;
      *source_next = chunk_to_addr(cur_chunk);
      return false;
    }
#endif  // #if 1

    _chunk_data[cur_chunk].set_destination(dest_addr);

    // Set the destination_count for cur_chunk, and if necessary, update
    // source_chunk for a destination chunk.  The source_chunk field is updated
    // if cur_chunk is the first (left-most) chunk to be copied to a destination
    // chunk.
    //
    // The destination_count calculation is a bit subtle.  A chunk that has data
    // that compacts into itself does not count itself as a destination.  This
    // maintains the invariant that a zero count means the chunk is available
    // and can be claimed and then filled.
    if (words > 0) {
      HeapWord* const last_addr = dest_addr + words - 1;
      const size_t dest_chunk_1 = addr_to_chunk_idx(dest_addr);
      const size_t dest_chunk_2 = addr_to_chunk_idx(last_addr);
#if     0
      // Initially assume that the destination chunks will be the same and
      // adjust the value below if necessary.  Under this assumption, if
      // cur_chunk == dest_chunk_2, then cur_chunk will be compacted completely
      // into itself.
      uint destination_count = cur_chunk == dest_chunk_2 ? 0 : 1;
      if (dest_chunk_1 != dest_chunk_2) {
        // Destination chunks differ; adjust destination_count.
        destination_count += 1;
        // Data from cur_chunk will be copied to the start of dest_chunk_2.
        _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
      } else if (chunk_offset(dest_addr) == 0) {
        // Data from cur_chunk will be copied to the start of the destination
        // chunk.
        _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
      }
#else
      // Initially assume that the destination chunks will be different and
      // adjust the value below if necessary.  Under this assumption, if
      // cur_chunk == dest_chunk2, then cur_chunk will be compacted partially
      // into dest_chunk_1 and partially into itself.
      uint destination_count = cur_chunk == dest_chunk_2 ? 1 : 2;
      if (dest_chunk_1 != dest_chunk_2) {
        // Data from cur_chunk will be copied to the start of dest_chunk_2.
        _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
      } else {
        // Destination chunks are the same; adjust destination_count.
        destination_count -= 1;
        if (chunk_offset(dest_addr) == 0) {
          // Data from cur_chunk will be copied to the start of the destination
          // chunk.
          _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
        }
      }
#endif  // #if 0

      _chunk_data[cur_chunk].set_destination_count(destination_count);
      _chunk_data[cur_chunk].set_data_location(chunk_to_addr(cur_chunk));
      dest_addr += words;
    }

    ++cur_chunk;
  }

  *target_next = dest_addr;
  return true;
}

bool ParallelCompactData::partial_obj_ends_in_block(size_t block_index) {
  HeapWord* block_addr = block_to_addr(block_index);
  HeapWord* block_end_addr = block_addr + BlockSize;
  size_t chunk_index = addr_to_chunk_idx(block_addr);
  HeapWord* partial_obj_end_addr = partial_obj_end(chunk_index);

  // An object that ends at the end of the block, ends
  // in the block (the last word of the object is to
  // the left of the end).
  if ((block_addr < partial_obj_end_addr) &&
      (partial_obj_end_addr <= block_end_addr)) {
    return true;
  }

  return false;
}

HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
  HeapWord* result = NULL;
  if (UseParallelOldGCChunkPointerCalc) {
    result = chunk_calc_new_pointer(addr);
  } else {
    result = block_calc_new_pointer(addr);
  }
  return result;
}

// This method is overly complicated (expensive) to be called
// for every reference.
// Try to restructure this so that a NULL is returned if
// the object is dead.  But don't wast the cycles to explicitly check
// that it is dead since only live objects should be passed in.

HeapWord* ParallelCompactData::chunk_calc_new_pointer(HeapWord* addr) {
  assert(addr != NULL, "Should detect NULL oop earlier");
  assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
#ifdef ASSERT
  if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
    gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
  }
#endif
  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");

  // Chunk covering the object.
  size_t chunk_index = addr_to_chunk_idx(addr);
  const ChunkData* const chunk_ptr = chunk(chunk_index);
  HeapWord* const chunk_addr = chunk_align_down(addr);

  assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
  assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");

  HeapWord* result = chunk_ptr->destination();

  // If all the data in the chunk is live, then the new location of the object
  // can be calculated from the destination of the chunk plus the offset of the
  // object in the chunk.
  if (chunk_ptr->data_size() == ChunkSize) {
    result += pointer_delta(addr, chunk_addr);
    return result;
  }

  // The new location of the object is
  //    chunk destination +
  //    size of the partial object extending onto the chunk +
  //    sizes of the live objects in the Chunk that are to the left of addr
  const size_t partial_obj_size = chunk_ptr->partial_obj_size();
  HeapWord* const search_start = chunk_addr + partial_obj_size;

  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
  size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));

  result += partial_obj_size + live_to_left;
  assert(result <= addr, "object cannot move to the right");
  return result;
}

HeapWord* ParallelCompactData::block_calc_new_pointer(HeapWord* addr) {
  assert(addr != NULL, "Should detect NULL oop earlier");
  assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
#ifdef ASSERT
  if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
    gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
  }
#endif
  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");

  // Chunk covering the object.
  size_t chunk_index = addr_to_chunk_idx(addr);
  const ChunkData* const chunk_ptr = chunk(chunk_index);
  HeapWord* const chunk_addr = chunk_align_down(addr);

  assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
  assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");

  HeapWord* result = chunk_ptr->destination();

  // If all the data in the chunk is live, then the new location of the object
  // can be calculated from the destination of the chunk plus the offset of the
  // object in the chunk.
  if (chunk_ptr->data_size() == ChunkSize) {
    result += pointer_delta(addr, chunk_addr);
    return result;
  }

  // The new location of the object is
  //    chunk destination +
  //    block offset +
  //    sizes of the live objects in the Block that are to the left of addr
  const size_t block_offset = addr_to_block_ptr(addr)->offset();
  HeapWord* const search_start = chunk_addr + block_offset;

  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
  size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));

  result += block_offset + live_to_left;
  assert(result <= addr, "object cannot move to the right");
  assert(result == chunk_calc_new_pointer(addr), "Should match");
  return result;
}

klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
  klassOop updated_klass;
  if (PSParallelCompact::should_update_klass(old_klass)) {
    updated_klass = (klassOop) calc_new_pointer(old_klass);
  } else {
    updated_klass = old_klass;
  }

  return updated_klass;
}

#ifdef  ASSERT
void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
{
  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
  const size_t* const end = (const size_t*)vspace->committed_high_addr();
  for (const size_t* p = beg; p < end; ++p) {
    assert(*p == 0, "not zero");
  }
}

void ParallelCompactData::verify_clear()
{
  verify_clear(_chunk_vspace);
  verify_clear(_block_vspace);
}
#endif  // #ifdef ASSERT

#ifdef NOT_PRODUCT
ParallelCompactData::ChunkData* debug_chunk(size_t chunk_index) {
  ParallelCompactData& sd = PSParallelCompact::summary_data();
  return sd.chunk(chunk_index);
}
#endif

elapsedTimer        PSParallelCompact::_accumulated_time;
unsigned int        PSParallelCompact::_total_invocations = 0;
unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
jlong               PSParallelCompact::_time_of_last_gc = 0;
CollectorCounters*  PSParallelCompact::_counters = NULL;
ParMarkBitMap       PSParallelCompact::_mark_bitmap;
ParallelCompactData PSParallelCompact::_summary_data;

PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
814 815 816 817 818 819 820

void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }

void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }

D
duke 已提交
821 822 823
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);

824 825
void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
D
duke 已提交
826

827
void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
D
duke 已提交
828

829 830
void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
D
duke 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

void PSParallelCompact::post_initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  MemRegion mr = heap->reserved_region();
  _ref_processor = ReferenceProcessor::create_ref_processor(
    mr,                         // span
    true,                       // atomic_discovery
    true,                       // mt_discovery
    &_is_alive_closure,
    ParallelGCThreads,
    ParallelRefProcEnabled);
  _counters = new CollectorCounters("PSParallelCompact", 1);

  // Initialize static fields in ParCompactionManager.
  ParCompactionManager::initialize(mark_bitmap());
}

bool PSParallelCompact::initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  MemRegion mr = heap->reserved_region();

  // Was the old gen get allocated successfully?
  if (!heap->old_gen()->is_allocated()) {
    return false;
  }

  initialize_space_info();
  initialize_dead_wood_limiter();

  if (!_mark_bitmap.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate bit map for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  if (!_summary_data.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate tables for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  return true;
}

void PSParallelCompact::initialize_space_info()
{
  memset(&_space_info, 0, sizeof(_space_info));

  ParallelScavengeHeap* heap = gc_heap();
  PSYoungGen* young_gen = heap->young_gen();
  MutableSpace* perm_space = heap->perm_gen()->object_space();

  _space_info[perm_space_id].set_space(perm_space);
  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
  _space_info[eden_space_id].set_space(young_gen->eden_space());
  _space_info[from_space_id].set_space(young_gen->from_space());
  _space_info[to_space_id].set_space(young_gen->to_space());

  _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());

  _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
                  _space_info[perm_space_id].min_dense_prefix());
  }
}

void PSParallelCompact::initialize_dead_wood_limiter()
{
  const size_t max = 100;
  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
  DEBUG_ONLY(_dwl_initialized = true;)
  _dwl_adjustment = normal_distribution(1.0);
}

// Simple class for storing info about the heap at the start of GC, to be used
// after GC for comparison/printing.
class PreGCValues {
public:
  PreGCValues() { }
  PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }

  void fill(ParallelScavengeHeap* heap) {
    _heap_used      = heap->used();
    _young_gen_used = heap->young_gen()->used_in_bytes();
    _old_gen_used   = heap->old_gen()->used_in_bytes();
    _perm_gen_used  = heap->perm_gen()->used_in_bytes();
  };

  size_t heap_used() const      { return _heap_used; }
  size_t young_gen_used() const { return _young_gen_used; }
  size_t old_gen_used() const   { return _old_gen_used; }
  size_t perm_gen_used() const  { return _perm_gen_used; }

private:
  size_t _heap_used;
  size_t _young_gen_used;
  size_t _old_gen_used;
  size_t _perm_gen_used;
};

void
PSParallelCompact::clear_data_covering_space(SpaceId id)
{
  // At this point, top is the value before GC, new_top() is the value that will
  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
  // should be marked above top.  The summary data is cleared to the larger of
  // top & new_top.
  MutableSpace* const space = _space_info[id].space();
  HeapWord* const bot = space->bottom();
  HeapWord* const top = space->top();
  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());

  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
  _mark_bitmap.clear_range(beg_bit, end_bit);

  const size_t beg_chunk = _summary_data.addr_to_chunk_idx(bot);
  const size_t end_chunk =
    _summary_data.addr_to_chunk_idx(_summary_data.chunk_align_up(max_top));
  _summary_data.clear_range(beg_chunk, end_chunk);
}

void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
{
  // Update the from & to space pointers in space_info, since they are swapped
  // at each young gen gc.  Do the update unconditionally (even though a
  // promotion failure does not swap spaces) because an unknown number of minor
  // collections will have swapped the spaces an unknown number of times.
  TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
  ParallelScavengeHeap* heap = gc_heap();
  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
  _space_info[to_space_id].set_space(heap->young_gen()->to_space());

  pre_gc_values->fill(heap);

  ParCompactionManager::reset();
  NOT_PRODUCT(_mark_bitmap.reset_counters());
  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)

  // Increment the invocation count
979
  heap->increment_total_collections(true);
D
duke 已提交
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

  // We need to track unique mark sweep invocations as well.
  _total_invocations++;

  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

  // Fill in TLABs
  heap->accumulate_statistics_all_tlabs();
  heap->ensure_parsability(true);  // retire TLABs

  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyBeforeGC:");
    Universe::verify(true);
  }

  // Verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyBeforeGC) {
    heap->old_gen()->verify_object_start_array();
    heap->perm_gen()->verify_object_start_array();
  }

  DEBUG_ONLY(mark_bitmap()->verify_clear();)
  DEBUG_ONLY(summary_data().verify_clear();)
J
jcoomes 已提交
1007 1008 1009

  // Have worker threads release resources the next time they run a task.
  gc_task_manager()->release_all_resources();
D
duke 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
}

void PSParallelCompact::post_compact()
{
  TraceTime tm("post compact", print_phases(), true, gclog_or_tty);

  // Clear the marking bitmap and summary data and update top() in each space.
  for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
    clear_data_covering_space(SpaceId(id));
    _space_info[id].space()->set_top(_space_info[id].new_top());
  }

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  MutableSpace* const to_space   = _space_info[to_space_id].space();

  ParallelScavengeHeap* heap = gc_heap();
  bool eden_empty = eden_space->is_empty();
  if (!eden_empty) {
    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
                                            heap->young_gen(), heap->old_gen());
  }

  // Update heap occupancy information which is used as input to the soft ref
  // clearing policy at the next gc.
  Universe::update_heap_info_at_gc();

  bool young_gen_empty = eden_empty && from_space->is_empty() &&
    to_space->is_empty();

  BarrierSet* bs = heap->barrier_set();
  if (bs->is_a(BarrierSet::ModRef)) {
    ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
    MemRegion old_mr = heap->old_gen()->reserved();
    MemRegion perm_mr = heap->perm_gen()->reserved();
    assert(perm_mr.end() <= old_mr.start(), "Generations out of order");

    if (young_gen_empty) {
      modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
    } else {
      modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
    }
  }

  Threads::gc_epilogue();
  CodeCache::gc_epilogue();

  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

  ref_processor()->enqueue_discovered_references(NULL);

1061 1062 1063 1064
  if (ZapUnusedHeapArea) {
    heap->gen_mangle_unused_area();
  }

D
duke 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
  // Update time of last GC
  reset_millis_since_last_gc();
}

HeapWord*
PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
                                                    bool maximum_compaction)
{
  const size_t chunk_size = ParallelCompactData::ChunkSize;
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
  const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(space->bottom());
  const ChunkData* const end_cp = sd.addr_to_chunk_ptr(top_aligned_up);

  // Skip full chunks at the beginning of the space--they are necessarily part
  // of the dense prefix.
  size_t full_count = 0;
  const ChunkData* cp;
  for (cp = beg_cp; cp < end_cp && cp->data_size() == chunk_size; ++cp) {
    ++full_count;
  }

  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  if (maximum_compaction || cp == end_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
    return sd.chunk_to_addr(cp);
  }

  HeapWord* const new_top = _space_info[id].new_top();
  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double cur_density = double(space_live) / space_capacity;
  const double deadwood_density =
    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
                  cur_density, deadwood_density, deadwood_goal);
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
  }

  // XXX - Use binary search?
  HeapWord* dense_prefix = sd.chunk_to_addr(cp);
  const ChunkData* full_cp = cp;
  const ChunkData* const top_cp = sd.addr_to_chunk_ptr(space->top() - 1);
  while (cp < end_cp) {
    HeapWord* chunk_destination = cp->destination();
    const size_t cur_deadwood = pointer_delta(dense_prefix, chunk_destination);
    if (TraceParallelOldGCDensePrefix && Verbose) {
1124 1125
      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
                    "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
D
duke 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
                    sd.chunk(cp), chunk_destination,
                    dense_prefix, cur_deadwood);
    }

    if (cur_deadwood >= deadwood_goal) {
      // Found the chunk that has the correct amount of deadwood to the left.
      // This typically occurs after crossing a fairly sparse set of chunks, so
      // iterate backwards over those sparse chunks, looking for the chunk that
      // has the lowest density of live objects 'to the right.'
      size_t space_to_left = sd.chunk(cp) * chunk_size;
      size_t live_to_left = space_to_left - cur_deadwood;
      size_t space_to_right = space_capacity - space_to_left;
      size_t live_to_right = space_live - live_to_left;
      double density_to_right = double(live_to_right) / space_to_right;
      while (cp > full_cp) {
        --cp;
        const size_t prev_chunk_live_to_right = live_to_right - cp->data_size();
        const size_t prev_chunk_space_to_right = space_to_right + chunk_size;
        double prev_chunk_density_to_right =
          double(prev_chunk_live_to_right) / prev_chunk_space_to_right;
        if (density_to_right <= prev_chunk_density_to_right) {
          return dense_prefix;
        }
        if (TraceParallelOldGCDensePrefix && Verbose) {
1150
          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
D
duke 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
                        "pc_d2r=%10.8f", sd.chunk(cp), density_to_right,
                        prev_chunk_density_to_right);
        }
        dense_prefix -= chunk_size;
        live_to_right = prev_chunk_live_to_right;
        space_to_right = prev_chunk_space_to_right;
        density_to_right = prev_chunk_density_to_right;
      }
      return dense_prefix;
    }

    dense_prefix += chunk_size;
    ++cp;
  }

  return dense_prefix;
}

#ifndef PRODUCT
void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
                                                 const SpaceId id,
                                                 const bool maximum_compaction,
                                                 HeapWord* const addr)
{
  const size_t chunk_idx = summary_data().addr_to_chunk_idx(addr);
  ChunkData* const cp = summary_data().chunk(chunk_idx);
  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const new_top = _space_info[id].new_top();

  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t dead_to_left = pointer_delta(addr, cp->destination());
  const size_t space_cap = space->capacity_in_words();
  const double dead_to_left_pct = double(dead_to_left) / space_cap;
  const size_t live_to_right = new_top - cp->destination();
  const size_t dead_to_right = space->top() - addr - live_to_right;

1187
  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
D
duke 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
                "spl=" SIZE_FORMAT " "
                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
                " ratio=%10.8f",
                algorithm, addr, chunk_idx,
                space_live,
                dead_to_left, dead_to_left_pct,
                dead_to_right, live_to_right,
                double(dead_to_right) / live_to_right);
}
#endif  // #ifndef PRODUCT

// Return a fraction indicating how much of the generation can be treated as
// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
// based on the density of live objects in the generation to determine a limit,
// which is then adjusted so the return value is min_percent when the density is
// 1.
//
// The following table shows some return values for a different values of the
// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
// min_percent is 1.
//
//                          fraction allowed as dead wood
//         -----------------------------------------------------------------
// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
// ------- ---------- ---------- ---------- ---------- ---------- ----------
// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000

double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
{
  assert(_dwl_initialized, "uninitialized");

  // The raw limit is the value of the normal distribution at x = density.
  const double raw_limit = normal_distribution(density);

  // Adjust the raw limit so it becomes the minimum when the density is 1.
  //
  // First subtract the adjustment value (which is simply the precomputed value
  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  // Then add the minimum value, so the minimum is returned when the density is
  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  const double min = double(min_percent) / 100.0;
  const double limit = raw_limit - _dwl_adjustment + min;
  return MAX2(limit, 0.0);
}

ParallelCompactData::ChunkData*
PSParallelCompact::first_dead_space_chunk(const ChunkData* beg,
                                          const ChunkData* end)
{
  const size_t chunk_size = ParallelCompactData::ChunkSize;
  ParallelCompactData& sd = summary_data();
  size_t left = sd.chunk(beg);
  size_t right = end > beg ? sd.chunk(end) - 1 : left;

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
    ChunkData* const middle_ptr = sd.chunk(middle);
    HeapWord* const dest = middle_ptr->destination();
    HeapWord* const addr = sd.chunk_to_addr(middle);
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    if (middle > left && dest < addr) {
      right = middle - 1;
    } else if (middle < right && middle_ptr->data_size() == chunk_size) {
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
  return sd.chunk(left);
}

ParallelCompactData::ChunkData*
PSParallelCompact::dead_wood_limit_chunk(const ChunkData* beg,
                                         const ChunkData* end,
                                         size_t dead_words)
{
  ParallelCompactData& sd = summary_data();
  size_t left = sd.chunk(beg);
  size_t right = end > beg ? sd.chunk(end) - 1 : left;

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
    ChunkData* const middle_ptr = sd.chunk(middle);
    HeapWord* const dest = middle_ptr->destination();
    HeapWord* const addr = sd.chunk_to_addr(middle);
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    const size_t dead_to_left = pointer_delta(addr, dest);
    if (middle > left && dead_to_left > dead_words) {
      right = middle - 1;
    } else if (middle < right && dead_to_left < dead_words) {
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
  return sd.chunk(left);
}

// The result is valid during the summary phase, after the initial summarization
// of each space into itself, and before final summarization.
inline double
PSParallelCompact::reclaimed_ratio(const ChunkData* const cp,
                                   HeapWord* const bottom,
                                   HeapWord* const top,
                                   HeapWord* const new_top)
{
  ParallelCompactData& sd = summary_data();

  assert(cp != NULL, "sanity");
  assert(bottom != NULL, "sanity");
  assert(top != NULL, "sanity");
  assert(new_top != NULL, "sanity");
  assert(top >= new_top, "summary data problem?");
  assert(new_top > bottom, "space is empty; should not be here");
  assert(new_top >= cp->destination(), "sanity");
  assert(top >= sd.chunk_to_addr(cp), "sanity");

  HeapWord* const destination = cp->destination();
  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  const size_t compacted_region_live = pointer_delta(new_top, destination);
  const size_t compacted_region_used = pointer_delta(top, sd.chunk_to_addr(cp));
  const size_t reclaimable = compacted_region_used - compacted_region_live;

  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  return double(reclaimable) / divisor;
}

// Return the address of the end of the dense prefix, a.k.a. the start of the
// compacted region.  The address is always on a chunk boundary.
//
// Completely full chunks at the left are skipped, since no compaction can occur
// in those chunks.  Then the maximum amount of dead wood to allow is computed,
// based on the density (amount live / capacity) of the generation; the chunk
// with approximately that amount of dead space to the left is identified as the
// limit chunk.  Chunks between the last completely full chunk and the limit
// chunk are scanned and the one that has the best (maximum) reclaimed_ratio()
// is selected.
HeapWord*
PSParallelCompact::compute_dense_prefix(const SpaceId id,
                                        bool maximum_compaction)
{
  const size_t chunk_size = ParallelCompactData::ChunkSize;
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const top = space->top();
  HeapWord* const top_aligned_up = sd.chunk_align_up(top);
  HeapWord* const new_top = _space_info[id].new_top();
  HeapWord* const new_top_aligned_up = sd.chunk_align_up(new_top);
  HeapWord* const bottom = space->bottom();
  const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(bottom);
  const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  const ChunkData* const new_top_cp = sd.addr_to_chunk_ptr(new_top_aligned_up);

  // Skip full chunks at the beginning of the space--they are necessarily part
  // of the dense prefix.
  const ChunkData* const full_cp = first_dead_space_chunk(beg_cp, new_top_cp);
  assert(full_cp->destination() == sd.chunk_to_addr(full_cp) ||
         space->is_empty(), "no dead space allowed to the left");
  assert(full_cp->data_size() < chunk_size || full_cp == new_top_cp - 1,
         "chunk must have dead space");

  // The gc number is saved whenever a maximum compaction is done, and used to
  // determine when the maximum compaction interval has expired.  This avoids
  // successive max compactions for different reasons.
  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
    total_invocations() == HeapFirstMaximumCompactionCount;
  if (maximum_compaction || full_cp == top_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
    return sd.chunk_to_addr(full_cp);
  }

  const size_t space_live = pointer_delta(new_top, bottom);
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double density = double(space_live) / double(space_capacity);
  const size_t min_percent_free =
          id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
  const double limiter = dead_wood_limiter(density, min_percent_free);
  const size_t dead_wood_max = space_used - space_live;
  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
                                      dead_wood_max);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
    tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
                  density, min_percent_free, limiter,
                  dead_wood_max, dead_wood_limit);
  }

  // Locate the chunk with the desired amount of dead space to the left.
  const ChunkData* const limit_cp =
    dead_wood_limit_chunk(full_cp, top_cp, dead_wood_limit);

  // Scan from the first chunk with dead space to the limit chunk and find the
  // one with the best (largest) reclaimed ratio.
  double best_ratio = 0.0;
  const ChunkData* best_cp = full_cp;
  for (const ChunkData* cp = full_cp; cp < limit_cp; ++cp) {
    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
    if (tmp_ratio > best_ratio) {
      best_cp = cp;
      best_ratio = tmp_ratio;
    }
  }

#if     0
  // Something to consider:  if the chunk with the best ratio is 'close to' the
  // first chunk w/free space, choose the first chunk with free space
  // ("first-free").  The first-free chunk is usually near the start of the
  // heap, which means we are copying most of the heap already, so copy a bit
  // more to get complete compaction.
  if (pointer_delta(best_cp, full_cp, sizeof(ChunkData)) < 4) {
    _maximum_compaction_gc_num = total_invocations();
    best_cp = full_cp;
  }
#endif  // #if 0

  return sd.chunk_to_addr(best_cp);
}

void PSParallelCompact::summarize_spaces_quick()
{
  for (unsigned int i = 0; i < last_space_id; ++i) {
    const MutableSpace* space = _space_info[i].space();
    bool result = _summary_data.summarize(space->bottom(), space->end(),
                                          space->bottom(), space->top(),
                                          _space_info[i].new_top_addr());
    assert(result, "should never fail");
    _space_info[i].set_dense_prefix(space->bottom());
  }
}

void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
{
  HeapWord* const dense_prefix_end = dense_prefix(id);
  const ChunkData* chunk = _summary_data.addr_to_chunk_ptr(dense_prefix_end);
  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  if (dead_space_crosses_boundary(chunk, dense_prefix_bit)) {
    // Only enough dead space is filled so that any remaining dead space to the
    // left is larger than the minimum filler object.  (The remainder is filled
    // during the copy/update phase.)
    //
    // The size of the dead space to the right of the boundary is not a
    // concern, since compaction will be able to use whatever space is
    // available.
    //
    // Here '||' is the boundary, 'x' represents a don't care bit and a box
    // surrounds the space to be filled with an object.
    //
    // In the 32-bit VM, each bit represents two 32-bit words:
    //                              +---+
    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //                              +---+
    //
    // In the 64-bit VM, each bit represents one 64-bit word:
    //                              +------------+
    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
    //                              +------------+
    //                          +-------+
    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
    //                          +-------+
    //                      +-----------+
    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
    //                      +-----------+
    //                          +-------+
    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //                          +-------+

    // Initially assume case a, c or e will apply.
    size_t obj_len = (size_t)oopDesc::header_size();
    HeapWord* obj_beg = dense_prefix_end - obj_len;

#ifdef  _LP64
    if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
      // Case b above.
      obj_beg = dense_prefix_end - 1;
    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
      // Case d above.
      obj_beg = dense_prefix_end - 3;
      obj_len = 3;
    }
#endif  // #ifdef _LP64

    MemRegion region(obj_beg, obj_len);
    SharedHeap::fill_region_with_object(region);
    _mark_bitmap.mark_obj(obj_beg, obj_len);
    _summary_data.add_obj(obj_beg, obj_len);
    assert(start_array(id) != NULL, "sanity");
    start_array(id)->allocate_block(obj_beg);
  }
}

void
PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
{
  assert(id < last_space_id, "id out of range");
1527 1528
  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
         "should have been set in summarize_spaces_quick()");
D
duke 已提交
1529 1530

  const MutableSpace* space = _space_info[id].space();
1531 1532 1533
  if (_space_info[id].new_top() != space->bottom()) {
    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
    _space_info[id].set_dense_prefix(dense_prefix_end);
D
duke 已提交
1534 1535

#ifndef PRODUCT
1536 1537 1538 1539 1540 1541
    if (TraceParallelOldGCDensePrefix) {
      print_dense_prefix_stats("ratio", id, maximum_compaction,
                               dense_prefix_end);
      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
      print_dense_prefix_stats("density", id, maximum_compaction, addr);
    }
D
duke 已提交
1542 1543
#endif  // #ifndef PRODUCT

1544 1545 1546 1547 1548 1549 1550 1551
    // If dead space crosses the dense prefix boundary, it is (at least
    // partially) filled with a dummy object, marked live and added to the
    // summary data.  This simplifies the copy/update phase and must be done
    // before the final locations of objects are determined, to prevent leaving
    // a fragment of dead space that is too small to fill with an object.
    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
      fill_dense_prefix_end(id);
    }
D
duke 已提交
1552

1553 1554 1555 1556 1557 1558
    // Compute the destination of each Chunk, and thus each object.
    _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
    _summary_data.summarize(dense_prefix_end, space->end(),
                            dense_prefix_end, space->top(),
                            _space_info[id].new_top_addr());
  }
D
duke 已提交
1559 1560 1561

  if (TraceParallelOldGCSummaryPhase) {
    const size_t chunk_size = ParallelCompactData::ChunkSize;
1562
    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
D
duke 已提交
1563 1564
    const size_t dp_chunk = _summary_data.addr_to_chunk_idx(dense_prefix_end);
    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1565 1566
    HeapWord* const new_top = _space_info[id].new_top();
    const HeapWord* nt_aligned_up = _summary_data.chunk_align_up(new_top);
D
duke 已提交
1567 1568 1569 1570 1571 1572
    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
    tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
                  "dp_chunk=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
                  "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
                  id, space->capacity_in_words(), dense_prefix_end,
                  dp_chunk, dp_words / chunk_size,
1573
                  cr_words / chunk_size, new_top);
D
duke 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
  }
}

void PSParallelCompact::summary_phase(ParCompactionManager* cm,
                                      bool maximum_compaction)
{
  EventMark m("2 summarize");
  TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  // trace("2");

#ifdef  ASSERT
  if (VerifyParallelOldWithMarkSweep  &&
      (PSParallelCompact::total_invocations() %
         VerifyParallelOldWithMarkSweepInterval) == 0) {
    verify_mark_bitmap(_mark_bitmap);
  }
  if (TraceParallelOldGCMarkingPhase) {
    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
                  "add_obj_bytes=" SIZE_FORMAT,
                  add_obj_count, add_obj_size * HeapWordSize);
    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
                  "mark_bitmap_bytes=" SIZE_FORMAT,
                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  }
#endif  // #ifdef ASSERT

  // Quick summarization of each space into itself, to see how much is live.
  summarize_spaces_quick();

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after summarizing each space to self");
    Universe::print();
    NOT_PRODUCT(print_chunk_ranges());
    if (Verbose) {
      NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
    }
  }

  // The amount of live data that will end up in old space (assuming it fits).
  size_t old_space_total_live = 0;
  unsigned int id;
  for (id = old_space_id; id < last_space_id; ++id) {
    old_space_total_live += pointer_delta(_space_info[id].new_top(),
                                          _space_info[id].space()->bottom());
  }

  const MutableSpace* old_space = _space_info[old_space_id].space();
  if (old_space_total_live > old_space->capacity_in_words()) {
    // XXX - should also try to expand
    maximum_compaction = true;
  } else if (!UseParallelOldGCDensePrefix) {
    maximum_compaction = true;
  }

  // Permanent and Old generations.
  summarize_space(perm_space_id, maximum_compaction);
  summarize_space(old_space_id, maximum_compaction);

  // Summarize the remaining spaces (those in the young gen) into old space.  If
  // the live data from a space doesn't fit, the existing summarization is left
  // intact, so the data is compacted down within the space itself.
  HeapWord** new_top_addr = _space_info[old_space_id].new_top_addr();
  HeapWord* const target_space_end = old_space->end();
  for (id = eden_space_id; id < last_space_id; ++id) {
    const MutableSpace* space = _space_info[id].space();
    const size_t live = pointer_delta(_space_info[id].new_top(),
                                      space->bottom());
    const size_t available = pointer_delta(target_space_end, *new_top_addr);
    if (live <= available) {
      // All the live data will fit.
      if (TraceParallelOldGCSummaryPhase) {
        tty->print_cr("summarizing %d into old_space @ " PTR_FORMAT,
                      id, *new_top_addr);
      }
      _summary_data.summarize(*new_top_addr, target_space_end,
                              space->bottom(), space->top(),
                              new_top_addr);

      // Reset the new_top value for the space.
      _space_info[id].set_new_top(space->bottom());

      // Clear the source_chunk field for each chunk in the space.
      ChunkData* beg_chunk = _summary_data.addr_to_chunk_ptr(space->bottom());
      ChunkData* end_chunk = _summary_data.addr_to_chunk_ptr(space->top() - 1);
      while (beg_chunk <= end_chunk) {
        beg_chunk->set_source_chunk(0);
        ++beg_chunk;
      }
    }
  }

  // Fill in the block data after any changes to the chunks have
  // been made.
#ifdef  ASSERT
  summarize_blocks(cm, perm_space_id);
  summarize_blocks(cm, old_space_id);
#else
  if (!UseParallelOldGCChunkPointerCalc) {
    summarize_blocks(cm, perm_space_id);
    summarize_blocks(cm, old_space_id);
  }
#endif

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after final summarization");
    Universe::print();
    NOT_PRODUCT(print_chunk_ranges());
    if (Verbose) {
      NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
    }
  }
}

// Fill in the BlockData.
// Iterate over the spaces and within each space iterate over
// the chunks and fill in the BlockData for each chunk.

void PSParallelCompact::summarize_blocks(ParCompactionManager* cm,
                                         SpaceId first_compaction_space_id) {
#if     0
  DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(1);)
  for (SpaceId cur_space_id = first_compaction_space_id;
       cur_space_id != last_space_id;
       cur_space_id = next_compaction_space_id(cur_space_id)) {
    // Iterate over the chunks in the space
    size_t start_chunk_index =
      _summary_data.addr_to_chunk_idx(space(cur_space_id)->bottom());
    BitBlockUpdateClosure bbu(mark_bitmap(),
                              cm,
                              start_chunk_index);
    // Iterate over blocks.
    for (size_t chunk_index =  start_chunk_index;
         chunk_index < _summary_data.chunk_count() &&
         _summary_data.chunk_to_addr(chunk_index) < space(cur_space_id)->top();
         chunk_index++) {

      // Reset the closure for the new chunk.  Note that the closure
      // maintains some data that does not get reset for each chunk
      // so a new instance of the closure is no appropriate.
      bbu.reset_chunk(chunk_index);

      // Start the iteration with the first live object.  This
      // may return the end of the chunk.  That is acceptable since
      // it will properly limit the iterations.
      ParMarkBitMap::idx_t left_offset = mark_bitmap()->addr_to_bit(
        _summary_data.first_live_or_end_in_chunk(chunk_index));

      // End the iteration at the end of the chunk.
      HeapWord* chunk_addr = _summary_data.chunk_to_addr(chunk_index);
      HeapWord* chunk_end = chunk_addr + ParallelCompactData::ChunkSize;
      ParMarkBitMap::idx_t right_offset =
        mark_bitmap()->addr_to_bit(chunk_end);

      // Blocks that have not objects starting in them can be
      // skipped because their data will never be used.
      if (left_offset < right_offset) {

        // Iterate through the objects in the chunk.
        ParMarkBitMap::idx_t last_offset =
          mark_bitmap()->pair_iterate(&bbu, left_offset, right_offset);

        // If last_offset is less than right_offset, then the iterations
        // terminated while it was looking for an end bit.  "last_offset"
        // is then the offset for the last start bit.  In this situation
        // the "offset" field for the next block to the right (_cur_block + 1)
        // will not have been update although there may be live data
        // to the left of the chunk.

        size_t cur_block_plus_1 = bbu.cur_block() + 1;
        HeapWord* cur_block_plus_1_addr =
        _summary_data.block_to_addr(bbu.cur_block()) +
        ParallelCompactData::BlockSize;
        HeapWord* last_offset_addr = mark_bitmap()->bit_to_addr(last_offset);
 #if 1  // This code works.  The else doesn't but should.  Why does it?
        // The current block (cur_block()) has already been updated.
        // The last block that may need to be updated is either the
        // next block (current block + 1) or the block where the
        // last object starts (which can be greater than the
        // next block if there were no objects found in intervening
        // blocks).
        size_t last_block =
          MAX2(bbu.cur_block() + 1,
               _summary_data.addr_to_block_idx(last_offset_addr));
 #else
        // The current block has already been updated.  The only block
        // that remains to be updated is the block where the last
        // object in the chunk starts.
        size_t last_block = _summary_data.addr_to_block_idx(last_offset_addr);
 #endif
        assert_bit_is_start(last_offset);
        assert((last_block == _summary_data.block_count()) ||
             (_summary_data.block(last_block)->raw_offset() == 0),
          "Should not have been set");
        // Is the last block still in the current chunk?  If still
        // in this chunk, update the last block (the counting that
        // included the current block is meant for the offset of the last
        // block).  If not in this chunk, do nothing.  Should not
        // update a block in the next chunk.
        if (ParallelCompactData::chunk_contains_block(bbu.chunk_index(),
                                                      last_block)) {
          if (last_offset < right_offset) {
            // The last object started in this chunk but ends beyond
            // this chunk.  Update the block for this last object.
            assert(mark_bitmap()->is_marked(last_offset), "Should be marked");
            // No end bit was found.  The closure takes care of
            // the cases where
            //   an objects crosses over into the next block
            //   an objects starts and ends in the next block
            // It does not handle the case where an object is
            // the first object in a later block and extends
            // past the end of the chunk (i.e., the closure
            // only handles complete objects that are in the range
            // it is given).  That object is handed back here
            // for any special consideration necessary.
            //
            // Is the first bit in the last block a start or end bit?
            //
            // If the partial object ends in the last block L,
            // then the 1st bit in L may be an end bit.
            //
            // Else does the last object start in a block after the current
            // block? A block AA will already have been updated if an
            // object ends in the next block AA+1.  An object found to end in
            // the AA+1 is the trigger that updates AA.  Objects are being
            // counted in the current block for updaing a following
            // block.  An object may start in later block
            // block but may extend beyond the last block in the chunk.
            // Updates are only done when the end of an object has been
            // found. If the last object (covered by block L) starts
            // beyond the current block, then no object ends in L (otherwise
            // L would be the current block).  So the first bit in L is
            // a start bit.
            //
            // Else the last objects start in the current block and ends
            // beyond the chunk.  The current block has already been
            // updated and there is no later block (with an object
            // starting in it) that needs to be updated.
            //
            if (_summary_data.partial_obj_ends_in_block(last_block)) {
              _summary_data.block(last_block)->set_end_bit_offset(
                bbu.live_data_left());
            } else if (last_offset_addr >= cur_block_plus_1_addr) {
              //   The start of the object is on a later block
              // (to the right of the current block and there are no
              // complete live objects to the left of this last object
              // within the chunk.
              //   The first bit in the block is for the start of the
              // last object.
              _summary_data.block(last_block)->set_start_bit_offset(
                bbu.live_data_left());
            } else {
              //   The start of the last object was found in
              // the current chunk (which has already
              // been updated).
              assert(bbu.cur_block() ==
                      _summary_data.addr_to_block_idx(last_offset_addr),
                "Should be a block already processed");
            }
#ifdef ASSERT
            // Is there enough block information to find this object?
            // The destination of the chunk has not been set so the
            // values returned by calc_new_pointer() and
            // block_calc_new_pointer() will only be
            // offsets.  But they should agree.
            HeapWord* moved_obj_with_chunks =
              _summary_data.chunk_calc_new_pointer(last_offset_addr);
            HeapWord* moved_obj_with_blocks =
              _summary_data.calc_new_pointer(last_offset_addr);
            assert(moved_obj_with_chunks == moved_obj_with_blocks,
              "Block calculation is wrong");
#endif
          } else if (last_block < _summary_data.block_count()) {
            // Iterations ended looking for a start bit (but
            // did not run off the end of the block table).
            _summary_data.block(last_block)->set_start_bit_offset(
              bbu.live_data_left());
          }
        }
#ifdef ASSERT
        // Is there enough block information to find this object?
          HeapWord* left_offset_addr = mark_bitmap()->bit_to_addr(left_offset);
        HeapWord* moved_obj_with_chunks =
          _summary_data.calc_new_pointer(left_offset_addr);
        HeapWord* moved_obj_with_blocks =
          _summary_data.calc_new_pointer(left_offset_addr);
          assert(moved_obj_with_chunks == moved_obj_with_blocks,
          "Block calculation is wrong");
#endif

        // Is there another block after the end of this chunk?
#ifdef ASSERT
        if (last_block < _summary_data.block_count()) {
        // No object may have been found in a block.  If that
        // block is at the end of the chunk, the iteration will
        // terminate without incrementing the current block so
        // that the current block is not the last block in the
        // chunk.  That situation precludes asserting that the
        // current block is the last block in the chunk.  Assert
        // the lesser condition that the current block does not
        // exceed the chunk.
          assert(_summary_data.block_to_addr(last_block) <=
               (_summary_data.chunk_to_addr(chunk_index) +
                 ParallelCompactData::ChunkSize),
              "Chunk and block inconsistency");
          assert(last_offset <= right_offset, "Iteration over ran end");
        }
#endif
      }
#ifdef ASSERT
      if (PrintGCDetails && Verbose) {
        if (_summary_data.chunk(chunk_index)->partial_obj_size() == 1) {
          size_t first_block =
            chunk_index / ParallelCompactData::BlocksPerChunk;
          gclog_or_tty->print_cr("first_block " PTR_FORMAT
            " _offset " PTR_FORMAT
            "_first_is_start_bit %d",
            first_block,
            _summary_data.block(first_block)->raw_offset(),
            _summary_data.block(first_block)->first_is_start_bit());
        }
      }
#endif
    }
  }
  DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(16);)
#endif  // #if 0
}

// This method should contain all heap-specific policy for invoking a full
// collection.  invoke_no_policy() will only attempt to compact the heap; it
// will do nothing further.  If we need to bail out for policy reasons, scavenge
// before full gc, or any other specialized behavior, it needs to be added here.
//
// Note that this method should only be called from the vm_thread while at a
// safepoint.
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
         "should be in vm thread");
  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  assert(!heap->is_gc_active(), "not reentrant");

  PSAdaptiveSizePolicy* policy = heap->size_policy();

  // Before each allocation/collection attempt, find out from the
  // policy object if GCs are, on the whole, taking too long. If so,
  // bail out without attempting a collection.  The exceptions are
  // for explicitly requested GC's.
  if (!policy->gc_time_limit_exceeded() ||
      GCCause::is_user_requested_gc(gc_cause) ||
      GCCause::is_serviceability_requested_gc(gc_cause)) {
    IsGCActiveMark mark;

    if (ScavengeBeforeFullGC) {
      PSScavenge::invoke_no_policy();
    }

    PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
  }
}

bool ParallelCompactData::chunk_contains(size_t chunk_index, HeapWord* addr) {
  size_t addr_chunk_index = addr_to_chunk_idx(addr);
  return chunk_index == addr_chunk_index;
}

bool ParallelCompactData::chunk_contains_block(size_t chunk_index,
                                               size_t block_index) {
  size_t first_block_in_chunk = chunk_index * BlocksPerChunk;
  size_t last_block_in_chunk = (chunk_index + 1) * BlocksPerChunk - 1;

  return (first_block_in_chunk <= block_index) &&
         (block_index <= last_block_in_chunk);
}

// This method contains no policy. You should probably
// be calling invoke() instead.
void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  assert(ref_processor() != NULL, "Sanity");

1956
  if (GC_locker::check_active_before_gc()) {
D
duke 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
    return;
  }

  TimeStamp marking_start;
  TimeStamp compaction_start;
  TimeStamp collection_exit;

  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();
  PSPermGen* perm_gen = heap->perm_gen();
  PSAdaptiveSizePolicy* size_policy = heap->size_policy();

1971 1972 1973 1974 1975
  if (ZapUnusedHeapArea) {
    // Save information needed to minimize mangling
    heap->record_gen_tops_before_GC();
  }

D
duke 已提交
1976 1977 1978 1979 1980 1981 1982
  _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;

  // Make sure data structures are sane, make the heap parsable, and do other
  // miscellaneous bookkeeping.
  PreGCValues pre_gc_values;
  pre_compact(&pre_gc_values);

J
jcoomes 已提交
1983 1984 1985 1986
  // Get the compaction manager reserved for the VM thread.
  ParCompactionManager* const vmthread_cm =
    ParCompactionManager::manager_array(gc_task_manager()->workers());

D
duke 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
  // Place after pre_compact() where the number of invocations is incremented.
  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());

  {
    ResourceMark rm;
    HandleMark hm;

    const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;

    // This is useful for debugging but don't change the output the
    // the customer sees.
    const char* gc_cause_str = "Full GC";
    if (is_system_gc && PrintGCDetails) {
      gc_cause_str = "Full GC (System)";
    }
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
    TraceCollectorStats tcs(counters());
    TraceMemoryManagerStats tms(true /* Full GC */);

    if (TraceGen1Time) accumulated_time()->start();

    // Let the size policy know we're starting
    size_policy->major_collection_begin();

    // When collecting the permanent generation methodOops may be moving,
    // so we either have to flush all bcp data or convert it into bci.
    CodeCache::gc_prologue();
    Threads::gc_prologue();

    NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
    COMPILER2_PRESENT(DerivedPointerTable::clear());

    ref_processor()->enable_discovery();

    bool marked_for_unloading = false;

    marking_start.update();
J
jcoomes 已提交
2026
    marking_phase(vmthread_cm, maximum_heap_compaction);
D
duke 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

#ifndef PRODUCT
    if (TraceParallelOldGCMarkingPhase) {
      gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
        "cas_by_another %d",
        mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
        mark_bitmap()->cas_by_another());
    }
#endif  // #ifndef PRODUCT

#ifdef ASSERT
    if (VerifyParallelOldWithMarkSweep &&
        (PSParallelCompact::total_invocations() %
           VerifyParallelOldWithMarkSweepInterval) == 0) {
      gclog_or_tty->print_cr("Verify marking with mark_sweep_phase1()");
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("mark_sweep_phase1:");
      }
      // Clear the discovered lists so that discovered objects
      // don't look like they have been discovered twice.
      ref_processor()->clear_discovered_references();

      PSMarkSweep::allocate_stacks();
      MemRegion mr = Universe::heap()->reserved_region();
      PSMarkSweep::ref_processor()->enable_discovery();
      PSMarkSweep::mark_sweep_phase1(maximum_heap_compaction);
    }
#endif

    bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
J
jcoomes 已提交
2057
    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
D
duke 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

#ifdef ASSERT
    if (VerifyParallelOldWithMarkSweep &&
        (PSParallelCompact::total_invocations() %
           VerifyParallelOldWithMarkSweepInterval) == 0) {
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("mark_sweep_phase2:");
      }
      PSMarkSweep::mark_sweep_phase2();
    }
#endif

    COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
    COMPILER2_PRESENT(DerivedPointerTable::set_active(false));

    // adjust_roots() updates Universe::_intArrayKlassObj which is
    // needed by the compaction for filling holes in the dense prefix.
    adjust_roots();

#ifdef ASSERT
    if (VerifyParallelOldWithMarkSweep &&
        (PSParallelCompact::total_invocations() %
           VerifyParallelOldWithMarkSweepInterval) == 0) {
      // Do a separate verify phase so that the verify
      // code can use the the forwarding pointers to
      // check the new pointer calculation.  The restore_marks()
      // has to be done before the real compact.
J
jcoomes 已提交
2085 2086 2087 2088 2089 2090 2091
      vmthread_cm->set_action(ParCompactionManager::VerifyUpdate);
      compact_perm(vmthread_cm);
      compact_serial(vmthread_cm);
      vmthread_cm->set_action(ParCompactionManager::ResetObjects);
      compact_perm(vmthread_cm);
      compact_serial(vmthread_cm);
      vmthread_cm->set_action(ParCompactionManager::UpdateAndCopy);
D
duke 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

      // For debugging only
      PSMarkSweep::restore_marks();
      PSMarkSweep::deallocate_stacks();
    }
#endif

    compaction_start.update();
    // Does the perm gen always have to be done serially because
    // klasses are used in the update of an object?
J
jcoomes 已提交
2102
    compact_perm(vmthread_cm);
D
duke 已提交
2103 2104 2105 2106

    if (UseParallelOldGCCompacting) {
      compact();
    } else {
J
jcoomes 已提交
2107
      compact_serial(vmthread_cm);
D
duke 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
    }

    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
    // done before resizing.
    post_compact();

    // Let the size policy know we're done
    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);

    if (UseAdaptiveSizePolicy) {
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print("AdaptiveSizeStart: ");
        gclog_or_tty->stamp();
        gclog_or_tty->print_cr(" collection: %d ",
                       heap->total_collections());
        if (Verbose) {
          gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
            " perm_gen_capacity: %d ",
            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
            perm_gen->capacity_in_bytes());
        }
      }

      // Don't check if the size_policy is ready here.  Let
      // the size_policy check that internally.
      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
          ((gc_cause != GCCause::_java_lang_system_gc) ||
            UseAdaptiveSizePolicyWithSystemGC)) {
        // Calculate optimal free space amounts
        assert(young_gen->max_size() >
          young_gen->from_space()->capacity_in_bytes() +
          young_gen->to_space()->capacity_in_bytes(),
          "Sizes of space in young gen are out-of-bounds");
        size_t max_eden_size = young_gen->max_size() -
          young_gen->from_space()->capacity_in_bytes() -
          young_gen->to_space()->capacity_in_bytes();
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
        size_policy->compute_generation_free_space(
                              young_gen->used_in_bytes(),
                              young_gen->eden_space()->used_in_bytes(),
                              old_gen->used_in_bytes(),
                              perm_gen->used_in_bytes(),
                              young_gen->eden_space()->capacity_in_bytes(),
                              old_gen->max_gen_size(),
                              max_eden_size,
                              true /* full gc*/,
                              gc_cause);

        heap->resize_old_gen(
          size_policy->calculated_old_free_size_in_bytes());
D
duke 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

        // Don't resize the young generation at an major collection.  A
        // desired young generation size may have been calculated but
        // resizing the young generation complicates the code because the
        // resizing of the old generation may have moved the boundary
        // between the young generation and the old generation.  Let the
        // young generation resizing happen at the minor collections.
      }
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
                       heap->total_collections());
      }
    }

    if (UsePerfData) {
      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
      counters->update_counters();
      counters->update_old_capacity(old_gen->capacity_in_bytes());
      counters->update_young_capacity(young_gen->capacity_in_bytes());
    }

    heap->resize_all_tlabs();

    // We collected the perm gen, so we'll resize it here.
    perm_gen->compute_new_size(pre_gc_values.perm_gen_used());

    if (TraceGen1Time) accumulated_time()->stop();

    if (PrintGC) {
      if (PrintGCDetails) {
        // No GC timestamp here.  This is after GC so it would be confusing.
        young_gen->print_used_change(pre_gc_values.young_gen_used());
        old_gen->print_used_change(pre_gc_values.old_gen_used());
        heap->print_heap_change(pre_gc_values.heap_used());
        // Print perm gen last (print_heap_change() excludes the perm gen).
        perm_gen->print_used_change(pre_gc_values.perm_gen_used());
      } else {
        heap->print_heap_change(pre_gc_values.heap_used());
      }
    }

    // Track memory usage and detect low memory
    MemoryService::track_memory_usage();
    heap->update_counters();

    if (PrintGCDetails) {
      if (size_policy->print_gc_time_limit_would_be_exceeded()) {
        if (size_policy->gc_time_limit_exceeded()) {
          gclog_or_tty->print_cr("      GC time is exceeding GCTimeLimit "
            "of %d%%", GCTimeLimit);
        } else {
          gclog_or_tty->print_cr("      GC time would exceed GCTimeLimit "
            "of %d%%", GCTimeLimit);
        }
      }
      size_policy->set_print_gc_time_limit_would_be_exceeded(false);
    }
  }

  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyAfterGC:");
    Universe::verify(false);
  }

  // Re-verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyAfterGC) {
    old_gen->verify_object_start_array();
    perm_gen->verify_object_start_array();
  }

2229 2230 2231 2232 2233
  if (ZapUnusedHeapArea) {
    old_gen->object_space()->check_mangled_unused_area_complete();
    perm_gen->object_space()->check_mangled_unused_area_complete();
  }

D
duke 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

  collection_exit.update();

  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
  if (PrintGCTaskTimeStamps) {
    gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
                           INT64_FORMAT,
                           marking_start.ticks(), compaction_start.ticks(),
                           collection_exit.ticks());
    gc_task_manager()->print_task_time_stamps();
  }
}

bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
                                             PSYoungGen* young_gen,
                                             PSOldGen* old_gen) {
  MutableSpace* const eden_space = young_gen->eden_space();
  assert(!eden_space->is_empty(), "eden must be non-empty");
  assert(young_gen->virtual_space()->alignment() ==
         old_gen->virtual_space()->alignment(), "alignments do not match");

  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
    return false;
  }

  // Both generations must be completely committed.
  if (young_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }
  if (old_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }

  // Figure out how much to take from eden.  Include the average amount promoted
  // in the total; otherwise the next young gen GC will simply bail out to a
  // full GC.
  const size_t alignment = old_gen->virtual_space()->alignment();
  const size_t eden_used = eden_space->used_in_bytes();
  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  const size_t eden_capacity = eden_space->capacity_in_bytes();

  if (absorb_size >= eden_capacity) {
    return false; // Must leave some space in eden.
  }

  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  if (new_young_size < young_gen->min_gen_size()) {
    return false; // Respect young gen minimum size.
  }

  if (TraceAdaptiveGCBoundary && Verbose) {
    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
                        absorb_size / K,
                        eden_capacity / K, (eden_capacity - absorb_size) / K,
                        young_gen->from_space()->used_in_bytes() / K,
                        young_gen->to_space()->used_in_bytes() / K,
                        young_gen->capacity_in_bytes() / K, new_young_size / K);
  }

  // Fill the unused part of the old gen.
  MutableSpace* const old_space = old_gen->object_space();
  MemRegion old_gen_unused(old_space->top(), old_space->end());
  if (!old_gen_unused.is_empty()) {
    SharedHeap::fill_region_with_object(old_gen_unused);
  }

  // Take the live data from eden and set both top and end in the old gen to
  // eden top.  (Need to set end because reset_after_change() mangles the region
  // from end to virtual_space->high() in debug builds).
  HeapWord* const new_top = eden_space->top();
  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
                                        absorb_size);
  young_gen->reset_after_change();
  old_space->set_top(new_top);
  old_space->set_end(new_top);
  old_gen->reset_after_change();

  // Update the object start array for the filler object and the data from eden.
  ObjectStartArray* const start_array = old_gen->start_array();
  HeapWord* const start = old_gen_unused.start();
  for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
    start_array->allocate_block(addr);
  }

  // Could update the promoted average here, but it is not typically updated at
  // full GCs and the value to use is unclear.  Something like
  //
  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.

  size_policy->set_bytes_absorbed_from_eden(absorb_size);
  return true;
}

GCTaskManager* const PSParallelCompact::gc_task_manager() {
  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
    "shouldn't return NULL");
  return ParallelScavengeHeap::gc_task_manager();
}

void PSParallelCompact::marking_phase(ParCompactionManager* cm,
                                      bool maximum_heap_compaction) {
  // Recursively traverse all live objects and mark them
  EventMark m("1 mark object");
  TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = gc_heap();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
  TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
  ParallelTaskTerminator terminator(parallel_gc_threads, qset);

  PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  PSParallelCompact::FollowStackClosure follow_stack_closure(cm);

  {
    TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);

    GCTaskQueue* q = GCTaskQueue::create();

    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
    // We scan the thread roots in parallel
    Threads::create_thread_roots_marking_tasks(q);
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));

    if (parallel_gc_threads > 1) {
      for (uint j = 0; j < parallel_gc_threads; j++) {
        q->enqueue(new StealMarkingTask(&terminator));
      }
    }

    WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
    q->enqueue(fin);

    gc_task_manager()->add_list(q);

    fin->wait_for();

    // We have to release the barrier tasks!
    WaitForBarrierGCTask::destroy(fin);
  }

  // Process reference objects found during marking
  {
    TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
    ReferencePolicy *soft_ref_policy;
    if (maximum_heap_compaction) {
      soft_ref_policy = new AlwaysClearPolicy();
    } else {
#ifdef COMPILER2
      soft_ref_policy = new LRUMaxHeapPolicy();
#else
      soft_ref_policy = new LRUCurrentHeapPolicy();
#endif // COMPILER2
    }
    assert(soft_ref_policy != NULL, "No soft reference policy");
    if (ref_processor()->processing_is_mt()) {
      RefProcTaskExecutor task_executor;
      ref_processor()->process_discovered_references(
        soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
        &follow_stack_closure, &task_executor);
    } else {
      ref_processor()->process_discovered_references(
        soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
        &follow_stack_closure, NULL);
    }
  }

  TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  // Follow system dictionary roots and unload classes.
  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());

  // Follow code cache roots.
  CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
                          purged_class);
  follow_stack(cm); // Flush marking stack.

  // Update subklass/sibling/implementor links of live klasses
  // revisit_klass_stack is used in follow_weak_klass_links().
  follow_weak_klass_links(cm);

  // Visit symbol and interned string tables and delete unmarked oops
  SymbolTable::unlink(is_alive_closure());
  StringTable::unlink(is_alive_closure());

  assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
  assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
}

// This should be moved to the shared markSweep code!
class PSAlwaysTrueClosure: public BoolObjectClosure {
public:
  void do_object(oop p) { ShouldNotReachHere(); }
  bool do_object_b(oop p) { return true; }
};
static PSAlwaysTrueClosure always_true;

void PSParallelCompact::adjust_roots() {
  // Adjust the pointers to reflect the new locations
  EventMark m("3 adjust roots");
  TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);

  // General strong roots.
  Universe::oops_do(adjust_root_pointer_closure());
  ReferenceProcessor::oops_do(adjust_root_pointer_closure());
  JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  Threads::oops_do(adjust_root_pointer_closure());
  ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  FlatProfiler::oops_do(adjust_root_pointer_closure());
  Management::oops_do(adjust_root_pointer_closure());
  JvmtiExport::oops_do(adjust_root_pointer_closure());
  // SO_AllClasses
  SystemDictionary::oops_do(adjust_root_pointer_closure());
  vmSymbols::oops_do(adjust_root_pointer_closure());

  // Now adjust pointers in remaining weak roots.  (All of which should
  // have been cleared if they pointed to non-surviving objects.)
  // Global (weak) JNI handles
  JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());

  CodeCache::oops_do(adjust_pointer_closure());
  SymbolTable::oops_do(adjust_root_pointer_closure());
  StringTable::oops_do(adjust_root_pointer_closure());
  ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  // Roots were visited so references into the young gen in roots
  // may have been scanned.  Process them also.
  // Should the reference processor have a span that excludes
  // young gen objects?
  PSScavenge::reference_processor()->weak_oops_do(
                                              adjust_root_pointer_closure());
}

void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
  EventMark m("4 compact perm");
  TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
  // trace("4");

  gc_heap()->perm_gen()->start_array()->reset();
  move_and_update(cm, perm_space_id);
}

void PSParallelCompact::enqueue_chunk_draining_tasks(GCTaskQueue* q,
                                                     uint parallel_gc_threads) {
  TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);

  const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
  for (unsigned int j = 0; j < task_count; j++) {
    q->enqueue(new DrainStacksCompactionTask());
  }

  // Find all chunks that are available (can be filled immediately) and
  // distribute them to the thread stacks.  The iteration is done in reverse
  // order (high to low) so the chunks will be removed in ascending order.

  const ParallelCompactData& sd = PSParallelCompact::summary_data();

  size_t fillable_chunks = 0;   // A count for diagnostic purposes.
  unsigned int which = 0;       // The worker thread number.

  for (unsigned int id = to_space_id; id > perm_space_id; --id) {
    SpaceInfo* const space_info = _space_info + id;
    MutableSpace* const space = space_info->space();
    HeapWord* const new_top = space_info->new_top();

    const size_t beg_chunk = sd.addr_to_chunk_idx(space_info->dense_prefix());
    const size_t end_chunk = sd.addr_to_chunk_idx(sd.chunk_align_up(new_top));
    assert(end_chunk > 0, "perm gen cannot be empty");

    for (size_t cur = end_chunk - 1; cur >= beg_chunk; --cur) {
      if (sd.chunk(cur)->claim_unsafe()) {
        ParCompactionManager* cm = ParCompactionManager::manager_array(which);
        cm->save_for_processing(cur);

        if (TraceParallelOldGCCompactionPhase && Verbose) {
          const size_t count_mod_8 = fillable_chunks & 7;
          if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2521
          gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
D
duke 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
          if (count_mod_8 == 7) gclog_or_tty->cr();
        }

        NOT_PRODUCT(++fillable_chunks;)

        // Assign chunks to threads in round-robin fashion.
        if (++which == task_count) {
          which = 0;
        }
      }
    }
  }

  if (TraceParallelOldGCCompactionPhase) {
    if (Verbose && (fillable_chunks & 7) != 0) gclog_or_tty->cr();
    gclog_or_tty->print_cr("%u initially fillable chunks", fillable_chunks);
  }
}

#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4

void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
                                                    uint parallel_gc_threads) {
  TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);

  ParallelCompactData& sd = PSParallelCompact::summary_data();

  // Iterate over all the spaces adding tasks for updating
  // chunks in the dense prefix.  Assume that 1 gc thread
  // will work on opening the gaps and the remaining gc threads
  // will work on the dense prefix.
  SpaceId space_id = old_space_id;
  while (space_id != last_space_id) {
    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
    const MutableSpace* const space = _space_info[space_id].space();

    if (dense_prefix_end == space->bottom()) {
      // There is no dense prefix for this space.
      space_id = next_compaction_space_id(space_id);
      continue;
    }

    // The dense prefix is before this chunk.
    size_t chunk_index_end_dense_prefix =
        sd.addr_to_chunk_idx(dense_prefix_end);
    ChunkData* const dense_prefix_cp = sd.chunk(chunk_index_end_dense_prefix);
    assert(dense_prefix_end == space->end() ||
           dense_prefix_cp->available() ||
           dense_prefix_cp->claimed(),
           "The chunk after the dense prefix should always be ready to fill");

    size_t chunk_index_start = sd.addr_to_chunk_idx(space->bottom());

    // Is there dense prefix work?
    size_t total_dense_prefix_chunks =
      chunk_index_end_dense_prefix - chunk_index_start;
    // How many chunks of the dense prefix should be given to
    // each thread?
    if (total_dense_prefix_chunks > 0) {
      uint tasks_for_dense_prefix = 1;
      if (UseParallelDensePrefixUpdate) {
        if (total_dense_prefix_chunks <=
            (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
          // Don't over partition.  This assumes that
          // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
          // so there are not many chunks to process.
          tasks_for_dense_prefix = parallel_gc_threads;
        } else {
          // Over partition
          tasks_for_dense_prefix = parallel_gc_threads *
            PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
        }
      }
      size_t chunks_per_thread = total_dense_prefix_chunks /
        tasks_for_dense_prefix;
      // Give each thread at least 1 chunk.
      if (chunks_per_thread == 0) {
        chunks_per_thread = 1;
      }

      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
        if (chunk_index_start >= chunk_index_end_dense_prefix) {
          break;
        }
        // chunk_index_end is not processed
        size_t chunk_index_end = MIN2(chunk_index_start + chunks_per_thread,
                                      chunk_index_end_dense_prefix);
        q->enqueue(new UpdateDensePrefixTask(
                                 space_id,
                                 chunk_index_start,
                                 chunk_index_end));
        chunk_index_start = chunk_index_end;
      }
    }
    // This gets any part of the dense prefix that did not
    // fit evenly.
    if (chunk_index_start < chunk_index_end_dense_prefix) {
      q->enqueue(new UpdateDensePrefixTask(
                                 space_id,
                                 chunk_index_start,
                                 chunk_index_end_dense_prefix));
    }
    space_id = next_compaction_space_id(space_id);
  }  // End tasks for dense prefix
}

void PSParallelCompact::enqueue_chunk_stealing_tasks(
                                     GCTaskQueue* q,
                                     ParallelTaskTerminator* terminator_ptr,
                                     uint parallel_gc_threads) {
  TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);

  // Once a thread has drained it's stack, it should try to steal chunks from
  // other threads.
  if (parallel_gc_threads > 1) {
    for (uint j = 0; j < parallel_gc_threads; j++) {
      q->enqueue(new StealChunkCompactionTask(terminator_ptr));
    }
  }
}

void PSParallelCompact::compact() {
  EventMark m("5 compact");
  // trace("5");
  TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  PSOldGen* old_gen = heap->old_gen();
  old_gen->start_array()->reset();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
  TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
  ParallelTaskTerminator terminator(parallel_gc_threads, qset);

  GCTaskQueue* q = GCTaskQueue::create();
  enqueue_chunk_draining_tasks(q, parallel_gc_threads);
  enqueue_dense_prefix_tasks(q, parallel_gc_threads);
  enqueue_chunk_stealing_tasks(q, &terminator, parallel_gc_threads);

  {
    TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);

    WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
    q->enqueue(fin);

    gc_task_manager()->add_list(q);

    fin->wait_for();

    // We have to release the barrier tasks!
    WaitForBarrierGCTask::destroy(fin);

#ifdef  ASSERT
    // Verify that all chunks have been processed before the deferred updates.
    // Note that perm_space_id is skipped; this type of verification is not
    // valid until the perm gen is compacted by chunks.
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      verify_complete(SpaceId(id));
    }
#endif
  }

  {
    // Update the deferred objects, if any.  Any compaction manager can be used.
    TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      update_deferred_objects(cm, SpaceId(id));
    }
  }
}

#ifdef  ASSERT
void PSParallelCompact::verify_complete(SpaceId space_id) {
  // All Chunks between space bottom() to new_top() should be marked as filled
  // and all Chunks between new_top() and top() should be available (i.e.,
  // should have been emptied).
  ParallelCompactData& sd = summary_data();
  SpaceInfo si = _space_info[space_id];
  HeapWord* new_top_addr = sd.chunk_align_up(si.new_top());
  HeapWord* old_top_addr = sd.chunk_align_up(si.space()->top());
  const size_t beg_chunk = sd.addr_to_chunk_idx(si.space()->bottom());
  const size_t new_top_chunk = sd.addr_to_chunk_idx(new_top_addr);
  const size_t old_top_chunk = sd.addr_to_chunk_idx(old_top_addr);

  bool issued_a_warning = false;

  size_t cur_chunk;
  for (cur_chunk = beg_chunk; cur_chunk < new_top_chunk; ++cur_chunk) {
    const ChunkData* const c = sd.chunk(cur_chunk);
    if (!c->completed()) {
      warning("chunk " SIZE_FORMAT " not filled:  "
              "destination_count=" SIZE_FORMAT,
              cur_chunk, c->destination_count());
      issued_a_warning = true;
    }
  }

  for (cur_chunk = new_top_chunk; cur_chunk < old_top_chunk; ++cur_chunk) {
    const ChunkData* const c = sd.chunk(cur_chunk);
    if (!c->available()) {
      warning("chunk " SIZE_FORMAT " not empty:   "
              "destination_count=" SIZE_FORMAT,
              cur_chunk, c->destination_count());
      issued_a_warning = true;
    }
  }

  if (issued_a_warning) {
    print_chunk_ranges();
  }
}
#endif  // #ifdef ASSERT

void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
  EventMark m("5 compact serial");
  TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();

  old_gen->start_array()->reset();
  old_gen->move_and_update(cm);
  young_gen->move_and_update(cm);
}


void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
  while(!cm->overflow_stack()->is_empty()) {
    oop obj = cm->overflow_stack()->pop();
    obj->follow_contents(cm);
  }

  oop obj;
  // obj is a reference!!!
  while (cm->marking_stack()->pop_local(obj)) {
    // It would be nice to assert about the type of objects we might
    // pop, but they can come from anywhere, unfortunately.
    obj->follow_contents(cm);
  }
}

void
PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
  // All klasses on the revisit stack are marked at this point.
  // Update and follow all subklass, sibling and implementor links.
  for (uint i = 0; i < ParallelGCThreads+1; i++) {
    ParCompactionManager* cm = ParCompactionManager::manager_array(i);
    KeepAliveClosure keep_alive_closure(cm);
    for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
      cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
        is_alive_closure(),
        &keep_alive_closure);
    }
    follow_stack(cm);
  }
}

void
PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
  cm->revisit_klass_stack()->push(k);
}

#ifdef VALIDATE_MARK_SWEEP

2790
void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
D
duke 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
  if (!ValidateMarkSweep)
    return;

  if (!isroot) {
    if (_pointer_tracking) {
      guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
      _adjusted_pointers->remove(p);
    }
  } else {
    ptrdiff_t index = _root_refs_stack->find(p);
    if (index != -1) {
      int l = _root_refs_stack->length();
      if (l > 0 && l - 1 != index) {
2804
        void* last = _root_refs_stack->pop();
D
duke 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
        assert(last != p, "should be different");
        _root_refs_stack->at_put(index, last);
      } else {
        _root_refs_stack->remove(p);
      }
    }
  }
}


2815
void PSParallelCompact::check_adjust_pointer(void* p) {
D
duke 已提交
2816 2817 2818 2819 2820 2821 2822
  _adjusted_pointers->push(p);
}


class AdjusterTracker: public OopClosure {
 public:
  AdjusterTracker() {};
2823 2824
  void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
D
duke 已提交
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
};


void PSParallelCompact::track_interior_pointers(oop obj) {
  if (ValidateMarkSweep) {
    _adjusted_pointers->clear();
    _pointer_tracking = true;

    AdjusterTracker checker;
    obj->oop_iterate(&checker);
  }
}


void PSParallelCompact::check_interior_pointers() {
  if (ValidateMarkSweep) {
    _pointer_tracking = false;
    guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  }
}


void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
  if (ValidateMarkSweep) {
    guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
    _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
  }
}


void PSParallelCompact::register_live_oop(oop p, size_t size) {
  if (ValidateMarkSweep) {
    _live_oops->push(p);
    _live_oops_size->push(size);
    _live_oops_index++;
  }
}

void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  if (ValidateMarkSweep) {
    oop obj = _live_oops->at((int)_live_oops_index);
    guarantee(obj == p, "should be the same object");
    guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
    _live_oops_index++;
  }
}

void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
                                  HeapWord* compaction_top) {
  assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
         "should be moved to forwarded location");
  if (ValidateMarkSweep) {
    PSParallelCompact::validate_live_oop(oop(q), size);
    _live_oops_moved_to->push(oop(compaction_top));
  }
  if (RecordMarkSweepCompaction) {
    _cur_gc_live_oops->push(q);
    _cur_gc_live_oops_moved_to->push(compaction_top);
    _cur_gc_live_oops_size->push(size);
  }
}


void PSParallelCompact::compaction_complete() {
  if (RecordMarkSweepCompaction) {
    GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
    GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
    GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;

    _cur_gc_live_oops           = _last_gc_live_oops;
    _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
    _cur_gc_live_oops_size      = _last_gc_live_oops_size;
    _last_gc_live_oops          = _tmp_live_oops;
    _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
    _last_gc_live_oops_size     = _tmp_live_oops_size;
  }
}


void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  if (!RecordMarkSweepCompaction) {
    tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
    return;
  }

  if (_last_gc_live_oops == NULL) {
    tty->print_cr("No compaction information gathered yet");
    return;
  }

  for (int i = 0; i < _last_gc_live_oops->length(); i++) {
    HeapWord* old_oop = _last_gc_live_oops->at(i);
    size_t    sz      = _last_gc_live_oops_size->at(i);
    if (old_oop <= q && q < (old_oop + sz)) {
      HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
      size_t offset = (q - old_oop);
      tty->print_cr("Address " PTR_FORMAT, q);
      tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
      tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
      return;
    }
  }

  tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
}
#endif //VALIDATE_MARK_SWEEP

// Update interior oops in the ranges of chunks [beg_chunk, end_chunk).
void
PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
                                                       SpaceId space_id,
                                                       size_t beg_chunk,
                                                       size_t end_chunk) {
  ParallelCompactData& sd = summary_data();
  ParMarkBitMap* const mbm = mark_bitmap();

  HeapWord* beg_addr = sd.chunk_to_addr(beg_chunk);
  HeapWord* const end_addr = sd.chunk_to_addr(end_chunk);
  assert(beg_chunk <= end_chunk, "bad chunk range");
  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");

#ifdef  ASSERT
  // Claim the chunks to avoid triggering an assert when they are marked as
  // filled.
  for (size_t claim_chunk = beg_chunk; claim_chunk < end_chunk; ++claim_chunk) {
    assert(sd.chunk(claim_chunk)->claim_unsafe(), "claim() failed");
  }
#endif  // #ifdef ASSERT

  if (beg_addr != space(space_id)->bottom()) {
    // Find the first live object or block of dead space that *starts* in this
    // range of chunks.  If a partial object crosses onto the chunk, skip it; it
    // will be marked for 'deferred update' when the object head is processed.
    // If dead space crosses onto the chunk, it is also skipped; it will be
    // filled when the prior chunk is processed.  If neither of those apply, the
    // first word in the chunk is the start of a live object or dead space.
    assert(beg_addr > space(space_id)->bottom(), "sanity");
    const ChunkData* const cp = sd.chunk(beg_chunk);
    if (cp->partial_obj_size() != 0) {
      beg_addr = sd.partial_obj_end(beg_chunk);
    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
    }
  }

  if (beg_addr < end_addr) {
    // A live object or block of dead space starts in this range of Chunks.
     HeapWord* const dense_prefix_end = dense_prefix(space_id);

    // Create closures and iterate.
    UpdateOnlyClosure update_closure(mbm, cm, space_id);
    FillClosure fill_closure(cm, space_id);
    ParMarkBitMap::IterationStatus status;
    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
                          dense_prefix_end);
    if (status == ParMarkBitMap::incomplete) {
      update_closure.do_addr(update_closure.source());
    }
  }

  // Mark the chunks as filled.
  ChunkData* const beg_cp = sd.chunk(beg_chunk);
  ChunkData* const end_cp = sd.chunk(end_chunk);
  for (ChunkData* cp = beg_cp; cp < end_cp; ++cp) {
    cp->set_completed();
  }
}

// Return the SpaceId for the space containing addr.  If addr is not in the
// heap, last_space_id is returned.  In debug mode it expects the address to be
// in the heap and asserts such.
PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");

  for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
    if (_space_info[id].space()->contains(addr)) {
      return SpaceId(id);
    }
  }

  assert(false, "no space contains the addr");
  return last_space_id;
}

void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
                                                SpaceId id) {
  assert(id < last_space_id, "bad space id");

  ParallelCompactData& sd = summary_data();
  const SpaceInfo* const space_info = _space_info + id;
  ObjectStartArray* const start_array = space_info->start_array();

  const MutableSpace* const space = space_info->space();
  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  HeapWord* const beg_addr = space_info->dense_prefix();
  HeapWord* const end_addr = sd.chunk_align_up(space_info->new_top());

  const ChunkData* const beg_chunk = sd.addr_to_chunk_ptr(beg_addr);
  const ChunkData* const end_chunk = sd.addr_to_chunk_ptr(end_addr);
  const ChunkData* cur_chunk;
  for (cur_chunk = beg_chunk; cur_chunk < end_chunk; ++cur_chunk) {
    HeapWord* const addr = cur_chunk->deferred_obj_addr();
    if (addr != NULL) {
      if (start_array != NULL) {
        start_array->allocate_block(addr);
      }
      oop(addr)->update_contents(cm);
      assert(oop(addr)->is_oop_or_null(), "should be an oop now");
    }
  }
}

// Skip over count live words starting from beg, and return the address of the
// next live word.  Unless marked, the word corresponding to beg is assumed to
// be dead.  Callers must either ensure beg does not correspond to the middle of
// an object, or account for those live words in some other way.  Callers must
// also ensure that there are enough live words in the range [beg, end) to skip.
HeapWord*
PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
{
  assert(count > 0, "sanity");

  ParMarkBitMap* m = mark_bitmap();
  idx_t bits_to_skip = m->words_to_bits(count);
  idx_t cur_beg = m->addr_to_bit(beg);
  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));

  do {
    cur_beg = m->find_obj_beg(cur_beg, search_end);
    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
    const size_t obj_bits = cur_end - cur_beg + 1;
    if (obj_bits > bits_to_skip) {
      return m->bit_to_addr(cur_beg + bits_to_skip);
    }
    bits_to_skip -= obj_bits;
    cur_beg = cur_end + 1;
  } while (bits_to_skip > 0);

  // Skipping the desired number of words landed just past the end of an object.
  // Find the start of the next object.
  cur_beg = m->find_obj_beg(cur_beg, search_end);
  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  return m->bit_to_addr(cur_beg);
}

HeapWord*
PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
                                 size_t src_chunk_idx)
{
  ParMarkBitMap* const bitmap = mark_bitmap();
  const ParallelCompactData& sd = summary_data();
  const size_t ChunkSize = ParallelCompactData::ChunkSize;

  assert(sd.is_chunk_aligned(dest_addr), "not aligned");

  const ChunkData* const src_chunk_ptr = sd.chunk(src_chunk_idx);
  const size_t partial_obj_size = src_chunk_ptr->partial_obj_size();
  HeapWord* const src_chunk_destination = src_chunk_ptr->destination();

  assert(dest_addr >= src_chunk_destination, "wrong src chunk");
  assert(src_chunk_ptr->data_size() > 0, "src chunk cannot be empty");

  HeapWord* const src_chunk_beg = sd.chunk_to_addr(src_chunk_idx);
  HeapWord* const src_chunk_end = src_chunk_beg + ChunkSize;

  HeapWord* addr = src_chunk_beg;
  if (dest_addr == src_chunk_destination) {
    // Return the first live word in the source chunk.
    if (partial_obj_size == 0) {
      addr = bitmap->find_obj_beg(addr, src_chunk_end);
      assert(addr < src_chunk_end, "no objects start in src chunk");
    }
    return addr;
  }

  // Must skip some live data.
  size_t words_to_skip = dest_addr - src_chunk_destination;
  assert(src_chunk_ptr->data_size() > words_to_skip, "wrong src chunk");

  if (partial_obj_size >= words_to_skip) {
    // All the live words to skip are part of the partial object.
    addr += words_to_skip;
    if (partial_obj_size == words_to_skip) {
      // Find the first live word past the partial object.
      addr = bitmap->find_obj_beg(addr, src_chunk_end);
      assert(addr < src_chunk_end, "wrong src chunk");
    }
    return addr;
  }

  // Skip over the partial object (if any).
  if (partial_obj_size != 0) {
    words_to_skip -= partial_obj_size;
    addr += partial_obj_size;
  }

  // Skip over live words due to objects that start in the chunk.
  addr = skip_live_words(addr, src_chunk_end, words_to_skip);
  assert(addr < src_chunk_end, "wrong src chunk");
  return addr;
}

void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
                                                     size_t beg_chunk,
                                                     HeapWord* end_addr)
{
  ParallelCompactData& sd = summary_data();
  ChunkData* const beg = sd.chunk(beg_chunk);
  HeapWord* const end_addr_aligned_up = sd.chunk_align_up(end_addr);
  ChunkData* const end = sd.addr_to_chunk_ptr(end_addr_aligned_up);
  size_t cur_idx = beg_chunk;
  for (ChunkData* cur = beg; cur < end; ++cur, ++cur_idx) {
    assert(cur->data_size() > 0, "chunk must have live data");
    cur->decrement_destination_count();
    if (cur_idx <= cur->source_chunk() && cur->available() && cur->claim()) {
      cm->save_for_processing(cur_idx);
    }
  }
}

size_t PSParallelCompact::next_src_chunk(MoveAndUpdateClosure& closure,
                                         SpaceId& src_space_id,
                                         HeapWord*& src_space_top,
                                         HeapWord* end_addr)
{
  typedef ParallelCompactData::ChunkData ChunkData;

  ParallelCompactData& sd = PSParallelCompact::summary_data();
  const size_t chunk_size = ParallelCompactData::ChunkSize;

  size_t src_chunk_idx = 0;

  // Skip empty chunks (if any) up to the top of the space.
  HeapWord* const src_aligned_up = sd.chunk_align_up(end_addr);
  ChunkData* src_chunk_ptr = sd.addr_to_chunk_ptr(src_aligned_up);
  HeapWord* const top_aligned_up = sd.chunk_align_up(src_space_top);
  const ChunkData* const top_chunk_ptr = sd.addr_to_chunk_ptr(top_aligned_up);
  while (src_chunk_ptr < top_chunk_ptr && src_chunk_ptr->data_size() == 0) {
    ++src_chunk_ptr;
  }

  if (src_chunk_ptr < top_chunk_ptr) {
    // The next source chunk is in the current space.  Update src_chunk_idx and
    // the source address to match src_chunk_ptr.
    src_chunk_idx = sd.chunk(src_chunk_ptr);
    HeapWord* const src_chunk_addr = sd.chunk_to_addr(src_chunk_idx);
    if (src_chunk_addr > closure.source()) {
      closure.set_source(src_chunk_addr);
    }
    return src_chunk_idx;
  }

  // Switch to a new source space and find the first non-empty chunk.
  unsigned int space_id = src_space_id + 1;
  assert(space_id < last_space_id, "not enough spaces");

  HeapWord* const destination = closure.destination();

  do {
    MutableSpace* space = _space_info[space_id].space();
    HeapWord* const bottom = space->bottom();
    const ChunkData* const bottom_cp = sd.addr_to_chunk_ptr(bottom);

    // Iterate over the spaces that do not compact into themselves.
    if (bottom_cp->destination() != bottom) {
      HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
      const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);

      for (const ChunkData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
        if (src_cp->live_obj_size() > 0) {
          // Found it.
          assert(src_cp->destination() == destination,
                 "first live obj in the space must match the destination");
          assert(src_cp->partial_obj_size() == 0,
                 "a space cannot begin with a partial obj");

          src_space_id = SpaceId(space_id);
          src_space_top = space->top();
          const size_t src_chunk_idx = sd.chunk(src_cp);
          closure.set_source(sd.chunk_to_addr(src_chunk_idx));
          return src_chunk_idx;
        } else {
          assert(src_cp->data_size() == 0, "sanity");
        }
      }
    }
  } while (++space_id < last_space_id);

  assert(false, "no source chunk was found");
  return 0;
}

void PSParallelCompact::fill_chunk(ParCompactionManager* cm, size_t chunk_idx)
{
  typedef ParMarkBitMap::IterationStatus IterationStatus;
  const size_t ChunkSize = ParallelCompactData::ChunkSize;
  ParMarkBitMap* const bitmap = mark_bitmap();
  ParallelCompactData& sd = summary_data();
  ChunkData* const chunk_ptr = sd.chunk(chunk_idx);

  // Get the items needed to construct the closure.
  HeapWord* dest_addr = sd.chunk_to_addr(chunk_idx);
  SpaceId dest_space_id = space_id(dest_addr);
  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  HeapWord* new_top = _space_info[dest_space_id].new_top();
  assert(dest_addr < new_top, "sanity");
  const size_t words = MIN2(pointer_delta(new_top, dest_addr), ChunkSize);

  // Get the source chunk and related info.
  size_t src_chunk_idx = chunk_ptr->source_chunk();
  SpaceId src_space_id = space_id(sd.chunk_to_addr(src_chunk_idx));
  HeapWord* src_space_top = _space_info[src_space_id].space()->top();

  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  closure.set_source(first_src_addr(dest_addr, src_chunk_idx));

  // Adjust src_chunk_idx to prepare for decrementing destination counts (the
  // destination count is not decremented when a chunk is copied to itself).
  if (src_chunk_idx == chunk_idx) {
    src_chunk_idx += 1;
  }

  if (bitmap->is_unmarked(closure.source())) {
    // The first source word is in the middle of an object; copy the remainder
    // of the object or as much as will fit.  The fact that pointer updates were
    // deferred will be noted when the object header is processed.
    HeapWord* const old_src_addr = closure.source();
    closure.copy_partial_obj();
    if (closure.is_full()) {
      decrement_destination_counts(cm, src_chunk_idx, closure.source());
      chunk_ptr->set_deferred_obj_addr(NULL);
      chunk_ptr->set_completed();
      return;
    }

    HeapWord* const end_addr = sd.chunk_align_down(closure.source());
    if (sd.chunk_align_down(old_src_addr) != end_addr) {
      // The partial object was copied from more than one source chunk.
      decrement_destination_counts(cm, src_chunk_idx, end_addr);

      // Move to the next source chunk, possibly switching spaces as well.  All
      // args except end_addr may be modified.
      src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
                                     end_addr);
    }
  }

  do {
    HeapWord* const cur_addr = closure.source();
    HeapWord* const end_addr = MIN2(sd.chunk_align_up(cur_addr + 1),
                                    src_space_top);
    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);

    if (status == ParMarkBitMap::incomplete) {
      // The last obj that starts in the source chunk does not end in the chunk.
      assert(closure.source() < end_addr, "sanity")
      HeapWord* const obj_beg = closure.source();
      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
                                       src_space_top);
      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
      if (obj_end < range_end) {
        // The end was found; the entire object will fit.
        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
        assert(status != ParMarkBitMap::would_overflow, "sanity");
      } else {
        // The end was not found; the object will not fit.
        assert(range_end < src_space_top, "obj cannot cross space boundary");
        status = ParMarkBitMap::would_overflow;
      }
    }

    if (status == ParMarkBitMap::would_overflow) {
      // The last object did not fit.  Note that interior oop updates were
      // deferred, then copy enough of the object to fill the chunk.
      chunk_ptr->set_deferred_obj_addr(closure.destination());
      status = closure.copy_until_full(); // copies from closure.source()

      decrement_destination_counts(cm, src_chunk_idx, closure.source());
      chunk_ptr->set_completed();
      return;
    }

    if (status == ParMarkBitMap::full) {
      decrement_destination_counts(cm, src_chunk_idx, closure.source());
      chunk_ptr->set_deferred_obj_addr(NULL);
      chunk_ptr->set_completed();
      return;
    }

    decrement_destination_counts(cm, src_chunk_idx, end_addr);

    // Move to the next source chunk, possibly switching spaces as well.  All
    // args except end_addr may be modified.
    src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
                                   end_addr);
  } while (true);
}

void
PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  const MutableSpace* sp = space(space_id);
  if (sp->is_empty()) {
    return;
  }

  ParallelCompactData& sd = PSParallelCompact::summary_data();
  ParMarkBitMap* const bitmap = mark_bitmap();
  HeapWord* const dp_addr = dense_prefix(space_id);
  HeapWord* beg_addr = sp->bottom();
  HeapWord* end_addr = sp->top();

#ifdef ASSERT
  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  if (cm->should_verify_only()) {
    VerifyUpdateClosure verify_update(cm, sp);
    bitmap->iterate(&verify_update, beg_addr, end_addr);
    return;
  }

  if (cm->should_reset_only()) {
    ResetObjectsClosure reset_objects(cm);
    bitmap->iterate(&reset_objects, beg_addr, end_addr);
    return;
  }
#endif

  const size_t beg_chunk = sd.addr_to_chunk_idx(beg_addr);
  const size_t dp_chunk = sd.addr_to_chunk_idx(dp_addr);
  if (beg_chunk < dp_chunk) {
    update_and_deadwood_in_dense_prefix(cm, space_id, beg_chunk, dp_chunk);
  }

  // The destination of the first live object that starts in the chunk is one
  // past the end of the partial object entering the chunk (if any).
  HeapWord* const dest_addr = sd.partial_obj_end(dp_chunk);
  HeapWord* const new_top = _space_info[space_id].new_top();
  assert(new_top >= dest_addr, "bad new_top value");
  const size_t words = pointer_delta(new_top, dest_addr);

  if (words > 0) {
    ObjectStartArray* start_array = _space_info[space_id].start_array();
    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);

    ParMarkBitMap::IterationStatus status;
    status = bitmap->iterate(&closure, dest_addr, end_addr);
    assert(status == ParMarkBitMap::full, "iteration not complete");
    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
           "live objects skipped because closure is full");
  }
}

jlong PSParallelCompact::millis_since_last_gc() {
  jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
  // XXX See note in genCollectedHeap::millis_since_last_gc().
  if (ret_val < 0) {
    NOT_PRODUCT(warning("time warp: %d", ret_val);)
    return 0;
  }
  return ret_val;
}

void PSParallelCompact::reset_millis_since_last_gc() {
  _time_of_last_gc = os::javaTimeMillis();
}

ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
{
  if (source() != destination()) {
    assert(source() > destination(), "must copy to the left");
    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  }
  update_state(words_remaining());
  assert(is_full(), "sanity");
  return ParMarkBitMap::full;
}

void MoveAndUpdateClosure::copy_partial_obj()
{
  size_t words = words_remaining();

  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  if (end_addr < range_end) {
    words = bitmap()->obj_size(source(), end_addr);
  }

  // This test is necessary; if omitted, the pointer updates to a partial object
  // that crosses the dense prefix boundary could be overwritten.
  if (source() != destination()) {
    assert(source() > destination(), "must copy to the left");
    Copy::aligned_conjoint_words(source(), destination(), words);
  }
  update_state(words);
}

ParMarkBitMapClosure::IterationStatus
MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  assert(destination() != NULL, "sanity");
  assert(bitmap()->obj_size(addr) == words, "bad size");

  _source = addr;
  assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
         destination(), "wrong destination");

  if (words > words_remaining()) {
    return ParMarkBitMap::would_overflow;
  }

  // The start_array must be updated even if the object is not moving.
  if (_start_array != NULL) {
    _start_array->allocate_block(destination());
  }

  if (destination() != source()) {
    assert(destination() < source(), "must copy to the left");
    Copy::aligned_conjoint_words(source(), destination(), words);
  }

  oop moved_oop = (oop) destination();
  moved_oop->update_contents(compaction_manager());
  assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");

  update_state(words);
  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
}

UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
                                     ParCompactionManager* cm,
                                     PSParallelCompact::SpaceId space_id) :
  ParMarkBitMapClosure(mbm, cm),
  _space_id(space_id),
  _start_array(PSParallelCompact::start_array(space_id))
{
}

// Updates the references in the object to their new values.
ParMarkBitMapClosure::IterationStatus
UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  do_addr(addr);
  return ParMarkBitMap::incomplete;
}

BitBlockUpdateClosure::BitBlockUpdateClosure(ParMarkBitMap* mbm,
                        ParCompactionManager* cm,
                        size_t chunk_index) :
                        ParMarkBitMapClosure(mbm, cm),
                        _live_data_left(0),
                        _cur_block(0) {
  _chunk_start =
    PSParallelCompact::summary_data().chunk_to_addr(chunk_index);
  _chunk_end =
    PSParallelCompact::summary_data().chunk_to_addr(chunk_index) +
                 ParallelCompactData::ChunkSize;
  _chunk_index = chunk_index;
  _cur_block =
    PSParallelCompact::summary_data().addr_to_block_idx(_chunk_start);
}

bool BitBlockUpdateClosure::chunk_contains_cur_block() {
  return ParallelCompactData::chunk_contains_block(_chunk_index, _cur_block);
}

void BitBlockUpdateClosure::reset_chunk(size_t chunk_index) {
  DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(7);)
  ParallelCompactData& sd = PSParallelCompact::summary_data();
  _chunk_index = chunk_index;
  _live_data_left = 0;
  _chunk_start = sd.chunk_to_addr(chunk_index);
  _chunk_end = sd.chunk_to_addr(chunk_index) + ParallelCompactData::ChunkSize;

  // The first block in this chunk
  size_t first_block =  sd.addr_to_block_idx(_chunk_start);
  size_t partial_live_size = sd.chunk(chunk_index)->partial_obj_size();

  // Set the offset to 0. By definition it should have that value
  // but it may have been written while processing an earlier chunk.
  if (partial_live_size == 0) {
    // No live object extends onto the chunk.  The first bit
    // in the bit map for the first chunk must be a start bit.
    // Although there may not be any marked bits, it is safe
    // to set it as a start bit.
    sd.block(first_block)->set_start_bit_offset(0);
    sd.block(first_block)->set_first_is_start_bit(true);
  } else if (sd.partial_obj_ends_in_block(first_block)) {
    sd.block(first_block)->set_end_bit_offset(0);
    sd.block(first_block)->set_first_is_start_bit(false);
  } else {
    // The partial object extends beyond the first block.
    // There is no object starting in the first block
    // so the offset and bit parity are not needed.
    // Set the the bit parity to start bit so assertions
    // work when not bit is found.
    sd.block(first_block)->set_end_bit_offset(0);
    sd.block(first_block)->set_first_is_start_bit(false);
  }
  _cur_block = first_block;
#ifdef ASSERT
  if (sd.block(first_block)->first_is_start_bit()) {
    assert(!sd.partial_obj_ends_in_block(first_block),
      "Partial object cannot end in first block");
  }

  if (PrintGCDetails && Verbose) {
    if (partial_live_size == 1) {
    gclog_or_tty->print_cr("first_block " PTR_FORMAT
      " _offset " PTR_FORMAT
      " _first_is_start_bit %d",
      first_block,
      sd.block(first_block)->raw_offset(),
      sd.block(first_block)->first_is_start_bit());
    }
  }
#endif
  DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(17);)
}

// This method is called when a object has been found (both beginning
// and end of the object) in the range of iteration.  This method is
// calculating the words of live data to the left of a block.  That live
// data includes any object starting to the left of the block (i.e.,
// the live-data-to-the-left of block AAA will include the full size
// of any object entering AAA).

ParMarkBitMapClosure::IterationStatus
BitBlockUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  // add the size to the block data.
  HeapWord* obj = addr;
  ParallelCompactData& sd = PSParallelCompact::summary_data();

  assert(bitmap()->obj_size(obj) == words, "bad size");
  assert(_chunk_start <= obj, "object is not in chunk");
  assert(obj + words <= _chunk_end, "object is not in chunk");

  // Update the live data to the left
  size_t prev_live_data_left = _live_data_left;
  _live_data_left = _live_data_left + words;

  // Is this object in the current block.
  size_t block_of_obj = sd.addr_to_block_idx(obj);
  size_t block_of_obj_last = sd.addr_to_block_idx(obj + words - 1);
  HeapWord* block_of_obj_last_addr = sd.block_to_addr(block_of_obj_last);
  if (_cur_block < block_of_obj) {

    //
    // No object crossed the block boundary and this object was found
    // on the other side of the block boundary.  Update the offset for
    // the new block with the data size that does not include this object.
    //
    // The first bit in block_of_obj is a start bit except in the
    // case where the partial object for the chunk extends into
    // this block.
    if (sd.partial_obj_ends_in_block(block_of_obj)) {
      sd.block(block_of_obj)->set_end_bit_offset(prev_live_data_left);
    } else {
      sd.block(block_of_obj)->set_start_bit_offset(prev_live_data_left);
    }

    // Does this object pass beyond the its block?
    if (block_of_obj < block_of_obj_last) {
      // Object crosses block boundary.  Two blocks need to be udpated:
      //        the current block where the object started
      //        the block where the object ends
      //
      // The offset for blocks with no objects starting in them
      // (e.g., blocks between _cur_block and  block_of_obj_last)
      // should not be needed.
      // Note that block_of_obj_last may be in another chunk.  If so,
      // it should be overwritten later.  This is a problem (writting
      // into a block in a later chunk) for parallel execution.
      assert(obj < block_of_obj_last_addr,
        "Object should start in previous block");

      // obj is crossing into block_of_obj_last so the first bit
      // is and end bit.
      sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);

      _cur_block = block_of_obj_last;
    } else {
      // _first_is_start_bit has already been set correctly
      // in the if-then-else above so don't reset it here.
      _cur_block = block_of_obj;
    }
  } else {
    // The current block only changes if the object extends beyound
    // the block it starts in.
    //
    // The object starts in the current block.
    // Does this object pass beyond the end of it?
    if (block_of_obj < block_of_obj_last) {
      // Object crosses block boundary.
      // See note above on possible blocks between block_of_obj and
      // block_of_obj_last
      assert(obj < block_of_obj_last_addr,
        "Object should start in previous block");

      sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);

      _cur_block = block_of_obj_last;
    }
  }

  // Return incomplete if there are more blocks to be done.
  if (chunk_contains_cur_block()) {
    return ParMarkBitMap::incomplete;
  }
  return ParMarkBitMap::complete;
}

// Verify the new location using the forwarding pointer
// from MarkSweep::mark_sweep_phase2().  Set the mark_word
// to the initial value.
ParMarkBitMapClosure::IterationStatus
PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  // The second arg (words) is not used.
  oop obj = (oop) addr;
  HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
  HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
  if (forwarding_ptr == NULL) {
    // The object is dead or not moving.
    assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
           "Object liveness is wrong.");
    return ParMarkBitMap::incomplete;
  }
  assert(UseParallelOldGCDensePrefix ||
         (HeapMaximumCompactionInterval > 1) ||
         (MarkSweepAlwaysCompactCount > 1) ||
         (forwarding_ptr == new_pointer),
    "Calculation of new location is incorrect");
  return ParMarkBitMap::incomplete;
}

// Reset objects modified for debug checking.
ParMarkBitMapClosure::IterationStatus
PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
  // The second arg (words) is not used.
  oop obj = (oop) addr;
  obj->init_mark();
  return ParMarkBitMap::incomplete;
}

// Prepare for compaction.  This method is executed once
// (i.e., by a single thread) before compaction.
// Save the updated location of the intArrayKlassObj for
// filling holes in the dense prefix.
void PSParallelCompact::compact_prologue() {
  _updated_int_array_klass_obj = (klassOop)
    summary_data().calc_new_pointer(Universe::intArrayKlassObj());
}

// The initial implementation of this method created a field
// _next_compaction_space_id in SpaceInfo and initialized
// that field in SpaceInfo::initialize_space_info().  That
// required that _next_compaction_space_id be declared a
// SpaceId in SpaceInfo and that would have required that
// either SpaceId be declared in a separate class or that
// it be declared in SpaceInfo.  It didn't seem consistent
// to declare it in SpaceInfo (didn't really fit logically).
// Alternatively, defining a separate class to define SpaceId
// seem excessive.  This implementation is simple and localizes
// the knowledge.

PSParallelCompact::SpaceId
PSParallelCompact::next_compaction_space_id(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  switch (id) {
    case perm_space_id :
      return last_space_id;
    case old_space_id :
      return eden_space_id;
    case eden_space_id :
      return from_space_id;
    case from_space_id :
      return to_space_id;
    case to_space_id :
      return last_space_id;
    default:
      assert(false, "Bad space id");
      return last_space_id;
  }
}

// Here temporarily for debugging
#ifdef ASSERT
  size_t ParallelCompactData::block_idx(BlockData* block) {
    size_t index = pointer_delta(block,
      PSParallelCompact::summary_data()._block_data, sizeof(BlockData));
    return index;
  }
#endif