psParallelCompact.cpp 128.1 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/codeCache.hpp"
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
#include "gc_implementation/parallelScavenge/generationSizer.hpp"
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
#include "gc_implementation/parallelScavenge/pcTasks.hpp"
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
#include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
#include "gc_implementation/parallelScavenge/psYoungGen.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "gc_interface/gcCause.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/referenceProcessor.hpp"
47
#include "oops/methodData.hpp"
48 49 50 51 52 53 54
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/vmThread.hpp"
#include "services/management.hpp"
#include "services/memoryService.hpp"
Z
zgu 已提交
55
#include "services/memTracker.hpp"
56 57
#include "utilities/events.hpp"
#include "utilities/stack.inline.hpp"
D
duke 已提交
58 59 60 61

#include <math.h>

// All sizes are in HeapWords.
62 63 64 65 66 67 68
const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
const size_t ParallelCompactData::RegionSizeBytes =
  RegionSize << LogHeapWordSize;
const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
D
duke 已提交
69

70 71
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_shift = 27;
D
duke 已提交
72

73 74
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
D
duke 已提交
75

76 77
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
D
duke 已提交
78

79 80
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::los_mask = ~dc_mask;
D
duke 已提交
81

82 83
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
D
duke 已提交
84

85 86
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
D
duke 已提交
87 88 89 90 91

SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
bool      PSParallelCompact::_print_phases = false;

ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
92
Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
D
duke 已提交
93 94 95 96 97 98 99 100 101

double PSParallelCompact::_dwl_mean;
double PSParallelCompact::_dwl_std_dev;
double PSParallelCompact::_dwl_first_term;
double PSParallelCompact::_dwl_adjustment;
#ifdef  ASSERT
bool   PSParallelCompact::_dwl_initialized = false;
#endif  // #ifdef ASSERT

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
                       HeapWord* destination)
{
  assert(src_region_idx != 0, "invalid src_region_idx");
  assert(partial_obj_size != 0, "invalid partial_obj_size argument");
  assert(destination != NULL, "invalid destination argument");

  _src_region_idx = src_region_idx;
  _partial_obj_size = partial_obj_size;
  _destination = destination;

  // These fields may not be updated below, so make sure they're clear.
  assert(_dest_region_addr == NULL, "should have been cleared");
  assert(_first_src_addr == NULL, "should have been cleared");

  // Determine the number of destination regions for the partial object.
  HeapWord* const last_word = destination + partial_obj_size - 1;
  const ParallelCompactData& sd = PSParallelCompact::summary_data();
  HeapWord* const beg_region_addr = sd.region_align_down(destination);
  HeapWord* const end_region_addr = sd.region_align_down(last_word);

  if (beg_region_addr == end_region_addr) {
    // One destination region.
    _destination_count = 1;
    if (end_region_addr == destination) {
      // The destination falls on a region boundary, thus the first word of the
      // partial object will be the first word copied to the destination region.
      _dest_region_addr = end_region_addr;
      _first_src_addr = sd.region_to_addr(src_region_idx);
    }
  } else {
    // Two destination regions.  When copied, the partial object will cross a
    // destination region boundary, so a word somewhere within the partial
    // object will be the first word copied to the second destination region.
    _destination_count = 2;
    _dest_region_addr = end_region_addr;
    const size_t ofs = pointer_delta(end_region_addr, destination);
    assert(ofs < _partial_obj_size, "sanity");
    _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
  }
}

void SplitInfo::clear()
{
  _src_region_idx = 0;
  _partial_obj_size = 0;
  _destination = NULL;
  _destination_count = 0;
  _dest_region_addr = NULL;
  _first_src_addr = NULL;
  assert(!is_valid(), "sanity");
}

#ifdef  ASSERT
void SplitInfo::verify_clear()
{
  assert(_src_region_idx == 0, "not clear");
  assert(_partial_obj_size == 0, "not clear");
  assert(_destination == NULL, "not clear");
  assert(_destination_count == 0, "not clear");
  assert(_dest_region_addr == NULL, "not clear");
  assert(_first_src_addr == NULL, "not clear");
}
#endif  // #ifdef ASSERT


168 169 170 171
void PSParallelCompact::print_on_error(outputStream* st) {
  _mark_bitmap.print_on_error(st);
}

D
duke 已提交
172 173
#ifndef PRODUCT
const char* PSParallelCompact::space_names[] = {
174
  "old ", "eden", "from", "to  "
D
duke 已提交
175 176
};

177
void PSParallelCompact::print_region_ranges()
D
duke 已提交
178 179 180 181 182 183 184
{
  tty->print_cr("space  bottom     top        end        new_top");
  tty->print_cr("------ ---------- ---------- ---------- ----------");

  for (unsigned int id = 0; id < last_space_id; ++id) {
    const MutableSpace* space = _space_info[id].space();
    tty->print_cr("%u %s "
185 186
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
D
duke 已提交
187
                  id, space_names[id],
188 189 190 191
                  summary_data().addr_to_region_idx(space->bottom()),
                  summary_data().addr_to_region_idx(space->top()),
                  summary_data().addr_to_region_idx(space->end()),
                  summary_data().addr_to_region_idx(_space_info[id].new_top()));
D
duke 已提交
192 193 194 195
  }
}

void
196
print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
D
duke 已提交
197
{
198 199
#define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
#define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
D
duke 已提交
200 201

  ParallelCompactData& sd = PSParallelCompact::summary_data();
202 203 204 205 206
  size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
  tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
                REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
D
duke 已提交
207 208
                i, c->data_location(), dci, c->destination(),
                c->partial_obj_size(), c->live_obj_size(),
209
                c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
210

211 212
#undef  REGION_IDX_FORMAT
#undef  REGION_DATA_FORMAT
D
duke 已提交
213 214 215 216 217 218 219 220
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           HeapWord* const beg_addr,
                           HeapWord* const end_addr)
{
  size_t total_words = 0;
221 222
  size_t i = summary_data.addr_to_region_idx(beg_addr);
  const size_t last = summary_data.addr_to_region_idx(end_addr);
D
duke 已提交
223 224 225
  HeapWord* pdest = 0;

  while (i <= last) {
226
    ParallelCompactData::RegionData* c = summary_data.region(i);
D
duke 已提交
227
    if (c->data_size() != 0 || c->destination() != pdest) {
228
      print_generic_summary_region(i, c);
D
duke 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      total_words += c->data_size();
      pdest = c->destination();
    }
    ++i;
  }

  tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info)
{
  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
    const MutableSpace* space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(),
                               MAX2(space->top(), space_info[id].new_top()));
  }
}

void
250 251 252
print_initial_summary_region(size_t i,
                             const ParallelCompactData::RegionData* c,
                             bool newline = true)
D
duke 已提交
253
{
254 255 256
  tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
D
duke 已提交
257 258
             i, c->destination(),
             c->partial_obj_size(), c->live_obj_size(),
259
             c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
260 261 262 263 264 265 266 267 268 269
  if (newline) tty->cr();
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           const MutableSpace* space) {
  if (space->top() == space->bottom()) {
    return;
  }

270 271 272 273 274
  const size_t region_size = ParallelCompactData::RegionSize;
  typedef ParallelCompactData::RegionData RegionData;
  HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
  const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
  const RegionData* c = summary_data.region(end_region - 1);
D
duke 已提交
275 276 277
  HeapWord* end_addr = c->destination() + c->data_size();
  const size_t live_in_space = pointer_delta(end_addr, space->bottom());

278 279 280 281 282 283
  // Print (and count) the full regions at the beginning of the space.
  size_t full_region_count = 0;
  size_t i = summary_data.addr_to_region_idx(space->bottom());
  while (i < end_region && summary_data.region(i)->data_size() == region_size) {
    print_initial_summary_region(i, summary_data.region(i));
    ++full_region_count;
D
duke 已提交
284 285 286
    ++i;
  }

287
  size_t live_to_right = live_in_space - full_region_count * region_size;
D
duke 已提交
288 289

  double max_reclaimed_ratio = 0.0;
290
  size_t max_reclaimed_ratio_region = 0;
D
duke 已提交
291 292 293
  size_t max_dead_to_right = 0;
  size_t max_live_to_right = 0;

294 295
  // Print the 'reclaimed ratio' for regions while there is something live in
  // the region or to the right of it.  The remaining regions are empty (and
D
duke 已提交
296
  // uninteresting), and computing the ratio will result in division by 0.
297 298 299 300
  while (i < end_region && live_to_right > 0) {
    c = summary_data.region(i);
    HeapWord* const region_addr = summary_data.region_to_addr(i);
    const size_t used_to_right = pointer_delta(space->top(), region_addr);
D
duke 已提交
301 302 303 304 305
    const size_t dead_to_right = used_to_right - live_to_right;
    const double reclaimed_ratio = double(dead_to_right) / live_to_right;

    if (reclaimed_ratio > max_reclaimed_ratio) {
            max_reclaimed_ratio = reclaimed_ratio;
306
            max_reclaimed_ratio_region = i;
D
duke 已提交
307 308 309 310
            max_dead_to_right = dead_to_right;
            max_live_to_right = live_to_right;
    }

311
    print_initial_summary_region(i, c, false);
312
    tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
D
duke 已提交
313 314 315 316 317 318
                  reclaimed_ratio, dead_to_right, live_to_right);

    live_to_right -= c->data_size();
    ++i;
  }

319 320 321
  // Any remaining regions are empty.  Print one more if there is one.
  if (i < end_region) {
    print_initial_summary_region(i, summary_data.region(i));
D
duke 已提交
322 323
  }

324 325
  tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
                "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
326
                max_reclaimed_ratio_region, max_dead_to_right,
D
duke 已提交
327 328 329 330 331 332
                max_live_to_right, max_reclaimed_ratio);
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info) {
333
  unsigned int id = PSParallelCompact::old_space_id;
D
duke 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  const MutableSpace* space;
  do {
    space = space_info[id].space();
    print_initial_summary_data(summary_data, space);
  } while (++id < PSParallelCompact::eden_space_id);

  do {
    space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(), space->top());
  } while (++id < PSParallelCompact::last_space_id);
}
#endif  // #ifndef PRODUCT

#ifdef  ASSERT
size_t add_obj_count;
size_t add_obj_size;
size_t mark_bitmap_count;
size_t mark_bitmap_size;
#endif  // #ifdef ASSERT

ParallelCompactData::ParallelCompactData()
{
  _region_start = 0;

358 359 360
  _region_vspace = 0;
  _region_data = 0;
  _region_count = 0;
D
duke 已提交
361 362 363 364 365 366 367 368
}

bool ParallelCompactData::initialize(MemRegion covered_region)
{
  _region_start = covered_region.start();
  const size_t region_size = covered_region.word_size();
  DEBUG_ONLY(_region_end = _region_start + region_size;)

369
  assert(region_align_down(_region_start) == _region_start,
D
duke 已提交
370
         "region start not aligned");
371 372
  assert((region_size & RegionSizeOffsetMask) == 0,
         "region size not a multiple of RegionSize");
D
duke 已提交
373

374
  bool result = initialize_region_data(region_size);
D
duke 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388

  return result;
}

PSVirtualSpace*
ParallelCompactData::create_vspace(size_t count, size_t element_size)
{
  const size_t raw_bytes = count * element_size;
  const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
  const size_t granularity = os::vm_allocation_granularity();
  const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));

  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
    MAX2(page_sz, granularity);
389
  ReservedSpace rs(bytes, rs_align, rs_align > 0);
D
duke 已提交
390 391
  os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
                       rs.size());
Z
zgu 已提交
392 393 394

  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);

D
duke 已提交
395 396 397 398 399 400
  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
  if (vspace != 0) {
    if (vspace->expand_by(bytes)) {
      return vspace;
    }
    delete vspace;
401 402
    // Release memory reserved in the space.
    rs.release();
D
duke 已提交
403 404 405 406 407
  }

  return 0;
}

408
bool ParallelCompactData::initialize_region_data(size_t region_size)
D
duke 已提交
409
{
410 411 412 413 414
  const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
  _region_vspace = create_vspace(count, sizeof(RegionData));
  if (_region_vspace != 0) {
    _region_data = (RegionData*)_region_vspace->reserved_low_addr();
    _region_count = count;
D
duke 已提交
415 416 417 418 419 420 421
    return true;
  }
  return false;
}

void ParallelCompactData::clear()
{
422
  memset(_region_data, 0, _region_vspace->committed_size());
D
duke 已提交
423 424
}

425 426 427
void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
  assert(beg_region <= _region_count, "beg_region out of range");
  assert(end_region <= _region_count, "end_region out of range");
D
duke 已提交
428

429 430
  const size_t region_cnt = end_region - beg_region;
  memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
D
duke 已提交
431 432
}

433
HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
D
duke 已提交
434
{
435 436
  const RegionData* cur_cp = region(region_idx);
  const RegionData* const end_cp = region(region_count() - 1);
D
duke 已提交
437

438
  HeapWord* result = region_to_addr(region_idx);
D
duke 已提交
439 440 441
  if (cur_cp < end_cp) {
    do {
      result += cur_cp->partial_obj_size();
442
    } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
D
duke 已提交
443 444 445 446 447 448 449
  }
  return result;
}

void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
{
  const size_t obj_ofs = pointer_delta(addr, _region_start);
450 451
  const size_t beg_region = obj_ofs >> Log2RegionSize;
  const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
D
duke 已提交
452 453 454 455

  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)

456 457 458
  if (beg_region == end_region) {
    // All in one region.
    _region_data[beg_region].add_live_obj(len);
D
duke 已提交
459 460 461
    return;
  }

462 463 464
  // First region.
  const size_t beg_ofs = region_offset(addr);
  _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
D
duke 已提交
465

466
  Klass* klass = ((oop)addr)->klass();
467 468 469 470
  // Middle regions--completely spanned by this object.
  for (size_t region = beg_region + 1; region < end_region; ++region) {
    _region_data[region].set_partial_obj_size(RegionSize);
    _region_data[region].set_partial_obj_addr(addr);
D
duke 已提交
471 472
  }

473 474 475 476
  // Last region.
  const size_t end_ofs = region_offset(addr + len - 1);
  _region_data[end_region].set_partial_obj_size(end_ofs + 1);
  _region_data[end_region].set_partial_obj_addr(addr);
D
duke 已提交
477 478 479 480 481
}

void
ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
{
482 483
  assert(region_offset(beg) == 0, "not RegionSize aligned");
  assert(region_offset(end) == 0, "not RegionSize aligned");
D
duke 已提交
484

485 486
  size_t cur_region = addr_to_region_idx(beg);
  const size_t end_region = addr_to_region_idx(end);
D
duke 已提交
487
  HeapWord* addr = beg;
488 489 490 491 492
  while (cur_region < end_region) {
    _region_data[cur_region].set_destination(addr);
    _region_data[cur_region].set_destination_count(0);
    _region_data[cur_region].set_source_region(cur_region);
    _region_data[cur_region].set_data_location(addr);
D
duke 已提交
493

494 495 496
    // Update live_obj_size so the region appears completely full.
    size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
    _region_data[cur_region].set_live_obj_size(live_size);
D
duke 已提交
497

498 499
    ++cur_region;
    addr += RegionSize;
D
duke 已提交
500 501 502
  }
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
// Find the point at which a space can be split and, if necessary, record the
// split point.
//
// If the current src region (which overflowed the destination space) doesn't
// have a partial object, the split point is at the beginning of the current src
// region (an "easy" split, no extra bookkeeping required).
//
// If the current src region has a partial object, the split point is in the
// region where that partial object starts (call it the split_region).  If
// split_region has a partial object, then the split point is just after that
// partial object (a "hard" split where we have to record the split data and
// zero the partial_obj_size field).  With a "hard" split, we know that the
// partial_obj ends within split_region because the partial object that caused
// the overflow starts in split_region.  If split_region doesn't have a partial
// obj, then the split is at the beginning of split_region (another "easy"
// split).
HeapWord*
ParallelCompactData::summarize_split_space(size_t src_region,
                                           SplitInfo& split_info,
                                           HeapWord* destination,
                                           HeapWord* target_end,
                                           HeapWord** target_next)
{
  assert(destination <= target_end, "sanity");
  assert(destination + _region_data[src_region].data_size() > target_end,
    "region should not fit into target space");
529
  assert(is_region_aligned(target_end), "sanity");
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

  size_t split_region = src_region;
  HeapWord* split_destination = destination;
  size_t partial_obj_size = _region_data[src_region].partial_obj_size();

  if (destination + partial_obj_size > target_end) {
    // The split point is just after the partial object (if any) in the
    // src_region that contains the start of the object that overflowed the
    // destination space.
    //
    // Find the start of the "overflow" object and set split_region to the
    // region containing it.
    HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
    split_region = addr_to_region_idx(overflow_obj);

    // Clear the source_region field of all destination regions whose first word
    // came from data after the split point (a non-null source_region field
    // implies a region must be filled).
    //
    // An alternative to the simple loop below:  clear during post_compact(),
    // which uses memcpy instead of individual stores, and is easy to
    // parallelize.  (The downside is that it clears the entire RegionData
    // object as opposed to just one field.)
    //
    // post_compact() would have to clear the summary data up to the highest
    // address that was written during the summary phase, which would be
    //
    //         max(top, max(new_top, clear_top))
    //
    // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
560
    // to target_end.
561 562 563 564
    const RegionData* const sr = region(split_region);
    const size_t beg_idx =
      addr_to_region_idx(region_align_up(sr->destination() +
                                         sr->partial_obj_size()));
565
    const size_t end_idx = addr_to_region_idx(target_end);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

    if (TraceParallelOldGCSummaryPhase) {
        gclog_or_tty->print_cr("split:  clearing source_region field in ["
                               SIZE_FORMAT ", " SIZE_FORMAT ")",
                               beg_idx, end_idx);
    }
    for (size_t idx = beg_idx; idx < end_idx; ++idx) {
      _region_data[idx].set_source_region(0);
    }

    // Set split_destination and partial_obj_size to reflect the split region.
    split_destination = sr->destination();
    partial_obj_size = sr->partial_obj_size();
  }

  // The split is recorded only if a partial object extends onto the region.
  if (partial_obj_size != 0) {
    _region_data[split_region].set_partial_obj_size(0);
    split_info.record(split_region, partial_obj_size, split_destination);
  }

  // Setup the continuation addresses.
  *target_next = split_destination + partial_obj_size;
  HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
D
duke 已提交
590 591

  if (TraceParallelOldGCSummaryPhase) {
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
    gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
                           " pos=" SIZE_FORMAT,
                           split_type, source_next, split_region,
                           partial_obj_size);
    gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
                           " tn=" PTR_FORMAT,
                           split_type, split_destination,
                           addr_to_region_idx(split_destination),
                           *target_next);

    if (partial_obj_size != 0) {
      HeapWord* const po_beg = split_info.destination();
      HeapWord* const po_end = po_beg + split_info.partial_obj_size();
      gclog_or_tty->print_cr("%s split:  "
                             "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
                             "po_end=" PTR_FORMAT " " SIZE_FORMAT,
                             split_type,
                             po_beg, addr_to_region_idx(po_beg),
                             po_end, addr_to_region_idx(po_end));
    }
  }

  return source_next;
}

bool ParallelCompactData::summarize(SplitInfo& split_info,
                                    HeapWord* source_beg, HeapWord* source_end,
                                    HeapWord** source_next,
                                    HeapWord* target_beg, HeapWord* target_end,
                                    HeapWord** target_next)
{
  if (TraceParallelOldGCSummaryPhase) {
    HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
    tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
                  "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
                  source_beg, source_end, source_next_val,
                  target_beg, target_end, *target_next);
D
duke 已提交
630 631
  }

632 633
  size_t cur_region = addr_to_region_idx(source_beg);
  const size_t end_region = addr_to_region_idx(region_align_up(source_end));
D
duke 已提交
634 635

  HeapWord *dest_addr = target_beg;
636
  while (cur_region < end_region) {
637
    // The destination must be set even if the region has no data.
638
    _region_data[cur_region].set_destination(dest_addr);
D
duke 已提交
639

640
    size_t words = _region_data[cur_region].data_size();
D
duke 已提交
641
    if (words > 0) {
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
      // If cur_region does not fit entirely into the target space, find a point
      // at which the source space can be 'split' so that part is copied to the
      // target space and the rest is copied elsewhere.
      if (dest_addr + words > target_end) {
        assert(source_next != NULL, "source_next is NULL when splitting");
        *source_next = summarize_split_space(cur_region, split_info, dest_addr,
                                             target_end, target_next);
        return false;
      }

      // Compute the destination_count for cur_region, and if necessary, update
      // source_region for a destination region.  The source_region field is
      // updated if cur_region is the first (left-most) region to be copied to a
      // destination region.
      //
      // The destination_count calculation is a bit subtle.  A region that has
      // data that compacts into itself does not count itself as a destination.
      // This maintains the invariant that a zero count means the region is
      // available and can be claimed and then filled.
      uint destination_count = 0;
      if (split_info.is_split(cur_region)) {
        // The current region has been split:  the partial object will be copied
        // to one destination space and the remaining data will be copied to
        // another destination space.  Adjust the initial destination_count and,
        // if necessary, set the source_region field if the partial object will
        // cross a destination region boundary.
        destination_count = split_info.destination_count();
        if (destination_count == 2) {
          size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
          _region_data[dest_idx].set_source_region(cur_region);
        }
      }

D
duke 已提交
675
      HeapWord* const last_addr = dest_addr + words - 1;
676 677
      const size_t dest_region_1 = addr_to_region_idx(dest_addr);
      const size_t dest_region_2 = addr_to_region_idx(last_addr);
678

679
      // Initially assume that the destination regions will be the same and
D
duke 已提交
680
      // adjust the value below if necessary.  Under this assumption, if
681 682
      // cur_region == dest_region_2, then cur_region will be compacted
      // completely into itself.
683
      destination_count += cur_region == dest_region_2 ? 0 : 1;
684 685
      if (dest_region_1 != dest_region_2) {
        // Destination regions differ; adjust destination_count.
D
duke 已提交
686
        destination_count += 1;
687 688 689 690 691 692
        // Data from cur_region will be copied to the start of dest_region_2.
        _region_data[dest_region_2].set_source_region(cur_region);
      } else if (region_offset(dest_addr) == 0) {
        // Data from cur_region will be copied to the start of the destination
        // region.
        _region_data[dest_region_1].set_source_region(cur_region);
D
duke 已提交
693 694
      }

695 696
      _region_data[cur_region].set_destination_count(destination_count);
      _region_data[cur_region].set_data_location(region_to_addr(cur_region));
D
duke 已提交
697 698 699
      dest_addr += words;
    }

700
    ++cur_region;
D
duke 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  }

  *target_next = dest_addr;
  return true;
}

HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
  assert(addr != NULL, "Should detect NULL oop earlier");
  assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
#ifdef ASSERT
  if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
    gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
  }
#endif
  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");

717 718 719 720
  // Region covering the object.
  size_t region_index = addr_to_region_idx(addr);
  const RegionData* const region_ptr = region(region_index);
  HeapWord* const region_addr = region_align_down(addr);
D
duke 已提交
721

722 723
  assert(addr < region_addr + RegionSize, "Region does not cover object");
  assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
D
duke 已提交
724

725
  HeapWord* result = region_ptr->destination();
D
duke 已提交
726

727 728 729 730 731
  // If all the data in the region is live, then the new location of the object
  // can be calculated from the destination of the region plus the offset of the
  // object in the region.
  if (region_ptr->data_size() == RegionSize) {
    result += pointer_delta(addr, region_addr);
732
    DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
D
duke 已提交
733 734 735 736
    return result;
  }

  // The new location of the object is
737 738 739 740 741
  //    region destination +
  //    size of the partial object extending onto the region +
  //    sizes of the live objects in the Region that are to the left of addr
  const size_t partial_obj_size = region_ptr->partial_obj_size();
  HeapWord* const search_start = region_addr + partial_obj_size;
D
duke 已提交
742 743 744 745 746

  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
  size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));

  result += partial_obj_size + live_to_left;
747
  DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
D
duke 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
  return result;
}

#ifdef  ASSERT
void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
{
  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
  const size_t* const end = (const size_t*)vspace->committed_high_addr();
  for (const size_t* p = beg; p < end; ++p) {
    assert(*p == 0, "not zero");
  }
}

void ParallelCompactData::verify_clear()
{
763
  verify_clear(_region_vspace);
D
duke 已提交
764 765 766 767
}
#endif  // #ifdef ASSERT

#ifdef NOT_PRODUCT
768
ParallelCompactData::RegionData* debug_region(size_t region_index) {
D
duke 已提交
769
  ParallelCompactData& sd = PSParallelCompact::summary_data();
770
  return sd.region(region_index);
D
duke 已提交
771 772 773 774 775 776 777 778 779 780 781 782
}
#endif

elapsedTimer        PSParallelCompact::_accumulated_time;
unsigned int        PSParallelCompact::_total_invocations = 0;
unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
jlong               PSParallelCompact::_time_of_last_gc = 0;
CollectorCounters*  PSParallelCompact::_counters = NULL;
ParMarkBitMap       PSParallelCompact::_mark_bitmap;
ParallelCompactData PSParallelCompact::_summary_data;

PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
783 784 785 786 787 788

bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }

void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }

789
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
790
PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
D
duke 已提交
791

792 793
void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p); }
void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
D
duke 已提交
794

795
void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
D
duke 已提交
796

797 798 799
void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
  mark_and_push(_compaction_manager, p);
}
800
void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
D
duke 已提交
801

802 803 804 805
void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
  klass->oops_do(_mark_and_push_closure);
}
void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
806
  klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
807 808
}

D
duke 已提交
809 810 811 812 813
void PSParallelCompact::post_initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  MemRegion mr = heap->reserved_region();
814 815 816 817 818 819 820 821 822
  _ref_processor =
    new ReferenceProcessor(mr,            // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
                           (int) ParallelGCThreads, // mt processing degree
                           true,          // mt discovery
                           (int) ParallelGCThreads, // mt discovery degree
                           true,          // atomic_discovery
                           &_is_alive_closure, // non-header is alive closure
                           false);        // write barrier for next field updates
D
duke 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
  _counters = new CollectorCounters("PSParallelCompact", 1);

  // Initialize static fields in ParCompactionManager.
  ParCompactionManager::initialize(mark_bitmap());
}

bool PSParallelCompact::initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  MemRegion mr = heap->reserved_region();

  // Was the old gen get allocated successfully?
  if (!heap->old_gen()->is_allocated()) {
    return false;
  }

  initialize_space_info();
  initialize_dead_wood_limiter();

  if (!_mark_bitmap.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate bit map for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  if (!_summary_data.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate tables for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  return true;
}

void PSParallelCompact::initialize_space_info()
{
  memset(&_space_info, 0, sizeof(_space_info));

  ParallelScavengeHeap* heap = gc_heap();
  PSYoungGen* young_gen = heap->young_gen();

  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
  _space_info[eden_space_id].set_space(young_gen->eden_space());
  _space_info[from_space_id].set_space(young_gen->from_space());
  _space_info[to_space_id].set_space(young_gen->to_space());

  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
}

void PSParallelCompact::initialize_dead_wood_limiter()
{
  const size_t max = 100;
  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
  DEBUG_ONLY(_dwl_initialized = true;)
  _dwl_adjustment = normal_distribution(1.0);
}

// Simple class for storing info about the heap at the start of GC, to be used
// after GC for comparison/printing.
class PreGCValues {
public:
  PreGCValues() { }
  PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }

  void fill(ParallelScavengeHeap* heap) {
    _heap_used      = heap->used();
    _young_gen_used = heap->young_gen()->used_in_bytes();
    _old_gen_used   = heap->old_gen()->used_in_bytes();
893
    _metadata_used  = MetaspaceAux::allocated_used_bytes();
D
duke 已提交
894 895 896 897 898
  };

  size_t heap_used() const      { return _heap_used; }
  size_t young_gen_used() const { return _young_gen_used; }
  size_t old_gen_used() const   { return _old_gen_used; }
899
  size_t metadata_used() const  { return _metadata_used; }
D
duke 已提交
900 901 902 903 904

private:
  size_t _heap_used;
  size_t _young_gen_used;
  size_t _old_gen_used;
905
  size_t _metadata_used;
D
duke 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
};

void
PSParallelCompact::clear_data_covering_space(SpaceId id)
{
  // At this point, top is the value before GC, new_top() is the value that will
  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
  // should be marked above top.  The summary data is cleared to the larger of
  // top & new_top.
  MutableSpace* const space = _space_info[id].space();
  HeapWord* const bot = space->bottom();
  HeapWord* const top = space->top();
  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());

  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
  _mark_bitmap.clear_range(beg_bit, end_bit);

924 925 926 927
  const size_t beg_region = _summary_data.addr_to_region_idx(bot);
  const size_t end_region =
    _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
  _summary_data.clear_range(beg_region, end_region);
928 929 930 931 932 933 934

  // Clear the data used to 'split' regions.
  SplitInfo& split_info = _space_info[id].split_info();
  if (split_info.is_valid()) {
    split_info.clear();
  }
  DEBUG_ONLY(split_info.verify_clear();)
D
duke 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
}

void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
{
  // Update the from & to space pointers in space_info, since they are swapped
  // at each young gen gc.  Do the update unconditionally (even though a
  // promotion failure does not swap spaces) because an unknown number of minor
  // collections will have swapped the spaces an unknown number of times.
  TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
  ParallelScavengeHeap* heap = gc_heap();
  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
  _space_info[to_space_id].set_space(heap->young_gen()->to_space());

  pre_gc_values->fill(heap);

  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)

  // Increment the invocation count
954
  heap->increment_total_collections(true);
D
duke 已提交
955 956 957 958

  // We need to track unique mark sweep invocations as well.
  _total_invocations++;

959
  heap->print_heap_before_gc();
D
duke 已提交
960 961 962 963 964 965 966

  // Fill in TLABs
  heap->accumulate_statistics_all_tlabs();
  heap->ensure_parsability(true);  // retire TLABs

  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
967
    Universe::verify(" VerifyBeforeGC:");
D
duke 已提交
968 969 970 971 972 973 974 975 976 977
  }

  // Verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyBeforeGC) {
    heap->old_gen()->verify_object_start_array();
  }

  DEBUG_ONLY(mark_bitmap()->verify_clear();)
  DEBUG_ONLY(summary_data().verify_clear();)
J
jcoomes 已提交
978 979 980

  // Have worker threads release resources the next time they run a task.
  gc_task_manager()->release_all_resources();
D
duke 已提交
981 982 983 984 985 986
}

void PSParallelCompact::post_compact()
{
  TraceTime tm("post compact", print_phases(), true, gclog_or_tty);

987
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
988
    // Clear the marking bitmap, summary data and split info.
D
duke 已提交
989
    clear_data_covering_space(SpaceId(id));
990 991
    // Update top().  Must be done after clearing the bitmap and summary data.
    _space_info[id].publish_new_top();
D
duke 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
  }

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  MutableSpace* const to_space   = _space_info[to_space_id].space();

  ParallelScavengeHeap* heap = gc_heap();
  bool eden_empty = eden_space->is_empty();
  if (!eden_empty) {
    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
                                            heap->young_gen(), heap->old_gen());
  }

  // Update heap occupancy information which is used as input to the soft ref
  // clearing policy at the next gc.
  Universe::update_heap_info_at_gc();

  bool young_gen_empty = eden_empty && from_space->is_empty() &&
    to_space->is_empty();

  BarrierSet* bs = heap->barrier_set();
  if (bs->is_a(BarrierSet::ModRef)) {
    ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
    MemRegion old_mr = heap->old_gen()->reserved();

    if (young_gen_empty) {
1018
      modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
D
duke 已提交
1019
    } else {
1020
      modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
D
duke 已提交
1021 1022 1023
    }
  }

1024 1025
  // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  ClassLoaderDataGraph::purge();
1026
  MetaspaceAux::verify_metrics();
1027

D
duke 已提交
1028 1029
  Threads::gc_epilogue();
  CodeCache::gc_epilogue();
1030
  JvmtiExport::gc_epilogue();
D
duke 已提交
1031 1032 1033 1034 1035

  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

  ref_processor()->enqueue_discovered_references(NULL);

1036 1037 1038 1039
  if (ZapUnusedHeapArea) {
    heap->gen_mangle_unused_area();
  }

D
duke 已提交
1040 1041 1042 1043 1044 1045 1046 1047
  // Update time of last GC
  reset_millis_since_last_gc();
}

HeapWord*
PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
                                                    bool maximum_compaction)
{
1048
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1049 1050 1051
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
1052 1053 1054
  HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
1055

1056
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
1057 1058
  // of the dense prefix.
  size_t full_count = 0;
1059 1060
  const RegionData* cp;
  for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
D
duke 已提交
1061 1062 1063 1064 1065 1066 1067 1068
    ++full_count;
  }

  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  if (maximum_compaction || cp == end_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
1069
    return sd.region_to_addr(cp);
D
duke 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
  }

  HeapWord* const new_top = _space_info[id].new_top();
  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double cur_density = double(space_live) / space_capacity;
  const double deadwood_density =
    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
                  cur_density, deadwood_density, deadwood_goal);
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
  }

  // XXX - Use binary search?
1092 1093 1094
  HeapWord* dense_prefix = sd.region_to_addr(cp);
  const RegionData* full_cp = cp;
  const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
D
duke 已提交
1095
  while (cp < end_cp) {
1096 1097
    HeapWord* region_destination = cp->destination();
    const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
D
duke 已提交
1098
    if (TraceParallelOldGCDensePrefix && Verbose) {
1099 1100
      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
                    "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
1101
                    sd.region(cp), region_destination,
D
duke 已提交
1102 1103 1104 1105
                    dense_prefix, cur_deadwood);
    }

    if (cur_deadwood >= deadwood_goal) {
1106 1107 1108 1109 1110
      // Found the region that has the correct amount of deadwood to the left.
      // This typically occurs after crossing a fairly sparse set of regions, so
      // iterate backwards over those sparse regions, looking for the region
      // that has the lowest density of live objects 'to the right.'
      size_t space_to_left = sd.region(cp) * region_size;
D
duke 已提交
1111 1112 1113 1114 1115 1116
      size_t live_to_left = space_to_left - cur_deadwood;
      size_t space_to_right = space_capacity - space_to_left;
      size_t live_to_right = space_live - live_to_left;
      double density_to_right = double(live_to_right) / space_to_right;
      while (cp > full_cp) {
        --cp;
1117 1118 1119 1120 1121 1122
        const size_t prev_region_live_to_right = live_to_right -
          cp->data_size();
        const size_t prev_region_space_to_right = space_to_right + region_size;
        double prev_region_density_to_right =
          double(prev_region_live_to_right) / prev_region_space_to_right;
        if (density_to_right <= prev_region_density_to_right) {
D
duke 已提交
1123 1124 1125
          return dense_prefix;
        }
        if (TraceParallelOldGCDensePrefix && Verbose) {
1126
          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1127 1128
                        "pc_d2r=%10.8f", sd.region(cp), density_to_right,
                        prev_region_density_to_right);
D
duke 已提交
1129
        }
1130 1131 1132 1133
        dense_prefix -= region_size;
        live_to_right = prev_region_live_to_right;
        space_to_right = prev_region_space_to_right;
        density_to_right = prev_region_density_to_right;
D
duke 已提交
1134 1135 1136 1137
      }
      return dense_prefix;
    }

1138
    dense_prefix += region_size;
D
duke 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    ++cp;
  }

  return dense_prefix;
}

#ifndef PRODUCT
void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
                                                 const SpaceId id,
                                                 const bool maximum_compaction,
                                                 HeapWord* const addr)
{
1151 1152
  const size_t region_idx = summary_data().addr_to_region_idx(addr);
  RegionData* const cp = summary_data().region(region_idx);
D
duke 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const new_top = _space_info[id].new_top();

  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t dead_to_left = pointer_delta(addr, cp->destination());
  const size_t space_cap = space->capacity_in_words();
  const double dead_to_left_pct = double(dead_to_left) / space_cap;
  const size_t live_to_right = new_top - cp->destination();
  const size_t dead_to_right = space->top() - addr - live_to_right;

1163
  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
D
duke 已提交
1164 1165 1166 1167
                "spl=" SIZE_FORMAT " "
                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
                " ratio=%10.8f",
1168
                algorithm, addr, region_idx,
D
duke 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
                space_live,
                dead_to_left, dead_to_left_pct,
                dead_to_right, live_to_right,
                double(dead_to_right) / live_to_right);
}
#endif  // #ifndef PRODUCT

// Return a fraction indicating how much of the generation can be treated as
// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
// based on the density of live objects in the generation to determine a limit,
// which is then adjusted so the return value is min_percent when the density is
// 1.
//
// The following table shows some return values for a different values of the
// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
// min_percent is 1.
//
//                          fraction allowed as dead wood
//         -----------------------------------------------------------------
// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
// ------- ---------- ---------- ---------- ---------- ---------- ----------
// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000

double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
{
  assert(_dwl_initialized, "uninitialized");

  // The raw limit is the value of the normal distribution at x = density.
  const double raw_limit = normal_distribution(density);

  // Adjust the raw limit so it becomes the minimum when the density is 1.
  //
  // First subtract the adjustment value (which is simply the precomputed value
  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  // Then add the minimum value, so the minimum is returned when the density is
  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  const double min = double(min_percent) / 100.0;
  const double limit = raw_limit - _dwl_adjustment + min;
  return MAX2(limit, 0.0);
}

1230 1231 1232
ParallelCompactData::RegionData*
PSParallelCompact::first_dead_space_region(const RegionData* beg,
                                           const RegionData* end)
D
duke 已提交
1233
{
1234
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1235
  ParallelCompactData& sd = summary_data();
1236 1237
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1238 1239 1240 1241 1242

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1243
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1244
    HeapWord* const dest = middle_ptr->destination();
1245
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1246 1247 1248 1249 1250
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    if (middle > left && dest < addr) {
      right = middle - 1;
1251
    } else if (middle < right && middle_ptr->data_size() == region_size) {
D
duke 已提交
1252 1253 1254 1255 1256
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1257
  return sd.region(left);
D
duke 已提交
1258 1259
}

1260 1261 1262 1263
ParallelCompactData::RegionData*
PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
                                          const RegionData* end,
                                          size_t dead_words)
D
duke 已提交
1264 1265
{
  ParallelCompactData& sd = summary_data();
1266 1267
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1268 1269 1270 1271 1272

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1273
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1274
    HeapWord* const dest = middle_ptr->destination();
1275
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    const size_t dead_to_left = pointer_delta(addr, dest);
    if (middle > left && dead_to_left > dead_words) {
      right = middle - 1;
    } else if (middle < right && dead_to_left < dead_words) {
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1288
  return sd.region(left);
D
duke 已提交
1289 1290 1291 1292 1293
}

// The result is valid during the summary phase, after the initial summarization
// of each space into itself, and before final summarization.
inline double
1294
PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
D
duke 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
                                   HeapWord* const bottom,
                                   HeapWord* const top,
                                   HeapWord* const new_top)
{
  ParallelCompactData& sd = summary_data();

  assert(cp != NULL, "sanity");
  assert(bottom != NULL, "sanity");
  assert(top != NULL, "sanity");
  assert(new_top != NULL, "sanity");
  assert(top >= new_top, "summary data problem?");
  assert(new_top > bottom, "space is empty; should not be here");
  assert(new_top >= cp->destination(), "sanity");
1308
  assert(top >= sd.region_to_addr(cp), "sanity");
D
duke 已提交
1309 1310 1311 1312

  HeapWord* const destination = cp->destination();
  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  const size_t compacted_region_live = pointer_delta(new_top, destination);
1313 1314
  const size_t compacted_region_used = pointer_delta(top,
                                                     sd.region_to_addr(cp));
D
duke 已提交
1315 1316 1317 1318 1319 1320 1321
  const size_t reclaimable = compacted_region_used - compacted_region_live;

  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  return double(reclaimable) / divisor;
}

// Return the address of the end of the dense prefix, a.k.a. the start of the
1322
// compacted region.  The address is always on a region boundary.
D
duke 已提交
1323
//
1324 1325 1326 1327 1328 1329 1330
// Completely full regions at the left are skipped, since no compaction can
// occur in those regions.  Then the maximum amount of dead wood to allow is
// computed, based on the density (amount live / capacity) of the generation;
// the region with approximately that amount of dead space to the left is
// identified as the limit region.  Regions between the last completely full
// region and the limit region are scanned and the one that has the best
// (maximum) reclaimed_ratio() is selected.
D
duke 已提交
1331 1332 1333 1334
HeapWord*
PSParallelCompact::compute_dense_prefix(const SpaceId id,
                                        bool maximum_compaction)
{
1335 1336 1337 1338 1339 1340 1341
  if (ParallelOldGCSplitALot) {
    if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
      // The value was chosen to provoke splitting a young gen space; use it.
      return _space_info[id].dense_prefix();
    }
  }

1342
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1343 1344 1345 1346
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const top = space->top();
1347
  HeapWord* const top_aligned_up = sd.region_align_up(top);
D
duke 已提交
1348
  HeapWord* const new_top = _space_info[id].new_top();
1349
  HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
D
duke 已提交
1350
  HeapWord* const bottom = space->bottom();
1351 1352 1353 1354
  const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  const RegionData* const new_top_cp =
    sd.addr_to_region_ptr(new_top_aligned_up);
D
duke 已提交
1355

1356
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
1357
  // of the dense prefix.
1358 1359
  const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
D
duke 已提交
1360
         space->is_empty(), "no dead space allowed to the left");
1361 1362
  assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
         "region must have dead space");
D
duke 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

  // The gc number is saved whenever a maximum compaction is done, and used to
  // determine when the maximum compaction interval has expired.  This avoids
  // successive max compactions for different reasons.
  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
    total_invocations() == HeapFirstMaximumCompactionCount;
  if (maximum_compaction || full_cp == top_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
1373
    return sd.region_to_addr(full_cp);
D
duke 已提交
1374 1375 1376 1377 1378 1379 1380
  }

  const size_t space_live = pointer_delta(new_top, bottom);
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double density = double(space_live) / double(space_capacity);
1381
  const size_t min_percent_free = MarkSweepDeadRatio;
D
duke 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
  const double limiter = dead_wood_limiter(density, min_percent_free);
  const size_t dead_wood_max = space_used - space_live;
  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
                                      dead_wood_max);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
    tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
                  density, min_percent_free, limiter,
                  dead_wood_max, dead_wood_limit);
  }

1398 1399 1400
  // Locate the region with the desired amount of dead space to the left.
  const RegionData* const limit_cp =
    dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
D
duke 已提交
1401

1402
  // Scan from the first region with dead space to the limit region and find the
D
duke 已提交
1403 1404
  // one with the best (largest) reclaimed ratio.
  double best_ratio = 0.0;
1405 1406
  const RegionData* best_cp = full_cp;
  for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
D
duke 已提交
1407 1408 1409 1410 1411 1412 1413 1414
    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
    if (tmp_ratio > best_ratio) {
      best_cp = cp;
      best_ratio = tmp_ratio;
    }
  }

#if     0
1415 1416 1417
  // Something to consider:  if the region with the best ratio is 'close to' the
  // first region w/free space, choose the first region with free space
  // ("first-free").  The first-free region is usually near the start of the
D
duke 已提交
1418 1419
  // heap, which means we are copying most of the heap already, so copy a bit
  // more to get complete compaction.
1420
  if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
D
duke 已提交
1421 1422 1423 1424 1425
    _maximum_compaction_gc_num = total_invocations();
    best_cp = full_cp;
  }
#endif  // #if 0

1426
  return sd.region_to_addr(best_cp);
D
duke 已提交
1427 1428
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
#ifndef PRODUCT
void
PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
                                          size_t words)
{
  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
                  SIZE_FORMAT, start, start + words, words);
  }

  ObjectStartArray* const start_array = _space_info[id].start_array();
  CollectedHeap::fill_with_objects(start, words);
  for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
    _mark_bitmap.mark_obj(p, words);
    _summary_data.add_obj(p, words);
    start_array->allocate_block(p);
  }
}

void
PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
{
  ParallelCompactData& sd = summary_data();
  MutableSpace* space = _space_info[id].space();

  // Find the source and destination start addresses.
  HeapWord* const src_addr = sd.region_align_down(start);
  HeapWord* dst_addr;
  if (src_addr < start) {
    dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  } else if (src_addr > space->bottom()) {
    // The start (the original top() value) is aligned to a region boundary so
    // the associated region does not have a destination.  Compute the
    // destination from the previous region.
    RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
    dst_addr = cp->destination() + cp->data_size();
  } else {
    // Filling the entire space.
    dst_addr = space->bottom();
  }
  assert(dst_addr != NULL, "sanity");

  // Update the summary data.
  bool result = _summary_data.summarize(_space_info[id].split_info(),
                                        src_addr, space->top(), NULL,
                                        dst_addr, space->end(),
                                        _space_info[id].new_top_addr());
  assert(result, "should not fail:  bad filler object size");
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
void
PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
{
  if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
    return;
  }

  MutableSpace* const space = _space_info[id].space();
  if (space->is_empty()) {
    HeapWord* b = space->bottom();
    HeapWord* t = b + space->capacity_in_words() / 2;
    space->set_top(t);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }

1495 1496
    size_t min_size = CollectedHeap::min_fill_size();
    size_t obj_len = min_size;
1497 1498 1499 1500 1501
    while (b + obj_len <= t) {
      CollectedHeap::fill_with_object(b, obj_len);
      mark_bitmap()->mark_obj(b, obj_len);
      summary_data().add_obj(b, obj_len);
      b += obj_len;
1502
      obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
    }
    if (b < t) {
      // The loop didn't completely fill to t (top); adjust top downward.
      space->set_top(b);
      if (ZapUnusedHeapArea) {
        space->set_top_for_allocations();
      }
    }

    HeapWord** nta = _space_info[id].new_top_addr();
    bool result = summary_data().summarize(_space_info[id].split_info(),
                                           space->bottom(), space->top(), NULL,
                                           space->bottom(), space->end(), nta);
    assert(result, "space must fit into itself");
  }
}

1520 1521 1522
void
PSParallelCompact::provoke_split(bool & max_compaction)
{
1523 1524 1525 1526
  if (total_invocations() % ParallelOldGCSplitInterval != 0) {
    return;
  }

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
  const size_t region_size = ParallelCompactData::RegionSize;
  ParallelCompactData& sd = summary_data();

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  const size_t eden_live = pointer_delta(eden_space->top(),
                                         _space_info[eden_space_id].new_top());
  const size_t from_live = pointer_delta(from_space->top(),
                                         _space_info[from_space_id].new_top());

  const size_t min_fill_size = CollectedHeap::min_fill_size();
  const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;

  // Choose the space to split; need at least 2 regions live (or fillable).
  SpaceId id;
  MutableSpace* space;
  size_t live_words;
  size_t fill_words;
  if (eden_live + eden_fillable >= region_size * 2) {
    id = eden_space_id;
    space = eden_space;
    live_words = eden_live;
    fill_words = eden_fillable;
  } else if (from_live + from_fillable >= region_size * 2) {
    id = from_space_id;
    space = from_space;
    live_words = from_live;
    fill_words = from_fillable;
  } else {
    return; // Give up.
  }
  assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");

  if (live_words < region_size * 2) {
    // Fill from top() to end() w/live objects of mixed sizes.
    HeapWord* const fill_start = space->top();
    live_words += fill_words;

    space->set_top(fill_start + fill_words);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }

    HeapWord* cur_addr = fill_start;
    while (fill_words > 0) {
      const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
      size_t cur_size = MIN2(align_object_size_(r), fill_words);
      if (fill_words - cur_size < min_fill_size) {
        cur_size = fill_words; // Avoid leaving a fragment too small to fill.
      }

      CollectedHeap::fill_with_object(cur_addr, cur_size);
      mark_bitmap()->mark_obj(cur_addr, cur_size);
      sd.add_obj(cur_addr, cur_size);

      cur_addr += cur_size;
      fill_words -= cur_size;
    }

    summarize_new_objects(id, fill_start);
  }

  max_compaction = false;

  // Manipulate the old gen so that it has room for about half of the live data
  // in the target young gen space (live_words / 2).
  id = old_space_id;
  space = _space_info[id].space();
  const size_t free_at_end = space->free_in_words();
  const size_t free_target = align_object_size(live_words / 2);
  const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());

  if (free_at_end >= free_target + min_fill_size) {
    // Fill space above top() and set the dense prefix so everything survives.
    HeapWord* const fill_start = space->top();
    const size_t fill_size = free_at_end - free_target;
    space->set_top(space->top() + fill_size);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }
    fill_with_live_objects(id, fill_start, fill_size);
    summarize_new_objects(id, fill_start);
    _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  } else if (dead + free_at_end > free_target) {
    // Find a dense prefix that makes the right amount of space available.
    HeapWord* cur = sd.region_align_down(space->top());
    HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
    size_t dead_to_right = pointer_delta(space->end(), cur_destination);
    while (dead_to_right < free_target) {
      cur -= region_size;
      cur_destination = sd.addr_to_region_ptr(cur)->destination();
      dead_to_right = pointer_delta(space->end(), cur_destination);
    }
    _space_info[id].set_dense_prefix(cur);
  }
}
#endif // #ifndef PRODUCT

D
duke 已提交
1628 1629 1630 1631
void PSParallelCompact::summarize_spaces_quick()
{
  for (unsigned int i = 0; i < last_space_id; ++i) {
    const MutableSpace* space = _space_info[i].space();
1632 1633 1634 1635 1636
    HeapWord** nta = _space_info[i].new_top_addr();
    bool result = _summary_data.summarize(_space_info[i].split_info(),
                                          space->bottom(), space->top(), NULL,
                                          space->bottom(), space->end(), nta);
    assert(result, "space must fit into itself");
D
duke 已提交
1637 1638
    _space_info[i].set_dense_prefix(space->bottom());
  }
1639 1640 1641 1642 1643 1644

#ifndef PRODUCT
  if (ParallelOldGCSplitALot) {
    provoke_split_fill_survivor(to_space_id);
  }
#endif // #ifndef PRODUCT
D
duke 已提交
1645 1646 1647 1648 1649
}

void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
{
  HeapWord* const dense_prefix_end = dense_prefix(id);
1650
  const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
D
duke 已提交
1651
  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1652
  if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
D
duke 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
    // Only enough dead space is filled so that any remaining dead space to the
    // left is larger than the minimum filler object.  (The remainder is filled
    // during the copy/update phase.)
    //
    // The size of the dead space to the right of the boundary is not a
    // concern, since compaction will be able to use whatever space is
    // available.
    //
    // Here '||' is the boundary, 'x' represents a don't care bit and a box
    // surrounds the space to be filled with an object.
    //
    // In the 32-bit VM, each bit represents two 32-bit words:
    //                              +---+
    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //                              +---+
    //
    // In the 64-bit VM, each bit represents one 64-bit word:
    //                              +------------+
    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
    //                              +------------+
    //                          +-------+
    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
    //                          +-------+
    //                      +-----------+
    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
    //                      +-----------+
    //                          +-------+
    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //                          +-------+

    // Initially assume case a, c or e will apply.
1689
    size_t obj_len = CollectedHeap::min_fill_size();
D
duke 已提交
1690 1691 1692
    HeapWord* obj_beg = dense_prefix_end - obj_len;

#ifdef  _LP64
1693 1694 1695
    if (MinObjAlignment > 1) { // object alignment > heap word size
      // Cases a, c or e.
    } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
D
duke 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
      // Case b above.
      obj_beg = dense_prefix_end - 1;
    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
      // Case d above.
      obj_beg = dense_prefix_end - 3;
      obj_len = 3;
    }
#endif  // #ifdef _LP64

1706
    CollectedHeap::fill_with_object(obj_beg, obj_len);
D
duke 已提交
1707 1708 1709 1710 1711 1712 1713
    _mark_bitmap.mark_obj(obj_beg, obj_len);
    _summary_data.add_obj(obj_beg, obj_len);
    assert(start_array(id) != NULL, "sanity");
    start_array(id)->allocate_block(obj_beg);
  }
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
void
PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
{
  RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
    cur->set_source_region(0);
  }
}

D
duke 已提交
1725 1726 1727 1728
void
PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
{
  assert(id < last_space_id, "id out of range");
1729 1730 1731
  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
         ParallelOldGCSplitALot && id == old_space_id,
         "should have been reset in summarize_spaces_quick()");
D
duke 已提交
1732 1733

  const MutableSpace* space = _space_info[id].space();
1734 1735 1736
  if (_space_info[id].new_top() != space->bottom()) {
    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
    _space_info[id].set_dense_prefix(dense_prefix_end);
D
duke 已提交
1737 1738

#ifndef PRODUCT
1739 1740 1741 1742 1743 1744
    if (TraceParallelOldGCDensePrefix) {
      print_dense_prefix_stats("ratio", id, maximum_compaction,
                               dense_prefix_end);
      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
      print_dense_prefix_stats("density", id, maximum_compaction, addr);
    }
D
duke 已提交
1745 1746
#endif  // #ifndef PRODUCT

1747 1748 1749
    // Recompute the summary data, taking into account the dense prefix.  If
    // every last byte will be reclaimed, then the existing summary data which
    // compacts everything can be left in place.
1750
    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1751 1752 1753
      // If dead space crosses the dense prefix boundary, it is (at least
      // partially) filled with a dummy object, marked live and added to the
      // summary data.  This simplifies the copy/update phase and must be done
1754 1755
      // before the final locations of objects are determined, to prevent
      // leaving a fragment of dead space that is too small to fill.
1756
      fill_dense_prefix_end(id);
D
duke 已提交
1757

1758 1759 1760 1761 1762 1763 1764
      // Compute the destination of each Region, and thus each object.
      _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
      _summary_data.summarize(_space_info[id].split_info(),
                              dense_prefix_end, space->top(), NULL,
                              dense_prefix_end, space->end(),
                              _space_info[id].new_top_addr());
    }
1765
  }
D
duke 已提交
1766 1767

  if (TraceParallelOldGCSummaryPhase) {
1768
    const size_t region_size = ParallelCompactData::RegionSize;
1769
    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1770
    const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
D
duke 已提交
1771
    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1772
    HeapWord* const new_top = _space_info[id].new_top();
1773
    const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
D
duke 已提交
1774 1775
    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
    tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1776
                  "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
D
duke 已提交
1777 1778
                  "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
                  id, space->capacity_in_words(), dense_prefix_end,
1779 1780
                  dp_region, dp_words / region_size,
                  cr_words / region_size, new_top);
D
duke 已提交
1781 1782 1783
  }
}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
#ifndef PRODUCT
void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
                                          HeapWord* dst_beg, HeapWord* dst_end,
                                          SpaceId src_space_id,
                                          HeapWord* src_beg, HeapWord* src_end)
{
  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summarizing %d [%s] into %d [%s]:  "
                  "src=" PTR_FORMAT "-" PTR_FORMAT " "
                  SIZE_FORMAT "-" SIZE_FORMAT " "
                  "dst=" PTR_FORMAT "-" PTR_FORMAT " "
                  SIZE_FORMAT "-" SIZE_FORMAT,
                  src_space_id, space_names[src_space_id],
                  dst_space_id, space_names[dst_space_id],
                  src_beg, src_end,
                  _summary_data.addr_to_region_idx(src_beg),
                  _summary_data.addr_to_region_idx(src_end),
                  dst_beg, dst_end,
                  _summary_data.addr_to_region_idx(dst_beg),
                  _summary_data.addr_to_region_idx(dst_end));
  }
}
#endif  // #ifndef PRODUCT

D
duke 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
void PSParallelCompact::summary_phase(ParCompactionManager* cm,
                                      bool maximum_compaction)
{
  TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  // trace("2");

#ifdef  ASSERT
  if (TraceParallelOldGCMarkingPhase) {
    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
                  "add_obj_bytes=" SIZE_FORMAT,
                  add_obj_count, add_obj_size * HeapWordSize);
    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
                  "mark_bitmap_bytes=" SIZE_FORMAT,
                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  }
#endif  // #ifdef ASSERT

  // Quick summarization of each space into itself, to see how much is live.
  summarize_spaces_quick();

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after summarizing each space to self");
    Universe::print();
1831
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1832 1833 1834 1835 1836 1837 1838
    if (Verbose) {
      NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
    }
  }

  // The amount of live data that will end up in old space (assuming it fits).
  size_t old_space_total_live = 0;
1839
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
D
duke 已提交
1840 1841 1842 1843
    old_space_total_live += pointer_delta(_space_info[id].new_top(),
                                          _space_info[id].space()->bottom());
  }

1844
  MutableSpace* const old_space = _space_info[old_space_id].space();
1845 1846
  const size_t old_capacity = old_space->capacity_in_words();
  if (old_space_total_live > old_capacity) {
D
duke 已提交
1847 1848 1849
    // XXX - should also try to expand
    maximum_compaction = true;
  }
1850 1851
#ifndef PRODUCT
  if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1852
    provoke_split(maximum_compaction);
1853 1854
  }
#endif // #ifndef PRODUCT
D
duke 已提交
1855

1856
  // Old generations.
D
duke 已提交
1857 1858
  summarize_space(old_space_id, maximum_compaction);

1859 1860 1861 1862 1863 1864 1865 1866
  // Summarize the remaining spaces in the young gen.  The initial target space
  // is the old gen.  If a space does not fit entirely into the target, then the
  // remainder is compacted into the space itself and that space becomes the new
  // target.
  SpaceId dst_space_id = old_space_id;
  HeapWord* dst_space_end = old_space->end();
  HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
D
duke 已提交
1867 1868 1869
    const MutableSpace* space = _space_info[id].space();
    const size_t live = pointer_delta(_space_info[id].new_top(),
                                      space->bottom());
1870 1871 1872 1873
    const size_t available = pointer_delta(dst_space_end, *new_top_addr);

    NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
                                  SpaceId(id), space->bottom(), space->top());)
1874
    if (live > 0 && live <= available) {
D
duke 已提交
1875
      // All the live data will fit.
1876 1877 1878 1879 1880 1881 1882
      bool done = _summary_data.summarize(_space_info[id].split_info(),
                                          space->bottom(), space->top(),
                                          NULL,
                                          *new_top_addr, dst_space_end,
                                          new_top_addr);
      assert(done, "space must fit into old gen");

1883 1884
      // Reset the new_top value for the space.
      _space_info[id].set_new_top(space->bottom());
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
    } else if (live > 0) {
      // Attempt to fit part of the source space into the target space.
      HeapWord* next_src_addr = NULL;
      bool done = _summary_data.summarize(_space_info[id].split_info(),
                                          space->bottom(), space->top(),
                                          &next_src_addr,
                                          *new_top_addr, dst_space_end,
                                          new_top_addr);
      assert(!done, "space should not fit into old gen");
      assert(next_src_addr != NULL, "sanity");

      // The source space becomes the new target, so the remainder is compacted
      // within the space itself.
      dst_space_id = SpaceId(id);
      dst_space_end = space->end();
      new_top_addr = _space_info[id].new_top_addr();
      NOT_PRODUCT(summary_phase_msg(dst_space_id,
                                    space->bottom(), dst_space_end,
                                    SpaceId(id), next_src_addr, space->top());)
      done = _summary_data.summarize(_space_info[id].split_info(),
                                     next_src_addr, space->top(),
                                     NULL,
                                     space->bottom(), dst_space_end,
                                     new_top_addr);
      assert(done, "space must fit when compacted into itself");
      assert(*new_top_addr <= space->top(), "usage should not grow");
D
duke 已提交
1911 1912 1913 1914 1915 1916
    }
  }

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after final summarization");
    Universe::print();
1917
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
    if (Verbose) {
      NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
    }
  }
}

// This method should contain all heap-specific policy for invoking a full
// collection.  invoke_no_policy() will only attempt to compact the heap; it
// will do nothing further.  If we need to bail out for policy reasons, scavenge
// before full gc, or any other specialized behavior, it needs to be added here.
//
// Note that this method should only be called from the vm_thread while at a
// safepoint.
1931 1932 1933 1934 1935
//
// Note that the all_soft_refs_clear flag in the collector policy
// may be true because this method can be called without intervening
// activity.  For example when the heap space is tight and full measure
// are being taken to free space.
D
duke 已提交
1936 1937 1938 1939
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
         "should be in vm thread");
1940

D
duke 已提交
1941 1942 1943 1944 1945
  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  assert(!heap->is_gc_active(), "not reentrant");

  PSAdaptiveSizePolicy* policy = heap->size_policy();
1946
  IsGCActiveMark mark;
D
duke 已提交
1947

1948 1949
  if (ScavengeBeforeFullGC) {
    PSScavenge::invoke_no_policy();
D
duke 已提交
1950
  }
1951 1952 1953 1954 1955 1956

  const bool clear_all_soft_refs =
    heap->collector_policy()->should_clear_all_soft_refs();

  PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
                                      maximum_heap_compaction);
D
duke 已提交
1957 1958
}

1959 1960 1961
bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  size_t addr_region_index = addr_to_region_idx(addr);
  return region_index == addr_region_index;
D
duke 已提交
1962 1963 1964 1965
}

// This method contains no policy. You should probably
// be calling invoke() instead.
1966
bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
D
duke 已提交
1967 1968 1969
  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  assert(ref_processor() != NULL, "Sanity");

1970
  if (GC_locker::check_active_before_gc()) {
1971
    return false;
D
duke 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
  }

  TimeStamp marking_start;
  TimeStamp compaction_start;
  TimeStamp collection_exit;

  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();
  PSAdaptiveSizePolicy* size_policy = heap->size_policy();

1984 1985 1986 1987 1988
  // The scope of casr should end after code that can change
  // CollectorPolicy::_should_clear_all_soft_refs.
  ClearedAllSoftRefs casr(maximum_heap_compaction,
                          heap->collector_policy());

1989 1990 1991 1992 1993
  if (ZapUnusedHeapArea) {
    // Save information needed to minimize mangling
    heap->record_gen_tops_before_GC();
  }

1994 1995
  heap->pre_full_gc_dump();

D
duke 已提交
1996 1997 1998 1999 2000 2001 2002
  _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;

  // Make sure data structures are sane, make the heap parsable, and do other
  // miscellaneous bookkeeping.
  PreGCValues pre_gc_values;
  pre_compact(&pre_gc_values);

J
jcoomes 已提交
2003 2004 2005 2006
  // Get the compaction manager reserved for the VM thread.
  ParCompactionManager* const vmthread_cm =
    ParCompactionManager::manager_array(gc_task_manager()->workers());

D
duke 已提交
2007 2008 2009 2010 2011 2012 2013
  // Place after pre_compact() where the number of invocations is incremented.
  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());

  {
    ResourceMark rm;
    HandleMark hm;

2014 2015 2016 2017 2018
    // Set the number of GC threads to be used in this collection
    gc_task_manager()->set_active_gang();
    gc_task_manager()->task_idle_workers();
    heap->set_par_threads(gc_task_manager()->active_workers());

D
duke 已提交
2019 2020
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2021
    TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
D
duke 已提交
2022
    TraceCollectorStats tcs(counters());
2023
    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
D
duke 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

    if (TraceGen1Time) accumulated_time()->start();

    // Let the size policy know we're starting
    size_policy->major_collection_begin();

    CodeCache::gc_prologue();
    Threads::gc_prologue();

    COMPILER2_PRESENT(DerivedPointerTable::clear());

2035
    ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
2036
    ref_processor()->setup_policy(maximum_heap_compaction);
D
duke 已提交
2037 2038 2039 2040

    bool marked_for_unloading = false;

    marking_start.update();
J
jcoomes 已提交
2041
    marking_phase(vmthread_cm, maximum_heap_compaction);
D
duke 已提交
2042

2043 2044
    bool max_on_system_gc = UseMaximumCompactionOnSystemGC
      && gc_cause == GCCause::_java_lang_system_gc;
J
jcoomes 已提交
2045
    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
D
duke 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054

    COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
    COMPILER2_PRESENT(DerivedPointerTable::set_active(false));

    // adjust_roots() updates Universe::_intArrayKlassObj which is
    // needed by the compaction for filling holes in the dense prefix.
    adjust_roots();

    compaction_start.update();
2055
    compact();
D
duke 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
    // done before resizing.
    post_compact();

    // Let the size policy know we're done
    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);

    if (UseAdaptiveSizePolicy) {
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print("AdaptiveSizeStart: ");
        gclog_or_tty->stamp();
        gclog_or_tty->print_cr(" collection: %d ",
                       heap->total_collections());
        if (Verbose) {
2071 2072
          gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
D
duke 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
        }
      }

      // Don't check if the size_policy is ready here.  Let
      // the size_policy check that internally.
      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
          ((gc_cause != GCCause::_java_lang_system_gc) ||
            UseAdaptiveSizePolicyWithSystemGC)) {
        // Calculate optimal free space amounts
        assert(young_gen->max_size() >
          young_gen->from_space()->capacity_in_bytes() +
          young_gen->to_space()->capacity_in_bytes(),
          "Sizes of space in young gen are out-of-bounds");
2086 2087 2088 2089 2090 2091

        size_t young_live = young_gen->used_in_bytes();
        size_t eden_live = young_gen->eden_space()->used_in_bytes();
        size_t old_live = old_gen->used_in_bytes();
        size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
        size_t max_old_gen_size = old_gen->max_gen_size();
D
duke 已提交
2092 2093 2094
        size_t max_eden_size = young_gen->max_size() -
          young_gen->from_space()->capacity_in_bytes() -
          young_gen->to_space()->capacity_in_bytes();
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

        // Used for diagnostics
        size_policy->clear_generation_free_space_flags();

        size_policy->compute_generation_free_space(young_live,
                                                   eden_live,
                                                   old_live,
                                                   cur_eden,
                                                   max_old_gen_size,
                                                   max_eden_size,
                                                   true /* full gc*/);

        size_policy->check_gc_overhead_limit(young_live,
                                             eden_live,
                                             max_old_gen_size,
                                             max_eden_size,
                                             true /* full gc*/,
                                             gc_cause,
                                             heap->collector_policy());

        size_policy->decay_supplemental_growth(true /* full gc*/);
2116 2117 2118

        heap->resize_old_gen(
          size_policy->calculated_old_free_size_in_bytes());
D
duke 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

        // Don't resize the young generation at an major collection.  A
        // desired young generation size may have been calculated but
        // resizing the young generation complicates the code because the
        // resizing of the old generation may have moved the boundary
        // between the young generation and the old generation.  Let the
        // young generation resizing happen at the minor collections.
      }
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
                       heap->total_collections());
      }
    }

    if (UsePerfData) {
      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
      counters->update_counters();
      counters->update_old_capacity(old_gen->capacity_in_bytes());
      counters->update_young_capacity(young_gen->capacity_in_bytes());
    }

    heap->resize_all_tlabs();

2142 2143
    // Resize the metaspace capactiy after a collection
    MetaspaceGC::compute_new_size();
D
duke 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152

    if (TraceGen1Time) accumulated_time()->stop();

    if (PrintGC) {
      if (PrintGCDetails) {
        // No GC timestamp here.  This is after GC so it would be confusing.
        young_gen->print_used_change(pre_gc_values.young_gen_used());
        old_gen->print_used_change(pre_gc_values.old_gen_used());
        heap->print_heap_change(pre_gc_values.heap_used());
2153
        MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
D
duke 已提交
2154 2155 2156 2157 2158 2159 2160 2161
      } else {
        heap->print_heap_change(pre_gc_values.heap_used());
      }
    }

    // Track memory usage and detect low memory
    MemoryService::track_memory_usage();
    heap->update_counters();
2162
    gc_task_manager()->release_idle_workers();
D
duke 已提交
2163 2164
  }

2165 2166 2167 2168 2169
#ifdef ASSERT
  for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
    ParCompactionManager* const cm =
      ParCompactionManager::manager_array(int(i));
    assert(cm->marking_stack()->is_empty(),       "should be empty");
2170
    assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2171 2172 2173
  }
#endif // ASSERT

D
duke 已提交
2174 2175
  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
2176
    Universe::verify(" VerifyAfterGC:");
D
duke 已提交
2177 2178 2179 2180 2181 2182 2183 2184
  }

  // Re-verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyAfterGC) {
    old_gen->verify_object_start_array();
  }

2185 2186 2187 2188
  if (ZapUnusedHeapArea) {
    old_gen->object_space()->check_mangled_unused_area_complete();
  }

D
duke 已提交
2189 2190 2191 2192
  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

  collection_exit.update();

2193
  heap->print_heap_after_gc();
D
duke 已提交
2194 2195 2196 2197 2198 2199 2200
  if (PrintGCTaskTimeStamps) {
    gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
                           INT64_FORMAT,
                           marking_start.ticks(), compaction_start.ticks(),
                           collection_exit.ticks());
    gc_task_manager()->print_task_time_stamps();
  }
2201

2202 2203
  heap->post_full_gc_dump();

2204 2205 2206
#ifdef TRACESPINNING
  ParallelTaskTerminator::print_termination_counts();
#endif
2207 2208

  return true;
D
duke 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
}

bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
                                             PSYoungGen* young_gen,
                                             PSOldGen* old_gen) {
  MutableSpace* const eden_space = young_gen->eden_space();
  assert(!eden_space->is_empty(), "eden must be non-empty");
  assert(young_gen->virtual_space()->alignment() ==
         old_gen->virtual_space()->alignment(), "alignments do not match");

  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
    return false;
  }

  // Both generations must be completely committed.
  if (young_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }
  if (old_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }

  // Figure out how much to take from eden.  Include the average amount promoted
  // in the total; otherwise the next young gen GC will simply bail out to a
  // full GC.
  const size_t alignment = old_gen->virtual_space()->alignment();
  const size_t eden_used = eden_space->used_in_bytes();
  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  const size_t eden_capacity = eden_space->capacity_in_bytes();

  if (absorb_size >= eden_capacity) {
    return false; // Must leave some space in eden.
  }

  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  if (new_young_size < young_gen->min_gen_size()) {
    return false; // Respect young gen minimum size.
  }

  if (TraceAdaptiveGCBoundary && Verbose) {
    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
                        absorb_size / K,
                        eden_capacity / K, (eden_capacity - absorb_size) / K,
                        young_gen->from_space()->used_in_bytes() / K,
                        young_gen->to_space()->used_in_bytes() / K,
                        young_gen->capacity_in_bytes() / K, new_young_size / K);
  }

  // Fill the unused part of the old gen.
  MutableSpace* const old_space = old_gen->object_space();
2263 2264 2265 2266 2267 2268 2269 2270
  HeapWord* const unused_start = old_space->top();
  size_t const unused_words = pointer_delta(old_space->end(), unused_start);

  if (unused_words > 0) {
    if (unused_words < CollectedHeap::min_fill_size()) {
      return false;  // If the old gen cannot be filled, must give up.
    }
    CollectedHeap::fill_with_objects(unused_start, unused_words);
D
duke 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
  }

  // Take the live data from eden and set both top and end in the old gen to
  // eden top.  (Need to set end because reset_after_change() mangles the region
  // from end to virtual_space->high() in debug builds).
  HeapWord* const new_top = eden_space->top();
  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
                                        absorb_size);
  young_gen->reset_after_change();
  old_space->set_top(new_top);
  old_space->set_end(new_top);
  old_gen->reset_after_change();

  // Update the object start array for the filler object and the data from eden.
  ObjectStartArray* const start_array = old_gen->start_array();
2286 2287
  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
    start_array->allocate_block(p);
D
duke 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
  }

  // Could update the promoted average here, but it is not typically updated at
  // full GCs and the value to use is unclear.  Something like
  //
  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.

  size_policy->set_bytes_absorbed_from_eden(absorb_size);
  return true;
}

GCTaskManager* const PSParallelCompact::gc_task_manager() {
  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
    "shouldn't return NULL");
  return ParallelScavengeHeap::gc_task_manager();
}

void PSParallelCompact::marking_phase(ParCompactionManager* cm,
                                      bool maximum_heap_compaction) {
  // Recursively traverse all live objects and mark them
  TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = gc_heap();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2312
  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2313
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2314
  ParallelTaskTerminator terminator(active_gc_threads, qset);
D
duke 已提交
2315 2316 2317 2318

  PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  PSParallelCompact::FollowStackClosure follow_stack_closure(cm);

2319 2320 2321
  // Need new claim bits before marking starts.
  ClassLoaderDataGraph::clear_claimed_marks();

D
duke 已提交
2322 2323
  {
    TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
2324
    ParallelScavengeHeap::ParStrongRootsScope psrs;
D
duke 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

    GCTaskQueue* q = GCTaskQueue::create();

    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
    // We scan the thread roots in parallel
    Threads::create_thread_roots_marking_tasks(q);
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2337
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
D
duke 已提交
2338

2339 2340
    if (active_gc_threads > 1) {
      for (uint j = 0; j < active_gc_threads; j++) {
D
duke 已提交
2341 2342 2343 2344
        q->enqueue(new StealMarkingTask(&terminator));
      }
    }

2345
    gc_task_manager()->execute_and_wait(q);
D
duke 已提交
2346 2347 2348 2349 2350 2351 2352 2353
  }

  // Process reference objects found during marking
  {
    TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
    if (ref_processor()->processing_is_mt()) {
      RefProcTaskExecutor task_executor;
      ref_processor()->process_discovered_references(
2354 2355
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
        &task_executor);
D
duke 已提交
2356 2357
    } else {
      ref_processor()->process_discovered_references(
2358
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
D
duke 已提交
2359 2360 2361 2362
    }
  }

  TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
2363 2364 2365 2366

  // This is the point where the entire marking should have completed.
  assert(cm->marking_stacks_empty(), "Marking should have completed");

D
duke 已提交
2367 2368 2369
  // Follow system dictionary roots and unload classes.
  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());

2370
  // Unload nmethods.
2371
  CodeCache::do_unloading(is_alive_closure(), purged_class);
D
duke 已提交
2372

2373
  // Prune dead klasses from subklass/sibling/implementor lists.
2374
  Klass::clean_weak_klass_links(is_alive_closure());
D
duke 已提交
2375

2376
  // Delete entries for dead interned strings.
D
duke 已提交
2377
  StringTable::unlink(is_alive_closure());
2378

2379 2380
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
D
duke 已提交
2381 2382
}

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
  ClassLoaderData* cld = klass->class_loader_data();
  // The actual processing of the klass is done when we
  // traverse the list of Klasses in the class loader data.
  PSParallelCompact::follow_class_loader(cm, cld);
}

void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
  ClassLoaderData* cld = klass->class_loader_data();
  // The actual processing of the klass is done when we
  // traverse the list of Klasses in the class loader data.
  PSParallelCompact::adjust_class_loader(cm, cld);
}

void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
                                            ClassLoaderData* cld) {
  PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);

  cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
}

void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
                                            ClassLoaderData* cld) {
2407
  cld->oops_do(PSParallelCompact::adjust_pointer_closure(),
2408 2409 2410 2411
               PSParallelCompact::adjust_klass_closure(),
               true);
}

D
duke 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
// This should be moved to the shared markSweep code!
class PSAlwaysTrueClosure: public BoolObjectClosure {
public:
  bool do_object_b(oop p) { return true; }
};
static PSAlwaysTrueClosure always_true;

void PSParallelCompact::adjust_roots() {
  // Adjust the pointers to reflect the new locations
  TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);

2423 2424 2425
  // Need new claim bits when tracing through and adjusting pointers.
  ClassLoaderDataGraph::clear_claimed_marks();

D
duke 已提交
2426
  // General strong roots.
2427 2428 2429 2430 2431 2432 2433 2434
  Universe::oops_do(adjust_pointer_closure());
  JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
  CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
  Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
  ObjectSynchronizer::oops_do(adjust_pointer_closure());
  FlatProfiler::oops_do(adjust_pointer_closure());
  Management::oops_do(adjust_pointer_closure());
  JvmtiExport::oops_do(adjust_pointer_closure());
D
duke 已提交
2435
  // SO_AllClasses
2436 2437
  SystemDictionary::oops_do(adjust_pointer_closure());
  ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
D
duke 已提交
2438 2439 2440 2441

  // Now adjust pointers in remaining weak roots.  (All of which should
  // have been cleared if they pointed to non-surviving objects.)
  // Global (weak) JNI handles
2442
  JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
D
duke 已提交
2443 2444

  CodeCache::oops_do(adjust_pointer_closure());
2445 2446
  StringTable::oops_do(adjust_pointer_closure());
  ref_processor()->weak_oops_do(adjust_pointer_closure());
D
duke 已提交
2447 2448 2449 2450
  // Roots were visited so references into the young gen in roots
  // may have been scanned.  Process them also.
  // Should the reference processor have a span that excludes
  // young gen objects?
2451
  PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
D
duke 已提交
2452 2453
}

2454 2455 2456
void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
                                                      uint parallel_gc_threads)
{
D
duke 已提交
2457 2458
  TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);

2459 2460 2461 2462 2463
  // Find the threads that are active
  unsigned int which = 0;

  const uint task_count = MAX2(parallel_gc_threads, 1U);
  for (uint j = 0; j < task_count; j++) {
2464
    q->enqueue(new DrainStacksCompactionTask(j));
2465 2466 2467 2468 2469 2470 2471 2472
    ParCompactionManager::verify_region_list_empty(j);
    // Set the region stacks variables to "no" region stack values
    // so that they will be recognized and needing a region stack
    // in the stealing tasks if they do not get one by executing
    // a draining stack.
    ParCompactionManager* cm = ParCompactionManager::manager_array(j);
    cm->set_region_stack(NULL);
    cm->set_region_stack_index((uint)max_uintx);
D
duke 已提交
2473
  }
2474
  ParCompactionManager::reset_recycled_stack_index();
D
duke 已提交
2475

2476
  // Find all regions that are available (can be filled immediately) and
D
duke 已提交
2477
  // distribute them to the thread stacks.  The iteration is done in reverse
2478
  // order (high to low) so the regions will be removed in ascending order.
D
duke 已提交
2479 2480 2481

  const ParallelCompactData& sd = PSParallelCompact::summary_data();

2482
  size_t fillable_regions = 0;   // A count for diagnostic purposes.
2483 2484
  // A region index which corresponds to the tasks created above.
  // "which" must be 0 <= which < task_count
D
duke 已提交
2485

2486
  which = 0;
2487 2488 2489
  // id + 1 is used to test termination so unsigned  can
  // be used with an old_space_id == 0.
  for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
D
duke 已提交
2490 2491 2492 2493
    SpaceInfo* const space_info = _space_info + id;
    MutableSpace* const space = space_info->space();
    HeapWord* const new_top = space_info->new_top();

2494 2495 2496
    const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
    const size_t end_region =
      sd.addr_to_region_idx(sd.region_align_up(new_top));
D
duke 已提交
2497

2498
    for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2499
      if (sd.region(cur)->claim_unsafe()) {
2500
        ParCompactionManager::region_list_push(which, cur);
D
duke 已提交
2501 2502

        if (TraceParallelOldGCCompactionPhase && Verbose) {
2503
          const size_t count_mod_8 = fillable_regions & 7;
D
duke 已提交
2504
          if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2505
          gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
D
duke 已提交
2506 2507 2508
          if (count_mod_8 == 7) gclog_or_tty->cr();
        }

2509
        NOT_PRODUCT(++fillable_regions;)
D
duke 已提交
2510

2511
        // Assign regions to tasks in round-robin fashion.
D
duke 已提交
2512
        if (++which == task_count) {
2513 2514
          assert(which <= parallel_gc_threads,
            "Inconsistent number of workers");
D
duke 已提交
2515 2516 2517 2518 2519 2520 2521
          which = 0;
        }
      }
    }
  }

  if (TraceParallelOldGCCompactionPhase) {
2522 2523
    if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
    gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
D
duke 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
  }
}

#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4

void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
                                                    uint parallel_gc_threads) {
  TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);

  ParallelCompactData& sd = PSParallelCompact::summary_data();

  // Iterate over all the spaces adding tasks for updating
2536
  // regions in the dense prefix.  Assume that 1 gc thread
D
duke 已提交
2537 2538
  // will work on opening the gaps and the remaining gc threads
  // will work on the dense prefix.
2539 2540
  unsigned int space_id;
  for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
D
duke 已提交
2541 2542 2543 2544 2545 2546 2547 2548
    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
    const MutableSpace* const space = _space_info[space_id].space();

    if (dense_prefix_end == space->bottom()) {
      // There is no dense prefix for this space.
      continue;
    }

2549 2550 2551 2552 2553
    // The dense prefix is before this region.
    size_t region_index_end_dense_prefix =
        sd.addr_to_region_idx(dense_prefix_end);
    RegionData* const dense_prefix_cp =
      sd.region(region_index_end_dense_prefix);
D
duke 已提交
2554 2555 2556
    assert(dense_prefix_end == space->end() ||
           dense_prefix_cp->available() ||
           dense_prefix_cp->claimed(),
2557
           "The region after the dense prefix should always be ready to fill");
D
duke 已提交
2558

2559
    size_t region_index_start = sd.addr_to_region_idx(space->bottom());
D
duke 已提交
2560 2561

    // Is there dense prefix work?
2562 2563 2564
    size_t total_dense_prefix_regions =
      region_index_end_dense_prefix - region_index_start;
    // How many regions of the dense prefix should be given to
D
duke 已提交
2565
    // each thread?
2566
    if (total_dense_prefix_regions > 0) {
D
duke 已提交
2567
      uint tasks_for_dense_prefix = 1;
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
      if (total_dense_prefix_regions <=
          (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
        // Don't over partition.  This assumes that
        // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
        // so there are not many regions to process.
        tasks_for_dense_prefix = parallel_gc_threads;
      } else {
        // Over partition
        tasks_for_dense_prefix = parallel_gc_threads *
          PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
D
duke 已提交
2578
      }
2579
      size_t regions_per_thread = total_dense_prefix_regions /
D
duke 已提交
2580
        tasks_for_dense_prefix;
2581 2582 2583
      // Give each thread at least 1 region.
      if (regions_per_thread == 0) {
        regions_per_thread = 1;
D
duke 已提交
2584 2585 2586
      }

      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2587
        if (region_index_start >= region_index_end_dense_prefix) {
D
duke 已提交
2588 2589
          break;
        }
2590 2591 2592
        // region_index_end is not processed
        size_t region_index_end = MIN2(region_index_start + regions_per_thread,
                                       region_index_end_dense_prefix);
2593 2594 2595
        q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
                                             region_index_start,
                                             region_index_end));
2596
        region_index_start = region_index_end;
D
duke 已提交
2597 2598 2599 2600
      }
    }
    // This gets any part of the dense prefix that did not
    // fit evenly.
2601
    if (region_index_start < region_index_end_dense_prefix) {
2602 2603 2604
      q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
                                           region_index_start,
                                           region_index_end_dense_prefix));
D
duke 已提交
2605
    }
2606
  }
D
duke 已提交
2607 2608
}

2609
void PSParallelCompact::enqueue_region_stealing_tasks(
D
duke 已提交
2610 2611 2612 2613 2614
                                     GCTaskQueue* q,
                                     ParallelTaskTerminator* terminator_ptr,
                                     uint parallel_gc_threads) {
  TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);

2615
  // Once a thread has drained it's stack, it should try to steal regions from
D
duke 已提交
2616 2617 2618
  // other threads.
  if (parallel_gc_threads > 1) {
    for (uint j = 0; j < parallel_gc_threads; j++) {
2619
      q->enqueue(new StealRegionCompactionTask(terminator_ptr));
D
duke 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
    }
  }
}

void PSParallelCompact::compact() {
  // trace("5");
  TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  PSOldGen* old_gen = heap->old_gen();
  old_gen->start_array()->reset();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2633
  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2634
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2635
  ParallelTaskTerminator terminator(active_gc_threads, qset);
D
duke 已提交
2636 2637

  GCTaskQueue* q = GCTaskQueue::create();
2638 2639 2640
  enqueue_region_draining_tasks(q, active_gc_threads);
  enqueue_dense_prefix_tasks(q, active_gc_threads);
  enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
D
duke 已提交
2641 2642 2643 2644

  {
    TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);

2645
    gc_task_manager()->execute_and_wait(q);
D
duke 已提交
2646 2647

#ifdef  ASSERT
2648
    // Verify that all regions have been processed before the deferred updates.
D
duke 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      verify_complete(SpaceId(id));
    }
#endif
  }

  {
    // Update the deferred objects, if any.  Any compaction manager can be used.
    TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      update_deferred_objects(cm, SpaceId(id));
    }
  }
}

#ifdef  ASSERT
void PSParallelCompact::verify_complete(SpaceId space_id) {
2667 2668
  // All Regions between space bottom() to new_top() should be marked as filled
  // and all Regions between new_top() and top() should be available (i.e.,
D
duke 已提交
2669 2670 2671
  // should have been emptied).
  ParallelCompactData& sd = summary_data();
  SpaceInfo si = _space_info[space_id];
2672 2673 2674 2675 2676
  HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
D
duke 已提交
2677 2678 2679

  bool issued_a_warning = false;

2680 2681 2682
  size_t cur_region;
  for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2683
    if (!c->completed()) {
2684
      warning("region " SIZE_FORMAT " not filled:  "
D
duke 已提交
2685
              "destination_count=" SIZE_FORMAT,
2686
              cur_region, c->destination_count());
D
duke 已提交
2687 2688 2689 2690
      issued_a_warning = true;
    }
  }

2691 2692
  for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2693
    if (!c->available()) {
2694
      warning("region " SIZE_FORMAT " not empty:   "
D
duke 已提交
2695
              "destination_count=" SIZE_FORMAT,
2696
              cur_region, c->destination_count());
D
duke 已提交
2697 2698 2699 2700 2701
      issued_a_warning = true;
    }
  }

  if (issued_a_warning) {
2702
    print_region_ranges();
D
duke 已提交
2703 2704 2705 2706
  }
}
#endif  // #ifdef ASSERT

2707
// Update interior oops in the ranges of regions [beg_region, end_region).
D
duke 已提交
2708 2709 2710
void
PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
                                                       SpaceId space_id,
2711 2712
                                                       size_t beg_region,
                                                       size_t end_region) {
D
duke 已提交
2713 2714 2715
  ParallelCompactData& sd = summary_data();
  ParMarkBitMap* const mbm = mark_bitmap();

2716 2717 2718
  HeapWord* beg_addr = sd.region_to_addr(beg_region);
  HeapWord* const end_addr = sd.region_to_addr(end_region);
  assert(beg_region <= end_region, "bad region range");
D
duke 已提交
2719 2720 2721
  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");

#ifdef  ASSERT
2722
  // Claim the regions to avoid triggering an assert when they are marked as
D
duke 已提交
2723
  // filled.
2724 2725
  for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
    assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
D
duke 已提交
2726 2727 2728 2729 2730
  }
#endif  // #ifdef ASSERT

  if (beg_addr != space(space_id)->bottom()) {
    // Find the first live object or block of dead space that *starts* in this
2731 2732 2733 2734 2735 2736
    // range of regions.  If a partial object crosses onto the region, skip it;
    // it will be marked for 'deferred update' when the object head is
    // processed.  If dead space crosses onto the region, it is also skipped; it
    // will be filled when the prior region is processed.  If neither of those
    // apply, the first word in the region is the start of a live object or dead
    // space.
D
duke 已提交
2737
    assert(beg_addr > space(space_id)->bottom(), "sanity");
2738
    const RegionData* const cp = sd.region(beg_region);
D
duke 已提交
2739
    if (cp->partial_obj_size() != 0) {
2740
      beg_addr = sd.partial_obj_end(beg_region);
D
duke 已提交
2741 2742 2743 2744 2745 2746
    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
    }
  }

  if (beg_addr < end_addr) {
2747
    // A live object or block of dead space starts in this range of Regions.
D
duke 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
     HeapWord* const dense_prefix_end = dense_prefix(space_id);

    // Create closures and iterate.
    UpdateOnlyClosure update_closure(mbm, cm, space_id);
    FillClosure fill_closure(cm, space_id);
    ParMarkBitMap::IterationStatus status;
    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
                          dense_prefix_end);
    if (status == ParMarkBitMap::incomplete) {
      update_closure.do_addr(update_closure.source());
    }
  }

2761 2762 2763 2764
  // Mark the regions as filled.
  RegionData* const beg_cp = sd.region(beg_region);
  RegionData* const end_cp = sd.region(end_region);
  for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
D
duke 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
    cp->set_completed();
  }
}

// Return the SpaceId for the space containing addr.  If addr is not in the
// heap, last_space_id is returned.  In debug mode it expects the address to be
// in the heap and asserts such.
PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");

2775
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
D
duke 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
    if (_space_info[id].space()->contains(addr)) {
      return SpaceId(id);
    }
  }

  assert(false, "no space contains the addr");
  return last_space_id;
}

void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
                                                SpaceId id) {
  assert(id < last_space_id, "bad space id");

  ParallelCompactData& sd = summary_data();
  const SpaceInfo* const space_info = _space_info + id;
  ObjectStartArray* const start_array = space_info->start_array();

  const MutableSpace* const space = space_info->space();
  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  HeapWord* const beg_addr = space_info->dense_prefix();
2796
  HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
D
duke 已提交
2797

2798 2799 2800 2801 2802
  const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  const RegionData* cur_region;
  for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
    HeapWord* const addr = cur_region->deferred_obj_addr();
D
duke 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
    if (addr != NULL) {
      if (start_array != NULL) {
        start_array->allocate_block(addr);
      }
      oop(addr)->update_contents(cm);
      assert(oop(addr)->is_oop_or_null(), "should be an oop now");
    }
  }
}

// Skip over count live words starting from beg, and return the address of the
// next live word.  Unless marked, the word corresponding to beg is assumed to
// be dead.  Callers must either ensure beg does not correspond to the middle of
// an object, or account for those live words in some other way.  Callers must
// also ensure that there are enough live words in the range [beg, end) to skip.
HeapWord*
PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
{
  assert(count > 0, "sanity");

  ParMarkBitMap* m = mark_bitmap();
  idx_t bits_to_skip = m->words_to_bits(count);
  idx_t cur_beg = m->addr_to_bit(beg);
  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));

  do {
    cur_beg = m->find_obj_beg(cur_beg, search_end);
    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
    const size_t obj_bits = cur_end - cur_beg + 1;
    if (obj_bits > bits_to_skip) {
      return m->bit_to_addr(cur_beg + bits_to_skip);
    }
    bits_to_skip -= obj_bits;
    cur_beg = cur_end + 1;
  } while (bits_to_skip > 0);

  // Skipping the desired number of words landed just past the end of an object.
  // Find the start of the next object.
  cur_beg = m->find_obj_beg(cur_beg, search_end);
  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  return m->bit_to_addr(cur_beg);
}

2846 2847 2848
HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
                                            SpaceId src_space_id,
                                            size_t src_region_idx)
D
duke 已提交
2849
{
2850 2851 2852 2853 2854 2855 2856 2857 2858
  assert(summary_data().is_region_aligned(dest_addr), "not aligned");

  const SplitInfo& split_info = _space_info[src_space_id].split_info();
  if (split_info.dest_region_addr() == dest_addr) {
    // The partial object ending at the split point contains the first word to
    // be copied to dest_addr.
    return split_info.first_src_addr();
  }

D
duke 已提交
2859
  const ParallelCompactData& sd = summary_data();
2860
  ParMarkBitMap* const bitmap = mark_bitmap();
2861
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
2862

2863 2864 2865 2866
  assert(sd.is_region_aligned(dest_addr), "not aligned");
  const RegionData* const src_region_ptr = sd.region(src_region_idx);
  const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  HeapWord* const src_region_destination = src_region_ptr->destination();
D
duke 已提交
2867

2868 2869
  assert(dest_addr >= src_region_destination, "wrong src region");
  assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
D
duke 已提交
2870

2871 2872
  HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  HeapWord* const src_region_end = src_region_beg + RegionSize;
D
duke 已提交
2873

2874 2875 2876
  HeapWord* addr = src_region_beg;
  if (dest_addr == src_region_destination) {
    // Return the first live word in the source region.
D
duke 已提交
2877
    if (partial_obj_size == 0) {
2878 2879
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "no objects start in src region");
D
duke 已提交
2880 2881 2882 2883 2884
    }
    return addr;
  }

  // Must skip some live data.
2885 2886
  size_t words_to_skip = dest_addr - src_region_destination;
  assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
D
duke 已提交
2887 2888 2889 2890 2891 2892

  if (partial_obj_size >= words_to_skip) {
    // All the live words to skip are part of the partial object.
    addr += words_to_skip;
    if (partial_obj_size == words_to_skip) {
      // Find the first live word past the partial object.
2893 2894
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "wrong src region");
D
duke 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
    }
    return addr;
  }

  // Skip over the partial object (if any).
  if (partial_obj_size != 0) {
    words_to_skip -= partial_obj_size;
    addr += partial_obj_size;
  }

2905 2906 2907
  // Skip over live words due to objects that start in the region.
  addr = skip_live_words(addr, src_region_end, words_to_skip);
  assert(addr < src_region_end, "wrong src region");
D
duke 已提交
2908 2909 2910 2911
  return addr;
}

void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2912
                                                     SpaceId src_space_id,
2913
                                                     size_t beg_region,
D
duke 已提交
2914 2915 2916
                                                     HeapWord* end_addr)
{
  ParallelCompactData& sd = summary_data();
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

#ifdef ASSERT
  MutableSpace* const src_space = _space_info[src_space_id].space();
  HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
         "src_space_id does not match beg_addr");
  assert(src_space->contains(end_addr) || end_addr == src_space->end(),
         "src_space_id does not match end_addr");
#endif // #ifdef ASSERT

2927
  RegionData* const beg = sd.region(beg_region);
2928 2929 2930 2931 2932 2933 2934 2935
  RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));

  // Regions up to new_top() are enqueued if they become available.
  HeapWord* const new_top = _space_info[src_space_id].new_top();
  RegionData* const enqueue_end =
    sd.addr_to_region_ptr(sd.region_align_up(new_top));

  for (RegionData* cur = beg; cur < end; ++cur) {
2936
    assert(cur->data_size() > 0, "region must have live data");
D
duke 已提交
2937
    cur->decrement_destination_count();
2938
    if (cur < enqueue_end && cur->available() && cur->claim()) {
2939
      cm->push_region(sd.region(cur));
D
duke 已提交
2940 2941 2942 2943
    }
  }
}

2944 2945 2946 2947
size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
                                          SpaceId& src_space_id,
                                          HeapWord*& src_space_top,
                                          HeapWord* end_addr)
D
duke 已提交
2948
{
2949
  typedef ParallelCompactData::RegionData RegionData;
D
duke 已提交
2950 2951

  ParallelCompactData& sd = PSParallelCompact::summary_data();
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
  const size_t region_size = ParallelCompactData::RegionSize;

  size_t src_region_idx = 0;

  // Skip empty regions (if any) up to the top of the space.
  HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  const RegionData* const top_region_ptr =
    sd.addr_to_region_ptr(top_aligned_up);
  while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
    ++src_region_ptr;
  }

  if (src_region_ptr < top_region_ptr) {
    // The next source region is in the current space.  Update src_region_idx
    // and the source address to match src_region_ptr.
    src_region_idx = sd.region(src_region_ptr);
    HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
    if (src_region_addr > closure.source()) {
      closure.set_source(src_region_addr);
D
duke 已提交
2973
    }
2974
    return src_region_idx;
D
duke 已提交
2975 2976
  }

2977
  // Switch to a new source space and find the first non-empty region.
D
duke 已提交
2978 2979 2980 2981 2982 2983 2984 2985
  unsigned int space_id = src_space_id + 1;
  assert(space_id < last_space_id, "not enough spaces");

  HeapWord* const destination = closure.destination();

  do {
    MutableSpace* space = _space_info[space_id].space();
    HeapWord* const bottom = space->bottom();
2986
    const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
D
duke 已提交
2987 2988 2989

    // Iterate over the spaces that do not compact into themselves.
    if (bottom_cp->destination() != bottom) {
2990 2991
      HeapWord* const top_aligned_up = sd.region_align_up(space->top());
      const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
2992

2993
      for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
D
duke 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002
        if (src_cp->live_obj_size() > 0) {
          // Found it.
          assert(src_cp->destination() == destination,
                 "first live obj in the space must match the destination");
          assert(src_cp->partial_obj_size() == 0,
                 "a space cannot begin with a partial obj");

          src_space_id = SpaceId(space_id);
          src_space_top = space->top();
3003 3004 3005
          const size_t src_region_idx = sd.region(src_cp);
          closure.set_source(sd.region_to_addr(src_region_idx));
          return src_region_idx;
D
duke 已提交
3006 3007 3008 3009 3010 3011 3012
        } else {
          assert(src_cp->data_size() == 0, "sanity");
        }
      }
    }
  } while (++space_id < last_space_id);

3013
  assert(false, "no source region was found");
D
duke 已提交
3014 3015 3016
  return 0;
}

3017
void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
D
duke 已提交
3018 3019
{
  typedef ParMarkBitMap::IterationStatus IterationStatus;
3020
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
3021 3022
  ParMarkBitMap* const bitmap = mark_bitmap();
  ParallelCompactData& sd = summary_data();
3023
  RegionData* const region_ptr = sd.region(region_idx);
D
duke 已提交
3024 3025

  // Get the items needed to construct the closure.
3026
  HeapWord* dest_addr = sd.region_to_addr(region_idx);
D
duke 已提交
3027 3028 3029 3030
  SpaceId dest_space_id = space_id(dest_addr);
  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  HeapWord* new_top = _space_info[dest_space_id].new_top();
  assert(dest_addr < new_top, "sanity");
3031
  const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
D
duke 已提交
3032

3033 3034 3035
  // Get the source region and related info.
  size_t src_region_idx = region_ptr->source_region();
  SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
D
duke 已提交
3036 3037 3038
  HeapWord* src_space_top = _space_info[src_space_id].space()->top();

  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3039
  closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
D
duke 已提交
3040

3041 3042 3043 3044
  // Adjust src_region_idx to prepare for decrementing destination counts (the
  // destination count is not decremented when a region is copied to itself).
  if (src_region_idx == region_idx) {
    src_region_idx += 1;
D
duke 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053
  }

  if (bitmap->is_unmarked(closure.source())) {
    // The first source word is in the middle of an object; copy the remainder
    // of the object or as much as will fit.  The fact that pointer updates were
    // deferred will be noted when the object header is processed.
    HeapWord* const old_src_addr = closure.source();
    closure.copy_partial_obj();
    if (closure.is_full()) {
3054 3055
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3056 3057
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
3058 3059 3060
      return;
    }

3061 3062 3063
    HeapWord* const end_addr = sd.region_align_down(closure.source());
    if (sd.region_align_down(old_src_addr) != end_addr) {
      // The partial object was copied from more than one source region.
3064
      decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
D
duke 已提交
3065

3066
      // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
3067
      // args except end_addr may be modified.
3068 3069
      src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                       end_addr);
D
duke 已提交
3070 3071 3072 3073 3074
    }
  }

  do {
    HeapWord* const cur_addr = closure.source();
3075
    HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
D
duke 已提交
3076 3077 3078 3079
                                    src_space_top);
    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);

    if (status == ParMarkBitMap::incomplete) {
3080 3081
      // The last obj that starts in the source region does not end in the
      // region.
3082
      assert(closure.source() < end_addr, "sanity");
D
duke 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
      HeapWord* const obj_beg = closure.source();
      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
                                       src_space_top);
      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
      if (obj_end < range_end) {
        // The end was found; the entire object will fit.
        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
        assert(status != ParMarkBitMap::would_overflow, "sanity");
      } else {
        // The end was not found; the object will not fit.
        assert(range_end < src_space_top, "obj cannot cross space boundary");
        status = ParMarkBitMap::would_overflow;
      }
    }

    if (status == ParMarkBitMap::would_overflow) {
      // The last object did not fit.  Note that interior oop updates were
3100 3101
      // deferred, then copy enough of the object to fill the region.
      region_ptr->set_deferred_obj_addr(closure.destination());
D
duke 已提交
3102 3103
      status = closure.copy_until_full(); // copies from closure.source()

3104 3105
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3106
      region_ptr->set_completed();
D
duke 已提交
3107 3108 3109 3110
      return;
    }

    if (status == ParMarkBitMap::full) {
3111 3112
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3113 3114
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
3115 3116 3117
      return;
    }

3118
    decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
D
duke 已提交
3119

3120
    // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
3121
    // args except end_addr may be modified.
3122 3123
    src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                     end_addr);
D
duke 已提交
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
  } while (true);
}

void
PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  const MutableSpace* sp = space(space_id);
  if (sp->is_empty()) {
    return;
  }

  ParallelCompactData& sd = PSParallelCompact::summary_data();
  ParMarkBitMap* const bitmap = mark_bitmap();
  HeapWord* const dp_addr = dense_prefix(space_id);
  HeapWord* beg_addr = sp->bottom();
  HeapWord* end_addr = sp->top();

  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");

3142 3143 3144 3145
  const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  if (beg_region < dp_region) {
    update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
D
duke 已提交
3146 3147
  }

3148 3149 3150
  // The destination of the first live object that starts in the region is one
  // past the end of the partial object entering the region (if any).
  HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
D
duke 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
  HeapWord* const new_top = _space_info[space_id].new_top();
  assert(new_top >= dest_addr, "bad new_top value");
  const size_t words = pointer_delta(new_top, dest_addr);

  if (words > 0) {
    ObjectStartArray* start_array = _space_info[space_id].start_array();
    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);

    ParMarkBitMap::IterationStatus status;
    status = bitmap->iterate(&closure, dest_addr, end_addr);
    assert(status == ParMarkBitMap::full, "iteration not complete");
    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
           "live objects skipped because closure is full");
  }
}

jlong PSParallelCompact::millis_since_last_gc() {
3168 3169 3170 3171
  // We need a monotonically non-deccreasing time in ms but
  // os::javaTimeMillis() does not guarantee monotonicity.
  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  jlong ret_val = now - _time_of_last_gc;
D
duke 已提交
3172 3173
  // XXX See note in genCollectedHeap::millis_since_last_gc().
  if (ret_val < 0) {
3174
    NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
D
duke 已提交
3175 3176 3177 3178 3179 3180
    return 0;
  }
  return ret_val;
}

void PSParallelCompact::reset_millis_since_last_gc() {
3181 3182 3183
  // We need a monotonically non-deccreasing time in ms but
  // os::javaTimeMillis() does not guarantee monotonicity.
  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
D
duke 已提交
3184 3185 3186 3187 3188
}

ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
{
  if (source() != destination()) {
3189
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  }
  update_state(words_remaining());
  assert(is_full(), "sanity");
  return ParMarkBitMap::full;
}

void MoveAndUpdateClosure::copy_partial_obj()
{
  size_t words = words_remaining();

  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  if (end_addr < range_end) {
    words = bitmap()->obj_size(source(), end_addr);
  }

  // This test is necessary; if omitted, the pointer updates to a partial object
  // that crosses the dense prefix boundary could be overwritten.
  if (source() != destination()) {
3210
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
    Copy::aligned_conjoint_words(source(), destination(), words);
  }
  update_state(words);
}

ParMarkBitMapClosure::IterationStatus
MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  assert(destination() != NULL, "sanity");
  assert(bitmap()->obj_size(addr) == words, "bad size");

  _source = addr;
  assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
         destination(), "wrong destination");

  if (words > words_remaining()) {
    return ParMarkBitMap::would_overflow;
  }

  // The start_array must be updated even if the object is not moving.
  if (_start_array != NULL) {
    _start_array->allocate_block(destination());
  }

  if (destination() != source()) {
3235
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
    Copy::aligned_conjoint_words(source(), destination(), words);
  }

  oop moved_oop = (oop) destination();
  moved_oop->update_contents(compaction_manager());
  assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");

  update_state(words);
  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
}

UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
                                     ParCompactionManager* cm,
                                     PSParallelCompact::SpaceId space_id) :
  ParMarkBitMapClosure(mbm, cm),
  _space_id(space_id),
  _start_array(PSParallelCompact::start_array(space_id))
{
}

// Updates the references in the object to their new values.
ParMarkBitMapClosure::IterationStatus
UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  do_addr(addr);
  return ParMarkBitMap::incomplete;
}