stubGenerator_ppc.cpp 86.3 KB
Newer Older
1 2
/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3
 * Copyright 2012, 2014 SAP AG. All rights reserved.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_ppc.hpp"
#include "oops/instanceOop.hpp"
#include "oops/method.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/top.hpp"
41
#include "runtime/thread.inline.hpp"
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

#define __ _masm->

#ifdef PRODUCT
#define BLOCK_COMMENT(str) // nothing
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

class StubGenerator: public StubCodeGenerator {
 private:

  // Call stubs are used to call Java from C
  //
  // Arguments:
  //
  //   R3  - call wrapper address     : address
  //   R4  - result                   : intptr_t*
  //   R5  - result type              : BasicType
  //   R6  - method                   : Method
  //   R7  - frame mgr entry point    : address
  //   R8  - parameter block          : intptr_t*
  //   R9  - parameter count in words : int
  //   R10 - thread                   : Thread*
  //
  address generate_call_stub(address& return_address) {
    // Setup a new c frame, copy java arguments, call frame manager or
    // native_entry, and process result.

    StubCodeMark mark(this, "StubRoutines", "call_stub");

G
goetz 已提交
73
    address start = __ function_entry();
74 75

    // some sanity checks
G
goetz 已提交
76 77
    assert((sizeof(frame::abi_minframe) % 16) == 0,           "unaligned");
    assert((sizeof(frame::abi_reg_args) % 16) == 0,           "unaligned");
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    assert((sizeof(frame::spill_nonvolatiles) % 16) == 0,     "unaligned");
    assert((sizeof(frame::parent_ijava_frame_abi) % 16) == 0, "unaligned");
    assert((sizeof(frame::entry_frame_locals) % 16) == 0,     "unaligned");

    Register r_arg_call_wrapper_addr        = R3;
    Register r_arg_result_addr              = R4;
    Register r_arg_result_type              = R5;
    Register r_arg_method                   = R6;
    Register r_arg_entry                    = R7;
    Register r_arg_thread                   = R10;

    Register r_temp                         = R24;
    Register r_top_of_arguments_addr        = R25;
    Register r_entryframe_fp                = R26;

    {
      // Stack on entry to call_stub:
      //
      //      F1      [C_FRAME]
      //              ...

      Register r_arg_argument_addr          = R8;
      Register r_arg_argument_count         = R9;
      Register r_frame_alignment_in_bytes   = R27;
      Register r_argument_addr              = R28;
      Register r_argumentcopy_addr          = R29;
      Register r_argument_size_in_bytes     = R30;
      Register r_frame_size                 = R23;

      Label arguments_copied;

      // Save LR/CR to caller's C_FRAME.
      __ save_LR_CR(R0);

      // Zero extend arg_argument_count.
      __ clrldi(r_arg_argument_count, r_arg_argument_count, 32);

      // Save non-volatiles GPRs to ENTRY_FRAME (not yet pushed, but it's safe).
      __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));

      // Keep copy of our frame pointer (caller's SP).
      __ mr(r_entryframe_fp, R1_SP);

      BLOCK_COMMENT("Push ENTRY_FRAME including arguments");
      // Push ENTRY_FRAME including arguments:
      //
      //      F0      [TOP_IJAVA_FRAME_ABI]
      //              alignment (optional)
      //              [outgoing Java arguments]
      //              [ENTRY_FRAME_LOCALS]
      //      F1      [C_FRAME]
      //              ...

      // calculate frame size

      // unaligned size of arguments
      __ sldi(r_argument_size_in_bytes,
                  r_arg_argument_count, Interpreter::logStackElementSize);
      // arguments alignment (max 1 slot)
      // FIXME: use round_to() here
      __ andi_(r_frame_alignment_in_bytes, r_arg_argument_count, 1);
      __ sldi(r_frame_alignment_in_bytes,
140
              r_frame_alignment_in_bytes, Interpreter::logStackElementSize);
141 142 143 144 145 146

      // size = unaligned size of arguments + top abi's size
      __ addi(r_frame_size, r_argument_size_in_bytes,
              frame::top_ijava_frame_abi_size);
      // size += arguments alignment
      __ add(r_frame_size,
147
             r_frame_size, r_frame_alignment_in_bytes);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
      // size += size of call_stub locals
      __ addi(r_frame_size,
              r_frame_size, frame::entry_frame_locals_size);

      // push ENTRY_FRAME
      __ push_frame(r_frame_size, r_temp);

      // initialize call_stub locals (step 1)
      __ std(r_arg_call_wrapper_addr,
             _entry_frame_locals_neg(call_wrapper_address), r_entryframe_fp);
      __ std(r_arg_result_addr,
             _entry_frame_locals_neg(result_address), r_entryframe_fp);
      __ std(r_arg_result_type,
             _entry_frame_locals_neg(result_type), r_entryframe_fp);
      // we will save arguments_tos_address later


      BLOCK_COMMENT("Copy Java arguments");
      // copy Java arguments

      // Calculate top_of_arguments_addr which will be R17_tos (not prepushed) later.
      // FIXME: why not simply use SP+frame::top_ijava_frame_size?
      __ addi(r_top_of_arguments_addr,
              R1_SP, frame::top_ijava_frame_abi_size);
      __ add(r_top_of_arguments_addr,
173
             r_top_of_arguments_addr, r_frame_alignment_in_bytes);
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

      // any arguments to copy?
      __ cmpdi(CCR0, r_arg_argument_count, 0);
      __ beq(CCR0, arguments_copied);

      // prepare loop and copy arguments in reverse order
      {
        // init CTR with arg_argument_count
        __ mtctr(r_arg_argument_count);

        // let r_argumentcopy_addr point to last outgoing Java arguments P
        __ mr(r_argumentcopy_addr, r_top_of_arguments_addr);

        // let r_argument_addr point to last incoming java argument
        __ add(r_argument_addr,
                   r_arg_argument_addr, r_argument_size_in_bytes);
        __ addi(r_argument_addr, r_argument_addr, -BytesPerWord);

        // now loop while CTR > 0 and copy arguments
        {
          Label next_argument;
          __ bind(next_argument);

          __ ld(r_temp, 0, r_argument_addr);
          // argument_addr--;
          __ addi(r_argument_addr, r_argument_addr, -BytesPerWord);
          __ std(r_temp, 0, r_argumentcopy_addr);
          // argumentcopy_addr++;
          __ addi(r_argumentcopy_addr, r_argumentcopy_addr, BytesPerWord);

          __ bdnz(next_argument);
        }
      }

      // Arguments copied, continue.
      __ bind(arguments_copied);
    }

    {
      BLOCK_COMMENT("Call frame manager or native entry.");
      // Call frame manager or native entry.
G
goetz 已提交
215
      Register r_new_arg_entry = R14;
216 217 218 219 220 221 222
      assert_different_registers(r_new_arg_entry, r_top_of_arguments_addr,
                                 r_arg_method, r_arg_thread);

      __ mr(r_new_arg_entry, r_arg_entry);

      // Register state on entry to frame manager / native entry:
      //
223
      //   tos         -  intptr_t*    sender tos (prepushed) Lesp = (SP) + copied_arguments_offset - 8
224 225 226
      //   R19_method  -  Method
      //   R16_thread  -  JavaThread*

227
      // Tos must point to last argument - element_size.
228
#ifdef CC_INTERP
229
      const Register tos = R17_tos;
230 231 232
#else
      const Register tos = R15_esp;
#endif
233
      __ addi(tos, r_top_of_arguments_addr, -Interpreter::stackElementSize);
234 235

      // initialize call_stub locals (step 2)
236 237
      // now save tos as arguments_tos_address
      __ std(tos, _entry_frame_locals_neg(arguments_tos_address), r_entryframe_fp);
238 239 240 241

      // load argument registers for call
      __ mr(R19_method, r_arg_method);
      __ mr(R16_thread, r_arg_thread);
242 243
      assert(tos != r_arg_method, "trashed r_arg_method");
      assert(tos != r_arg_thread && R19_method != r_arg_thread, "trashed r_arg_thread");
244 245

      // Set R15_prev_state to 0 for simplifying checks in callee.
246
#ifdef CC_INTERP
247
      __ li(R15_prev_state, 0);
248 249 250
#else
      __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
#endif
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
      // Stack on entry to frame manager / native entry:
      //
      //      F0      [TOP_IJAVA_FRAME_ABI]
      //              alignment (optional)
      //              [outgoing Java arguments]
      //              [ENTRY_FRAME_LOCALS]
      //      F1      [C_FRAME]
      //              ...
      //

      // global toc register
      __ load_const(R29, MacroAssembler::global_toc(), R11_scratch1);

      // Load narrow oop base.
      __ reinit_heapbase(R30, R11_scratch1);

      // Remember the senderSP so we interpreter can pop c2i arguments off of the stack
      // when called via a c2i.

      // Pass initial_caller_sp to framemanager.
      __ mr(R21_tmp1, R1_SP);

      // Do a light-weight C-call here, r_new_arg_entry holds the address
      // of the interpreter entry point (frame manager or native entry)
      // and save runtime-value of LR in return_address.
276
      assert(r_new_arg_entry != tos && r_new_arg_entry != R19_method && r_new_arg_entry != R16_thread,
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
             "trashed r_new_arg_entry");
      return_address = __ call_stub(r_new_arg_entry);
    }

    {
      BLOCK_COMMENT("Returned from frame manager or native entry.");
      // Returned from frame manager or native entry.
      // Now pop frame, process result, and return to caller.

      // Stack on exit from frame manager / native entry:
      //
      //      F0      [ABI]
      //              ...
      //              [ENTRY_FRAME_LOCALS]
      //      F1      [C_FRAME]
      //              ...
      //
      // Just pop the topmost frame ...
      //

      Label ret_is_object;
      Label ret_is_long;
      Label ret_is_float;
      Label ret_is_double;

      Register r_entryframe_fp = R30;
      Register r_lr            = R7_ARG5;
      Register r_cr            = R8_ARG6;

      // Reload some volatile registers which we've spilled before the call
      // to frame manager / native entry.
      // Access all locals via frame pointer, because we know nothing about
      // the topmost frame's size.
      __ ld(r_entryframe_fp, _abi(callers_sp), R1_SP);
      assert_different_registers(r_entryframe_fp, R3_RET, r_arg_result_addr, r_arg_result_type, r_cr, r_lr);
      __ ld(r_arg_result_addr,
            _entry_frame_locals_neg(result_address), r_entryframe_fp);
      __ ld(r_arg_result_type,
            _entry_frame_locals_neg(result_type), r_entryframe_fp);
      __ ld(r_cr, _abi(cr), r_entryframe_fp);
      __ ld(r_lr, _abi(lr), r_entryframe_fp);

      // pop frame and restore non-volatiles, LR and CR
      __ mr(R1_SP, r_entryframe_fp);
      __ mtcr(r_cr);
      __ mtlr(r_lr);

      // Store result depending on type. Everything that is not
      // T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE is treated as T_INT.
      __ cmpwi(CCR0, r_arg_result_type, T_OBJECT);
      __ cmpwi(CCR1, r_arg_result_type, T_LONG);
328 329
      __ cmpwi(CCR5, r_arg_result_type, T_FLOAT);
      __ cmpwi(CCR6, r_arg_result_type, T_DOUBLE);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

      // restore non-volatile registers
      __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));


      // Stack on exit from call_stub:
      //
      //      0       [C_FRAME]
      //              ...
      //
      //  no call_stub frames left.

      // All non-volatiles have been restored at this point!!
      assert(R3_RET == R3, "R3_RET should be R3");

      __ beq(CCR0, ret_is_object);
      __ beq(CCR1, ret_is_long);
347 348
      __ beq(CCR5, ret_is_float);
      __ beq(CCR6, ret_is_double);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

      // default:
      __ stw(R3_RET, 0, r_arg_result_addr);
      __ blr(); // return to caller

      // case T_OBJECT:
      __ bind(ret_is_object);
      __ std(R3_RET, 0, r_arg_result_addr);
      __ blr(); // return to caller

      // case T_LONG:
      __ bind(ret_is_long);
      __ std(R3_RET, 0, r_arg_result_addr);
      __ blr(); // return to caller

      // case T_FLOAT:
      __ bind(ret_is_float);
      __ stfs(F1_RET, 0, r_arg_result_addr);
      __ blr(); // return to caller

      // case T_DOUBLE:
      __ bind(ret_is_double);
      __ stfd(F1_RET, 0, r_arg_result_addr);
      __ blr(); // return to caller
    }

    return start;
  }

  // Return point for a Java call if there's an exception thrown in
  // Java code.  The exception is caught and transformed into a
  // pending exception stored in JavaThread that can be tested from
  // within the VM.
  //
  address generate_catch_exception() {
    StubCodeMark mark(this, "StubRoutines", "catch_exception");

    address start = __ pc();

    // Registers alive
    //
    //  R16_thread
    //  R3_ARG1 - address of pending exception
    //  R4_ARG2 - return address in call stub

    const Register exception_file = R21_tmp1;
    const Register exception_line = R22_tmp2;

    __ load_const(exception_file, (void*)__FILE__);
    __ load_const(exception_line, (void*)__LINE__);

    __ std(R3_ARG1, thread_(pending_exception));
    // store into `char *'
    __ std(exception_file, thread_(exception_file));
    // store into `int'
    __ stw(exception_line, thread_(exception_line));

    // complete return to VM
    assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");

    __ mtlr(R4_ARG2);
    // continue in call stub
    __ blr();

    return start;
  }

  // Continuation point for runtime calls returning with a pending
  // exception.  The pending exception check happened in the runtime
  // or native call stub.  The pending exception in Thread is
  // converted into a Java-level exception.
  //
  address generate_forward_exception() {
    StubCodeMark mark(this, "StubRoutines", "forward_exception");
    address start = __ pc();

#if !defined(PRODUCT)
    if (VerifyOops) {
      // Get pending exception oop.
      __ ld(R3_ARG1,
                in_bytes(Thread::pending_exception_offset()),
                R16_thread);
      // Make sure that this code is only executed if there is a pending exception.
      {
        Label L;
        __ cmpdi(CCR0, R3_ARG1, 0);
        __ bne(CCR0, L);
        __ stop("StubRoutines::forward exception: no pending exception (1)");
        __ bind(L);
      }
      __ verify_oop(R3_ARG1, "StubRoutines::forward exception: not an oop");
    }
#endif

    // Save LR/CR and copy exception pc (LR) into R4_ARG2.
    __ save_LR_CR(R4_ARG2);
G
goetz 已提交
445
    __ push_frame_reg_args(0, R0);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    // Find exception handler.
    __ call_VM_leaf(CAST_FROM_FN_PTR(address,
                     SharedRuntime::exception_handler_for_return_address),
                    R16_thread,
                    R4_ARG2);
    // Copy handler's address.
    __ mtctr(R3_RET);
    __ pop_frame();
    __ restore_LR_CR(R0);

    // Set up the arguments for the exception handler:
    //  - R3_ARG1: exception oop
    //  - R4_ARG2: exception pc.

    // Load pending exception oop.
    __ ld(R3_ARG1,
              in_bytes(Thread::pending_exception_offset()),
              R16_thread);

    // The exception pc is the return address in the caller.
    // Must load it into R4_ARG2.
    __ mflr(R4_ARG2);

#ifdef ASSERT
    // Make sure exception is set.
    {
      Label L;
      __ cmpdi(CCR0, R3_ARG1, 0);
      __ bne(CCR0, L);
      __ stop("StubRoutines::forward exception: no pending exception (2)");
      __ bind(L);
    }
#endif

    // Clear the pending exception.
    __ li(R0, 0);
    __ std(R0,
               in_bytes(Thread::pending_exception_offset()),
               R16_thread);
    // Jump to exception handler.
    __ bctr();

    return start;
  }

#undef __
#define __ masm->
  // Continuation point for throwing of implicit exceptions that are
  // not handled in the current activation. Fabricates an exception
  // oop and initiates normal exception dispatching in this
  // frame. Only callee-saved registers are preserved (through the
  // normal register window / RegisterMap handling).  If the compiler
  // needs all registers to be preserved between the fault point and
  // the exception handler then it must assume responsibility for that
  // in AbstractCompiler::continuation_for_implicit_null_exception or
  // continuation_for_implicit_division_by_zero_exception. All other
  // implicit exceptions (e.g., NullPointerException or
  // AbstractMethodError on entry) are either at call sites or
  // otherwise assume that stack unwinding will be initiated, so
  // caller saved registers were assumed volatile in the compiler.
  //
  // Note that we generate only this stub into a RuntimeStub, because
  // it needs to be properly traversed and ignored during GC, so we
  // change the meaning of the "__" macro within this method.
  //
  // Note: the routine set_pc_not_at_call_for_caller in
  // SharedRuntime.cpp requires that this code be generated into a
  // RuntimeStub.
  address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc,
                                   Register arg1 = noreg, Register arg2 = noreg) {
    CodeBuffer code(name, 1024 DEBUG_ONLY(+ 512), 0);
    MacroAssembler* masm = new MacroAssembler(&code);

    OopMapSet* oop_maps  = new OopMapSet();
G
goetz 已提交
520
    int frame_size_in_bytes = frame::abi_reg_args_size;
521 522 523 524 525 526 527 528 529
    OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);

    StubCodeMark mark(this, "StubRoutines", "throw_exception");

    address start = __ pc();

    __ save_LR_CR(R11_scratch1);

    // Push a frame.
G
goetz 已提交
530
    __ push_frame_reg_args(0, R11_scratch1);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

    address frame_complete_pc = __ pc();

    if (restore_saved_exception_pc) {
      __ unimplemented("StubGenerator::throw_exception with restore_saved_exception_pc", 74);
    }

    // Note that we always have a runtime stub frame on the top of
    // stack by this point. Remember the offset of the instruction
    // whose address will be moved to R11_scratch1.
    address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);

    __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);

    __ mr(R3_ARG1, R16_thread);
    if (arg1 != noreg) {
      __ mr(R4_ARG2, arg1);
    }
    if (arg2 != noreg) {
      __ mr(R5_ARG3, arg2);
    }
G
goetz 已提交
552 553 554 555 556
#if defined(ABI_ELFv2)
    __ call_c(runtime_entry, relocInfo::none);
#else
    __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, runtime_entry), relocInfo::none);
#endif
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

    // Set an oopmap for the call site.
    oop_maps->add_gc_map((int)(gc_map_pc - start), map);

    __ reset_last_Java_frame();

#ifdef ASSERT
    // Make sure that this code is only executed if there is a pending
    // exception.
    {
      Label L;
      __ ld(R0,
                in_bytes(Thread::pending_exception_offset()),
                R16_thread);
      __ cmpdi(CCR0, R0, 0);
      __ bne(CCR0, L);
      __ stop("StubRoutines::throw_exception: no pending exception");
      __ bind(L);
    }
#endif

    // Pop frame.
    __ pop_frame();

    __ restore_LR_CR(R11_scratch1);

    __ load_const(R11_scratch1, StubRoutines::forward_exception_entry());
    __ mtctr(R11_scratch1);
    __ bctr();

    // Create runtime stub with OopMap.
    RuntimeStub* stub =
      RuntimeStub::new_runtime_stub(name, &code,
                                    /*frame_complete=*/ (int)(frame_complete_pc - start),
                                    frame_size_in_bytes/wordSize,
                                    oop_maps,
                                    false);
    return stub->entry_point();
  }
#undef __
#define __ _masm->

  //  Generate G1 pre-write barrier for array.
  //
  //  Input:
  //     from     - register containing src address (only needed for spilling)
  //     to       - register containing starting address
  //     count    - register containing element count
  //     tmp      - scratch register
  //
  //  Kills:
  //     nothing
  //
  void gen_write_ref_array_pre_barrier(Register from, Register to, Register count, bool dest_uninitialized, Register Rtmp1) {
    BarrierSet* const bs = Universe::heap()->barrier_set();
    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
        // With G1, don't generate the call if we statically know that the target in uninitialized
        if (!dest_uninitialized) {
          const int spill_slots = 4 * wordSize;
G
goetz 已提交
618
          const int frame_size  = frame::abi_reg_args_size + spill_slots;
619 620 621 622 623 624 625 626 627 628 629
          Label filtered;

          // Is marking active?
          if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
            __ lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
          } else {
            guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
            __ lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
          }
          __ cmpdi(CCR0, Rtmp1, 0);
          __ beq(CCR0, filtered);
630 631

          __ save_LR_CR(R0);
G
goetz 已提交
632
          __ push_frame_reg_args(spill_slots, R0);
633 634 635 636 637 638 639 640 641 642 643
          __ std(from,  frame_size - 1 * wordSize, R1_SP);
          __ std(to,    frame_size - 2 * wordSize, R1_SP);
          __ std(count, frame_size - 3 * wordSize, R1_SP);

          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), to, count);

          __ ld(from,  frame_size - 1 * wordSize, R1_SP);
          __ ld(to,    frame_size - 2 * wordSize, R1_SP);
          __ ld(count, frame_size - 3 * wordSize, R1_SP);
          __ pop_frame();
          __ restore_LR_CR(R0);
644 645

          __ bind(filtered);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
        }
        break;
      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
      case BarrierSet::ModRef:
        break;
      default:
        ShouldNotReachHere();
    }
  }

  //  Generate CMS/G1 post-write barrier for array.
  //
  //  Input:
  //     addr     - register containing starting address
  //     count    - register containing element count
  //     tmp      - scratch register
  //
  //  The input registers and R0 are overwritten.
  //
666
  void gen_write_ref_array_post_barrier(Register addr, Register count, Register tmp, bool branchToEnd) {
667 668 669 670 671 672
    BarrierSet* const bs = Universe::heap()->barrier_set();

    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
        {
673 674 675
          if (branchToEnd) {
            __ save_LR_CR(R0);
            // We need this frame only to spill LR.
G
goetz 已提交
676
            __ push_frame_reg_args(0, R0);
677 678 679 680 681 682 683 684 685 686 687
            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), addr, count);
            __ pop_frame();
            __ restore_LR_CR(R0);
          } else {
            // Tail call: fake call from stub caller by branching without linking.
            address entry_point = (address)CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post);
            __ mr_if_needed(R3_ARG1, addr);
            __ mr_if_needed(R4_ARG2, count);
            __ load_const(R11, entry_point, R0);
            __ call_c_and_return_to_caller(R11);
          }
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
        }
        break;
      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
        {
          Label Lskip_loop, Lstore_loop;
          if (UseConcMarkSweepGC) {
            // TODO PPC port: contribute optimization / requires shared changes
            __ release();
          }

          CardTableModRefBS* const ct = (CardTableModRefBS*)bs;
          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
          assert_different_registers(addr, count, tmp);

          __ sldi(count, count, LogBytesPerHeapOop);
          __ addi(count, count, -BytesPerHeapOop);
          __ add(count, addr, count);
          // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
          __ srdi(addr, addr, CardTableModRefBS::card_shift);
          __ srdi(count, count, CardTableModRefBS::card_shift);
          __ subf(count, addr, count);
          assert_different_registers(R0, addr, count, tmp);
          __ load_const(tmp, (address)ct->byte_map_base);
          __ addic_(count, count, 1);
          __ beq(CCR0, Lskip_loop);
          __ li(R0, 0);
          __ mtctr(count);
          // Byte store loop
          __ bind(Lstore_loop);
          __ stbx(R0, tmp, addr);
          __ addi(addr, addr, 1);
          __ bdnz(Lstore_loop);
          __ bind(Lskip_loop);
722 723

          if (!branchToEnd) __ blr();
724 725 726
        }
      break;
      case BarrierSet::ModRef:
727
        if (!branchToEnd) __ blr();
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
        break;
      default:
        ShouldNotReachHere();
    }
  }

  // Support for void zero_words_aligned8(HeapWord* to, size_t count)
  //
  // Arguments:
  //   to:
  //   count:
  //
  // Destroys:
  //
  address generate_zero_words_aligned8() {
    StubCodeMark mark(this, "StubRoutines", "zero_words_aligned8");

    // Implemented as in ClearArray.
G
goetz 已提交
746
    address start = __ function_entry();
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

    Register base_ptr_reg   = R3_ARG1; // tohw (needs to be 8b aligned)
    Register cnt_dwords_reg = R4_ARG2; // count (in dwords)
    Register tmp1_reg       = R5_ARG3;
    Register tmp2_reg       = R6_ARG4;
    Register zero_reg       = R7_ARG5;

    // Procedure for large arrays (uses data cache block zero instruction).
    Label dwloop, fast, fastloop, restloop, lastdword, done;
    int cl_size=VM_Version::get_cache_line_size(), cl_dwords=cl_size>>3, cl_dwordaddr_bits=exact_log2(cl_dwords);
    int min_dcbz=2; // Needs to be positive, apply dcbz only to at least min_dcbz cache lines.

    // Clear up to 128byte boundary if long enough, dword_cnt=(16-(base>>3))%16.
    __ dcbtst(base_ptr_reg);                    // Indicate write access to first cache line ...
    __ andi(tmp2_reg, cnt_dwords_reg, 1);       // to check if number of dwords is even.
    __ srdi_(tmp1_reg, cnt_dwords_reg, 1);      // number of double dwords
    __ load_const_optimized(zero_reg, 0L);      // Use as zero register.

    __ cmpdi(CCR1, tmp2_reg, 0);                // cnt_dwords even?
    __ beq(CCR0, lastdword);                    // size <= 1
    __ mtctr(tmp1_reg);                         // Speculatively preload counter for rest loop (>0).
    __ cmpdi(CCR0, cnt_dwords_reg, (min_dcbz+1)*cl_dwords-1); // Big enough to ensure >=min_dcbz cache lines are included?
    __ neg(tmp1_reg, base_ptr_reg);             // bit 0..58: bogus, bit 57..60: (16-(base>>3))%16, bit 61..63: 000

    __ blt(CCR0, restloop);                     // Too small. (<31=(2*cl_dwords)-1 is sufficient, but bigger performs better.)
    __ rldicl_(tmp1_reg, tmp1_reg, 64-3, 64-cl_dwordaddr_bits); // Extract number of dwords to 128byte boundary=(16-(base>>3))%16.

    __ beq(CCR0, fast);                         // already 128byte aligned
    __ mtctr(tmp1_reg);                         // Set ctr to hit 128byte boundary (0<ctr<cnt).
    __ subf(cnt_dwords_reg, tmp1_reg, cnt_dwords_reg); // rest (>0 since size>=256-8)

    // Clear in first cache line dword-by-dword if not already 128byte aligned.
    __ bind(dwloop);
      __ std(zero_reg, 0, base_ptr_reg);        // Clear 8byte aligned block.
      __ addi(base_ptr_reg, base_ptr_reg, 8);
    __ bdnz(dwloop);

    // clear 128byte blocks
    __ bind(fast);
    __ srdi(tmp1_reg, cnt_dwords_reg, cl_dwordaddr_bits); // loop count for 128byte loop (>0 since size>=256-8)
    __ andi(tmp2_reg, cnt_dwords_reg, 1);       // to check if rest even

    __ mtctr(tmp1_reg);                         // load counter
    __ cmpdi(CCR1, tmp2_reg, 0);                // rest even?
    __ rldicl_(tmp1_reg, cnt_dwords_reg, 63, 65-cl_dwordaddr_bits); // rest in double dwords

    __ bind(fastloop);
      __ dcbz(base_ptr_reg);                    // Clear 128byte aligned block.
      __ addi(base_ptr_reg, base_ptr_reg, cl_size);
    __ bdnz(fastloop);

    //__ dcbtst(base_ptr_reg);                  // Indicate write access to last cache line.
    __ beq(CCR0, lastdword);                    // rest<=1
    __ mtctr(tmp1_reg);                         // load counter

    // Clear rest.
    __ bind(restloop);
      __ std(zero_reg, 0, base_ptr_reg);        // Clear 8byte aligned block.
      __ std(zero_reg, 8, base_ptr_reg);        // Clear 8byte aligned block.
      __ addi(base_ptr_reg, base_ptr_reg, 16);
    __ bdnz(restloop);

    __ bind(lastdword);
    __ beq(CCR1, done);
    __ std(zero_reg, 0, base_ptr_reg);
    __ bind(done);
    __ blr();                                   // return

    return start;
  }

  // The following routine generates a subroutine to throw an asynchronous
  // UnknownError when an unsafe access gets a fault that could not be
  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
  //
  address generate_handler_for_unsafe_access() {
    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
G
goetz 已提交
824
    address start = __ function_entry();
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    __ unimplemented("StubRoutines::handler_for_unsafe_access", 93);
    return start;
  }

#if !defined(PRODUCT)
  // Wrapper which calls oopDesc::is_oop_or_null()
  // Only called by MacroAssembler::verify_oop
  static void verify_oop_helper(const char* message, oop o) {
    if (!o->is_oop_or_null()) {
      fatal(message);
    }
    ++ StubRoutines::_verify_oop_count;
  }
#endif

  // Return address of code to be called from code generated by
  // MacroAssembler::verify_oop.
  //
  // Don't generate, rather use C++ code.
  address generate_verify_oop() {
    StubCodeMark mark(this, "StubRoutines", "verify_oop");

    // this is actually a `FunctionDescriptor*'.
    address start = 0;

#if !defined(PRODUCT)
    start = CAST_FROM_FN_PTR(address, verify_oop_helper);
#endif

    return start;
  }

  // Fairer handling of safepoints for native methods.
  //
  // Generate code which reads from the polling page. This special handling is needed as the
  // linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults in 64bit mode
  // (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6), especially when we try
  // to read from the safepoint polling page.
  address generate_load_from_poll() {
    StubCodeMark mark(this, "StubRoutines", "generate_load_from_poll");
G
goetz 已提交
865
    address start = __ function_entry();
866 867 868 869 870 871 872 873 874
    __ unimplemented("StubRoutines::verify_oop", 95);  // TODO PPC port
    return start;
  }

  // -XX:+OptimizeFill : convert fill/copy loops into intrinsic
  //
  // The code is implemented(ported from sparc) as we believe it benefits JVM98, however
  // tracing(-XX:+TraceOptimizeFill) shows the intrinsic replacement doesn't happen at all!
  //
875
  // Source code in function is_range_check_if() shows that OptimizeFill relaxed the condition
876 877 878
  // for turning on loop predication optimization, and hence the behavior of "array range check"
  // and "loop invariant check" could be influenced, which potentially boosted JVM98.
  //
879 880
  // Generate stub for disjoint short fill. If "aligned" is true, the
  // "to" address is assumed to be heapword aligned.
881 882
  //
  // Arguments for generated stub:
883 884 885
  //   to:    R3_ARG1
  //   value: R4_ARG2
  //   count: R5_ARG3 treated as signed
886 887 888
  //
  address generate_fill(BasicType t, bool aligned, const char* name) {
    StubCodeMark mark(this, "StubRoutines", name);
G
goetz 已提交
889
    address start = __ function_entry();
890

891 892 893 894
    const Register to    = R3_ARG1;   // source array address
    const Register value = R4_ARG2;   // fill value
    const Register count = R5_ARG3;   // elements count
    const Register temp  = R6_ARG4;   // temp register
895

896
    //assert_clean_int(count, O3);    // Make sure 'count' is clean int.
897 898 899 900 901 902 903 904

    Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
    Label L_fill_2_bytes, L_fill_4_bytes, L_fill_elements, L_fill_32_bytes;

    int shift = -1;
    switch (t) {
       case T_BYTE:
        shift = 2;
905
        // Clone bytes (zero extend not needed because store instructions below ignore high order bytes).
906
        __ rldimi(value, value, 8, 48);     // 8 bit -> 16 bit
907
        __ cmpdi(CCR0, count, 2<<shift);    // Short arrays (< 8 bytes) fill by element.
908 909 910 911 912
        __ blt(CCR0, L_fill_elements);
        __ rldimi(value, value, 16, 32);    // 16 bit -> 32 bit
        break;
       case T_SHORT:
        shift = 1;
913
        // Clone bytes (zero extend not needed because store instructions below ignore high order bytes).
914
        __ rldimi(value, value, 16, 32);    // 16 bit -> 32 bit
915
        __ cmpdi(CCR0, count, 2<<shift);    // Short arrays (< 8 bytes) fill by element.
916 917 918 919
        __ blt(CCR0, L_fill_elements);
        break;
      case T_INT:
        shift = 0;
920
        __ cmpdi(CCR0, count, 2<<shift);    // Short arrays (< 8 bytes) fill by element.
921 922 923 924 925 926
        __ blt(CCR0, L_fill_4_bytes);
        break;
      default: ShouldNotReachHere();
    }

    if (!aligned && (t == T_BYTE || t == T_SHORT)) {
927
      // Align source address at 4 bytes address boundary.
928
      if (t == T_BYTE) {
929
        // One byte misalignment happens only for byte arrays.
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
        __ andi_(temp, to, 1);
        __ beq(CCR0, L_skip_align1);
        __ stb(value, 0, to);
        __ addi(to, to, 1);
        __ addi(count, count, -1);
        __ bind(L_skip_align1);
      }
      // Two bytes misalignment happens only for byte and short (char) arrays.
      __ andi_(temp, to, 2);
      __ beq(CCR0, L_skip_align2);
      __ sth(value, 0, to);
      __ addi(to, to, 2);
      __ addi(count, count, -(1 << (shift - 1)));
      __ bind(L_skip_align2);
    }

    if (!aligned) {
      // Align to 8 bytes, we know we are 4 byte aligned to start.
      __ andi_(temp, to, 7);
      __ beq(CCR0, L_fill_32_bytes);
      __ stw(value, 0, to);
      __ addi(to, to, 4);
      __ addi(count, count, -(1 << shift));
      __ bind(L_fill_32_bytes);
    }

956 957 958
    __ li(temp, 8<<shift);                  // Prepare for 32 byte loop.
    // Clone bytes int->long as above.
    __ rldimi(value, value, 32, 0);         // 32 bit -> 64 bit
959 960

    Label L_check_fill_8_bytes;
961
    // Fill 32-byte chunks.
962 963 964 965 966 967 968 969 970
    __ subf_(count, temp, count);
    __ blt(CCR0, L_check_fill_8_bytes);

    Label L_fill_32_bytes_loop;
    __ align(32);
    __ bind(L_fill_32_bytes_loop);

    __ std(value, 0, to);
    __ std(value, 8, to);
971
    __ subf_(count, temp, count);           // Update count.
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    __ std(value, 16, to);
    __ std(value, 24, to);

    __ addi(to, to, 32);
    __ bge(CCR0, L_fill_32_bytes_loop);

    __ bind(L_check_fill_8_bytes);
    __ add_(count, temp, count);
    __ beq(CCR0, L_exit);
    __ addic_(count, count, -(2 << shift));
    __ blt(CCR0, L_fill_4_bytes);

    //
    // Length is too short, just fill 8 bytes at a time.
    //
    Label L_fill_8_bytes_loop;
    __ bind(L_fill_8_bytes_loop);
    __ std(value, 0, to);
    __ addic_(count, count, -(2 << shift));
    __ addi(to, to, 8);
    __ bge(CCR0, L_fill_8_bytes_loop);

994
    // Fill trailing 4 bytes.
995 996 997 998 999 1000 1001
    __ bind(L_fill_4_bytes);
    __ andi_(temp, count, 1<<shift);
    __ beq(CCR0, L_fill_2_bytes);

    __ stw(value, 0, to);
    if (t == T_BYTE || t == T_SHORT) {
      __ addi(to, to, 4);
1002
      // Fill trailing 2 bytes.
1003 1004 1005 1006 1007 1008
      __ bind(L_fill_2_bytes);
      __ andi_(temp, count, 1<<(shift-1));
      __ beq(CCR0, L_fill_byte);
      __ sth(value, 0, to);
      if (t == T_BYTE) {
        __ addi(to, to, 2);
1009
        // Fill trailing byte.
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        __ bind(L_fill_byte);
        __ andi_(count, count, 1);
        __ beq(CCR0, L_exit);
        __ stb(value, 0, to);
      } else {
        __ bind(L_fill_byte);
      }
    } else {
      __ bind(L_fill_2_bytes);
    }
    __ bind(L_exit);
    __ blr();

1023
    // Handle copies less than 8 bytes. Int is handled elsewhere.
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    if (t == T_BYTE) {
      __ bind(L_fill_elements);
      Label L_fill_2, L_fill_4;
      __ andi_(temp, count, 1);
      __ beq(CCR0, L_fill_2);
      __ stb(value, 0, to);
      __ addi(to, to, 1);
      __ bind(L_fill_2);
      __ andi_(temp, count, 2);
      __ beq(CCR0, L_fill_4);
      __ stb(value, 0, to);
      __ stb(value, 0, to);
      __ addi(to, to, 2);
      __ bind(L_fill_4);
      __ andi_(temp, count, 4);
      __ beq(CCR0, L_exit);
      __ stb(value, 0, to);
      __ stb(value, 1, to);
      __ stb(value, 2, to);
      __ stb(value, 3, to);
      __ blr();
    }

    if (t == T_SHORT) {
      Label L_fill_2;
      __ bind(L_fill_elements);
      __ andi_(temp, count, 1);
      __ beq(CCR0, L_fill_2);
      __ sth(value, 0, to);
      __ addi(to, to, 2);
      __ bind(L_fill_2);
      __ andi_(temp, count, 2);
      __ beq(CCR0, L_exit);
      __ sth(value, 0, to);
      __ sth(value, 2, to);
      __ blr();
    }
    return start;
  }


1065
  // Generate overlap test for array copy stubs.
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
  //
  // Input:
  //   R3_ARG1    -  from
  //   R4_ARG2    -  to
  //   R5_ARG3    -  element count
  //
  void array_overlap_test(address no_overlap_target, int log2_elem_size) {
    Register tmp1 = R6_ARG4;
    Register tmp2 = R7_ARG5;

    Label l_overlap;
#ifdef ASSERT
    __ srdi_(tmp2, R5_ARG3, 31);
    __ asm_assert_eq("missing zero extend", 0xAFFE);
#endif

    __ subf(tmp1, R3_ARG1, R4_ARG2); // distance in bytes
    __ sldi(tmp2, R5_ARG3, log2_elem_size); // size in bytes
    __ cmpld(CCR0, R3_ARG1, R4_ARG2); // Use unsigned comparison!
    __ cmpld(CCR1, tmp1, tmp2);
    __ crand(/*CCR0 lt*/0, /*CCR1 lt*/4+0, /*CCR0 lt*/0);
    __ blt(CCR0, l_overlap); // Src before dst and distance smaller than size.

    // need to copy forwards
    if (__ is_within_range_of_b(no_overlap_target, __ pc())) {
      __ b(no_overlap_target);
    } else {
      __ load_const(tmp1, no_overlap_target, tmp2);
      __ mtctr(tmp1);
      __ bctr();
    }

    __ bind(l_overlap);
    // need to copy backwards
  }

  // The guideline in the implementations of generate_disjoint_xxx_copy
  // (xxx=byte,short,int,long,oop) is to copy as many elements as possible with
  // single instructions, but to avoid alignment interrupts (see subsequent
  // comment). Furthermore, we try to minimize misaligned access, even
  // though they cause no alignment interrupt.
  //
  // In Big-Endian mode, the PowerPC architecture requires implementations to
  // handle automatically misaligned integer halfword and word accesses,
  // word-aligned integer doubleword accesses, and word-aligned floating-point
  // accesses. Other accesses may or may not generate an Alignment interrupt
  // depending on the implementation.
  // Alignment interrupt handling may require on the order of hundreds of cycles,
  // so every effort should be made to avoid misaligned memory values.
  //
  //
  // Generate stub for disjoint byte copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  address generate_disjoint_byte_copy(bool aligned, const char * name) {
    StubCodeMark mark(this, "StubRoutines", name);
G
goetz 已提交
1127
    address start = __ function_entry();
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    Register tmp1 = R6_ARG4;
    Register tmp2 = R7_ARG5;
    Register tmp3 = R8_ARG6;
    Register tmp4 = R9_ARG7;


    Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8, l_9;
    // Don't try anything fancy if arrays don't have many elements.
    __ li(tmp3, 0);
    __ cmpwi(CCR0, R5_ARG3, 17);
    __ ble(CCR0, l_6); // copy 4 at a time

    if (!aligned) {
      __ xorr(tmp1, R3_ARG1, R4_ARG2);
      __ andi_(tmp1, tmp1, 3);
      __ bne(CCR0, l_6); // If arrays don't have the same alignment mod 4, do 4 element copy.

      // Copy elements if necessary to align to 4 bytes.
      __ neg(tmp1, R3_ARG1); // Compute distance to alignment boundary.
      __ andi_(tmp1, tmp1, 3);
      __ beq(CCR0, l_2);

      __ subf(R5_ARG3, tmp1, R5_ARG3);
      __ bind(l_9);
      __ lbz(tmp2, 0, R3_ARG1);
      __ addic_(tmp1, tmp1, -1);
      __ stb(tmp2, 0, R4_ARG2);
      __ addi(R3_ARG1, R3_ARG1, 1);
      __ addi(R4_ARG2, R4_ARG2, 1);
      __ bne(CCR0, l_9);

      __ bind(l_2);
    }

    // copy 8 elements at a time
    __ xorr(tmp2, R3_ARG1, R4_ARG2); // skip if src & dest have differing alignment mod 8
    __ andi_(tmp1, tmp2, 7);
    __ bne(CCR0, l_7); // not same alignment -> to or from is aligned -> copy 8

    // copy a 2-element word if necessary to align to 8 bytes
    __ andi_(R0, R3_ARG1, 7);
    __ beq(CCR0, l_7);

    __ lwzx(tmp2, R3_ARG1, tmp3);
    __ addi(R5_ARG3, R5_ARG3, -4);
    __ stwx(tmp2, R4_ARG2, tmp3);
    { // FasterArrayCopy
      __ addi(R3_ARG1, R3_ARG1, 4);
      __ addi(R4_ARG2, R4_ARG2, 4);
    }
    __ bind(l_7);

    { // FasterArrayCopy
      __ cmpwi(CCR0, R5_ARG3, 31);
      __ ble(CCR0, l_6); // copy 2 at a time if less than 32 elements remain

      __ srdi(tmp1, R5_ARG3, 5);
      __ andi_(R5_ARG3, R5_ARG3, 31);
      __ mtctr(tmp1);

      __ bind(l_8);
      // Use unrolled version for mass copying (copy 32 elements a time)
      // Load feeding store gets zero latency on Power6, however not on Power5.
      // Therefore, the following sequence is made for the good of both.
      __ ld(tmp1, 0, R3_ARG1);
      __ ld(tmp2, 8, R3_ARG1);
      __ ld(tmp3, 16, R3_ARG1);
      __ ld(tmp4, 24, R3_ARG1);
      __ std(tmp1, 0, R4_ARG2);
      __ std(tmp2, 8, R4_ARG2);
      __ std(tmp3, 16, R4_ARG2);
      __ std(tmp4, 24, R4_ARG2);
      __ addi(R3_ARG1, R3_ARG1, 32);
      __ addi(R4_ARG2, R4_ARG2, 32);
      __ bdnz(l_8);
    }

    __ bind(l_6);

    // copy 4 elements at a time
    __ cmpwi(CCR0, R5_ARG3, 4);
    __ blt(CCR0, l_1);
    __ srdi(tmp1, R5_ARG3, 2);
    __ mtctr(tmp1); // is > 0
    __ andi_(R5_ARG3, R5_ARG3, 3);

    { // FasterArrayCopy
      __ addi(R3_ARG1, R3_ARG1, -4);
      __ addi(R4_ARG2, R4_ARG2, -4);
      __ bind(l_3);
      __ lwzu(tmp2, 4, R3_ARG1);
      __ stwu(tmp2, 4, R4_ARG2);
      __ bdnz(l_3);
      __ addi(R3_ARG1, R3_ARG1, 4);
      __ addi(R4_ARG2, R4_ARG2, 4);
    }

    // do single element copy
    __ bind(l_1);
    __ cmpwi(CCR0, R5_ARG3, 0);
    __ beq(CCR0, l_4);

    { // FasterArrayCopy
      __ mtctr(R5_ARG3);
      __ addi(R3_ARG1, R3_ARG1, -1);
      __ addi(R4_ARG2, R4_ARG2, -1);

      __ bind(l_5);
      __ lbzu(tmp2, 1, R3_ARG1);
      __ stbu(tmp2, 1, R4_ARG2);
      __ bdnz(l_5);
    }

    __ bind(l_4);
    __ blr();

    return start;
  }

  // Generate stub for conjoint byte copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  address generate_conjoint_byte_copy(bool aligned, const char * name) {
    StubCodeMark mark(this, "StubRoutines", name);
G
goetz 已提交
1258
    address start = __ function_entry();
1259 1260 1261 1262 1263

    Register tmp1 = R6_ARG4;
    Register tmp2 = R7_ARG5;
    Register tmp3 = R8_ARG6;

G
goetz 已提交
1264 1265 1266 1267 1268
#if defined(ABI_ELFv2)
     address nooverlap_target = aligned ?
       StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
       StubRoutines::jbyte_disjoint_arraycopy();
#else
1269 1270 1271
    address nooverlap_target = aligned ?
      ((FunctionDescriptor*)StubRoutines::arrayof_jbyte_disjoint_arraycopy())->entry() :
      ((FunctionDescriptor*)StubRoutines::jbyte_disjoint_arraycopy())->entry();
G
goetz 已提交
1272
#endif
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

    array_overlap_test(nooverlap_target, 0);
    // Do reverse copy. We assume the case of actual overlap is rare enough
    // that we don't have to optimize it.
    Label l_1, l_2;

    __ b(l_2);
    __ bind(l_1);
    __ stbx(tmp1, R4_ARG2, R5_ARG3);
    __ bind(l_2);
    __ addic_(R5_ARG3, R5_ARG3, -1);
    __ lbzx(tmp1, R3_ARG1, R5_ARG3);
    __ bge(CCR0, l_1);

    __ blr();

    return start;
  }

  // Generate stub for disjoint short copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //  elm.count: R5_ARG3 treated as signed
  //
  // Strategy for aligned==true:
  //
  //  If length <= 9:
  //     1. copy 2 elements at a time (l_6)
  //     2. copy last element if original element count was odd (l_1)
  //
  //  If length > 9:
  //     1. copy 4 elements at a time until less than 4 elements are left (l_7)
  //     2. copy 2 elements at a time until less than 2 elements are left (l_6)
  //     3. copy last element if one was left in step 2. (l_1)
  //
  //
  // Strategy for aligned==false:
  //
  //  If length <= 9: same as aligned==true case, but NOTE: load/stores
  //                  can be unaligned (see comment below)
  //
  //  If length > 9:
  //     1. continue with step 6. if the alignment of from and to mod 4
  //        is different.
  //     2. align from and to to 4 bytes by copying 1 element if necessary
  //     3. at l_2 from and to are 4 byte aligned; continue with
  //        5. if they cannot be aligned to 8 bytes because they have
  //        got different alignment mod 8.
  //     4. at this point we know that both, from and to, have the same
  //        alignment mod 8, now copy one element if necessary to get
  //        8 byte alignment of from and to.
  //     5. copy 4 elements at a time until less than 4 elements are
  //        left; depending on step 3. all load/stores are aligned or
  //        either all loads or all stores are unaligned.
  //     6. copy 2 elements at a time until less than 2 elements are
  //        left (l_6); arriving here from step 1., there is a chance
  //        that all accesses are unaligned.
  //     7. copy last element if one was left in step 6. (l_1)
  //
  //  There are unaligned data accesses using integer load/store
  //  instructions in this stub. POWER allows such accesses.
  //
  //  According to the manuals (PowerISA_V2.06_PUBLIC, Book II,
  //  Chapter 2: Effect of Operand Placement on Performance) unaligned
  //  integer load/stores have good performance. Only unaligned
  //  floating point load/stores can have poor performance.
  //
  //  TODO:
  //
  //  1. check if aligning the backbranch target of loops is beneficial
  //
  address generate_disjoint_short_copy(bool aligned, const char * name) {
    StubCodeMark mark(this, "StubRoutines", name);

    Register tmp1 = R6_ARG4;
    Register tmp2 = R7_ARG5;
    Register tmp3 = R8_ARG6;
    Register tmp4 = R9_ARG7;

G
goetz 已提交
1355
    address start = __ function_entry();
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

      Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8;
    // don't try anything fancy if arrays don't have many elements
    __ li(tmp3, 0);
    __ cmpwi(CCR0, R5_ARG3, 9);
    __ ble(CCR0, l_6); // copy 2 at a time

    if (!aligned) {
      __ xorr(tmp1, R3_ARG1, R4_ARG2);
      __ andi_(tmp1, tmp1, 3);
      __ bne(CCR0, l_6); // if arrays don't have the same alignment mod 4, do 2 element copy

      // At this point it is guaranteed that both, from and to have the same alignment mod 4.

      // Copy 1 element if necessary to align to 4 bytes.
      __ andi_(tmp1, R3_ARG1, 3);
      __ beq(CCR0, l_2);

      __ lhz(tmp2, 0, R3_ARG1);
      __ addi(R3_ARG1, R3_ARG1, 2);
      __ sth(tmp2, 0, R4_ARG2);
      __ addi(R4_ARG2, R4_ARG2, 2);
      __ addi(R5_ARG3, R5_ARG3, -1);
      __ bind(l_2);

      // At this point the positions of both, from and to, are at least 4 byte aligned.

      // Copy 4 elements at a time.
      // Align to 8 bytes, but only if both, from and to, have same alignment mod 8.
      __ xorr(tmp2, R3_ARG1, R4_ARG2);
      __ andi_(tmp1, tmp2, 7);
      __ bne(CCR0, l_7); // not same alignment mod 8 -> copy 4, either from or to will be unaligned

      // Copy a 2-element word if necessary to align to 8 bytes.
      __ andi_(R0, R3_ARG1, 7);
      __ beq(CCR0, l_7);

      __ lwzx(tmp2, R3_ARG1, tmp3);
      __ addi(R5_ARG3, R5_ARG3, -2);
      __ stwx(tmp2, R4_ARG2, tmp3);
      { // FasterArrayCopy
        __ addi(R3_ARG1, R3_ARG1, 4);
        __ addi(R4_ARG2, R4_ARG2, 4);
      }
    }

    __ bind(l_7);

    // Copy 4 elements at a time; either the loads or the stores can
    // be unaligned if aligned == false.

    { // FasterArrayCopy
      __ cmpwi(CCR0, R5_ARG3, 15);
      __ ble(CCR0, l_6); // copy 2 at a time if less than 16 elements remain

      __ srdi(tmp1, R5_ARG3, 4);
      __ andi_(R5_ARG3, R5_ARG3, 15);
      __ mtctr(tmp1);

      __ bind(l_8);
      // Use unrolled version for mass copying (copy 16 elements a time).
      // Load feeding store gets zero latency on Power6, however not on Power5.
      // Therefore, the following sequence is made for the good of both.
      __ ld(tmp1, 0, R3_ARG1);
      __ ld(tmp2, 8, R3_ARG1);
      __ ld(tmp3, 16, R3_ARG1);
      __ ld(tmp4, 24, R3_ARG1);
      __ std(tmp1, 0, R4_ARG2);
      __ std(tmp2, 8, R4_ARG2);
      __ std(tmp3, 16, R4_ARG2);
      __ std(tmp4, 24, R4_ARG2);
      __ addi(R3_ARG1, R3_ARG1, 32);
      __ addi(R4_ARG2, R4_ARG2, 32);
      __ bdnz(l_8);
    }
    __ bind(l_6);

    // copy 2 elements at a time
    { // FasterArrayCopy
      __ cmpwi(CCR0, R5_ARG3, 2);
      __ blt(CCR0, l_1);
      __ srdi(tmp1, R5_ARG3, 1);
      __ andi_(R5_ARG3, R5_ARG3, 1);

      __ addi(R3_ARG1, R3_ARG1, -4);
      __ addi(R4_ARG2, R4_ARG2, -4);
      __ mtctr(tmp1);

      __ bind(l_3);
      __ lwzu(tmp2, 4, R3_ARG1);
      __ stwu(tmp2, 4, R4_ARG2);
      __ bdnz(l_3);

      __ addi(R3_ARG1, R3_ARG1, 4);
      __ addi(R4_ARG2, R4_ARG2, 4);
    }

    // do single element copy
    __ bind(l_1);
    __ cmpwi(CCR0, R5_ARG3, 0);
    __ beq(CCR0, l_4);

    { // FasterArrayCopy
      __ mtctr(R5_ARG3);
      __ addi(R3_ARG1, R3_ARG1, -2);
      __ addi(R4_ARG2, R4_ARG2, -2);

      __ bind(l_5);
      __ lhzu(tmp2, 2, R3_ARG1);
      __ sthu(tmp2, 2, R4_ARG2);
      __ bdnz(l_5);
    }
    __ bind(l_4);
    __ blr();

    return start;
  }

  // Generate stub for conjoint short copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  address generate_conjoint_short_copy(bool aligned, const char * name) {
    StubCodeMark mark(this, "StubRoutines", name);
G
goetz 已提交
1484
    address start = __ function_entry();
1485 1486 1487 1488 1489

    Register tmp1 = R6_ARG4;
    Register tmp2 = R7_ARG5;
    Register tmp3 = R8_ARG6;

G
goetz 已提交
1490 1491 1492 1493 1494
#if defined(ABI_ELFv2)
    address nooverlap_target = aligned ?
        StubRoutines::arrayof_jshort_disjoint_arraycopy() :
        StubRoutines::jshort_disjoint_arraycopy();
#else
1495 1496 1497
    address nooverlap_target = aligned ?
        ((FunctionDescriptor*)StubRoutines::arrayof_jshort_disjoint_arraycopy())->entry() :
        ((FunctionDescriptor*)StubRoutines::jshort_disjoint_arraycopy())->entry();
G
goetz 已提交
1498
#endif
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

    array_overlap_test(nooverlap_target, 1);

    Label l_1, l_2;
    __ sldi(tmp1, R5_ARG3, 1);
    __ b(l_2);
    __ bind(l_1);
    __ sthx(tmp2, R4_ARG2, tmp1);
    __ bind(l_2);
    __ addic_(tmp1, tmp1, -2);
    __ lhzx(tmp2, R3_ARG1, tmp1);
    __ bge(CCR0, l_1);

    __ blr();

    return start;
  }

  // Generate core code for disjoint int copy (and oop copy on 32-bit).  If "aligned"
  // is true, the "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  void generate_disjoint_int_copy_core(bool aligned) {
    Register tmp1 = R6_ARG4;
    Register tmp2 = R7_ARG5;
    Register tmp3 = R8_ARG6;
    Register tmp4 = R0;

    Label l_1, l_2, l_3, l_4, l_5, l_6;
    // for short arrays, just do single element copy
    __ li(tmp3, 0);
    __ cmpwi(CCR0, R5_ARG3, 5);
    __ ble(CCR0, l_2);

    if (!aligned) {
        // check if arrays have same alignment mod 8.
        __ xorr(tmp1, R3_ARG1, R4_ARG2);
        __ andi_(R0, tmp1, 7);
        // Not the same alignment, but ld and std just need to be 4 byte aligned.
        __ bne(CCR0, l_4); // to OR from is 8 byte aligned -> copy 2 at a time

        // copy 1 element to align to and from on an 8 byte boundary
        __ andi_(R0, R3_ARG1, 7);
        __ beq(CCR0, l_4);

        __ lwzx(tmp2, R3_ARG1, tmp3);
        __ addi(R5_ARG3, R5_ARG3, -1);
        __ stwx(tmp2, R4_ARG2, tmp3);
        { // FasterArrayCopy
          __ addi(R3_ARG1, R3_ARG1, 4);
          __ addi(R4_ARG2, R4_ARG2, 4);
        }
        __ bind(l_4);
      }

    { // FasterArrayCopy
      __ cmpwi(CCR0, R5_ARG3, 7);
      __ ble(CCR0, l_2); // copy 1 at a time if less than 8 elements remain

      __ srdi(tmp1, R5_ARG3, 3);
      __ andi_(R5_ARG3, R5_ARG3, 7);
      __ mtctr(tmp1);

      __ bind(l_6);
      // Use unrolled version for mass copying (copy 8 elements a time).
      // Load feeding store gets zero latency on power6, however not on power 5.
      // Therefore, the following sequence is made for the good of both.
      __ ld(tmp1, 0, R3_ARG1);
      __ ld(tmp2, 8, R3_ARG1);
      __ ld(tmp3, 16, R3_ARG1);
      __ ld(tmp4, 24, R3_ARG1);
      __ std(tmp1, 0, R4_ARG2);
      __ std(tmp2, 8, R4_ARG2);
      __ std(tmp3, 16, R4_ARG2);
      __ std(tmp4, 24, R4_ARG2);
      __ addi(R3_ARG1, R3_ARG1, 32);
      __ addi(R4_ARG2, R4_ARG2, 32);
      __ bdnz(l_6);
    }

    // copy 1 element at a time
    __ bind(l_2);
    __ cmpwi(CCR0, R5_ARG3, 0);
    __ beq(CCR0, l_1);

    { // FasterArrayCopy
      __ mtctr(R5_ARG3);
      __ addi(R3_ARG1, R3_ARG1, -4);
      __ addi(R4_ARG2, R4_ARG2, -4);

      __ bind(l_3);
      __ lwzu(tmp2, 4, R3_ARG1);
      __ stwu(tmp2, 4, R4_ARG2);
      __ bdnz(l_3);
    }

    __ bind(l_1);
    return;
  }

  // Generate stub for disjoint int copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  address generate_disjoint_int_copy(bool aligned, const char * name) {
    StubCodeMark mark(this, "StubRoutines", name);
G
goetz 已提交
1613
    address start = __ function_entry();
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
    generate_disjoint_int_copy_core(aligned);
    __ blr();
    return start;
  }

  // Generate core code for conjoint int copy (and oop copy on
  // 32-bit).  If "aligned" is true, the "from" and "to" addresses
  // are assumed to be heapword aligned.
  //
  // Arguments:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  void generate_conjoint_int_copy_core(bool aligned) {
    // Do reverse copy.  We assume the case of actual overlap is rare enough
    // that we don't have to optimize it.

    Label l_1, l_2, l_3, l_4, l_5, l_6;

    Register tmp1 = R6_ARG4;
    Register tmp2 = R7_ARG5;
    Register tmp3 = R8_ARG6;
    Register tmp4 = R0;

    { // FasterArrayCopy
      __ cmpwi(CCR0, R5_ARG3, 0);
      __ beq(CCR0, l_6);

      __ sldi(R5_ARG3, R5_ARG3, 2);
      __ add(R3_ARG1, R3_ARG1, R5_ARG3);
      __ add(R4_ARG2, R4_ARG2, R5_ARG3);
      __ srdi(R5_ARG3, R5_ARG3, 2);

      __ cmpwi(CCR0, R5_ARG3, 7);
      __ ble(CCR0, l_5); // copy 1 at a time if less than 8 elements remain

      __ srdi(tmp1, R5_ARG3, 3);
      __ andi(R5_ARG3, R5_ARG3, 7);
      __ mtctr(tmp1);

      __ bind(l_4);
      // Use unrolled version for mass copying (copy 4 elements a time).
      // Load feeding store gets zero latency on Power6, however not on Power5.
      // Therefore, the following sequence is made for the good of both.
      __ addi(R3_ARG1, R3_ARG1, -32);
      __ addi(R4_ARG2, R4_ARG2, -32);
      __ ld(tmp4, 24, R3_ARG1);
      __ ld(tmp3, 16, R3_ARG1);
      __ ld(tmp2, 8, R3_ARG1);
      __ ld(tmp1, 0, R3_ARG1);
      __ std(tmp4, 24, R4_ARG2);
      __ std(tmp3, 16, R4_ARG2);
      __ std(tmp2, 8, R4_ARG2);
      __ std(tmp1, 0, R4_ARG2);
      __ bdnz(l_4);

      __ cmpwi(CCR0, R5_ARG3, 0);
      __ beq(CCR0, l_6);

      __ bind(l_5);
      __ mtctr(R5_ARG3);
      __ bind(l_3);
      __ lwz(R0, -4, R3_ARG1);
      __ stw(R0, -4, R4_ARG2);
      __ addi(R3_ARG1, R3_ARG1, -4);
      __ addi(R4_ARG2, R4_ARG2, -4);
      __ bdnz(l_3);

      __ bind(l_6);
    }
  }

  // Generate stub for conjoint int copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  address generate_conjoint_int_copy(bool aligned, const char * name) {
    StubCodeMark mark(this, "StubRoutines", name);
G
goetz 已提交
1697
    address start = __ function_entry();
1698

G
goetz 已提交
1699 1700 1701 1702 1703
#if defined(ABI_ELFv2)
    address nooverlap_target = aligned ?
      StubRoutines::arrayof_jint_disjoint_arraycopy() :
      StubRoutines::jint_disjoint_arraycopy();
#else
1704 1705 1706
    address nooverlap_target = aligned ?
      ((FunctionDescriptor*)StubRoutines::arrayof_jint_disjoint_arraycopy())->entry() :
      ((FunctionDescriptor*)StubRoutines::jint_disjoint_arraycopy())->entry();
G
goetz 已提交
1707
#endif
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

    array_overlap_test(nooverlap_target, 2);

    generate_conjoint_int_copy_core(aligned);

    __ blr();

    return start;
  }

  // Generate core code for disjoint long copy (and oop copy on
  // 64-bit).  If "aligned" is true, the "from" and "to" addresses
  // are assumed to be heapword aligned.
  //
  // Arguments:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  void generate_disjoint_long_copy_core(bool aligned) {
    Register tmp1 = R6_ARG4;
    Register tmp2 = R7_ARG5;
    Register tmp3 = R8_ARG6;
    Register tmp4 = R0;

    Label l_1, l_2, l_3, l_4;

    { // FasterArrayCopy
      __ cmpwi(CCR0, R5_ARG3, 3);
      __ ble(CCR0, l_3); // copy 1 at a time if less than 4 elements remain

      __ srdi(tmp1, R5_ARG3, 2);
      __ andi_(R5_ARG3, R5_ARG3, 3);
      __ mtctr(tmp1);

      __ bind(l_4);
      // Use unrolled version for mass copying (copy 4 elements a time).
      // Load feeding store gets zero latency on Power6, however not on Power5.
      // Therefore, the following sequence is made for the good of both.
      __ ld(tmp1, 0, R3_ARG1);
      __ ld(tmp2, 8, R3_ARG1);
      __ ld(tmp3, 16, R3_ARG1);
      __ ld(tmp4, 24, R3_ARG1);
      __ std(tmp1, 0, R4_ARG2);
      __ std(tmp2, 8, R4_ARG2);
      __ std(tmp3, 16, R4_ARG2);
      __ std(tmp4, 24, R4_ARG2);
      __ addi(R3_ARG1, R3_ARG1, 32);
      __ addi(R4_ARG2, R4_ARG2, 32);
      __ bdnz(l_4);
    }

    // copy 1 element at a time
    __ bind(l_3);
    __ cmpwi(CCR0, R5_ARG3, 0);
    __ beq(CCR0, l_1);

    { // FasterArrayCopy
      __ mtctr(R5_ARG3);
      __ addi(R3_ARG1, R3_ARG1, -8);
      __ addi(R4_ARG2, R4_ARG2, -8);

      __ bind(l_2);
      __ ldu(R0, 8, R3_ARG1);
      __ stdu(R0, 8, R4_ARG2);
      __ bdnz(l_2);

    }
    __ bind(l_1);
  }

  // Generate stub for disjoint long copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  address generate_disjoint_long_copy(bool aligned, const char * name) {
    StubCodeMark mark(this, "StubRoutines", name);
G
goetz 已提交
1789
    address start = __ function_entry();
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    generate_disjoint_long_copy_core(aligned);
    __ blr();

    return start;
  }

  // Generate core code for conjoint long copy (and oop copy on
  // 64-bit).  If "aligned" is true, the "from" and "to" addresses
  // are assumed to be heapword aligned.
  //
  // Arguments:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  void generate_conjoint_long_copy_core(bool aligned) {
    Register tmp1 = R6_ARG4;
    Register tmp2 = R7_ARG5;
    Register tmp3 = R8_ARG6;
    Register tmp4 = R0;

    Label l_1, l_2, l_3, l_4, l_5;

    __ cmpwi(CCR0, R5_ARG3, 0);
    __ beq(CCR0, l_1);

    { // FasterArrayCopy
      __ sldi(R5_ARG3, R5_ARG3, 3);
      __ add(R3_ARG1, R3_ARG1, R5_ARG3);
      __ add(R4_ARG2, R4_ARG2, R5_ARG3);
      __ srdi(R5_ARG3, R5_ARG3, 3);

      __ cmpwi(CCR0, R5_ARG3, 3);
      __ ble(CCR0, l_5); // copy 1 at a time if less than 4 elements remain

      __ srdi(tmp1, R5_ARG3, 2);
      __ andi(R5_ARG3, R5_ARG3, 3);
      __ mtctr(tmp1);

      __ bind(l_4);
      // Use unrolled version for mass copying (copy 4 elements a time).
      // Load feeding store gets zero latency on Power6, however not on Power5.
      // Therefore, the following sequence is made for the good of both.
      __ addi(R3_ARG1, R3_ARG1, -32);
      __ addi(R4_ARG2, R4_ARG2, -32);
      __ ld(tmp4, 24, R3_ARG1);
      __ ld(tmp3, 16, R3_ARG1);
      __ ld(tmp2, 8, R3_ARG1);
      __ ld(tmp1, 0, R3_ARG1);
      __ std(tmp4, 24, R4_ARG2);
      __ std(tmp3, 16, R4_ARG2);
      __ std(tmp2, 8, R4_ARG2);
      __ std(tmp1, 0, R4_ARG2);
      __ bdnz(l_4);

      __ cmpwi(CCR0, R5_ARG3, 0);
      __ beq(CCR0, l_1);

      __ bind(l_5);
      __ mtctr(R5_ARG3);
      __ bind(l_3);
      __ ld(R0, -8, R3_ARG1);
      __ std(R0, -8, R4_ARG2);
      __ addi(R3_ARG1, R3_ARG1, -8);
      __ addi(R4_ARG2, R4_ARG2, -8);
      __ bdnz(l_3);

    }
    __ bind(l_1);
  }

  // Generate stub for conjoint long copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //
  address generate_conjoint_long_copy(bool aligned, const char * name) {
    StubCodeMark mark(this, "StubRoutines", name);
G
goetz 已提交
1871
    address start = __ function_entry();
1872

G
goetz 已提交
1873 1874 1875 1876 1877
#if defined(ABI_ELFv2)
    address nooverlap_target = aligned ?
      StubRoutines::arrayof_jlong_disjoint_arraycopy() :
      StubRoutines::jlong_disjoint_arraycopy();
#else
1878 1879 1880
    address nooverlap_target = aligned ?
      ((FunctionDescriptor*)StubRoutines::arrayof_jlong_disjoint_arraycopy())->entry() :
      ((FunctionDescriptor*)StubRoutines::jlong_disjoint_arraycopy())->entry();
G
goetz 已提交
1881
#endif
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

    array_overlap_test(nooverlap_target, 3);
    generate_conjoint_long_copy_core(aligned);

    __ blr();

    return start;
  }

  // Generate stub for conjoint oop copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //      dest_uninitialized: G1 support
  //
  address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
    StubCodeMark mark(this, "StubRoutines", name);

G
goetz 已提交
1903
    address start = __ function_entry();
1904

G
goetz 已提交
1905 1906 1907 1908 1909
#if defined(ABI_ELFv2)
    address nooverlap_target = aligned ?
      StubRoutines::arrayof_oop_disjoint_arraycopy() :
      StubRoutines::oop_disjoint_arraycopy();
#else
1910 1911 1912
    address nooverlap_target = aligned ?
      ((FunctionDescriptor*)StubRoutines::arrayof_oop_disjoint_arraycopy())->entry() :
      ((FunctionDescriptor*)StubRoutines::oop_disjoint_arraycopy())->entry();
G
goetz 已提交
1913
#endif
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

    gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);

    // Save arguments.
    __ mr(R9_ARG7, R4_ARG2);
    __ mr(R10_ARG8, R5_ARG3);

    if (UseCompressedOops) {
      array_overlap_test(nooverlap_target, 2);
      generate_conjoint_int_copy_core(aligned);
    } else {
      array_overlap_test(nooverlap_target, 3);
      generate_conjoint_long_copy_core(aligned);
    }

1929
    gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1, /*branchToEnd*/ false);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
    return start;
  }

  // Generate stub for disjoint oop copy.  If "aligned" is true, the
  // "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  R3_ARG1
  //      to:    R4_ARG2
  //      count: R5_ARG3 treated as signed
  //      dest_uninitialized: G1 support
  //
  address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
    StubCodeMark mark(this, "StubRoutines", name);
G
goetz 已提交
1944
    address start = __ function_entry();
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

    gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);

    // save some arguments, disjoint_long_copy_core destroys them.
    // needed for post barrier
    __ mr(R9_ARG7, R4_ARG2);
    __ mr(R10_ARG8, R5_ARG3);

    if (UseCompressedOops) {
      generate_disjoint_int_copy_core(aligned);
    } else {
      generate_disjoint_long_copy_core(aligned);
    }

1959
    gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1, /*branchToEnd*/ false);
1960 1961 1962 1963

    return start;
  }

S
simonis 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
  // Arguments for generated stub (little endian only):
  //   R3_ARG1   - source byte array address
  //   R4_ARG2   - destination byte array address
  //   R5_ARG3   - round key array
  address generate_aescrypt_encryptBlock() {
    assert(UseAES, "need AES instructions and misaligned SSE support");
    StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");

    address start = __ function_entry();

    Label L_doLast;

    Register from           = R3_ARG1;  // source array address
    Register to             = R4_ARG2;  // destination array address
    Register key            = R5_ARG3;  // round key array

    Register keylen         = R8;
    Register temp           = R9;
    Register keypos         = R10;
    Register hex            = R11;
    Register fifteen        = R12;

    VectorRegister vRet     = VR0;

    VectorRegister vKey1    = VR1;
    VectorRegister vKey2    = VR2;
    VectorRegister vKey3    = VR3;
    VectorRegister vKey4    = VR4;

    VectorRegister fromPerm = VR5;
    VectorRegister keyPerm  = VR6;
    VectorRegister toPerm   = VR7;
    VectorRegister fSplt    = VR8;

    VectorRegister vTmp1    = VR9;
    VectorRegister vTmp2    = VR10;
    VectorRegister vTmp3    = VR11;
    VectorRegister vTmp4    = VR12;

    VectorRegister vLow     = VR13;
    VectorRegister vHigh    = VR14;

    __ li              (hex, 16);
    __ li              (fifteen, 15);
    __ vspltisb        (fSplt, 0x0f);

    // load unaligned from[0-15] to vsRet
    __ lvx             (vRet, from);
    __ lvx             (vTmp1, fifteen, from);
    __ lvsl            (fromPerm, from);
    __ vxor            (fromPerm, fromPerm, fSplt);
    __ vperm           (vRet, vRet, vTmp1, fromPerm);

    // load keylen (44 or 52 or 60)
    __ lwz             (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key);

    // to load keys
    __ lvsr            (keyPerm, key);
    __ vxor            (vTmp2, vTmp2, vTmp2);
    __ vspltisb        (vTmp2, -16);
    __ vrld            (keyPerm, keyPerm, vTmp2);
    __ vrld            (keyPerm, keyPerm, vTmp2);
    __ vsldoi          (keyPerm, keyPerm, keyPerm, -8);

    // load the 1st round key to vKey1
    __ li              (keypos, 0);
    __ lvx             (vKey1, keypos, key);
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey1, vTmp1, vKey1, keyPerm);

    // 1st round
    __ vxor (vRet, vRet, vKey1);

    // load the 2nd round key to vKey1
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);

    // load the 3rd round key to vKey2
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);

    // load the 4th round key to vKey3
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey3, vTmp2, vTmp1, keyPerm);

    // load the 5th round key to vKey4
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey4, vTmp1, vTmp2, keyPerm);

    // 2nd - 5th rounds
    __ vcipher (vRet, vRet, vKey1);
    __ vcipher (vRet, vRet, vKey2);
    __ vcipher (vRet, vRet, vKey3);
    __ vcipher (vRet, vRet, vKey4);

    // load the 6th round key to vKey1
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);

    // load the 7th round key to vKey2
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);

    // load the 8th round key to vKey3
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey3, vTmp2, vTmp1, keyPerm);

    // load the 9th round key to vKey4
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey4, vTmp1, vTmp2, keyPerm);

    // 6th - 9th rounds
    __ vcipher (vRet, vRet, vKey1);
    __ vcipher (vRet, vRet, vKey2);
    __ vcipher (vRet, vRet, vKey3);
    __ vcipher (vRet, vRet, vKey4);

    // load the 10th round key to vKey1
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);

    // load the 11th round key to vKey2
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);

    // if all round keys are loaded, skip next 4 rounds
    __ cmpwi           (CCR0, keylen, 44);
    __ beq             (CCR0, L_doLast);

    // 10th - 11th rounds
    __ vcipher (vRet, vRet, vKey1);
    __ vcipher (vRet, vRet, vKey2);

    // load the 12th round key to vKey1
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);

    // load the 13th round key to vKey2
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);

    // if all round keys are loaded, skip next 2 rounds
    __ cmpwi           (CCR0, keylen, 52);
    __ beq             (CCR0, L_doLast);

    // 12th - 13th rounds
    __ vcipher (vRet, vRet, vKey1);
    __ vcipher (vRet, vRet, vKey2);

    // load the 14th round key to vKey1
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);

    // load the 15th round key to vKey2
    __ addi            (keypos, keypos, 16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);

    __ bind(L_doLast);

    // last two rounds
    __ vcipher (vRet, vRet, vKey1);
    __ vcipherlast (vRet, vRet, vKey2);

    __ neg             (temp, to);
    __ lvsr            (toPerm, temp);
    __ vspltisb        (vTmp2, -1);
    __ vxor            (vTmp1, vTmp1, vTmp1);
    __ vperm           (vTmp2, vTmp2, vTmp1, toPerm);
    __ vxor            (toPerm, toPerm, fSplt);
    __ lvx             (vTmp1, to);
    __ vperm           (vRet, vRet, vRet, toPerm);
    __ vsel            (vTmp1, vTmp1, vRet, vTmp2);
    __ lvx             (vTmp4, fifteen, to);
    __ stvx            (vTmp1, to);
    __ vsel            (vRet, vRet, vTmp4, vTmp2);
    __ stvx            (vRet, fifteen, to);

    __ blr();
     return start;
  }

  // Arguments for generated stub (little endian only):
  //   R3_ARG1   - source byte array address
  //   R4_ARG2   - destination byte array address
  //   R5_ARG3   - K (key) in little endian int array
  address generate_aescrypt_decryptBlock() {
    assert(UseAES, "need AES instructions and misaligned SSE support");
    StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");

    address start = __ function_entry();

    Label L_doLast;
    Label L_do44;
    Label L_do52;
    Label L_do60;

    Register from           = R3_ARG1;  // source array address
    Register to             = R4_ARG2;  // destination array address
    Register key            = R5_ARG3;  // round key array

    Register keylen         = R8;
    Register temp           = R9;
    Register keypos         = R10;
    Register hex            = R11;
    Register fifteen        = R12;

    VectorRegister vRet     = VR0;

    VectorRegister vKey1    = VR1;
    VectorRegister vKey2    = VR2;
    VectorRegister vKey3    = VR3;
    VectorRegister vKey4    = VR4;
    VectorRegister vKey5    = VR5;

    VectorRegister fromPerm = VR6;
    VectorRegister keyPerm  = VR7;
    VectorRegister toPerm   = VR8;
    VectorRegister fSplt    = VR9;

    VectorRegister vTmp1    = VR10;
    VectorRegister vTmp2    = VR11;
    VectorRegister vTmp3    = VR12;
    VectorRegister vTmp4    = VR13;

    VectorRegister vLow     = VR14;
    VectorRegister vHigh    = VR15;

    __ li              (hex, 16);
    __ li              (fifteen, 15);
    __ vspltisb        (fSplt, 0x0f);

    // load unaligned from[0-15] to vsRet
    __ lvx             (vRet, from);
    __ lvx             (vTmp1, fifteen, from);
    __ lvsl            (fromPerm, from);
    __ vxor            (fromPerm, fromPerm, fSplt);
    __ vperm           (vRet, vRet, vTmp1, fromPerm); // align [and byte swap in LE]

    // load keylen (44 or 52 or 60)
    __ lwz             (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key);

    // to load keys
    __ lvsr            (keyPerm, key);
    __ vxor            (vTmp2, vTmp2, vTmp2);
    __ vspltisb        (vTmp2, -16);
    __ vrld            (keyPerm, keyPerm, vTmp2);
    __ vrld            (keyPerm, keyPerm, vTmp2);
    __ vsldoi          (keyPerm, keyPerm, keyPerm, -8);

    __ cmpwi           (CCR0, keylen, 44);
    __ beq             (CCR0, L_do44);

    __ cmpwi           (CCR0, keylen, 52);
    __ beq             (CCR0, L_do52);

    // load the 15th round key to vKey11
    __ li              (keypos, 240);
    __ lvx             (vTmp1, keypos, key);
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey1, vTmp1, vTmp2, keyPerm);

    // load the 14th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey2, vTmp2, vTmp1, keyPerm);

    // load the 13th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey3, vTmp1, vTmp2, keyPerm);

    // load the 12th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey4, vTmp2, vTmp1, keyPerm);

    // load the 11th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey5, vTmp1, vTmp2, keyPerm);

    // 1st - 5th rounds
    __ vxor            (vRet, vRet, vKey1);
    __ vncipher        (vRet, vRet, vKey2);
    __ vncipher        (vRet, vRet, vKey3);
    __ vncipher        (vRet, vRet, vKey4);
    __ vncipher        (vRet, vRet, vKey5);

    __ b               (L_doLast);

    __ bind            (L_do52);

    // load the 13th round key to vKey11
    __ li              (keypos, 208);
    __ lvx             (vTmp1, keypos, key);
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey1, vTmp1, vTmp2, keyPerm);

    // load the 12th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey2, vTmp2, vTmp1, keyPerm);

    // load the 11th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey3, vTmp1, vTmp2, keyPerm);

    // 1st - 3rd rounds
    __ vxor            (vRet, vRet, vKey1);
    __ vncipher        (vRet, vRet, vKey2);
    __ vncipher        (vRet, vRet, vKey3);

    __ b               (L_doLast);

    __ bind            (L_do44);

    // load the 11th round key to vKey11
    __ li              (keypos, 176);
    __ lvx             (vTmp1, keypos, key);
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey1, vTmp1, vTmp2, keyPerm);

    // 1st round
    __ vxor            (vRet, vRet, vKey1);

    __ bind            (L_doLast);

    // load the 10th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);

    // load the 9th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);

    // load the 8th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey3, vTmp2, vTmp1, keyPerm);

    // load the 7th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey4, vTmp1, vTmp2, keyPerm);

    // load the 6th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey5, vTmp2, vTmp1, keyPerm);

    // last 10th - 6th rounds
    __ vncipher        (vRet, vRet, vKey1);
    __ vncipher        (vRet, vRet, vKey2);
    __ vncipher        (vRet, vRet, vKey3);
    __ vncipher        (vRet, vRet, vKey4);
    __ vncipher        (vRet, vRet, vKey5);

    // load the 5th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey1, vTmp1, vTmp2, keyPerm);

    // load the 4th round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey2, vTmp2, vTmp1, keyPerm);

    // load the 3rd round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey3, vTmp1, vTmp2, keyPerm);

    // load the 2nd round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp1, keypos, key);
    __ vperm           (vKey4, vTmp2, vTmp1, keyPerm);

    // load the 1st round key to vKey10
    __ addi            (keypos, keypos, -16);
    __ lvx             (vTmp2, keypos, key);
    __ vperm           (vKey5, vTmp1, vTmp2, keyPerm);

    // last 5th - 1th rounds
    __ vncipher        (vRet, vRet, vKey1);
    __ vncipher        (vRet, vRet, vKey2);
    __ vncipher        (vRet, vRet, vKey3);
    __ vncipher        (vRet, vRet, vKey4);
    __ vncipherlast    (vRet, vRet, vKey5);

    __ neg             (temp, to);
    __ lvsr            (toPerm, temp);
    __ vspltisb        (vTmp2, -1);
    __ vxor            (vTmp1, vTmp1, vTmp1);
    __ vperm           (vTmp2, vTmp2, vTmp1, toPerm);
    __ vxor            (toPerm, toPerm, fSplt);
    __ lvx             (vTmp1, to);
    __ vperm           (vRet, vRet, vRet, toPerm);
    __ vsel            (vTmp1, vTmp1, vRet, vTmp2);
    __ lvx             (vTmp4, fifteen, to);
    __ stvx            (vTmp1, to);
    __ vsel            (vRet, vRet, vTmp4, vTmp2);
    __ stvx            (vRet, fifteen, to);

    __ blr();
     return start;
  }

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
  void generate_arraycopy_stubs() {
    // Note: the disjoint stubs must be generated first, some of
    // the conjoint stubs use them.

    // non-aligned disjoint versions
    StubRoutines::_jbyte_disjoint_arraycopy       = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
    StubRoutines::_jshort_disjoint_arraycopy      = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
    StubRoutines::_jint_disjoint_arraycopy        = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
    StubRoutines::_jlong_disjoint_arraycopy       = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
    StubRoutines::_oop_disjoint_arraycopy         = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy", false);
    StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy_uninit", true);

    // aligned disjoint versions
    StubRoutines::_arrayof_jbyte_disjoint_arraycopy      = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
    StubRoutines::_arrayof_jshort_disjoint_arraycopy     = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
    StubRoutines::_arrayof_jint_disjoint_arraycopy       = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
    StubRoutines::_arrayof_jlong_disjoint_arraycopy      = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
    StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy", false);
    StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, "oop_disjoint_arraycopy_uninit", true);

    // non-aligned conjoint versions
    StubRoutines::_jbyte_arraycopy      = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
    StubRoutines::_jshort_arraycopy     = generate_conjoint_short_copy(false, "jshort_arraycopy");
    StubRoutines::_jint_arraycopy       = generate_conjoint_int_copy(false, "jint_arraycopy");
    StubRoutines::_jlong_arraycopy      = generate_conjoint_long_copy(false, "jlong_arraycopy");
    StubRoutines::_oop_arraycopy        = generate_conjoint_oop_copy(false, "oop_arraycopy", false);
    StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, "oop_arraycopy_uninit", true);

    // aligned conjoint versions
    StubRoutines::_arrayof_jbyte_arraycopy      = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
    StubRoutines::_arrayof_jshort_arraycopy     = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
    StubRoutines::_arrayof_jint_arraycopy       = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
    StubRoutines::_arrayof_jlong_arraycopy      = generate_conjoint_long_copy(true, "arrayof_jlong_arraycopy");
    StubRoutines::_arrayof_oop_arraycopy        = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", false);
    StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", true);

    // fill routines
    StubRoutines::_jbyte_fill          = generate_fill(T_BYTE,  false, "jbyte_fill");
    StubRoutines::_jshort_fill         = generate_fill(T_SHORT, false, "jshort_fill");
    StubRoutines::_jint_fill           = generate_fill(T_INT,   false, "jint_fill");
    StubRoutines::_arrayof_jbyte_fill  = generate_fill(T_BYTE,  true, "arrayof_jbyte_fill");
    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
    StubRoutines::_arrayof_jint_fill   = generate_fill(T_INT,   true, "arrayof_jint_fill");
  }

  // Safefetch stubs.
  void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) {
    // safefetch signatures:
    //   int      SafeFetch32(int*      adr, int      errValue);
    //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
    //
    // arguments:
    //   R3_ARG1 = adr
    //   R4_ARG2 = errValue
    //
    // result:
    //   R3_RET  = *adr or errValue

    StubCodeMark mark(this, "StubRoutines", name);

    // Entry point, pc or function descriptor.
G
goetz 已提交
2453
    *entry = __ function_entry();
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

    // Load *adr into R4_ARG2, may fault.
    *fault_pc = __ pc();
    switch (size) {
      case 4:
        // int32_t, signed extended
        __ lwa(R4_ARG2, 0, R3_ARG1);
        break;
      case 8:
        // int64_t
        __ ld(R4_ARG2, 0, R3_ARG1);
        break;
      default:
        ShouldNotReachHere();
    }

    // return errValue or *adr
    *continuation_pc = __ pc();
    __ mr(R3_RET, R4_ARG2);
    __ blr();
  }

  // Initialization
  void generate_initial() {
    // Generates all stubs and initializes the entry points

    // Entry points that exist in all platforms.
    // Note: This is code that could be shared among different platforms - however the
    // benefit seems to be smaller than the disadvantage of having a
    // much more complicated generator structure. See also comment in
    // stubRoutines.hpp.

    StubRoutines::_forward_exception_entry          = generate_forward_exception();
    StubRoutines::_call_stub_entry                  = generate_call_stub(StubRoutines::_call_stub_return_address);
    StubRoutines::_catch_exception_entry            = generate_catch_exception();
2489 2490 2491 2492 2493

    // Build this early so it's available for the interpreter.
    StubRoutines::_throw_StackOverflowError_entry   =
      generate_throw_exception("StackOverflowError throw_exception",
                               CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
  }

  void generate_all() {
    // Generates all stubs and initializes the entry points

    // These entry points require SharedInfo::stack0 to be set up in
    // non-core builds
    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
    // Handle IncompatibleClassChangeError in itable stubs.
    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);

    StubRoutines::_handler_for_unsafe_access_entry         = generate_handler_for_unsafe_access();

    // support for verify_oop (must happen after universe_init)
    StubRoutines::_verify_oop_subroutine_entry             = generate_verify_oop();

    // arraycopy stubs used by compilers
    generate_arraycopy_stubs();

2514
    // Safefetch stubs.
2515 2516 2517 2518 2519 2520
    generate_safefetch("SafeFetch32", sizeof(int),     &StubRoutines::_safefetch32_entry,
                                                       &StubRoutines::_safefetch32_fault_pc,
                                                       &StubRoutines::_safefetch32_continuation_pc);
    generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
                                                       &StubRoutines::_safefetchN_fault_pc,
                                                       &StubRoutines::_safefetchN_continuation_pc);
S
simonis 已提交
2521 2522 2523 2524 2525 2526

    if (UseAESIntrinsics) {
      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
    }

2527 2528 2529 2530 2531 2532 2533 2534
    if (UseMontgomeryMultiplyIntrinsic) {
      StubRoutines::_montgomeryMultiply
        = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
    }
    if (UseMontgomerySquareIntrinsic) {
      StubRoutines::_montgomerySquare
        = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
    }
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
  }

 public:
  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
    // replace the standard masm with a special one:
    _masm = new MacroAssembler(code);
    if (all) {
      generate_all();
    } else {
      generate_initial();
    }
  }
};

void StubGenerator_generate(CodeBuffer* code, bool all) {
  StubGenerator g(code, all);
}