/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * Copyright 2012, 2014 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "interpreter/interpreter.hpp" #include "nativeInst_ppc.hpp" #include "oops/instanceOop.hpp" #include "oops/method.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/stubRoutines.hpp" #include "utilities/top.hpp" #include "runtime/thread.inline.hpp" #define __ _masm-> #ifdef PRODUCT #define BLOCK_COMMENT(str) // nothing #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif class StubGenerator: public StubCodeGenerator { private: // Call stubs are used to call Java from C // // Arguments: // // R3 - call wrapper address : address // R4 - result : intptr_t* // R5 - result type : BasicType // R6 - method : Method // R7 - frame mgr entry point : address // R8 - parameter block : intptr_t* // R9 - parameter count in words : int // R10 - thread : Thread* // address generate_call_stub(address& return_address) { // Setup a new c frame, copy java arguments, call frame manager or // native_entry, and process result. StubCodeMark mark(this, "StubRoutines", "call_stub"); address start = __ function_entry(); // some sanity checks assert((sizeof(frame::abi_minframe) % 16) == 0, "unaligned"); assert((sizeof(frame::abi_reg_args) % 16) == 0, "unaligned"); assert((sizeof(frame::spill_nonvolatiles) % 16) == 0, "unaligned"); assert((sizeof(frame::parent_ijava_frame_abi) % 16) == 0, "unaligned"); assert((sizeof(frame::entry_frame_locals) % 16) == 0, "unaligned"); Register r_arg_call_wrapper_addr = R3; Register r_arg_result_addr = R4; Register r_arg_result_type = R5; Register r_arg_method = R6; Register r_arg_entry = R7; Register r_arg_thread = R10; Register r_temp = R24; Register r_top_of_arguments_addr = R25; Register r_entryframe_fp = R26; { // Stack on entry to call_stub: // // F1 [C_FRAME] // ... Register r_arg_argument_addr = R8; Register r_arg_argument_count = R9; Register r_frame_alignment_in_bytes = R27; Register r_argument_addr = R28; Register r_argumentcopy_addr = R29; Register r_argument_size_in_bytes = R30; Register r_frame_size = R23; Label arguments_copied; // Save LR/CR to caller's C_FRAME. __ save_LR_CR(R0); // Zero extend arg_argument_count. __ clrldi(r_arg_argument_count, r_arg_argument_count, 32); // Save non-volatiles GPRs to ENTRY_FRAME (not yet pushed, but it's safe). __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14)); // Keep copy of our frame pointer (caller's SP). __ mr(r_entryframe_fp, R1_SP); BLOCK_COMMENT("Push ENTRY_FRAME including arguments"); // Push ENTRY_FRAME including arguments: // // F0 [TOP_IJAVA_FRAME_ABI] // alignment (optional) // [outgoing Java arguments] // [ENTRY_FRAME_LOCALS] // F1 [C_FRAME] // ... // calculate frame size // unaligned size of arguments __ sldi(r_argument_size_in_bytes, r_arg_argument_count, Interpreter::logStackElementSize); // arguments alignment (max 1 slot) // FIXME: use round_to() here __ andi_(r_frame_alignment_in_bytes, r_arg_argument_count, 1); __ sldi(r_frame_alignment_in_bytes, r_frame_alignment_in_bytes, Interpreter::logStackElementSize); // size = unaligned size of arguments + top abi's size __ addi(r_frame_size, r_argument_size_in_bytes, frame::top_ijava_frame_abi_size); // size += arguments alignment __ add(r_frame_size, r_frame_size, r_frame_alignment_in_bytes); // size += size of call_stub locals __ addi(r_frame_size, r_frame_size, frame::entry_frame_locals_size); // push ENTRY_FRAME __ push_frame(r_frame_size, r_temp); // initialize call_stub locals (step 1) __ std(r_arg_call_wrapper_addr, _entry_frame_locals_neg(call_wrapper_address), r_entryframe_fp); __ std(r_arg_result_addr, _entry_frame_locals_neg(result_address), r_entryframe_fp); __ std(r_arg_result_type, _entry_frame_locals_neg(result_type), r_entryframe_fp); // we will save arguments_tos_address later BLOCK_COMMENT("Copy Java arguments"); // copy Java arguments // Calculate top_of_arguments_addr which will be R17_tos (not prepushed) later. // FIXME: why not simply use SP+frame::top_ijava_frame_size? __ addi(r_top_of_arguments_addr, R1_SP, frame::top_ijava_frame_abi_size); __ add(r_top_of_arguments_addr, r_top_of_arguments_addr, r_frame_alignment_in_bytes); // any arguments to copy? __ cmpdi(CCR0, r_arg_argument_count, 0); __ beq(CCR0, arguments_copied); // prepare loop and copy arguments in reverse order { // init CTR with arg_argument_count __ mtctr(r_arg_argument_count); // let r_argumentcopy_addr point to last outgoing Java arguments P __ mr(r_argumentcopy_addr, r_top_of_arguments_addr); // let r_argument_addr point to last incoming java argument __ add(r_argument_addr, r_arg_argument_addr, r_argument_size_in_bytes); __ addi(r_argument_addr, r_argument_addr, -BytesPerWord); // now loop while CTR > 0 and copy arguments { Label next_argument; __ bind(next_argument); __ ld(r_temp, 0, r_argument_addr); // argument_addr--; __ addi(r_argument_addr, r_argument_addr, -BytesPerWord); __ std(r_temp, 0, r_argumentcopy_addr); // argumentcopy_addr++; __ addi(r_argumentcopy_addr, r_argumentcopy_addr, BytesPerWord); __ bdnz(next_argument); } } // Arguments copied, continue. __ bind(arguments_copied); } { BLOCK_COMMENT("Call frame manager or native entry."); // Call frame manager or native entry. Register r_new_arg_entry = R14; assert_different_registers(r_new_arg_entry, r_top_of_arguments_addr, r_arg_method, r_arg_thread); __ mr(r_new_arg_entry, r_arg_entry); // Register state on entry to frame manager / native entry: // // tos - intptr_t* sender tos (prepushed) Lesp = (SP) + copied_arguments_offset - 8 // R19_method - Method // R16_thread - JavaThread* // Tos must point to last argument - element_size. #ifdef CC_INTERP const Register tos = R17_tos; #else const Register tos = R15_esp; #endif __ addi(tos, r_top_of_arguments_addr, -Interpreter::stackElementSize); // initialize call_stub locals (step 2) // now save tos as arguments_tos_address __ std(tos, _entry_frame_locals_neg(arguments_tos_address), r_entryframe_fp); // load argument registers for call __ mr(R19_method, r_arg_method); __ mr(R16_thread, r_arg_thread); assert(tos != r_arg_method, "trashed r_arg_method"); assert(tos != r_arg_thread && R19_method != r_arg_thread, "trashed r_arg_thread"); // Set R15_prev_state to 0 for simplifying checks in callee. #ifdef CC_INTERP __ li(R15_prev_state, 0); #else __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1); #endif // Stack on entry to frame manager / native entry: // // F0 [TOP_IJAVA_FRAME_ABI] // alignment (optional) // [outgoing Java arguments] // [ENTRY_FRAME_LOCALS] // F1 [C_FRAME] // ... // // global toc register __ load_const(R29, MacroAssembler::global_toc(), R11_scratch1); // Load narrow oop base. __ reinit_heapbase(R30, R11_scratch1); // Remember the senderSP so we interpreter can pop c2i arguments off of the stack // when called via a c2i. // Pass initial_caller_sp to framemanager. __ mr(R21_tmp1, R1_SP); // Do a light-weight C-call here, r_new_arg_entry holds the address // of the interpreter entry point (frame manager or native entry) // and save runtime-value of LR in return_address. assert(r_new_arg_entry != tos && r_new_arg_entry != R19_method && r_new_arg_entry != R16_thread, "trashed r_new_arg_entry"); return_address = __ call_stub(r_new_arg_entry); } { BLOCK_COMMENT("Returned from frame manager or native entry."); // Returned from frame manager or native entry. // Now pop frame, process result, and return to caller. // Stack on exit from frame manager / native entry: // // F0 [ABI] // ... // [ENTRY_FRAME_LOCALS] // F1 [C_FRAME] // ... // // Just pop the topmost frame ... // Label ret_is_object; Label ret_is_long; Label ret_is_float; Label ret_is_double; Register r_entryframe_fp = R30; Register r_lr = R7_ARG5; Register r_cr = R8_ARG6; // Reload some volatile registers which we've spilled before the call // to frame manager / native entry. // Access all locals via frame pointer, because we know nothing about // the topmost frame's size. __ ld(r_entryframe_fp, _abi(callers_sp), R1_SP); assert_different_registers(r_entryframe_fp, R3_RET, r_arg_result_addr, r_arg_result_type, r_cr, r_lr); __ ld(r_arg_result_addr, _entry_frame_locals_neg(result_address), r_entryframe_fp); __ ld(r_arg_result_type, _entry_frame_locals_neg(result_type), r_entryframe_fp); __ ld(r_cr, _abi(cr), r_entryframe_fp); __ ld(r_lr, _abi(lr), r_entryframe_fp); // pop frame and restore non-volatiles, LR and CR __ mr(R1_SP, r_entryframe_fp); __ mtcr(r_cr); __ mtlr(r_lr); // Store result depending on type. Everything that is not // T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE is treated as T_INT. __ cmpwi(CCR0, r_arg_result_type, T_OBJECT); __ cmpwi(CCR1, r_arg_result_type, T_LONG); __ cmpwi(CCR5, r_arg_result_type, T_FLOAT); __ cmpwi(CCR6, r_arg_result_type, T_DOUBLE); // restore non-volatile registers __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14)); // Stack on exit from call_stub: // // 0 [C_FRAME] // ... // // no call_stub frames left. // All non-volatiles have been restored at this point!! assert(R3_RET == R3, "R3_RET should be R3"); __ beq(CCR0, ret_is_object); __ beq(CCR1, ret_is_long); __ beq(CCR5, ret_is_float); __ beq(CCR6, ret_is_double); // default: __ stw(R3_RET, 0, r_arg_result_addr); __ blr(); // return to caller // case T_OBJECT: __ bind(ret_is_object); __ std(R3_RET, 0, r_arg_result_addr); __ blr(); // return to caller // case T_LONG: __ bind(ret_is_long); __ std(R3_RET, 0, r_arg_result_addr); __ blr(); // return to caller // case T_FLOAT: __ bind(ret_is_float); __ stfs(F1_RET, 0, r_arg_result_addr); __ blr(); // return to caller // case T_DOUBLE: __ bind(ret_is_double); __ stfd(F1_RET, 0, r_arg_result_addr); __ blr(); // return to caller } return start; } // Return point for a Java call if there's an exception thrown in // Java code. The exception is caught and transformed into a // pending exception stored in JavaThread that can be tested from // within the VM. // address generate_catch_exception() { StubCodeMark mark(this, "StubRoutines", "catch_exception"); address start = __ pc(); // Registers alive // // R16_thread // R3_ARG1 - address of pending exception // R4_ARG2 - return address in call stub const Register exception_file = R21_tmp1; const Register exception_line = R22_tmp2; __ load_const(exception_file, (void*)__FILE__); __ load_const(exception_line, (void*)__LINE__); __ std(R3_ARG1, thread_(pending_exception)); // store into `char *' __ std(exception_file, thread_(exception_file)); // store into `int' __ stw(exception_line, thread_(exception_line)); // complete return to VM assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before"); __ mtlr(R4_ARG2); // continue in call stub __ blr(); return start; } // Continuation point for runtime calls returning with a pending // exception. The pending exception check happened in the runtime // or native call stub. The pending exception in Thread is // converted into a Java-level exception. // address generate_forward_exception() { StubCodeMark mark(this, "StubRoutines", "forward_exception"); address start = __ pc(); #if !defined(PRODUCT) if (VerifyOops) { // Get pending exception oop. __ ld(R3_ARG1, in_bytes(Thread::pending_exception_offset()), R16_thread); // Make sure that this code is only executed if there is a pending exception. { Label L; __ cmpdi(CCR0, R3_ARG1, 0); __ bne(CCR0, L); __ stop("StubRoutines::forward exception: no pending exception (1)"); __ bind(L); } __ verify_oop(R3_ARG1, "StubRoutines::forward exception: not an oop"); } #endif // Save LR/CR and copy exception pc (LR) into R4_ARG2. __ save_LR_CR(R4_ARG2); __ push_frame_reg_args(0, R0); // Find exception handler. __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, R4_ARG2); // Copy handler's address. __ mtctr(R3_RET); __ pop_frame(); __ restore_LR_CR(R0); // Set up the arguments for the exception handler: // - R3_ARG1: exception oop // - R4_ARG2: exception pc. // Load pending exception oop. __ ld(R3_ARG1, in_bytes(Thread::pending_exception_offset()), R16_thread); // The exception pc is the return address in the caller. // Must load it into R4_ARG2. __ mflr(R4_ARG2); #ifdef ASSERT // Make sure exception is set. { Label L; __ cmpdi(CCR0, R3_ARG1, 0); __ bne(CCR0, L); __ stop("StubRoutines::forward exception: no pending exception (2)"); __ bind(L); } #endif // Clear the pending exception. __ li(R0, 0); __ std(R0, in_bytes(Thread::pending_exception_offset()), R16_thread); // Jump to exception handler. __ bctr(); return start; } #undef __ #define __ masm-> // Continuation point for throwing of implicit exceptions that are // not handled in the current activation. Fabricates an exception // oop and initiates normal exception dispatching in this // frame. Only callee-saved registers are preserved (through the // normal register window / RegisterMap handling). If the compiler // needs all registers to be preserved between the fault point and // the exception handler then it must assume responsibility for that // in AbstractCompiler::continuation_for_implicit_null_exception or // continuation_for_implicit_division_by_zero_exception. All other // implicit exceptions (e.g., NullPointerException or // AbstractMethodError on entry) are either at call sites or // otherwise assume that stack unwinding will be initiated, so // caller saved registers were assumed volatile in the compiler. // // Note that we generate only this stub into a RuntimeStub, because // it needs to be properly traversed and ignored during GC, so we // change the meaning of the "__" macro within this method. // // Note: the routine set_pc_not_at_call_for_caller in // SharedRuntime.cpp requires that this code be generated into a // RuntimeStub. address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc, Register arg1 = noreg, Register arg2 = noreg) { CodeBuffer code(name, 1024 DEBUG_ONLY(+ 512), 0); MacroAssembler* masm = new MacroAssembler(&code); OopMapSet* oop_maps = new OopMapSet(); int frame_size_in_bytes = frame::abi_reg_args_size; OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0); StubCodeMark mark(this, "StubRoutines", "throw_exception"); address start = __ pc(); __ save_LR_CR(R11_scratch1); // Push a frame. __ push_frame_reg_args(0, R11_scratch1); address frame_complete_pc = __ pc(); if (restore_saved_exception_pc) { __ unimplemented("StubGenerator::throw_exception with restore_saved_exception_pc", 74); } // Note that we always have a runtime stub frame on the top of // stack by this point. Remember the offset of the instruction // whose address will be moved to R11_scratch1. address gc_map_pc = __ get_PC_trash_LR(R11_scratch1); __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1); __ mr(R3_ARG1, R16_thread); if (arg1 != noreg) { __ mr(R4_ARG2, arg1); } if (arg2 != noreg) { __ mr(R5_ARG3, arg2); } #if defined(ABI_ELFv2) __ call_c(runtime_entry, relocInfo::none); #else __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, runtime_entry), relocInfo::none); #endif // Set an oopmap for the call site. oop_maps->add_gc_map((int)(gc_map_pc - start), map); __ reset_last_Java_frame(); #ifdef ASSERT // Make sure that this code is only executed if there is a pending // exception. { Label L; __ ld(R0, in_bytes(Thread::pending_exception_offset()), R16_thread); __ cmpdi(CCR0, R0, 0); __ bne(CCR0, L); __ stop("StubRoutines::throw_exception: no pending exception"); __ bind(L); } #endif // Pop frame. __ pop_frame(); __ restore_LR_CR(R11_scratch1); __ load_const(R11_scratch1, StubRoutines::forward_exception_entry()); __ mtctr(R11_scratch1); __ bctr(); // Create runtime stub with OopMap. RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, /*frame_complete=*/ (int)(frame_complete_pc - start), frame_size_in_bytes/wordSize, oop_maps, false); return stub->entry_point(); } #undef __ #define __ _masm-> // Generate G1 pre-write barrier for array. // // Input: // from - register containing src address (only needed for spilling) // to - register containing starting address // count - register containing element count // tmp - scratch register // // Kills: // nothing // void gen_write_ref_array_pre_barrier(Register from, Register to, Register count, bool dest_uninitialized, Register Rtmp1) { BarrierSet* const bs = Universe::heap()->barrier_set(); switch (bs->kind()) { case BarrierSet::G1SATBCT: case BarrierSet::G1SATBCTLogging: // With G1, don't generate the call if we statically know that the target in uninitialized if (!dest_uninitialized) { const int spill_slots = 4 * wordSize; const int frame_size = frame::abi_reg_args_size + spill_slots; Label filtered; // Is marking active? if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { __ lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread); } else { guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption"); __ lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread); } __ cmpdi(CCR0, Rtmp1, 0); __ beq(CCR0, filtered); __ save_LR_CR(R0); __ push_frame_reg_args(spill_slots, R0); __ std(from, frame_size - 1 * wordSize, R1_SP); __ std(to, frame_size - 2 * wordSize, R1_SP); __ std(count, frame_size - 3 * wordSize, R1_SP); __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), to, count); __ ld(from, frame_size - 1 * wordSize, R1_SP); __ ld(to, frame_size - 2 * wordSize, R1_SP); __ ld(count, frame_size - 3 * wordSize, R1_SP); __ pop_frame(); __ restore_LR_CR(R0); __ bind(filtered); } break; case BarrierSet::CardTableModRef: case BarrierSet::CardTableExtension: case BarrierSet::ModRef: break; default: ShouldNotReachHere(); } } // Generate CMS/G1 post-write barrier for array. // // Input: // addr - register containing starting address // count - register containing element count // tmp - scratch register // // The input registers and R0 are overwritten. // void gen_write_ref_array_post_barrier(Register addr, Register count, Register tmp, bool branchToEnd) { BarrierSet* const bs = Universe::heap()->barrier_set(); switch (bs->kind()) { case BarrierSet::G1SATBCT: case BarrierSet::G1SATBCTLogging: { if (branchToEnd) { __ save_LR_CR(R0); // We need this frame only to spill LR. __ push_frame_reg_args(0, R0); __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), addr, count); __ pop_frame(); __ restore_LR_CR(R0); } else { // Tail call: fake call from stub caller by branching without linking. address entry_point = (address)CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post); __ mr_if_needed(R3_ARG1, addr); __ mr_if_needed(R4_ARG2, count); __ load_const(R11, entry_point, R0); __ call_c_and_return_to_caller(R11); } } break; case BarrierSet::CardTableModRef: case BarrierSet::CardTableExtension: { Label Lskip_loop, Lstore_loop; if (UseConcMarkSweepGC) { // TODO PPC port: contribute optimization / requires shared changes __ release(); } CardTableModRefBS* const ct = (CardTableModRefBS*)bs; assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); assert_different_registers(addr, count, tmp); __ sldi(count, count, LogBytesPerHeapOop); __ addi(count, count, -BytesPerHeapOop); __ add(count, addr, count); // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.) __ srdi(addr, addr, CardTableModRefBS::card_shift); __ srdi(count, count, CardTableModRefBS::card_shift); __ subf(count, addr, count); assert_different_registers(R0, addr, count, tmp); __ load_const(tmp, (address)ct->byte_map_base); __ addic_(count, count, 1); __ beq(CCR0, Lskip_loop); __ li(R0, 0); __ mtctr(count); // Byte store loop __ bind(Lstore_loop); __ stbx(R0, tmp, addr); __ addi(addr, addr, 1); __ bdnz(Lstore_loop); __ bind(Lskip_loop); if (!branchToEnd) __ blr(); } break; case BarrierSet::ModRef: if (!branchToEnd) __ blr(); break; default: ShouldNotReachHere(); } } // Support for void zero_words_aligned8(HeapWord* to, size_t count) // // Arguments: // to: // count: // // Destroys: // address generate_zero_words_aligned8() { StubCodeMark mark(this, "StubRoutines", "zero_words_aligned8"); // Implemented as in ClearArray. address start = __ function_entry(); Register base_ptr_reg = R3_ARG1; // tohw (needs to be 8b aligned) Register cnt_dwords_reg = R4_ARG2; // count (in dwords) Register tmp1_reg = R5_ARG3; Register tmp2_reg = R6_ARG4; Register zero_reg = R7_ARG5; // Procedure for large arrays (uses data cache block zero instruction). Label dwloop, fast, fastloop, restloop, lastdword, done; int cl_size=VM_Version::get_cache_line_size(), cl_dwords=cl_size>>3, cl_dwordaddr_bits=exact_log2(cl_dwords); int min_dcbz=2; // Needs to be positive, apply dcbz only to at least min_dcbz cache lines. // Clear up to 128byte boundary if long enough, dword_cnt=(16-(base>>3))%16. __ dcbtst(base_ptr_reg); // Indicate write access to first cache line ... __ andi(tmp2_reg, cnt_dwords_reg, 1); // to check if number of dwords is even. __ srdi_(tmp1_reg, cnt_dwords_reg, 1); // number of double dwords __ load_const_optimized(zero_reg, 0L); // Use as zero register. __ cmpdi(CCR1, tmp2_reg, 0); // cnt_dwords even? __ beq(CCR0, lastdword); // size <= 1 __ mtctr(tmp1_reg); // Speculatively preload counter for rest loop (>0). __ cmpdi(CCR0, cnt_dwords_reg, (min_dcbz+1)*cl_dwords-1); // Big enough to ensure >=min_dcbz cache lines are included? __ neg(tmp1_reg, base_ptr_reg); // bit 0..58: bogus, bit 57..60: (16-(base>>3))%16, bit 61..63: 000 __ blt(CCR0, restloop); // Too small. (<31=(2*cl_dwords)-1 is sufficient, but bigger performs better.) __ rldicl_(tmp1_reg, tmp1_reg, 64-3, 64-cl_dwordaddr_bits); // Extract number of dwords to 128byte boundary=(16-(base>>3))%16. __ beq(CCR0, fast); // already 128byte aligned __ mtctr(tmp1_reg); // Set ctr to hit 128byte boundary (00 since size>=256-8) // Clear in first cache line dword-by-dword if not already 128byte aligned. __ bind(dwloop); __ std(zero_reg, 0, base_ptr_reg); // Clear 8byte aligned block. __ addi(base_ptr_reg, base_ptr_reg, 8); __ bdnz(dwloop); // clear 128byte blocks __ bind(fast); __ srdi(tmp1_reg, cnt_dwords_reg, cl_dwordaddr_bits); // loop count for 128byte loop (>0 since size>=256-8) __ andi(tmp2_reg, cnt_dwords_reg, 1); // to check if rest even __ mtctr(tmp1_reg); // load counter __ cmpdi(CCR1, tmp2_reg, 0); // rest even? __ rldicl_(tmp1_reg, cnt_dwords_reg, 63, 65-cl_dwordaddr_bits); // rest in double dwords __ bind(fastloop); __ dcbz(base_ptr_reg); // Clear 128byte aligned block. __ addi(base_ptr_reg, base_ptr_reg, cl_size); __ bdnz(fastloop); //__ dcbtst(base_ptr_reg); // Indicate write access to last cache line. __ beq(CCR0, lastdword); // rest<=1 __ mtctr(tmp1_reg); // load counter // Clear rest. __ bind(restloop); __ std(zero_reg, 0, base_ptr_reg); // Clear 8byte aligned block. __ std(zero_reg, 8, base_ptr_reg); // Clear 8byte aligned block. __ addi(base_ptr_reg, base_ptr_reg, 16); __ bdnz(restloop); __ bind(lastdword); __ beq(CCR1, done); __ std(zero_reg, 0, base_ptr_reg); __ bind(done); __ blr(); // return return start; } // The following routine generates a subroutine to throw an asynchronous // UnknownError when an unsafe access gets a fault that could not be // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.) // address generate_handler_for_unsafe_access() { StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access"); address start = __ function_entry(); __ unimplemented("StubRoutines::handler_for_unsafe_access", 93); return start; } #if !defined(PRODUCT) // Wrapper which calls oopDesc::is_oop_or_null() // Only called by MacroAssembler::verify_oop static void verify_oop_helper(const char* message, oop o) { if (!o->is_oop_or_null()) { fatal(message); } ++ StubRoutines::_verify_oop_count; } #endif // Return address of code to be called from code generated by // MacroAssembler::verify_oop. // // Don't generate, rather use C++ code. address generate_verify_oop() { StubCodeMark mark(this, "StubRoutines", "verify_oop"); // this is actually a `FunctionDescriptor*'. address start = 0; #if !defined(PRODUCT) start = CAST_FROM_FN_PTR(address, verify_oop_helper); #endif return start; } // Fairer handling of safepoints for native methods. // // Generate code which reads from the polling page. This special handling is needed as the // linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults in 64bit mode // (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6), especially when we try // to read from the safepoint polling page. address generate_load_from_poll() { StubCodeMark mark(this, "StubRoutines", "generate_load_from_poll"); address start = __ function_entry(); __ unimplemented("StubRoutines::verify_oop", 95); // TODO PPC port return start; } // -XX:+OptimizeFill : convert fill/copy loops into intrinsic // // The code is implemented(ported from sparc) as we believe it benefits JVM98, however // tracing(-XX:+TraceOptimizeFill) shows the intrinsic replacement doesn't happen at all! // // Source code in function is_range_check_if() shows that OptimizeFill relaxed the condition // for turning on loop predication optimization, and hence the behavior of "array range check" // and "loop invariant check" could be influenced, which potentially boosted JVM98. // // Generate stub for disjoint short fill. If "aligned" is true, the // "to" address is assumed to be heapword aligned. // // Arguments for generated stub: // to: R3_ARG1 // value: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_fill(BasicType t, bool aligned, const char* name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); const Register to = R3_ARG1; // source array address const Register value = R4_ARG2; // fill value const Register count = R5_ARG3; // elements count const Register temp = R6_ARG4; // temp register //assert_clean_int(count, O3); // Make sure 'count' is clean int. Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte; Label L_fill_2_bytes, L_fill_4_bytes, L_fill_elements, L_fill_32_bytes; int shift = -1; switch (t) { case T_BYTE: shift = 2; // Clone bytes (zero extend not needed because store instructions below ignore high order bytes). __ rldimi(value, value, 8, 48); // 8 bit -> 16 bit __ cmpdi(CCR0, count, 2< 32 bit break; case T_SHORT: shift = 1; // Clone bytes (zero extend not needed because store instructions below ignore high order bytes). __ rldimi(value, value, 16, 32); // 16 bit -> 32 bit __ cmpdi(CCR0, count, 2<long as above. __ rldimi(value, value, 32, 0); // 32 bit -> 64 bit Label L_check_fill_8_bytes; // Fill 32-byte chunks. __ subf_(count, temp, count); __ blt(CCR0, L_check_fill_8_bytes); Label L_fill_32_bytes_loop; __ align(32); __ bind(L_fill_32_bytes_loop); __ std(value, 0, to); __ std(value, 8, to); __ subf_(count, temp, count); // Update count. __ std(value, 16, to); __ std(value, 24, to); __ addi(to, to, 32); __ bge(CCR0, L_fill_32_bytes_loop); __ bind(L_check_fill_8_bytes); __ add_(count, temp, count); __ beq(CCR0, L_exit); __ addic_(count, count, -(2 << shift)); __ blt(CCR0, L_fill_4_bytes); // // Length is too short, just fill 8 bytes at a time. // Label L_fill_8_bytes_loop; __ bind(L_fill_8_bytes_loop); __ std(value, 0, to); __ addic_(count, count, -(2 << shift)); __ addi(to, to, 8); __ bge(CCR0, L_fill_8_bytes_loop); // Fill trailing 4 bytes. __ bind(L_fill_4_bytes); __ andi_(temp, count, 1< to or from is aligned -> copy 8 // copy a 2-element word if necessary to align to 8 bytes __ andi_(R0, R3_ARG1, 7); __ beq(CCR0, l_7); __ lwzx(tmp2, R3_ARG1, tmp3); __ addi(R5_ARG3, R5_ARG3, -4); __ stwx(tmp2, R4_ARG2, tmp3); { // FasterArrayCopy __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } __ bind(l_7); { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 31); __ ble(CCR0, l_6); // copy 2 at a time if less than 32 elements remain __ srdi(tmp1, R5_ARG3, 5); __ andi_(R5_ARG3, R5_ARG3, 31); __ mtctr(tmp1); __ bind(l_8); // Use unrolled version for mass copying (copy 32 elements a time) // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ ld(tmp1, 0, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp4, 24, R3_ARG1); __ std(tmp1, 0, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp4, 24, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, 32); __ addi(R4_ARG2, R4_ARG2, 32); __ bdnz(l_8); } __ bind(l_6); // copy 4 elements at a time __ cmpwi(CCR0, R5_ARG3, 4); __ blt(CCR0, l_1); __ srdi(tmp1, R5_ARG3, 2); __ mtctr(tmp1); // is > 0 __ andi_(R5_ARG3, R5_ARG3, 3); { // FasterArrayCopy __ addi(R3_ARG1, R3_ARG1, -4); __ addi(R4_ARG2, R4_ARG2, -4); __ bind(l_3); __ lwzu(tmp2, 4, R3_ARG1); __ stwu(tmp2, 4, R4_ARG2); __ bdnz(l_3); __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } // do single element copy __ bind(l_1); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_4); { // FasterArrayCopy __ mtctr(R5_ARG3); __ addi(R3_ARG1, R3_ARG1, -1); __ addi(R4_ARG2, R4_ARG2, -1); __ bind(l_5); __ lbzu(tmp2, 1, R3_ARG1); __ stbu(tmp2, 1, R4_ARG2); __ bdnz(l_5); } __ bind(l_4); __ blr(); return start; } // Generate stub for conjoint byte copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_conjoint_byte_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; #if defined(ABI_ELFv2) address nooverlap_target = aligned ? StubRoutines::arrayof_jbyte_disjoint_arraycopy() : StubRoutines::jbyte_disjoint_arraycopy(); #else address nooverlap_target = aligned ? ((FunctionDescriptor*)StubRoutines::arrayof_jbyte_disjoint_arraycopy())->entry() : ((FunctionDescriptor*)StubRoutines::jbyte_disjoint_arraycopy())->entry(); #endif array_overlap_test(nooverlap_target, 0); // Do reverse copy. We assume the case of actual overlap is rare enough // that we don't have to optimize it. Label l_1, l_2; __ b(l_2); __ bind(l_1); __ stbx(tmp1, R4_ARG2, R5_ARG3); __ bind(l_2); __ addic_(R5_ARG3, R5_ARG3, -1); __ lbzx(tmp1, R3_ARG1, R5_ARG3); __ bge(CCR0, l_1); __ blr(); return start; } // Generate stub for disjoint short copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // elm.count: R5_ARG3 treated as signed // // Strategy for aligned==true: // // If length <= 9: // 1. copy 2 elements at a time (l_6) // 2. copy last element if original element count was odd (l_1) // // If length > 9: // 1. copy 4 elements at a time until less than 4 elements are left (l_7) // 2. copy 2 elements at a time until less than 2 elements are left (l_6) // 3. copy last element if one was left in step 2. (l_1) // // // Strategy for aligned==false: // // If length <= 9: same as aligned==true case, but NOTE: load/stores // can be unaligned (see comment below) // // If length > 9: // 1. continue with step 6. if the alignment of from and to mod 4 // is different. // 2. align from and to to 4 bytes by copying 1 element if necessary // 3. at l_2 from and to are 4 byte aligned; continue with // 5. if they cannot be aligned to 8 bytes because they have // got different alignment mod 8. // 4. at this point we know that both, from and to, have the same // alignment mod 8, now copy one element if necessary to get // 8 byte alignment of from and to. // 5. copy 4 elements at a time until less than 4 elements are // left; depending on step 3. all load/stores are aligned or // either all loads or all stores are unaligned. // 6. copy 2 elements at a time until less than 2 elements are // left (l_6); arriving here from step 1., there is a chance // that all accesses are unaligned. // 7. copy last element if one was left in step 6. (l_1) // // There are unaligned data accesses using integer load/store // instructions in this stub. POWER allows such accesses. // // According to the manuals (PowerISA_V2.06_PUBLIC, Book II, // Chapter 2: Effect of Operand Placement on Performance) unaligned // integer load/stores have good performance. Only unaligned // floating point load/stores can have poor performance. // // TODO: // // 1. check if aligning the backbranch target of loops is beneficial // address generate_disjoint_short_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R9_ARG7; address start = __ function_entry(); Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8; // don't try anything fancy if arrays don't have many elements __ li(tmp3, 0); __ cmpwi(CCR0, R5_ARG3, 9); __ ble(CCR0, l_6); // copy 2 at a time if (!aligned) { __ xorr(tmp1, R3_ARG1, R4_ARG2); __ andi_(tmp1, tmp1, 3); __ bne(CCR0, l_6); // if arrays don't have the same alignment mod 4, do 2 element copy // At this point it is guaranteed that both, from and to have the same alignment mod 4. // Copy 1 element if necessary to align to 4 bytes. __ andi_(tmp1, R3_ARG1, 3); __ beq(CCR0, l_2); __ lhz(tmp2, 0, R3_ARG1); __ addi(R3_ARG1, R3_ARG1, 2); __ sth(tmp2, 0, R4_ARG2); __ addi(R4_ARG2, R4_ARG2, 2); __ addi(R5_ARG3, R5_ARG3, -1); __ bind(l_2); // At this point the positions of both, from and to, are at least 4 byte aligned. // Copy 4 elements at a time. // Align to 8 bytes, but only if both, from and to, have same alignment mod 8. __ xorr(tmp2, R3_ARG1, R4_ARG2); __ andi_(tmp1, tmp2, 7); __ bne(CCR0, l_7); // not same alignment mod 8 -> copy 4, either from or to will be unaligned // Copy a 2-element word if necessary to align to 8 bytes. __ andi_(R0, R3_ARG1, 7); __ beq(CCR0, l_7); __ lwzx(tmp2, R3_ARG1, tmp3); __ addi(R5_ARG3, R5_ARG3, -2); __ stwx(tmp2, R4_ARG2, tmp3); { // FasterArrayCopy __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } } __ bind(l_7); // Copy 4 elements at a time; either the loads or the stores can // be unaligned if aligned == false. { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 15); __ ble(CCR0, l_6); // copy 2 at a time if less than 16 elements remain __ srdi(tmp1, R5_ARG3, 4); __ andi_(R5_ARG3, R5_ARG3, 15); __ mtctr(tmp1); __ bind(l_8); // Use unrolled version for mass copying (copy 16 elements a time). // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ ld(tmp1, 0, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp4, 24, R3_ARG1); __ std(tmp1, 0, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp4, 24, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, 32); __ addi(R4_ARG2, R4_ARG2, 32); __ bdnz(l_8); } __ bind(l_6); // copy 2 elements at a time { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 2); __ blt(CCR0, l_1); __ srdi(tmp1, R5_ARG3, 1); __ andi_(R5_ARG3, R5_ARG3, 1); __ addi(R3_ARG1, R3_ARG1, -4); __ addi(R4_ARG2, R4_ARG2, -4); __ mtctr(tmp1); __ bind(l_3); __ lwzu(tmp2, 4, R3_ARG1); __ stwu(tmp2, 4, R4_ARG2); __ bdnz(l_3); __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } // do single element copy __ bind(l_1); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_4); { // FasterArrayCopy __ mtctr(R5_ARG3); __ addi(R3_ARG1, R3_ARG1, -2); __ addi(R4_ARG2, R4_ARG2, -2); __ bind(l_5); __ lhzu(tmp2, 2, R3_ARG1); __ sthu(tmp2, 2, R4_ARG2); __ bdnz(l_5); } __ bind(l_4); __ blr(); return start; } // Generate stub for conjoint short copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_conjoint_short_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; #if defined(ABI_ELFv2) address nooverlap_target = aligned ? StubRoutines::arrayof_jshort_disjoint_arraycopy() : StubRoutines::jshort_disjoint_arraycopy(); #else address nooverlap_target = aligned ? ((FunctionDescriptor*)StubRoutines::arrayof_jshort_disjoint_arraycopy())->entry() : ((FunctionDescriptor*)StubRoutines::jshort_disjoint_arraycopy())->entry(); #endif array_overlap_test(nooverlap_target, 1); Label l_1, l_2; __ sldi(tmp1, R5_ARG3, 1); __ b(l_2); __ bind(l_1); __ sthx(tmp2, R4_ARG2, tmp1); __ bind(l_2); __ addic_(tmp1, tmp1, -2); __ lhzx(tmp2, R3_ARG1, tmp1); __ bge(CCR0, l_1); __ blr(); return start; } // Generate core code for disjoint int copy (and oop copy on 32-bit). If "aligned" // is true, the "from" and "to" addresses are assumed to be heapword aligned. // // Arguments: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // void generate_disjoint_int_copy_core(bool aligned) { Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R0; Label l_1, l_2, l_3, l_4, l_5, l_6; // for short arrays, just do single element copy __ li(tmp3, 0); __ cmpwi(CCR0, R5_ARG3, 5); __ ble(CCR0, l_2); if (!aligned) { // check if arrays have same alignment mod 8. __ xorr(tmp1, R3_ARG1, R4_ARG2); __ andi_(R0, tmp1, 7); // Not the same alignment, but ld and std just need to be 4 byte aligned. __ bne(CCR0, l_4); // to OR from is 8 byte aligned -> copy 2 at a time // copy 1 element to align to and from on an 8 byte boundary __ andi_(R0, R3_ARG1, 7); __ beq(CCR0, l_4); __ lwzx(tmp2, R3_ARG1, tmp3); __ addi(R5_ARG3, R5_ARG3, -1); __ stwx(tmp2, R4_ARG2, tmp3); { // FasterArrayCopy __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } __ bind(l_4); } { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 7); __ ble(CCR0, l_2); // copy 1 at a time if less than 8 elements remain __ srdi(tmp1, R5_ARG3, 3); __ andi_(R5_ARG3, R5_ARG3, 7); __ mtctr(tmp1); __ bind(l_6); // Use unrolled version for mass copying (copy 8 elements a time). // Load feeding store gets zero latency on power6, however not on power 5. // Therefore, the following sequence is made for the good of both. __ ld(tmp1, 0, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp4, 24, R3_ARG1); __ std(tmp1, 0, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp4, 24, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, 32); __ addi(R4_ARG2, R4_ARG2, 32); __ bdnz(l_6); } // copy 1 element at a time __ bind(l_2); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_1); { // FasterArrayCopy __ mtctr(R5_ARG3); __ addi(R3_ARG1, R3_ARG1, -4); __ addi(R4_ARG2, R4_ARG2, -4); __ bind(l_3); __ lwzu(tmp2, 4, R3_ARG1); __ stwu(tmp2, 4, R4_ARG2); __ bdnz(l_3); } __ bind(l_1); return; } // Generate stub for disjoint int copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_disjoint_int_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); generate_disjoint_int_copy_core(aligned); __ blr(); return start; } // Generate core code for conjoint int copy (and oop copy on // 32-bit). If "aligned" is true, the "from" and "to" addresses // are assumed to be heapword aligned. // // Arguments: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // void generate_conjoint_int_copy_core(bool aligned) { // Do reverse copy. We assume the case of actual overlap is rare enough // that we don't have to optimize it. Label l_1, l_2, l_3, l_4, l_5, l_6; Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R0; { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_6); __ sldi(R5_ARG3, R5_ARG3, 2); __ add(R3_ARG1, R3_ARG1, R5_ARG3); __ add(R4_ARG2, R4_ARG2, R5_ARG3); __ srdi(R5_ARG3, R5_ARG3, 2); __ cmpwi(CCR0, R5_ARG3, 7); __ ble(CCR0, l_5); // copy 1 at a time if less than 8 elements remain __ srdi(tmp1, R5_ARG3, 3); __ andi(R5_ARG3, R5_ARG3, 7); __ mtctr(tmp1); __ bind(l_4); // Use unrolled version for mass copying (copy 4 elements a time). // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ addi(R3_ARG1, R3_ARG1, -32); __ addi(R4_ARG2, R4_ARG2, -32); __ ld(tmp4, 24, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp1, 0, R3_ARG1); __ std(tmp4, 24, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp1, 0, R4_ARG2); __ bdnz(l_4); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_6); __ bind(l_5); __ mtctr(R5_ARG3); __ bind(l_3); __ lwz(R0, -4, R3_ARG1); __ stw(R0, -4, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, -4); __ addi(R4_ARG2, R4_ARG2, -4); __ bdnz(l_3); __ bind(l_6); } } // Generate stub for conjoint int copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_conjoint_int_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); #if defined(ABI_ELFv2) address nooverlap_target = aligned ? StubRoutines::arrayof_jint_disjoint_arraycopy() : StubRoutines::jint_disjoint_arraycopy(); #else address nooverlap_target = aligned ? ((FunctionDescriptor*)StubRoutines::arrayof_jint_disjoint_arraycopy())->entry() : ((FunctionDescriptor*)StubRoutines::jint_disjoint_arraycopy())->entry(); #endif array_overlap_test(nooverlap_target, 2); generate_conjoint_int_copy_core(aligned); __ blr(); return start; } // Generate core code for disjoint long copy (and oop copy on // 64-bit). If "aligned" is true, the "from" and "to" addresses // are assumed to be heapword aligned. // // Arguments: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // void generate_disjoint_long_copy_core(bool aligned) { Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R0; Label l_1, l_2, l_3, l_4; { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 3); __ ble(CCR0, l_3); // copy 1 at a time if less than 4 elements remain __ srdi(tmp1, R5_ARG3, 2); __ andi_(R5_ARG3, R5_ARG3, 3); __ mtctr(tmp1); __ bind(l_4); // Use unrolled version for mass copying (copy 4 elements a time). // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ ld(tmp1, 0, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp4, 24, R3_ARG1); __ std(tmp1, 0, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp4, 24, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, 32); __ addi(R4_ARG2, R4_ARG2, 32); __ bdnz(l_4); } // copy 1 element at a time __ bind(l_3); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_1); { // FasterArrayCopy __ mtctr(R5_ARG3); __ addi(R3_ARG1, R3_ARG1, -8); __ addi(R4_ARG2, R4_ARG2, -8); __ bind(l_2); __ ldu(R0, 8, R3_ARG1); __ stdu(R0, 8, R4_ARG2); __ bdnz(l_2); } __ bind(l_1); } // Generate stub for disjoint long copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_disjoint_long_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); generate_disjoint_long_copy_core(aligned); __ blr(); return start; } // Generate core code for conjoint long copy (and oop copy on // 64-bit). If "aligned" is true, the "from" and "to" addresses // are assumed to be heapword aligned. // // Arguments: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // void generate_conjoint_long_copy_core(bool aligned) { Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R0; Label l_1, l_2, l_3, l_4, l_5; __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_1); { // FasterArrayCopy __ sldi(R5_ARG3, R5_ARG3, 3); __ add(R3_ARG1, R3_ARG1, R5_ARG3); __ add(R4_ARG2, R4_ARG2, R5_ARG3); __ srdi(R5_ARG3, R5_ARG3, 3); __ cmpwi(CCR0, R5_ARG3, 3); __ ble(CCR0, l_5); // copy 1 at a time if less than 4 elements remain __ srdi(tmp1, R5_ARG3, 2); __ andi(R5_ARG3, R5_ARG3, 3); __ mtctr(tmp1); __ bind(l_4); // Use unrolled version for mass copying (copy 4 elements a time). // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ addi(R3_ARG1, R3_ARG1, -32); __ addi(R4_ARG2, R4_ARG2, -32); __ ld(tmp4, 24, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp1, 0, R3_ARG1); __ std(tmp4, 24, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp1, 0, R4_ARG2); __ bdnz(l_4); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_1); __ bind(l_5); __ mtctr(R5_ARG3); __ bind(l_3); __ ld(R0, -8, R3_ARG1); __ std(R0, -8, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, -8); __ addi(R4_ARG2, R4_ARG2, -8); __ bdnz(l_3); } __ bind(l_1); } // Generate stub for conjoint long copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_conjoint_long_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); #if defined(ABI_ELFv2) address nooverlap_target = aligned ? StubRoutines::arrayof_jlong_disjoint_arraycopy() : StubRoutines::jlong_disjoint_arraycopy(); #else address nooverlap_target = aligned ? ((FunctionDescriptor*)StubRoutines::arrayof_jlong_disjoint_arraycopy())->entry() : ((FunctionDescriptor*)StubRoutines::jlong_disjoint_arraycopy())->entry(); #endif array_overlap_test(nooverlap_target, 3); generate_conjoint_long_copy_core(aligned); __ blr(); return start; } // Generate stub for conjoint oop copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // dest_uninitialized: G1 support // address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); #if defined(ABI_ELFv2) address nooverlap_target = aligned ? StubRoutines::arrayof_oop_disjoint_arraycopy() : StubRoutines::oop_disjoint_arraycopy(); #else address nooverlap_target = aligned ? ((FunctionDescriptor*)StubRoutines::arrayof_oop_disjoint_arraycopy())->entry() : ((FunctionDescriptor*)StubRoutines::oop_disjoint_arraycopy())->entry(); #endif gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7); // Save arguments. __ mr(R9_ARG7, R4_ARG2); __ mr(R10_ARG8, R5_ARG3); if (UseCompressedOops) { array_overlap_test(nooverlap_target, 2); generate_conjoint_int_copy_core(aligned); } else { array_overlap_test(nooverlap_target, 3); generate_conjoint_long_copy_core(aligned); } gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1, /*branchToEnd*/ false); return start; } // Generate stub for disjoint oop copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // dest_uninitialized: G1 support // address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7); // save some arguments, disjoint_long_copy_core destroys them. // needed for post barrier __ mr(R9_ARG7, R4_ARG2); __ mr(R10_ARG8, R5_ARG3); if (UseCompressedOops) { generate_disjoint_int_copy_core(aligned); } else { generate_disjoint_long_copy_core(aligned); } gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1, /*branchToEnd*/ false); return start; } // Arguments for generated stub (little endian only): // R3_ARG1 - source byte array address // R4_ARG2 - destination byte array address // R5_ARG3 - round key array address generate_aescrypt_encryptBlock() { assert(UseAES, "need AES instructions and misaligned SSE support"); StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock"); address start = __ function_entry(); Label L_doLast; Register from = R3_ARG1; // source array address Register to = R4_ARG2; // destination array address Register key = R5_ARG3; // round key array Register keylen = R8; Register temp = R9; Register keypos = R10; Register hex = R11; Register fifteen = R12; VectorRegister vRet = VR0; VectorRegister vKey1 = VR1; VectorRegister vKey2 = VR2; VectorRegister vKey3 = VR3; VectorRegister vKey4 = VR4; VectorRegister fromPerm = VR5; VectorRegister keyPerm = VR6; VectorRegister toPerm = VR7; VectorRegister fSplt = VR8; VectorRegister vTmp1 = VR9; VectorRegister vTmp2 = VR10; VectorRegister vTmp3 = VR11; VectorRegister vTmp4 = VR12; VectorRegister vLow = VR13; VectorRegister vHigh = VR14; __ li (hex, 16); __ li (fifteen, 15); __ vspltisb (fSplt, 0x0f); // load unaligned from[0-15] to vsRet __ lvx (vRet, from); __ lvx (vTmp1, fifteen, from); __ lvsl (fromPerm, from); __ vxor (fromPerm, fromPerm, fSplt); __ vperm (vRet, vRet, vTmp1, fromPerm); // load keylen (44 or 52 or 60) __ lwz (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key); // to load keys __ lvsr (keyPerm, key); __ vxor (vTmp2, vTmp2, vTmp2); __ vspltisb (vTmp2, -16); __ vrld (keyPerm, keyPerm, vTmp2); __ vrld (keyPerm, keyPerm, vTmp2); __ vsldoi (keyPerm, keyPerm, keyPerm, -8); // load the 1st round key to vKey1 __ li (keypos, 0); __ lvx (vKey1, keypos, key); __ addi (keypos, keypos, 16); __ lvx (vTmp1, keypos, key); __ vperm (vKey1, vTmp1, vKey1, keyPerm); // 1st round __ vxor (vRet, vRet, vKey1); // load the 2nd round key to vKey1 __ addi (keypos, keypos, 16); __ lvx (vTmp2, keypos, key); __ vperm (vKey1, vTmp2, vTmp1, keyPerm); // load the 3rd round key to vKey2 __ addi (keypos, keypos, 16); __ lvx (vTmp1, keypos, key); __ vperm (vKey2, vTmp1, vTmp2, keyPerm); // load the 4th round key to vKey3 __ addi (keypos, keypos, 16); __ lvx (vTmp2, keypos, key); __ vperm (vKey3, vTmp2, vTmp1, keyPerm); // load the 5th round key to vKey4 __ addi (keypos, keypos, 16); __ lvx (vTmp1, keypos, key); __ vperm (vKey4, vTmp1, vTmp2, keyPerm); // 2nd - 5th rounds __ vcipher (vRet, vRet, vKey1); __ vcipher (vRet, vRet, vKey2); __ vcipher (vRet, vRet, vKey3); __ vcipher (vRet, vRet, vKey4); // load the 6th round key to vKey1 __ addi (keypos, keypos, 16); __ lvx (vTmp2, keypos, key); __ vperm (vKey1, vTmp2, vTmp1, keyPerm); // load the 7th round key to vKey2 __ addi (keypos, keypos, 16); __ lvx (vTmp1, keypos, key); __ vperm (vKey2, vTmp1, vTmp2, keyPerm); // load the 8th round key to vKey3 __ addi (keypos, keypos, 16); __ lvx (vTmp2, keypos, key); __ vperm (vKey3, vTmp2, vTmp1, keyPerm); // load the 9th round key to vKey4 __ addi (keypos, keypos, 16); __ lvx (vTmp1, keypos, key); __ vperm (vKey4, vTmp1, vTmp2, keyPerm); // 6th - 9th rounds __ vcipher (vRet, vRet, vKey1); __ vcipher (vRet, vRet, vKey2); __ vcipher (vRet, vRet, vKey3); __ vcipher (vRet, vRet, vKey4); // load the 10th round key to vKey1 __ addi (keypos, keypos, 16); __ lvx (vTmp2, keypos, key); __ vperm (vKey1, vTmp2, vTmp1, keyPerm); // load the 11th round key to vKey2 __ addi (keypos, keypos, 16); __ lvx (vTmp1, keypos, key); __ vperm (vKey2, vTmp1, vTmp2, keyPerm); // if all round keys are loaded, skip next 4 rounds __ cmpwi (CCR0, keylen, 44); __ beq (CCR0, L_doLast); // 10th - 11th rounds __ vcipher (vRet, vRet, vKey1); __ vcipher (vRet, vRet, vKey2); // load the 12th round key to vKey1 __ addi (keypos, keypos, 16); __ lvx (vTmp2, keypos, key); __ vperm (vKey1, vTmp2, vTmp1, keyPerm); // load the 13th round key to vKey2 __ addi (keypos, keypos, 16); __ lvx (vTmp1, keypos, key); __ vperm (vKey2, vTmp1, vTmp2, keyPerm); // if all round keys are loaded, skip next 2 rounds __ cmpwi (CCR0, keylen, 52); __ beq (CCR0, L_doLast); // 12th - 13th rounds __ vcipher (vRet, vRet, vKey1); __ vcipher (vRet, vRet, vKey2); // load the 14th round key to vKey1 __ addi (keypos, keypos, 16); __ lvx (vTmp2, keypos, key); __ vperm (vKey1, vTmp2, vTmp1, keyPerm); // load the 15th round key to vKey2 __ addi (keypos, keypos, 16); __ lvx (vTmp1, keypos, key); __ vperm (vKey2, vTmp1, vTmp2, keyPerm); __ bind(L_doLast); // last two rounds __ vcipher (vRet, vRet, vKey1); __ vcipherlast (vRet, vRet, vKey2); __ neg (temp, to); __ lvsr (toPerm, temp); __ vspltisb (vTmp2, -1); __ vxor (vTmp1, vTmp1, vTmp1); __ vperm (vTmp2, vTmp2, vTmp1, toPerm); __ vxor (toPerm, toPerm, fSplt); __ lvx (vTmp1, to); __ vperm (vRet, vRet, vRet, toPerm); __ vsel (vTmp1, vTmp1, vRet, vTmp2); __ lvx (vTmp4, fifteen, to); __ stvx (vTmp1, to); __ vsel (vRet, vRet, vTmp4, vTmp2); __ stvx (vRet, fifteen, to); __ blr(); return start; } // Arguments for generated stub (little endian only): // R3_ARG1 - source byte array address // R4_ARG2 - destination byte array address // R5_ARG3 - K (key) in little endian int array address generate_aescrypt_decryptBlock() { assert(UseAES, "need AES instructions and misaligned SSE support"); StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock"); address start = __ function_entry(); Label L_doLast; Label L_do44; Label L_do52; Label L_do60; Register from = R3_ARG1; // source array address Register to = R4_ARG2; // destination array address Register key = R5_ARG3; // round key array Register keylen = R8; Register temp = R9; Register keypos = R10; Register hex = R11; Register fifteen = R12; VectorRegister vRet = VR0; VectorRegister vKey1 = VR1; VectorRegister vKey2 = VR2; VectorRegister vKey3 = VR3; VectorRegister vKey4 = VR4; VectorRegister vKey5 = VR5; VectorRegister fromPerm = VR6; VectorRegister keyPerm = VR7; VectorRegister toPerm = VR8; VectorRegister fSplt = VR9; VectorRegister vTmp1 = VR10; VectorRegister vTmp2 = VR11; VectorRegister vTmp3 = VR12; VectorRegister vTmp4 = VR13; VectorRegister vLow = VR14; VectorRegister vHigh = VR15; __ li (hex, 16); __ li (fifteen, 15); __ vspltisb (fSplt, 0x0f); // load unaligned from[0-15] to vsRet __ lvx (vRet, from); __ lvx (vTmp1, fifteen, from); __ lvsl (fromPerm, from); __ vxor (fromPerm, fromPerm, fSplt); __ vperm (vRet, vRet, vTmp1, fromPerm); // align [and byte swap in LE] // load keylen (44 or 52 or 60) __ lwz (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key); // to load keys __ lvsr (keyPerm, key); __ vxor (vTmp2, vTmp2, vTmp2); __ vspltisb (vTmp2, -16); __ vrld (keyPerm, keyPerm, vTmp2); __ vrld (keyPerm, keyPerm, vTmp2); __ vsldoi (keyPerm, keyPerm, keyPerm, -8); __ cmpwi (CCR0, keylen, 44); __ beq (CCR0, L_do44); __ cmpwi (CCR0, keylen, 52); __ beq (CCR0, L_do52); // load the 15th round key to vKey11 __ li (keypos, 240); __ lvx (vTmp1, keypos, key); __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey1, vTmp1, vTmp2, keyPerm); // load the 14th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp1, keypos, key); __ vperm (vKey2, vTmp2, vTmp1, keyPerm); // load the 13th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey3, vTmp1, vTmp2, keyPerm); // load the 12th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp1, keypos, key); __ vperm (vKey4, vTmp2, vTmp1, keyPerm); // load the 11th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey5, vTmp1, vTmp2, keyPerm); // 1st - 5th rounds __ vxor (vRet, vRet, vKey1); __ vncipher (vRet, vRet, vKey2); __ vncipher (vRet, vRet, vKey3); __ vncipher (vRet, vRet, vKey4); __ vncipher (vRet, vRet, vKey5); __ b (L_doLast); __ bind (L_do52); // load the 13th round key to vKey11 __ li (keypos, 208); __ lvx (vTmp1, keypos, key); __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey1, vTmp1, vTmp2, keyPerm); // load the 12th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp1, keypos, key); __ vperm (vKey2, vTmp2, vTmp1, keyPerm); // load the 11th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey3, vTmp1, vTmp2, keyPerm); // 1st - 3rd rounds __ vxor (vRet, vRet, vKey1); __ vncipher (vRet, vRet, vKey2); __ vncipher (vRet, vRet, vKey3); __ b (L_doLast); __ bind (L_do44); // load the 11th round key to vKey11 __ li (keypos, 176); __ lvx (vTmp1, keypos, key); __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey1, vTmp1, vTmp2, keyPerm); // 1st round __ vxor (vRet, vRet, vKey1); __ bind (L_doLast); // load the 10th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp1, keypos, key); __ vperm (vKey1, vTmp2, vTmp1, keyPerm); // load the 9th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey2, vTmp1, vTmp2, keyPerm); // load the 8th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp1, keypos, key); __ vperm (vKey3, vTmp2, vTmp1, keyPerm); // load the 7th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey4, vTmp1, vTmp2, keyPerm); // load the 6th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp1, keypos, key); __ vperm (vKey5, vTmp2, vTmp1, keyPerm); // last 10th - 6th rounds __ vncipher (vRet, vRet, vKey1); __ vncipher (vRet, vRet, vKey2); __ vncipher (vRet, vRet, vKey3); __ vncipher (vRet, vRet, vKey4); __ vncipher (vRet, vRet, vKey5); // load the 5th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey1, vTmp1, vTmp2, keyPerm); // load the 4th round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp1, keypos, key); __ vperm (vKey2, vTmp2, vTmp1, keyPerm); // load the 3rd round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey3, vTmp1, vTmp2, keyPerm); // load the 2nd round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp1, keypos, key); __ vperm (vKey4, vTmp2, vTmp1, keyPerm); // load the 1st round key to vKey10 __ addi (keypos, keypos, -16); __ lvx (vTmp2, keypos, key); __ vperm (vKey5, vTmp1, vTmp2, keyPerm); // last 5th - 1th rounds __ vncipher (vRet, vRet, vKey1); __ vncipher (vRet, vRet, vKey2); __ vncipher (vRet, vRet, vKey3); __ vncipher (vRet, vRet, vKey4); __ vncipherlast (vRet, vRet, vKey5); __ neg (temp, to); __ lvsr (toPerm, temp); __ vspltisb (vTmp2, -1); __ vxor (vTmp1, vTmp1, vTmp1); __ vperm (vTmp2, vTmp2, vTmp1, toPerm); __ vxor (toPerm, toPerm, fSplt); __ lvx (vTmp1, to); __ vperm (vRet, vRet, vRet, toPerm); __ vsel (vTmp1, vTmp1, vRet, vTmp2); __ lvx (vTmp4, fifteen, to); __ stvx (vTmp1, to); __ vsel (vRet, vRet, vTmp4, vTmp2); __ stvx (vRet, fifteen, to); __ blr(); return start; } void generate_arraycopy_stubs() { // Note: the disjoint stubs must be generated first, some of // the conjoint stubs use them. // non-aligned disjoint versions StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy"); StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy"); StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy"); StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy"); StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy", false); StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy_uninit", true); // aligned disjoint versions StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy"); StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy"); StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy"); StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy"); StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy", false); StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, "oop_disjoint_arraycopy_uninit", true); // non-aligned conjoint versions StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy"); StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy"); StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy"); StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy"); StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy", false); StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, "oop_arraycopy_uninit", true); // aligned conjoint versions StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy"); StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy"); StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy"); StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, "arrayof_jlong_arraycopy"); StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", false); StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", true); // fill routines StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill"); StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill"); StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill"); StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill"); StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill"); StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill"); } // Safefetch stubs. void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) { // safefetch signatures: // int SafeFetch32(int* adr, int errValue); // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); // // arguments: // R3_ARG1 = adr // R4_ARG2 = errValue // // result: // R3_RET = *adr or errValue StubCodeMark mark(this, "StubRoutines", name); // Entry point, pc or function descriptor. *entry = __ function_entry(); // Load *adr into R4_ARG2, may fault. *fault_pc = __ pc(); switch (size) { case 4: // int32_t, signed extended __ lwa(R4_ARG2, 0, R3_ARG1); break; case 8: // int64_t __ ld(R4_ARG2, 0, R3_ARG1); break; default: ShouldNotReachHere(); } // return errValue or *adr *continuation_pc = __ pc(); __ mr(R3_RET, R4_ARG2); __ blr(); } // Initialization void generate_initial() { // Generates all stubs and initializes the entry points // Entry points that exist in all platforms. // Note: This is code that could be shared among different platforms - however the // benefit seems to be smaller than the disadvantage of having a // much more complicated generator structure. See also comment in // stubRoutines.hpp. StubRoutines::_forward_exception_entry = generate_forward_exception(); StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address); StubRoutines::_catch_exception_entry = generate_catch_exception(); // Build this early so it's available for the interpreter. StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false); } void generate_all() { // Generates all stubs and initializes the entry points // These entry points require SharedInfo::stack0 to be set up in // non-core builds StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false); // Handle IncompatibleClassChangeError in itable stubs. StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false); StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false); StubRoutines::_handler_for_unsafe_access_entry = generate_handler_for_unsafe_access(); // support for verify_oop (must happen after universe_init) StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); // arraycopy stubs used by compilers generate_arraycopy_stubs(); // Safefetch stubs. generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, &StubRoutines::_safefetch32_fault_pc, &StubRoutines::_safefetch32_continuation_pc); generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry, &StubRoutines::_safefetchN_fault_pc, &StubRoutines::_safefetchN_continuation_pc); if (UseAESIntrinsics) { StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); } if (UseMontgomeryMultiplyIntrinsic) { StubRoutines::_montgomeryMultiply = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); } if (UseMontgomerySquareIntrinsic) { StubRoutines::_montgomerySquare = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); } } public: StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { // replace the standard masm with a special one: _masm = new MacroAssembler(code); if (all) { generate_all(); } else { generate_initial(); } } }; void StubGenerator_generate(CodeBuffer* code, bool all) { StubGenerator g(code, all); }