提交 f8964eac 编写于 作者: G goetz

8035647: PPC64: Support for elf v2 abi.

Summary: ELFv2 ABI used by the little endian PowerPC64 on Linux.
Reviewed-by: kvn
Contributed-by: asmundak@google.com
上级 233bccac
......@@ -124,6 +124,7 @@ class Argument VALUE_OBJ_CLASS_SPEC {
}
};
#if !defined(ABI_ELFv2)
// A ppc64 function descriptor.
struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
private:
......@@ -161,6 +162,7 @@ struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
_env = (address) 0xbad;
}
};
#endif
class Assembler : public AbstractAssembler {
protected:
......@@ -1067,6 +1069,7 @@ class Assembler : public AbstractAssembler {
// Emit an address.
inline address emit_addr(const address addr = NULL);
#if !defined(ABI_ELFv2)
// Emit a function descriptor with the specified entry point, TOC,
// and ENV. If the entry point is NULL, the descriptor will point
// just past the descriptor.
......@@ -1074,6 +1077,7 @@ class Assembler : public AbstractAssembler {
inline address emit_fd(address entry = NULL,
address toc = (address) FunctionDescriptor::friend_toc,
address env = (address) FunctionDescriptor::friend_env);
#endif
/////////////////////////////////////////////////////////////////////////////////////
// PPC instructions
......
......@@ -55,6 +55,7 @@ inline address Assembler::emit_addr(const address addr) {
return start;
}
#if !defined(ABI_ELFv2)
// Emit a function descriptor with the specified entry point, TOC, and
// ENV. If the entry point is NULL, the descriptor will point just
// past the descriptor.
......@@ -73,6 +74,7 @@ inline address Assembler::emit_fd(address entry, address toc, address env) {
return (address)fd;
}
#endif
// Issue an illegal instruction. 0 is guaranteed to be an illegal instruction.
inline void Assembler::illtrap() { Assembler::emit_int32(0); }
......
......@@ -1136,7 +1136,9 @@ address CppInterpreterGenerator::generate_native_entry(void) {
// (outgoing C args), R3_ARG1 to R10_ARG8, and F1_ARG1 to
// F13_ARG13.
__ mr(R3_ARG1, R18_locals);
#if !defined(ABI_ELFv2)
__ ld(signature_handler_fd, 0, signature_handler_fd);
#endif
__ call_stub(signature_handler_fd);
// reload method
__ ld(R19_method, state_(_method));
......@@ -1295,8 +1297,13 @@ address CppInterpreterGenerator::generate_native_entry(void) {
// native result acrosss the call. No oop is present
__ mr(R3_ARG1, R16_thread);
#if defined(ABI_ELFv2)
__ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
relocInfo::none);
#else
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
relocInfo::none);
#endif
__ bind(sync_check_done);
//=============================================================================
......@@ -1413,7 +1420,7 @@ address CppInterpreterGenerator::generate_native_entry(void) {
// First, pop to caller's frame.
__ pop_interpreter_frame(R11_scratch1, R12_scratch2, R21_tmp1 /* set to return pc */, R22_tmp2);
__ push_frame_abi112(0, R11_scratch1);
__ push_frame_reg_args(0, R11_scratch1);
// Get the address of the exception handler.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
R16_thread,
......@@ -2545,7 +2552,7 @@ address CppInterpreterGenerator::generate_normal_entry(void) {
__ mr(R4_ARG2, R3_ARG1); // ARG2 := ARG1
// Find the address of the "catch_exception" stub.
__ push_frame_abi112(0, R11_scratch1);
__ push_frame_reg_args(0, R11_scratch1);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
R16_thread,
R4_ARG2);
......
......@@ -50,7 +50,7 @@
// [C_FRAME]
//
// C_FRAME:
// 0 [ABI_112]
// 0 [ABI_REG_ARGS]
// 112 CARG_9: outgoing arg 9 (arg_1 ... arg_8 via gpr_3 ... gpr_{10})
// ...
// 40+M*8 CARG_M: outgoing arg M (M is the maximum of outgoing args taken over all call sites in the procedure)
......@@ -77,7 +77,7 @@
// 32 reserved
// 40 space for TOC (=R2) register for next call
//
// ABI_112:
// ABI_REG_ARGS:
// 0 [ABI_48]
// 48 CARG_1: spill slot for outgoing arg 1. used by next callee.
// ... ...
......@@ -95,23 +95,25 @@
log_2_of_alignment_in_bits = 7
};
// ABI_48:
struct abi_48 {
// ABI_MINFRAME:
struct abi_minframe {
uint64_t callers_sp;
uint64_t cr; //_16
uint64_t lr;
#if !defined(ABI_ELFv2)
uint64_t reserved1; //_16
uint64_t reserved2;
#endif
uint64_t toc; //_16
// nothing to add here!
// aligned to frame::alignment_in_bytes (16)
};
enum {
abi_48_size = sizeof(abi_48)
abi_minframe_size = sizeof(abi_minframe)
};
struct abi_112 : abi_48 {
struct abi_reg_args : abi_minframe {
uint64_t carg_1;
uint64_t carg_2; //_16
uint64_t carg_3;
......@@ -124,13 +126,13 @@
};
enum {
abi_112_size = sizeof(abi_112)
abi_reg_args_size = sizeof(abi_reg_args)
};
#define _abi(_component) \
(offset_of(frame::abi_112, _component))
(offset_of(frame::abi_reg_args, _component))
struct abi_112_spill : abi_112 {
struct abi_reg_args_spill : abi_reg_args {
// additional spill slots
uint64_t spill_ret;
uint64_t spill_fret; //_16
......@@ -138,11 +140,11 @@
};
enum {
abi_112_spill_size = sizeof(abi_112_spill)
abi_reg_args_spill_size = sizeof(abi_reg_args_spill)
};
#define _abi_112_spill(_component) \
(offset_of(frame::abi_112_spill, _component))
#define _abi_reg_args_spill(_component) \
(offset_of(frame::abi_reg_args_spill, _component))
// non-volatile GPRs:
......@@ -242,7 +244,7 @@
// [ENTRY_FRAME_LOCALS]
//
// PARENT_IJAVA_FRAME_ABI:
// 0 [ABI_48]
// 0 [ABI_MINFRAME]
// top_frame_sp
// initial_caller_sp
//
......@@ -258,7 +260,7 @@
// PARENT_IJAVA_FRAME_ABI
struct parent_ijava_frame_abi : abi_48 {
struct parent_ijava_frame_abi : abi_minframe {
// SOE registers.
// C2i adapters spill their top-frame stack-pointer here.
uint64_t top_frame_sp; // carg_1
......@@ -285,7 +287,7 @@
uint64_t carg_6_unused; //_16 carg_6
uint64_t carg_7_unused; // carg_7
// Use arg8 for storing frame_manager_lr. The size of
// top_ijava_frame_abi must match abi_112.
// top_ijava_frame_abi must match abi_reg_args.
uint64_t frame_manager_lr; //_16 carg_8
// nothing to add here!
// aligned to frame::alignment_in_bytes (16)
......@@ -395,8 +397,8 @@
intptr_t* fp() const { return _fp; }
// Accessors for ABIs
inline abi_48* own_abi() const { return (abi_48*) _sp; }
inline abi_48* callers_abi() const { return (abi_48*) _fp; }
inline abi_minframe* own_abi() const { return (abi_minframe*) _sp; }
inline abi_minframe* callers_abi() const { return (abi_minframe*) _fp; }
private:
......
......@@ -109,8 +109,10 @@ void InterpreterRuntime::SignatureHandlerGenerator::pass_object() {
}
void InterpreterRuntime::SignatureHandlerGenerator::generate(uint64_t fingerprint) {
#if !defined(ABI_ELFv2)
// Emit fd for current codebuffer. Needs patching!
__ emit_fd();
#endif
// Generate code to handle arguments.
iterate(fingerprint);
......@@ -127,11 +129,13 @@ void InterpreterRuntime::SignatureHandlerGenerator::generate(uint64_t fingerprin
// Implementation of SignatureHandlerLibrary
void SignatureHandlerLibrary::pd_set_handler(address handler) {
#if !defined(ABI_ELFv2)
// patch fd here.
FunctionDescriptor* fd = (FunctionDescriptor*) handler;
fd->set_entry(handler + (int)sizeof(FunctionDescriptor));
assert(fd->toc() == (address)0xcafe, "need to adjust TOC here");
#endif
}
......
......@@ -128,13 +128,13 @@ address AbstractInterpreterGenerator::generate_slow_signature_handler() {
const Register target_sp = R28_tmp8;
const FloatRegister floatSlot = F0;
address entry = __ emit_fd();
address entry = __ function_entry();
__ save_LR_CR(R0);
__ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
// We use target_sp for storing arguments in the C frame.
__ mr(target_sp, R1_SP);
__ push_frame_abi112_nonvolatiles(0, R11_scratch1);
__ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
__ mr(arg_java, R3_ARG1);
......@@ -474,7 +474,7 @@ address InterpreterGenerator::generate_abstract_entry(void) {
// Push a new C frame and save LR.
__ save_LR_CR(R0);
__ push_frame_abi112(0, R11_scratch1);
__ push_frame_reg_args(0, R11_scratch1);
// This is not a leaf but we have a JavaFrameAnchor now and we will
// check (create) exceptions afterward so this is ok.
......
......@@ -594,7 +594,13 @@ void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool
"can't identify emitted call");
} else {
// variant 1:
#if defined(ABI_ELFv2)
nop();
calculate_address_from_global_toc(R12, dest, true, true, false);
mtctr(R12);
nop();
nop();
#else
mr(R0, R11); // spill R11 -> R0.
// Load the destination address into CTR,
......@@ -604,6 +610,7 @@ void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool
mtctr(R11);
mr(R11, R0); // spill R11 <- R0.
nop();
#endif
// do the call/jump
if (link) {
......@@ -912,16 +919,16 @@ void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
}
}
// Push a frame of size `bytes' plus abi112 on top.
void MacroAssembler::push_frame_abi112(unsigned int bytes, Register tmp) {
push_frame(bytes + frame::abi_112_size, tmp);
// Push a frame of size `bytes' plus abi_reg_args on top.
void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
push_frame(bytes + frame::abi_reg_args_size, tmp);
}
// Setup up a new C frame with a spill area for non-volatile GPRs and
// additional space for local variables.
void MacroAssembler::push_frame_abi112_nonvolatiles(unsigned int bytes,
Register tmp) {
push_frame(bytes + frame::abi_112_size + frame::spill_nonvolatiles_size, tmp);
void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
Register tmp) {
push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
}
// Pop current C frame.
......@@ -929,6 +936,42 @@ void MacroAssembler::pop_frame() {
ld(R1_SP, _abi(callers_sp), R1_SP);
}
#if defined(ABI_ELFv2)
address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
// TODO(asmundak): make sure the caller uses R12 as function descriptor
// most of the times.
if (R12 != r_function_entry) {
mr(R12, r_function_entry);
}
mtctr(R12);
// Do a call or a branch.
if (and_link) {
bctrl();
} else {
bctr();
}
_last_calls_return_pc = pc();
return _last_calls_return_pc;
}
// Call a C function via a function descriptor and use full C
// calling conventions. Updates and returns _last_calls_return_pc.
address MacroAssembler::call_c(Register r_function_entry) {
return branch_to(r_function_entry, /*and_link=*/true);
}
// For tail calls: only branch, don't link, so callee returns to caller of this function.
address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
return branch_to(r_function_entry, /*and_link=*/false);
}
address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
load_const(R12, function_entry, R0);
return branch_to(R12, /*and_link=*/true);
}
#else
// Generic version of a call to C function via a function descriptor
// with variable support for C calling conventions (TOC, ENV, etc.).
// Updates and returns _last_calls_return_pc.
......@@ -1077,6 +1120,7 @@ address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
}
return _last_calls_return_pc;
}
#endif
void MacroAssembler::call_VM_base(Register oop_result,
Register last_java_sp,
......@@ -1091,8 +1135,11 @@ void MacroAssembler::call_VM_base(Register oop_result,
// ARG1 must hold thread address.
mr(R3_ARG1, R16_thread);
#if defined(ABI_ELFv2)
address return_pc = call_c(entry_point, relocInfo::none);
#else
address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
#endif
reset_last_Java_frame();
......@@ -1113,7 +1160,11 @@ void MacroAssembler::call_VM_base(Register oop_result,
void MacroAssembler::call_VM_leaf_base(address entry_point) {
BLOCK_COMMENT("call_VM_leaf {");
#if defined(ABI_ELFv2)
call_c(entry_point, relocInfo::none);
#else
call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
#endif
BLOCK_COMMENT("} call_VM_leaf");
}
......@@ -2227,7 +2278,7 @@ void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offs
// VM call need frame to access(write) O register.
if (needs_frame) {
save_LR_CR(Rtmp1);
push_frame_abi112(0, Rtmp2);
push_frame_reg_args(0, Rtmp2);
}
if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded.
......@@ -3006,13 +3057,13 @@ void MacroAssembler::verify_oop(Register oop, const char* msg) {
mr(R0, tmp);
// kill tmp
save_LR_CR(tmp);
push_frame_abi112(nbytes_save, tmp);
push_frame_reg_args(nbytes_save, tmp);
// restore tmp
mr(tmp, R0);
save_volatile_gprs(R1_SP, 112); // except R0
// load FunctionDescriptor**
// load FunctionDescriptor** / entry_address *
load_const(tmp, fd);
// load FunctionDescriptor*
// load FunctionDescriptor* / entry_address
ld(tmp, 0, tmp);
mr(R4_ARG2, oop);
load_const(R3_ARG1, (address)msg);
......
......@@ -279,12 +279,12 @@ class MacroAssembler: public Assembler {
// Push a frame of size `bytes'. No abi space provided.
void push_frame(unsigned int bytes, Register tmp);
// Push a frame of size `bytes' plus abi112 on top.
void push_frame_abi112(unsigned int bytes, Register tmp);
// Push a frame of size `bytes' plus abi_reg_args on top.
void push_frame_reg_args(unsigned int bytes, Register tmp);
// Setup up a new C frame with a spill area for non-volatile GPRs and additional
// space for local variables
void push_frame_abi112_nonvolatiles(unsigned int bytes, Register tmp);
void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp);
// pop current C frame
void pop_frame();
......@@ -296,17 +296,31 @@ class MacroAssembler: public Assembler {
private:
address _last_calls_return_pc;
#if defined(ABI_ELFv2)
// Generic version of a call to C function.
// Updates and returns _last_calls_return_pc.
address branch_to(Register function_entry, bool and_link);
#else
// Generic version of a call to C function via a function descriptor
// with variable support for C calling conventions (TOC, ENV, etc.).
// updates and returns _last_calls_return_pc.
address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee);
#endif
public:
// Get the pc where the last call will return to. returns _last_calls_return_pc.
inline address last_calls_return_pc();
#if defined(ABI_ELFv2)
// Call a C function via a function descriptor and use full C
// calling conventions. Updates and returns _last_calls_return_pc.
address call_c(Register function_entry);
// For tail calls: only branch, don't link, so callee returns to caller of this function.
address call_c_and_return_to_caller(Register function_entry);
address call_c(address function_entry, relocInfo::relocType rt);
#else
// Call a C function via a function descriptor and use full C
// calling conventions. Updates and returns _last_calls_return_pc.
address call_c(Register function_descriptor);
......@@ -315,6 +329,7 @@ class MacroAssembler: public Assembler {
address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt);
address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt,
Register toc);
#endif
protected:
......@@ -649,6 +664,11 @@ class MacroAssembler: public Assembler {
void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
// Convenience method returning function entry. For the ELFv1 case
// creates function descriptor at the current address and returs
// the pointer to it. For the ELFv2 case returns the current address.
inline address function_entry();
#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
......
......@@ -385,4 +385,10 @@ inline void MacroAssembler::trap_range_check_ge(Register a, int si16) {
twi(traptoEqual | traptoGreaterThanUnsigned, a/*reg a*/, si16);
}
#if defined(ABI_ELFv2)
inline address MacroAssembler::function_entry() { return pc(); }
#else
inline address MacroAssembler::function_entry() { return emit_fd(); }
#endif
#endif // CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP
......@@ -453,11 +453,11 @@ void trace_method_handle_stub(const char* adaptername,
if (Verbose) {
tty->print_cr("Registers:");
const int abi_offset = frame::abi_112_size / 8;
const int abi_offset = frame::abi_reg_args_size / 8;
for (int i = R3->encoding(); i <= R12->encoding(); i++) {
Register r = as_Register(i);
int count = i - R3->encoding();
// The registers are stored in reverse order on the stack (by save_volatile_gprs(R1_SP, abi_112_size)).
// The registers are stored in reverse order on the stack (by save_volatile_gprs(R1_SP, abi_reg_args_size)).
tty->print("%3s=" PTR_FORMAT, r->name(), saved_regs[abi_offset + count]);
if ((count + 1) % 4 == 0) {
tty->cr();
......@@ -524,9 +524,9 @@ void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adapt
__ save_LR_CR(R0);
__ mr(R0, R1_SP); // saved_sp
assert(Assembler::is_simm(-nbytes_save, 16), "Overwriting R0");
// push_frame_abi112 only uses R0 if nbytes_save is wider than 16 bit
__ push_frame_abi112(nbytes_save, R0);
__ save_volatile_gprs(R1_SP, frame::abi_112_size); // Except R0.
// Push_frame_reg_args only uses R0 if nbytes_save is wider than 16 bit.
__ push_frame_reg_args(nbytes_save, R0);
__ save_volatile_gprs(R1_SP, frame::abi_reg_args_size); // Except R0.
__ load_const(R3_ARG1, (address)adaptername);
__ mr(R4_ARG2, R23_method_handle);
......
......@@ -1008,7 +1008,11 @@ int MachCallDynamicJavaNode::ret_addr_offset() {
}
int MachCallRuntimeNode::ret_addr_offset() {
#if defined(ABI_ELFv2)
return 28;
#else
return 40;
#endif
}
//=============================================================================
......@@ -3686,6 +3690,10 @@ encode %{
MacroAssembler _masm(&cbuf);
const address start_pc = __ pc();
#if defined(ABI_ELFv2)
address entry= !($meth$$method) ? NULL : (address)$meth$$method;
__ call_c(entry, relocInfo::runtime_call_type);
#else
// The function we're going to call.
FunctionDescriptor fdtemp;
const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
......@@ -3696,6 +3704,7 @@ encode %{
// Put entry, env, toc into the constant pool, this needs up to 3 constant
// pool entries; call_c_using_toc will optimize the call.
__ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
#endif
// Check the ret_addr_offset.
assert(((MachCallRuntimeNode*)this)->ret_addr_offset() == __ last_calls_return_pc() - start_pc,
......@@ -3711,20 +3720,25 @@ encode %{
__ mtctr($src$$Register);
%}
// postalloc expand emitter for runtime leaf calls.
// Postalloc expand emitter for runtime leaf calls.
enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
loadConLNodesTuple loadConLNodes_Entry;
#if defined(ABI_ELFv2)
jlong entry_address = (jlong) this->entry_point();
assert(entry_address, "need address here");
loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
#else
// Get the struct that describes the function we are about to call.
FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
assert(fd, "need fd here");
jlong entry_address = (jlong) fd->entry();
// new nodes
loadConLNodesTuple loadConLNodes_Entry;
loadConLNodesTuple loadConLNodes_Env;
loadConLNodesTuple loadConLNodes_Toc;
MachNode *mtctr = NULL;
MachCallLeafNode *call = NULL;
// Create nodes and operands for loading the entry point.
loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->entry()),
loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
......@@ -3745,8 +3759,9 @@ encode %{
// Create nodes and operands for loading the Toc point.
loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
#endif // ABI_ELFv2
// mtctr node
mtctr = new (C) CallLeafDirect_mtctrNode();
MachNode *mtctr = new (C) CallLeafDirect_mtctrNode();
assert(loadConLNodes_Entry._last != NULL, "entry must exist");
mtctr->add_req(0, loadConLNodes_Entry._last);
......@@ -3755,10 +3770,10 @@ encode %{
mtctr->_opnds[1] = new (C) iRegLdstOper();
// call node
call = new (C) CallLeafDirectNode();
MachCallLeafNode *call = new (C) CallLeafDirectNode();
call->_opnds[0] = _opnds[0];
call->_opnds[1] = new (C) methodOper((intptr_t) fd->entry()); // may get set later
call->_opnds[1] = new (C) methodOper((intptr_t) entry_address); // May get set later.
// Make the new call node look like the old one.
call->_name = _name;
......@@ -3785,8 +3800,10 @@ encode %{
// These must be reqired edges, as the registers are live up to
// the call. Else the constants are handled as kills.
call->add_req(mtctr);
#if !defined(ABI_ELFv2)
call->add_req(loadConLNodes_Env._last);
call->add_req(loadConLNodes_Toc._last);
#endif
// ...as well as prec
for (uint i = req(); i < len(); ++i) {
......@@ -3799,10 +3816,12 @@ encode %{
// Insert the new nodes.
if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
if (loadConLNodes_Entry._last) nodes->push(loadConLNodes_Entry._last);
#if !defined(ABI_ELFv2)
if (loadConLNodes_Env._large_hi) nodes->push(loadConLNodes_Env._large_hi);
if (loadConLNodes_Env._last) nodes->push(loadConLNodes_Env._last);
if (loadConLNodes_Toc._large_hi) nodes->push(loadConLNodes_Toc._large_hi);
if (loadConLNodes_Toc._last) nodes->push(loadConLNodes_Toc._last);
#endif
nodes->push(mtctr);
nodes->push(call);
%}
......@@ -3849,7 +3868,7 @@ frame %{
// out_preserve_stack_slots for calls to C. Supports the var-args
// backing area for register parms.
//
varargs_C_out_slots_killed(((frame::abi_112_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
// The after-PROLOG location of the return address. Location of
// return address specifies a type (REG or STACK) and a number
......
......@@ -87,7 +87,7 @@ void OptoRuntime::generate_exception_blob() {
address start = __ pc();
int frame_size_in_bytes = frame::abi_112_size;
int frame_size_in_bytes = frame::abi_reg_args_size;
OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
// Exception pc is 'return address' for stack walker.
......@@ -99,7 +99,7 @@ void OptoRuntime::generate_exception_blob() {
// Save callee-saved registers.
// Push a C frame for the exception blob. It is needed for the C call later on.
__ push_frame_abi112(0, R11_scratch1);
__ push_frame_reg_args(0, R11_scratch1);
// This call does all the hard work. It checks if an exception handler
// exists in the method.
......@@ -109,8 +109,12 @@ void OptoRuntime::generate_exception_blob() {
__ set_last_Java_frame(/*sp=*/R1_SP, noreg);
__ mr(R3_ARG1, R16_thread);
#if defined(ABI_ELFv2)
__ call_c((address) OptoRuntime::handle_exception_C, relocInfo::none);
#else
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, OptoRuntime::handle_exception_C),
relocInfo::none);
#endif
address calls_return_pc = __ last_calls_return_pc();
# ifdef ASSERT
__ cmpdi(CCR0, R3_RET, 0);
......@@ -162,7 +166,11 @@ void OptoRuntime::generate_exception_blob() {
__ bind(mh_callsite);
__ mr(R31, R3_RET); // Save branch address.
__ mr(R3_ARG1, R16_thread);
#if defined(ABI_ELFv2)
__ call_c((address) adjust_SP_for_methodhandle_callsite, relocInfo::none);
#else
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, adjust_SP_for_methodhandle_callsite), relocInfo::none);
#endif
// Returns unextended_sp in R3_RET.
__ mtctr(R31); // Move address of exception handler to SR_CTR.
......
......@@ -67,7 +67,7 @@ class RegisterSaver {
return_pc_is_thread_saved_exception_pc
};
static OopMap* push_frame_abi112_and_save_live_registers(MacroAssembler* masm,
static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
int* out_frame_size_in_bytes,
bool generate_oop_map,
int return_pc_adjustment,
......@@ -200,12 +200,12 @@ static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
RegisterSaver_LiveIntReg( R30 ), // r30 must be the last register
};
OopMap* RegisterSaver::push_frame_abi112_and_save_live_registers(MacroAssembler* masm,
OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
int* out_frame_size_in_bytes,
bool generate_oop_map,
int return_pc_adjustment,
ReturnPCLocation return_pc_location) {
// Push an abi112-frame and store all registers which may be live.
// Push an abi_reg_args-frame and store all registers which may be live.
// If requested, create an OopMap: Record volatile registers as
// callee-save values in an OopMap so their save locations will be
// propagated to the RegisterMap of the caller frame during
......@@ -221,7 +221,7 @@ OopMap* RegisterSaver::push_frame_abi112_and_save_live_registers(MacroAssembler*
sizeof(RegisterSaver::LiveRegType);
const int register_save_size = regstosave_num * reg_size;
const int frame_size_in_bytes = round_to(register_save_size, frame::alignment_in_bytes)
+ frame::abi_112_size;
+ frame::abi_reg_args_size;
*out_frame_size_in_bytes = frame_size_in_bytes;
const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
const int register_save_offset = frame_size_in_bytes - register_save_size;
......@@ -229,7 +229,7 @@ OopMap* RegisterSaver::push_frame_abi112_and_save_live_registers(MacroAssembler*
// OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL;
BLOCK_COMMENT("push_frame_abi112_and_save_live_registers {");
BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {");
// Save r30 in the last slot of the not yet pushed frame so that we
// can use it as scratch reg.
......@@ -294,7 +294,7 @@ OopMap* RegisterSaver::push_frame_abi112_and_save_live_registers(MacroAssembler*
offset += reg_size;
}
BLOCK_COMMENT("} push_frame_abi112_and_save_live_registers");
BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers");
// And we're done.
return map;
......@@ -699,15 +699,19 @@ int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
int i;
VMReg reg;
// Leave room for C-compatible ABI_112.
int stk = (frame::abi_112_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
// Leave room for C-compatible ABI_REG_ARGS.
int stk = (frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
int arg = 0;
int freg = 0;
// Avoid passing C arguments in the wrong stack slots.
#if defined(ABI_ELFv2)
assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96,
"passing C arguments in wrong stack slots");
#else
assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
"passing C arguments in wrong stack slots");
#endif
// We fill-out regs AND regs2 if an argument must be passed in a
// register AND in a stack slot. If regs2 is NULL in such a
// situation, we bail-out with a fatal error.
......@@ -1504,7 +1508,11 @@ static void check_needs_gc_for_critical_native(MacroAssembler* masm,
__ block_comment("block_for_jni_critical");
address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
#if defined(ABI_ELFv2)
__ call_c(entry_point, relocInfo::runtime_call_type);
#else
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type);
#endif
address start = __ pc() - __ offset(),
calls_return_pc = __ last_calls_return_pc();
oop_maps->add_gc_map(calls_return_pc - start, map);
......@@ -1877,7 +1885,7 @@ nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
// Layout of the native wrapper frame:
// (stack grows upwards, memory grows downwards)
//
// NW [ABI_112] <-- 1) R1_SP
// NW [ABI_REG_ARGS] <-- 1) R1_SP
// [outgoing arguments] <-- 2) R1_SP + out_arg_slot_offset
// [oopHandle area] <-- 3) R1_SP + oop_handle_offset (save area for critical natives)
// klass <-- 4) R1_SP + klass_offset
......@@ -2211,8 +2219,8 @@ nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
// slow case of monitor enter. Inline a special case of call_VM that
// disallows any pending_exception.
// Save argument registers and leave room for C-compatible ABI_112.
int frame_size = frame::abi_112_size +
// Save argument registers and leave room for C-compatible ABI_REG_ARGS.
int frame_size = frame::abi_reg_args_size +
round_to(total_c_args * wordSize, frame::alignment_in_bytes);
__ mr(R11_scratch1, R1_SP);
RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
......@@ -2250,9 +2258,12 @@ nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
// The JNI call
// --------------------------------------------------------------------------
#if defined(ABI_ELFv2)
__ call_c(native_func, relocInfo::runtime_call_type);
#else
FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
__ call_c(fd_native_method, relocInfo::runtime_call_type);
#endif
// Now, we are back from the native code.
......@@ -2724,7 +2735,7 @@ void SharedRuntime::generate_deopt_blob() {
OopMapSet *oop_maps = new OopMapSet();
// size of ABI112 plus spill slots for R3_RET and F1_RET.
const int frame_size_in_bytes = frame::abi_112_spill_size;
const int frame_size_in_bytes = frame::abi_reg_args_spill_size;
const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
......@@ -2757,11 +2768,11 @@ void SharedRuntime::generate_deopt_blob() {
// Push the "unpack frame"
// Save everything in sight.
map = RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
&first_frame_size_in_bytes,
/*generate_oop_map=*/ true,
return_pc_adjustment_no_exception,
RegisterSaver::return_pc_is_lr);
map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
&first_frame_size_in_bytes,
/*generate_oop_map=*/ true,
return_pc_adjustment_no_exception,
RegisterSaver::return_pc_is_lr);
assert(map != NULL, "OopMap must have been created");
__ li(exec_mode_reg, Deoptimization::Unpack_deopt);
......@@ -2787,11 +2798,11 @@ void SharedRuntime::generate_deopt_blob() {
// Push the "unpack frame".
// Save everything in sight.
assert(R4 == R4_ARG2, "exception pc must be in r4");
RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
&first_frame_size_in_bytes,
/*generate_oop_map=*/ false,
return_pc_adjustment_exception,
RegisterSaver::return_pc_is_r4);
RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
&first_frame_size_in_bytes,
/*generate_oop_map=*/ false,
return_pc_adjustment_exception,
RegisterSaver::return_pc_is_r4);
// Deopt during an exception. Save exec mode for unpack_frames.
__ li(exec_mode_reg, Deoptimization::Unpack_exception);
......@@ -2876,8 +2887,8 @@ void SharedRuntime::generate_deopt_blob() {
// ...).
// Spill live volatile registers since we'll do a call.
__ std( R3_RET, _abi_112_spill(spill_ret), R1_SP);
__ stfd(F1_RET, _abi_112_spill(spill_fret), R1_SP);
__ std( R3_RET, _abi_reg_args_spill(spill_ret), R1_SP);
__ stfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
// Let the unpacker layout information in the skeletal frames just
// allocated.
......@@ -2889,8 +2900,8 @@ void SharedRuntime::generate_deopt_blob() {
__ reset_last_Java_frame();
// Restore the volatiles saved above.
__ ld( R3_RET, _abi_112_spill(spill_ret), R1_SP);
__ lfd(F1_RET, _abi_112_spill(spill_fret), R1_SP);
__ ld( R3_RET, _abi_reg_args_spill(spill_ret), R1_SP);
__ lfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
// Pop the unpack frame.
__ pop_frame();
......@@ -2930,7 +2941,7 @@ void SharedRuntime::generate_uncommon_trap_blob() {
Register unc_trap_reg = R23_tmp3;
OopMapSet* oop_maps = new OopMapSet();
int frame_size_in_bytes = frame::abi_112_size;
int frame_size_in_bytes = frame::abi_reg_args_size;
OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
// stack: (deoptee, optional i2c, caller_of_deoptee, ...).
......@@ -2943,7 +2954,7 @@ void SharedRuntime::generate_uncommon_trap_blob() {
__ save_LR_CR(R11_scratch1);
// Push an "uncommon_trap" frame.
__ push_frame_abi112(0, R11_scratch1);
__ push_frame_reg_args(0, R11_scratch1);
// stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
......@@ -2996,7 +3007,7 @@ void SharedRuntime::generate_uncommon_trap_blob() {
// interpreter frames just created.
// Push a simple "unpack frame" here.
__ push_frame_abi112(0, R11_scratch1);
__ push_frame_reg_args(0, R11_scratch1);
// stack: (unpack frame, skeletal interpreter frame, ..., optional
// skeletal interpreter frame, optional c2i, caller of deoptee,
......@@ -3064,11 +3075,11 @@ SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_t
}
// Save registers, fpu state, and flags.
map = RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
&frame_size_in_bytes,
/*generate_oop_map=*/ true,
/*return_pc_adjustment=*/0,
return_pc_location);
map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
&frame_size_in_bytes,
/*generate_oop_map=*/ true,
/*return_pc_adjustment=*/0,
return_pc_location);
// The following is basically a call_VM. However, we need the precise
// address of the call in order to generate an oopmap. Hence, we do all the
......@@ -3151,11 +3162,11 @@ RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const cha
address start = __ pc();
map = RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
&frame_size_in_bytes,
/*generate_oop_map*/ true,
/*return_pc_adjustment*/ 0,
RegisterSaver::return_pc_is_lr);
map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
&frame_size_in_bytes,
/*generate_oop_map*/ true,
/*return_pc_adjustment*/ 0,
RegisterSaver::return_pc_is_lr);
// Use noreg as last_Java_pc, the return pc will be reconstructed
// from the physical frame.
......
......@@ -79,11 +79,11 @@ class StubGenerator: public StubCodeGenerator {
StubCodeMark mark(this, "StubRoutines", "call_stub");
address start = __ emit_fd();
address start = __ function_entry();
// some sanity checks
assert((sizeof(frame::abi_48) % 16) == 0, "unaligned");
assert((sizeof(frame::abi_112) % 16) == 0, "unaligned");
assert((sizeof(frame::abi_minframe) % 16) == 0, "unaligned");
assert((sizeof(frame::abi_reg_args) % 16) == 0, "unaligned");
assert((sizeof(frame::spill_nonvolatiles) % 16) == 0, "unaligned");
assert((sizeof(frame::parent_ijava_frame_abi) % 16) == 0, "unaligned");
assert((sizeof(frame::entry_frame_locals) % 16) == 0, "unaligned");
......@@ -444,7 +444,7 @@ class StubGenerator: public StubCodeGenerator {
// Save LR/CR and copy exception pc (LR) into R4_ARG2.
__ save_LR_CR(R4_ARG2);
__ push_frame_abi112(0, R0);
__ push_frame_reg_args(0, R0);
// Find exception handler.
__ call_VM_leaf(CAST_FROM_FN_PTR(address,
SharedRuntime::exception_handler_for_return_address),
......@@ -519,7 +519,7 @@ class StubGenerator: public StubCodeGenerator {
MacroAssembler* masm = new MacroAssembler(&code);
OopMapSet* oop_maps = new OopMapSet();
int frame_size_in_bytes = frame::abi_112_size;
int frame_size_in_bytes = frame::abi_reg_args_size;
OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
StubCodeMark mark(this, "StubRoutines", "throw_exception");
......@@ -529,7 +529,7 @@ class StubGenerator: public StubCodeGenerator {
__ save_LR_CR(R11_scratch1);
// Push a frame.
__ push_frame_abi112(0, R11_scratch1);
__ push_frame_reg_args(0, R11_scratch1);
address frame_complete_pc = __ pc();
......@@ -551,8 +551,11 @@ class StubGenerator: public StubCodeGenerator {
if (arg2 != noreg) {
__ mr(R5_ARG3, arg2);
}
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, runtime_entry),
relocInfo::none);
#if defined(ABI_ELFv2)
__ call_c(runtime_entry, relocInfo::none);
#else
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, runtime_entry), relocInfo::none);
#endif
// Set an oopmap for the call site.
oop_maps->add_gc_map((int)(gc_map_pc - start), map);
......@@ -614,7 +617,7 @@ class StubGenerator: public StubCodeGenerator {
// With G1, don't generate the call if we statically know that the target in uninitialized
if (!dest_uninitialized) {
const int spill_slots = 4 * wordSize;
const int frame_size = frame::abi_112_size + spill_slots;
const int frame_size = frame::abi_reg_args_size + spill_slots;
Label filtered;
// Is marking active?
......@@ -628,7 +631,7 @@ class StubGenerator: public StubCodeGenerator {
__ beq(CCR0, filtered);
__ save_LR_CR(R0);
__ push_frame_abi112(spill_slots, R0);
__ push_frame_reg_args(spill_slots, R0);
__ std(from, frame_size - 1 * wordSize, R1_SP);
__ std(to, frame_size - 2 * wordSize, R1_SP);
__ std(count, frame_size - 3 * wordSize, R1_SP);
......@@ -672,7 +675,7 @@ class StubGenerator: public StubCodeGenerator {
if (branchToEnd) {
__ save_LR_CR(R0);
// We need this frame only to spill LR.
__ push_frame_abi112(0, R0);
__ push_frame_reg_args(0, R0);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), addr, count);
__ pop_frame();
__ restore_LR_CR(R0);
......@@ -742,7 +745,7 @@ class StubGenerator: public StubCodeGenerator {
StubCodeMark mark(this, "StubRoutines", "zero_words_aligned8");
// Implemented as in ClearArray.
address start = __ emit_fd();
address start = __ function_entry();
Register base_ptr_reg = R3_ARG1; // tohw (needs to be 8b aligned)
Register cnt_dwords_reg = R4_ARG2; // count (in dwords)
......@@ -820,7 +823,7 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_handler_for_unsafe_access() {
StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
address start = __ emit_fd();
address start = __ function_entry();
__ unimplemented("StubRoutines::handler_for_unsafe_access", 93);
return start;
}
......@@ -861,7 +864,7 @@ class StubGenerator: public StubCodeGenerator {
// to read from the safepoint polling page.
address generate_load_from_poll() {
StubCodeMark mark(this, "StubRoutines", "generate_load_from_poll");
address start = __ emit_fd();
address start = __ function_entry();
__ unimplemented("StubRoutines::verify_oop", 95); // TODO PPC port
return start;
}
......@@ -885,7 +888,7 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_fill(BasicType t, bool aligned, const char* name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
const Register to = R3_ARG1; // source array address
const Register value = R4_ARG2; // fill value
......@@ -1123,7 +1126,7 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_disjoint_byte_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
......@@ -1254,15 +1257,21 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_conjoint_byte_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
StubRoutines::jbyte_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_jbyte_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::jbyte_disjoint_arraycopy())->entry();
#endif
array_overlap_test(nooverlap_target, 0);
// Do reverse copy. We assume the case of actual overlap is rare enough
......@@ -1345,7 +1354,7 @@ class StubGenerator: public StubCodeGenerator {
Register tmp3 = R8_ARG6;
Register tmp4 = R9_ARG7;
address start = __ emit_fd();
address start = __ function_entry();
Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8;
// don't try anything fancy if arrays don't have many elements
......@@ -1474,15 +1483,21 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_conjoint_short_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_jshort_disjoint_arraycopy() :
StubRoutines::jshort_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_jshort_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::jshort_disjoint_arraycopy())->entry();
#endif
array_overlap_test(nooverlap_target, 1);
......@@ -1597,7 +1612,7 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_disjoint_int_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
generate_disjoint_int_copy_core(aligned);
__ blr();
return start;
......@@ -1681,11 +1696,17 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_conjoint_int_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_jint_disjoint_arraycopy() :
StubRoutines::jint_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_jint_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::jint_disjoint_arraycopy())->entry();
#endif
array_overlap_test(nooverlap_target, 2);
......@@ -1767,7 +1788,7 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_disjoint_long_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
generate_disjoint_long_copy_core(aligned);
__ blr();
......@@ -1849,11 +1870,17 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_conjoint_long_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_jlong_disjoint_arraycopy() :
StubRoutines::jlong_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_jlong_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::jlong_disjoint_arraycopy())->entry();
#endif
array_overlap_test(nooverlap_target, 3);
generate_conjoint_long_copy_core(aligned);
......@@ -1875,11 +1902,17 @@ class StubGenerator: public StubCodeGenerator {
address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_oop_disjoint_arraycopy() :
StubRoutines::oop_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_oop_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::oop_disjoint_arraycopy())->entry();
#endif
gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);
......@@ -1910,7 +1943,7 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ emit_fd();
address start = __ function_entry();
gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);
......@@ -1991,7 +2024,7 @@ class StubGenerator: public StubCodeGenerator {
StubCodeMark mark(this, "StubRoutines", name);
// Entry point, pc or function descriptor.
*entry = __ emit_fd();
*entry = __ function_entry();
// Load *adr into R4_ARG2, may fault.
*fault_pc = __ pc();
......
......@@ -24,7 +24,8 @@
*/
#include "precompiled.hpp"
#include "assembler_ppc.inline.hpp"
#include "asm/assembler.inline.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/java.hpp"
......@@ -168,7 +169,7 @@ void VM_Version::determine_section_size() {
uint32_t *code = (uint32_t *)a->pc();
// Emit code.
void (*test1)() = (void(*)())(void *)a->emit_fd();
void (*test1)() = (void(*)())(void *)a->function_entry();
Label l1;
......@@ -242,7 +243,7 @@ void VM_Version::determine_section_size() {
a->blr();
// Emit code.
void (*test2)() = (void(*)())(void *)a->emit_fd();
void (*test2)() = (void(*)())(void *)a->function_entry();
// uint32_t *code = (uint32_t *)a->pc();
Label l2;
......@@ -383,8 +384,12 @@ void VM_Version::determine_section_size() {
#endif // COMPILER2
void VM_Version::determine_features() {
#if defined(ABI_ELFv2)
const int code_size = (num_features+1+2*7)*BytesPerInstWord; // TODO(asmundak): calculation is incorrect.
#else
// 7 InstWords for each call (function descriptor + blr instruction).
const int code_size = (num_features+1+2*7)*BytesPerInstWord;
#endif
int features = 0;
// create test area
......@@ -398,7 +403,7 @@ void VM_Version::determine_features() {
MacroAssembler* a = new MacroAssembler(&cb);
// Emit code.
void (*test)(address addr, uint64_t offset)=(void(*)(address addr, uint64_t offset))(void *)a->emit_fd();
void (*test)(address addr, uint64_t offset)=(void(*)(address addr, uint64_t offset))(void *)a->function_entry();
uint32_t *code = (uint32_t *)a->pc();
// Don't use R0 in ldarx.
// Keep R3_ARG1 unmodified, it contains &field (see below).
......@@ -415,7 +420,7 @@ void VM_Version::determine_features() {
a->blr();
// Emit function to set one cache line to zero. Emit function descriptor and get pointer to it.
void (*zero_cacheline_func_ptr)(char*) = (void(*)(char*))(void *)a->emit_fd();
void (*zero_cacheline_func_ptr)(char*) = (void(*)(char*))(void *)a->function_entry();
a->dcbz(R3_ARG1); // R3_ARG1 = addr
a->blr();
......
......@@ -140,7 +140,7 @@ bool ElfFile::load_tables() {
}
}
#if defined(PPC64)
#if defined(PPC64) && !defined(ABI_ELFv2)
// Now read the .opd section wich contains the PPC64 function descriptor table.
// The .opd section is only available on PPC64 (see for example:
// http://refspecs.linuxfoundation.org/LSB_3.1.1/LSB-Core-PPC64/LSB-Core-PPC64/specialsections.html)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册