psParallelCompact.cpp 127.8 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/codeCache.hpp"
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
#include "gc_implementation/parallelScavenge/generationSizer.hpp"
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
#include "gc_implementation/parallelScavenge/pcTasks.hpp"
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
#include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
#include "gc_implementation/parallelScavenge/psYoungGen.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "gc_interface/gcCause.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/referenceProcessor.hpp"
47
#include "oops/methodData.hpp"
48 49 50 51 52 53 54
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/vmThread.hpp"
#include "services/management.hpp"
#include "services/memoryService.hpp"
Z
zgu 已提交
55
#include "services/memTracker.hpp"
56 57
#include "utilities/events.hpp"
#include "utilities/stack.inline.hpp"
D
duke 已提交
58 59 60 61

#include <math.h>

// All sizes are in HeapWords.
62 63 64 65 66 67 68
const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
const size_t ParallelCompactData::RegionSizeBytes =
  RegionSize << LogHeapWordSize;
const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
D
duke 已提交
69

70 71
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_shift = 27;
D
duke 已提交
72

73 74
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
D
duke 已提交
75

76 77
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
D
duke 已提交
78

79 80
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::los_mask = ~dc_mask;
D
duke 已提交
81

82 83
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
D
duke 已提交
84

85 86
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
D
duke 已提交
87 88 89 90 91

SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
bool      PSParallelCompact::_print_phases = false;

ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
92
Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
D
duke 已提交
93 94 95 96 97 98 99 100 101

double PSParallelCompact::_dwl_mean;
double PSParallelCompact::_dwl_std_dev;
double PSParallelCompact::_dwl_first_term;
double PSParallelCompact::_dwl_adjustment;
#ifdef  ASSERT
bool   PSParallelCompact::_dwl_initialized = false;
#endif  // #ifdef ASSERT

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
                       HeapWord* destination)
{
  assert(src_region_idx != 0, "invalid src_region_idx");
  assert(partial_obj_size != 0, "invalid partial_obj_size argument");
  assert(destination != NULL, "invalid destination argument");

  _src_region_idx = src_region_idx;
  _partial_obj_size = partial_obj_size;
  _destination = destination;

  // These fields may not be updated below, so make sure they're clear.
  assert(_dest_region_addr == NULL, "should have been cleared");
  assert(_first_src_addr == NULL, "should have been cleared");

  // Determine the number of destination regions for the partial object.
  HeapWord* const last_word = destination + partial_obj_size - 1;
  const ParallelCompactData& sd = PSParallelCompact::summary_data();
  HeapWord* const beg_region_addr = sd.region_align_down(destination);
  HeapWord* const end_region_addr = sd.region_align_down(last_word);

  if (beg_region_addr == end_region_addr) {
    // One destination region.
    _destination_count = 1;
    if (end_region_addr == destination) {
      // The destination falls on a region boundary, thus the first word of the
      // partial object will be the first word copied to the destination region.
      _dest_region_addr = end_region_addr;
      _first_src_addr = sd.region_to_addr(src_region_idx);
    }
  } else {
    // Two destination regions.  When copied, the partial object will cross a
    // destination region boundary, so a word somewhere within the partial
    // object will be the first word copied to the second destination region.
    _destination_count = 2;
    _dest_region_addr = end_region_addr;
    const size_t ofs = pointer_delta(end_region_addr, destination);
    assert(ofs < _partial_obj_size, "sanity");
    _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
  }
}

void SplitInfo::clear()
{
  _src_region_idx = 0;
  _partial_obj_size = 0;
  _destination = NULL;
  _destination_count = 0;
  _dest_region_addr = NULL;
  _first_src_addr = NULL;
  assert(!is_valid(), "sanity");
}

#ifdef  ASSERT
void SplitInfo::verify_clear()
{
  assert(_src_region_idx == 0, "not clear");
  assert(_partial_obj_size == 0, "not clear");
  assert(_destination == NULL, "not clear");
  assert(_destination_count == 0, "not clear");
  assert(_dest_region_addr == NULL, "not clear");
  assert(_first_src_addr == NULL, "not clear");
}
#endif  // #ifdef ASSERT


168 169 170 171
void PSParallelCompact::print_on_error(outputStream* st) {
  _mark_bitmap.print_on_error(st);
}

D
duke 已提交
172 173
#ifndef PRODUCT
const char* PSParallelCompact::space_names[] = {
174
  "old ", "eden", "from", "to  "
D
duke 已提交
175 176
};

177
void PSParallelCompact::print_region_ranges()
D
duke 已提交
178 179 180 181 182 183 184
{
  tty->print_cr("space  bottom     top        end        new_top");
  tty->print_cr("------ ---------- ---------- ---------- ----------");

  for (unsigned int id = 0; id < last_space_id; ++id) {
    const MutableSpace* space = _space_info[id].space();
    tty->print_cr("%u %s "
185 186
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
D
duke 已提交
187
                  id, space_names[id],
188 189 190 191
                  summary_data().addr_to_region_idx(space->bottom()),
                  summary_data().addr_to_region_idx(space->top()),
                  summary_data().addr_to_region_idx(space->end()),
                  summary_data().addr_to_region_idx(_space_info[id].new_top()));
D
duke 已提交
192 193 194 195
  }
}

void
196
print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
D
duke 已提交
197
{
198 199
#define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
#define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
D
duke 已提交
200 201

  ParallelCompactData& sd = PSParallelCompact::summary_data();
202 203 204 205 206
  size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
  tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
                REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
D
duke 已提交
207 208
                i, c->data_location(), dci, c->destination(),
                c->partial_obj_size(), c->live_obj_size(),
209
                c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
210

211 212
#undef  REGION_IDX_FORMAT
#undef  REGION_DATA_FORMAT
D
duke 已提交
213 214 215 216 217 218 219 220
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           HeapWord* const beg_addr,
                           HeapWord* const end_addr)
{
  size_t total_words = 0;
221 222
  size_t i = summary_data.addr_to_region_idx(beg_addr);
  const size_t last = summary_data.addr_to_region_idx(end_addr);
D
duke 已提交
223 224 225
  HeapWord* pdest = 0;

  while (i <= last) {
226
    ParallelCompactData::RegionData* c = summary_data.region(i);
D
duke 已提交
227
    if (c->data_size() != 0 || c->destination() != pdest) {
228
      print_generic_summary_region(i, c);
D
duke 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      total_words += c->data_size();
      pdest = c->destination();
    }
    ++i;
  }

  tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info)
{
  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
    const MutableSpace* space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(),
                               MAX2(space->top(), space_info[id].new_top()));
  }
}

void
250 251 252
print_initial_summary_region(size_t i,
                             const ParallelCompactData::RegionData* c,
                             bool newline = true)
D
duke 已提交
253
{
254 255 256
  tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
D
duke 已提交
257 258
             i, c->destination(),
             c->partial_obj_size(), c->live_obj_size(),
259
             c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
260 261 262 263 264 265 266 267 268 269
  if (newline) tty->cr();
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           const MutableSpace* space) {
  if (space->top() == space->bottom()) {
    return;
  }

270 271 272 273 274
  const size_t region_size = ParallelCompactData::RegionSize;
  typedef ParallelCompactData::RegionData RegionData;
  HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
  const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
  const RegionData* c = summary_data.region(end_region - 1);
D
duke 已提交
275 276 277
  HeapWord* end_addr = c->destination() + c->data_size();
  const size_t live_in_space = pointer_delta(end_addr, space->bottom());

278 279 280 281 282 283
  // Print (and count) the full regions at the beginning of the space.
  size_t full_region_count = 0;
  size_t i = summary_data.addr_to_region_idx(space->bottom());
  while (i < end_region && summary_data.region(i)->data_size() == region_size) {
    print_initial_summary_region(i, summary_data.region(i));
    ++full_region_count;
D
duke 已提交
284 285 286
    ++i;
  }

287
  size_t live_to_right = live_in_space - full_region_count * region_size;
D
duke 已提交
288 289

  double max_reclaimed_ratio = 0.0;
290
  size_t max_reclaimed_ratio_region = 0;
D
duke 已提交
291 292 293
  size_t max_dead_to_right = 0;
  size_t max_live_to_right = 0;

294 295
  // Print the 'reclaimed ratio' for regions while there is something live in
  // the region or to the right of it.  The remaining regions are empty (and
D
duke 已提交
296
  // uninteresting), and computing the ratio will result in division by 0.
297 298 299 300
  while (i < end_region && live_to_right > 0) {
    c = summary_data.region(i);
    HeapWord* const region_addr = summary_data.region_to_addr(i);
    const size_t used_to_right = pointer_delta(space->top(), region_addr);
D
duke 已提交
301 302 303 304 305
    const size_t dead_to_right = used_to_right - live_to_right;
    const double reclaimed_ratio = double(dead_to_right) / live_to_right;

    if (reclaimed_ratio > max_reclaimed_ratio) {
            max_reclaimed_ratio = reclaimed_ratio;
306
            max_reclaimed_ratio_region = i;
D
duke 已提交
307 308 309 310
            max_dead_to_right = dead_to_right;
            max_live_to_right = live_to_right;
    }

311
    print_initial_summary_region(i, c, false);
312
    tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
D
duke 已提交
313 314 315 316 317 318
                  reclaimed_ratio, dead_to_right, live_to_right);

    live_to_right -= c->data_size();
    ++i;
  }

319 320 321
  // Any remaining regions are empty.  Print one more if there is one.
  if (i < end_region) {
    print_initial_summary_region(i, summary_data.region(i));
D
duke 已提交
322 323
  }

324 325
  tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
                "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
326
                max_reclaimed_ratio_region, max_dead_to_right,
D
duke 已提交
327 328 329 330 331 332
                max_live_to_right, max_reclaimed_ratio);
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info) {
333
  unsigned int id = PSParallelCompact::old_space_id;
D
duke 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  const MutableSpace* space;
  do {
    space = space_info[id].space();
    print_initial_summary_data(summary_data, space);
  } while (++id < PSParallelCompact::eden_space_id);

  do {
    space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(), space->top());
  } while (++id < PSParallelCompact::last_space_id);
}
#endif  // #ifndef PRODUCT

#ifdef  ASSERT
size_t add_obj_count;
size_t add_obj_size;
size_t mark_bitmap_count;
size_t mark_bitmap_size;
#endif  // #ifdef ASSERT

ParallelCompactData::ParallelCompactData()
{
  _region_start = 0;

358 359 360
  _region_vspace = 0;
  _region_data = 0;
  _region_count = 0;
D
duke 已提交
361 362 363 364 365 366 367 368
}

bool ParallelCompactData::initialize(MemRegion covered_region)
{
  _region_start = covered_region.start();
  const size_t region_size = covered_region.word_size();
  DEBUG_ONLY(_region_end = _region_start + region_size;)

369
  assert(region_align_down(_region_start) == _region_start,
D
duke 已提交
370
         "region start not aligned");
371 372
  assert((region_size & RegionSizeOffsetMask) == 0,
         "region size not a multiple of RegionSize");
D
duke 已提交
373

374
  bool result = initialize_region_data(region_size);
D
duke 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388

  return result;
}

PSVirtualSpace*
ParallelCompactData::create_vspace(size_t count, size_t element_size)
{
  const size_t raw_bytes = count * element_size;
  const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
  const size_t granularity = os::vm_allocation_granularity();
  const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));

  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
    MAX2(page_sz, granularity);
389
  ReservedSpace rs(bytes, rs_align, rs_align > 0);
D
duke 已提交
390 391
  os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
                       rs.size());
Z
zgu 已提交
392 393 394

  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);

D
duke 已提交
395 396 397 398 399 400
  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
  if (vspace != 0) {
    if (vspace->expand_by(bytes)) {
      return vspace;
    }
    delete vspace;
401 402
    // Release memory reserved in the space.
    rs.release();
D
duke 已提交
403 404 405 406 407
  }

  return 0;
}

408
bool ParallelCompactData::initialize_region_data(size_t region_size)
D
duke 已提交
409
{
410 411 412 413 414
  const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
  _region_vspace = create_vspace(count, sizeof(RegionData));
  if (_region_vspace != 0) {
    _region_data = (RegionData*)_region_vspace->reserved_low_addr();
    _region_count = count;
D
duke 已提交
415 416 417 418 419 420 421
    return true;
  }
  return false;
}

void ParallelCompactData::clear()
{
422
  memset(_region_data, 0, _region_vspace->committed_size());
D
duke 已提交
423 424
}

425 426 427
void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
  assert(beg_region <= _region_count, "beg_region out of range");
  assert(end_region <= _region_count, "end_region out of range");
D
duke 已提交
428

429 430
  const size_t region_cnt = end_region - beg_region;
  memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
D
duke 已提交
431 432
}

433
HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
D
duke 已提交
434
{
435 436
  const RegionData* cur_cp = region(region_idx);
  const RegionData* const end_cp = region(region_count() - 1);
D
duke 已提交
437

438
  HeapWord* result = region_to_addr(region_idx);
D
duke 已提交
439 440 441
  if (cur_cp < end_cp) {
    do {
      result += cur_cp->partial_obj_size();
442
    } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
D
duke 已提交
443 444 445 446 447 448 449
  }
  return result;
}

void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
{
  const size_t obj_ofs = pointer_delta(addr, _region_start);
450 451
  const size_t beg_region = obj_ofs >> Log2RegionSize;
  const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
D
duke 已提交
452 453 454 455

  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)

456 457 458
  if (beg_region == end_region) {
    // All in one region.
    _region_data[beg_region].add_live_obj(len);
D
duke 已提交
459 460 461
    return;
  }

462 463 464
  // First region.
  const size_t beg_ofs = region_offset(addr);
  _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
D
duke 已提交
465

466
  Klass* klass = ((oop)addr)->klass();
467 468 469 470
  // Middle regions--completely spanned by this object.
  for (size_t region = beg_region + 1; region < end_region; ++region) {
    _region_data[region].set_partial_obj_size(RegionSize);
    _region_data[region].set_partial_obj_addr(addr);
D
duke 已提交
471 472
  }

473 474 475 476
  // Last region.
  const size_t end_ofs = region_offset(addr + len - 1);
  _region_data[end_region].set_partial_obj_size(end_ofs + 1);
  _region_data[end_region].set_partial_obj_addr(addr);
D
duke 已提交
477 478 479 480 481
}

void
ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
{
482 483
  assert(region_offset(beg) == 0, "not RegionSize aligned");
  assert(region_offset(end) == 0, "not RegionSize aligned");
D
duke 已提交
484

485 486
  size_t cur_region = addr_to_region_idx(beg);
  const size_t end_region = addr_to_region_idx(end);
D
duke 已提交
487
  HeapWord* addr = beg;
488 489 490 491 492
  while (cur_region < end_region) {
    _region_data[cur_region].set_destination(addr);
    _region_data[cur_region].set_destination_count(0);
    _region_data[cur_region].set_source_region(cur_region);
    _region_data[cur_region].set_data_location(addr);
D
duke 已提交
493

494 495 496
    // Update live_obj_size so the region appears completely full.
    size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
    _region_data[cur_region].set_live_obj_size(live_size);
D
duke 已提交
497

498 499
    ++cur_region;
    addr += RegionSize;
D
duke 已提交
500 501 502
  }
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
// Find the point at which a space can be split and, if necessary, record the
// split point.
//
// If the current src region (which overflowed the destination space) doesn't
// have a partial object, the split point is at the beginning of the current src
// region (an "easy" split, no extra bookkeeping required).
//
// If the current src region has a partial object, the split point is in the
// region where that partial object starts (call it the split_region).  If
// split_region has a partial object, then the split point is just after that
// partial object (a "hard" split where we have to record the split data and
// zero the partial_obj_size field).  With a "hard" split, we know that the
// partial_obj ends within split_region because the partial object that caused
// the overflow starts in split_region.  If split_region doesn't have a partial
// obj, then the split is at the beginning of split_region (another "easy"
// split).
HeapWord*
ParallelCompactData::summarize_split_space(size_t src_region,
                                           SplitInfo& split_info,
                                           HeapWord* destination,
                                           HeapWord* target_end,
                                           HeapWord** target_next)
{
  assert(destination <= target_end, "sanity");
  assert(destination + _region_data[src_region].data_size() > target_end,
    "region should not fit into target space");
529
  assert(is_region_aligned(target_end), "sanity");
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

  size_t split_region = src_region;
  HeapWord* split_destination = destination;
  size_t partial_obj_size = _region_data[src_region].partial_obj_size();

  if (destination + partial_obj_size > target_end) {
    // The split point is just after the partial object (if any) in the
    // src_region that contains the start of the object that overflowed the
    // destination space.
    //
    // Find the start of the "overflow" object and set split_region to the
    // region containing it.
    HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
    split_region = addr_to_region_idx(overflow_obj);

    // Clear the source_region field of all destination regions whose first word
    // came from data after the split point (a non-null source_region field
    // implies a region must be filled).
    //
    // An alternative to the simple loop below:  clear during post_compact(),
    // which uses memcpy instead of individual stores, and is easy to
    // parallelize.  (The downside is that it clears the entire RegionData
    // object as opposed to just one field.)
    //
    // post_compact() would have to clear the summary data up to the highest
    // address that was written during the summary phase, which would be
    //
    //         max(top, max(new_top, clear_top))
    //
    // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
560
    // to target_end.
561 562 563 564
    const RegionData* const sr = region(split_region);
    const size_t beg_idx =
      addr_to_region_idx(region_align_up(sr->destination() +
                                         sr->partial_obj_size()));
565
    const size_t end_idx = addr_to_region_idx(target_end);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

    if (TraceParallelOldGCSummaryPhase) {
        gclog_or_tty->print_cr("split:  clearing source_region field in ["
                               SIZE_FORMAT ", " SIZE_FORMAT ")",
                               beg_idx, end_idx);
    }
    for (size_t idx = beg_idx; idx < end_idx; ++idx) {
      _region_data[idx].set_source_region(0);
    }

    // Set split_destination and partial_obj_size to reflect the split region.
    split_destination = sr->destination();
    partial_obj_size = sr->partial_obj_size();
  }

  // The split is recorded only if a partial object extends onto the region.
  if (partial_obj_size != 0) {
    _region_data[split_region].set_partial_obj_size(0);
    split_info.record(split_region, partial_obj_size, split_destination);
  }

  // Setup the continuation addresses.
  *target_next = split_destination + partial_obj_size;
  HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
D
duke 已提交
590 591

  if (TraceParallelOldGCSummaryPhase) {
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
    gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
                           " pos=" SIZE_FORMAT,
                           split_type, source_next, split_region,
                           partial_obj_size);
    gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
                           " tn=" PTR_FORMAT,
                           split_type, split_destination,
                           addr_to_region_idx(split_destination),
                           *target_next);

    if (partial_obj_size != 0) {
      HeapWord* const po_beg = split_info.destination();
      HeapWord* const po_end = po_beg + split_info.partial_obj_size();
      gclog_or_tty->print_cr("%s split:  "
                             "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
                             "po_end=" PTR_FORMAT " " SIZE_FORMAT,
                             split_type,
                             po_beg, addr_to_region_idx(po_beg),
                             po_end, addr_to_region_idx(po_end));
    }
  }

  return source_next;
}

bool ParallelCompactData::summarize(SplitInfo& split_info,
                                    HeapWord* source_beg, HeapWord* source_end,
                                    HeapWord** source_next,
                                    HeapWord* target_beg, HeapWord* target_end,
                                    HeapWord** target_next)
{
  if (TraceParallelOldGCSummaryPhase) {
    HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
    tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
                  "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
                  source_beg, source_end, source_next_val,
                  target_beg, target_end, *target_next);
D
duke 已提交
630 631
  }

632 633
  size_t cur_region = addr_to_region_idx(source_beg);
  const size_t end_region = addr_to_region_idx(region_align_up(source_end));
D
duke 已提交
634 635

  HeapWord *dest_addr = target_beg;
636
  while (cur_region < end_region) {
637
    // The destination must be set even if the region has no data.
638
    _region_data[cur_region].set_destination(dest_addr);
D
duke 已提交
639

640
    size_t words = _region_data[cur_region].data_size();
D
duke 已提交
641
    if (words > 0) {
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
      // If cur_region does not fit entirely into the target space, find a point
      // at which the source space can be 'split' so that part is copied to the
      // target space and the rest is copied elsewhere.
      if (dest_addr + words > target_end) {
        assert(source_next != NULL, "source_next is NULL when splitting");
        *source_next = summarize_split_space(cur_region, split_info, dest_addr,
                                             target_end, target_next);
        return false;
      }

      // Compute the destination_count for cur_region, and if necessary, update
      // source_region for a destination region.  The source_region field is
      // updated if cur_region is the first (left-most) region to be copied to a
      // destination region.
      //
      // The destination_count calculation is a bit subtle.  A region that has
      // data that compacts into itself does not count itself as a destination.
      // This maintains the invariant that a zero count means the region is
      // available and can be claimed and then filled.
      uint destination_count = 0;
      if (split_info.is_split(cur_region)) {
        // The current region has been split:  the partial object will be copied
        // to one destination space and the remaining data will be copied to
        // another destination space.  Adjust the initial destination_count and,
        // if necessary, set the source_region field if the partial object will
        // cross a destination region boundary.
        destination_count = split_info.destination_count();
        if (destination_count == 2) {
          size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
          _region_data[dest_idx].set_source_region(cur_region);
        }
      }

D
duke 已提交
675
      HeapWord* const last_addr = dest_addr + words - 1;
676 677
      const size_t dest_region_1 = addr_to_region_idx(dest_addr);
      const size_t dest_region_2 = addr_to_region_idx(last_addr);
678

679
      // Initially assume that the destination regions will be the same and
D
duke 已提交
680
      // adjust the value below if necessary.  Under this assumption, if
681 682
      // cur_region == dest_region_2, then cur_region will be compacted
      // completely into itself.
683
      destination_count += cur_region == dest_region_2 ? 0 : 1;
684 685
      if (dest_region_1 != dest_region_2) {
        // Destination regions differ; adjust destination_count.
D
duke 已提交
686
        destination_count += 1;
687 688 689 690 691 692
        // Data from cur_region will be copied to the start of dest_region_2.
        _region_data[dest_region_2].set_source_region(cur_region);
      } else if (region_offset(dest_addr) == 0) {
        // Data from cur_region will be copied to the start of the destination
        // region.
        _region_data[dest_region_1].set_source_region(cur_region);
D
duke 已提交
693 694
      }

695 696
      _region_data[cur_region].set_destination_count(destination_count);
      _region_data[cur_region].set_data_location(region_to_addr(cur_region));
D
duke 已提交
697 698 699
      dest_addr += words;
    }

700
    ++cur_region;
D
duke 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  }

  *target_next = dest_addr;
  return true;
}

HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
  assert(addr != NULL, "Should detect NULL oop earlier");
  assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
#ifdef ASSERT
  if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
    gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
  }
#endif
  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");

717 718 719 720
  // Region covering the object.
  size_t region_index = addr_to_region_idx(addr);
  const RegionData* const region_ptr = region(region_index);
  HeapWord* const region_addr = region_align_down(addr);
D
duke 已提交
721

722 723
  assert(addr < region_addr + RegionSize, "Region does not cover object");
  assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
D
duke 已提交
724

725
  HeapWord* result = region_ptr->destination();
D
duke 已提交
726

727 728 729 730 731
  // If all the data in the region is live, then the new location of the object
  // can be calculated from the destination of the region plus the offset of the
  // object in the region.
  if (region_ptr->data_size() == RegionSize) {
    result += pointer_delta(addr, region_addr);
732
    DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
D
duke 已提交
733 734 735 736
    return result;
  }

  // The new location of the object is
737 738 739 740 741
  //    region destination +
  //    size of the partial object extending onto the region +
  //    sizes of the live objects in the Region that are to the left of addr
  const size_t partial_obj_size = region_ptr->partial_obj_size();
  HeapWord* const search_start = region_addr + partial_obj_size;
D
duke 已提交
742 743 744 745 746

  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
  size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));

  result += partial_obj_size + live_to_left;
747
  DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
D
duke 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
  return result;
}

#ifdef  ASSERT
void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
{
  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
  const size_t* const end = (const size_t*)vspace->committed_high_addr();
  for (const size_t* p = beg; p < end; ++p) {
    assert(*p == 0, "not zero");
  }
}

void ParallelCompactData::verify_clear()
{
763
  verify_clear(_region_vspace);
D
duke 已提交
764 765 766 767
}
#endif  // #ifdef ASSERT

#ifdef NOT_PRODUCT
768
ParallelCompactData::RegionData* debug_region(size_t region_index) {
D
duke 已提交
769
  ParallelCompactData& sd = PSParallelCompact::summary_data();
770
  return sd.region(region_index);
D
duke 已提交
771 772 773 774 775 776 777 778 779 780 781 782
}
#endif

elapsedTimer        PSParallelCompact::_accumulated_time;
unsigned int        PSParallelCompact::_total_invocations = 0;
unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
jlong               PSParallelCompact::_time_of_last_gc = 0;
CollectorCounters*  PSParallelCompact::_counters = NULL;
ParMarkBitMap       PSParallelCompact::_mark_bitmap;
ParallelCompactData PSParallelCompact::_summary_data;

PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
783 784 785 786 787 788 789

void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }

void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }

790
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
791
PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
D
duke 已提交
792

793 794
void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p); }
void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
D
duke 已提交
795

796
void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
D
duke 已提交
797

798 799 800
void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
  mark_and_push(_compaction_manager, p);
}
801
void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
D
duke 已提交
802

803 804 805 806
void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
  klass->oops_do(_mark_and_push_closure);
}
void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
807
  klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
808 809
}

D
duke 已提交
810 811 812 813 814
void PSParallelCompact::post_initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  MemRegion mr = heap->reserved_region();
815 816 817 818 819 820 821 822 823
  _ref_processor =
    new ReferenceProcessor(mr,            // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
                           (int) ParallelGCThreads, // mt processing degree
                           true,          // mt discovery
                           (int) ParallelGCThreads, // mt discovery degree
                           true,          // atomic_discovery
                           &_is_alive_closure, // non-header is alive closure
                           false);        // write barrier for next field updates
D
duke 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
  _counters = new CollectorCounters("PSParallelCompact", 1);

  // Initialize static fields in ParCompactionManager.
  ParCompactionManager::initialize(mark_bitmap());
}

bool PSParallelCompact::initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  MemRegion mr = heap->reserved_region();

  // Was the old gen get allocated successfully?
  if (!heap->old_gen()->is_allocated()) {
    return false;
  }

  initialize_space_info();
  initialize_dead_wood_limiter();

  if (!_mark_bitmap.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate bit map for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  if (!_summary_data.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate tables for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  return true;
}

void PSParallelCompact::initialize_space_info()
{
  memset(&_space_info, 0, sizeof(_space_info));

  ParallelScavengeHeap* heap = gc_heap();
  PSYoungGen* young_gen = heap->young_gen();

  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
  _space_info[eden_space_id].set_space(young_gen->eden_space());
  _space_info[from_space_id].set_space(young_gen->from_space());
  _space_info[to_space_id].set_space(young_gen->to_space());

  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
}

void PSParallelCompact::initialize_dead_wood_limiter()
{
  const size_t max = 100;
  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
  DEBUG_ONLY(_dwl_initialized = true;)
  _dwl_adjustment = normal_distribution(1.0);
}

// Simple class for storing info about the heap at the start of GC, to be used
// after GC for comparison/printing.
class PreGCValues {
public:
  PreGCValues() { }
  PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }

  void fill(ParallelScavengeHeap* heap) {
    _heap_used      = heap->used();
    _young_gen_used = heap->young_gen()->used_in_bytes();
    _old_gen_used   = heap->old_gen()->used_in_bytes();
894
    _metadata_used  = MetaspaceAux::allocated_used_bytes();
D
duke 已提交
895 896 897 898 899
  };

  size_t heap_used() const      { return _heap_used; }
  size_t young_gen_used() const { return _young_gen_used; }
  size_t old_gen_used() const   { return _old_gen_used; }
900
  size_t metadata_used() const  { return _metadata_used; }
D
duke 已提交
901 902 903 904 905

private:
  size_t _heap_used;
  size_t _young_gen_used;
  size_t _old_gen_used;
906
  size_t _metadata_used;
D
duke 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
};

void
PSParallelCompact::clear_data_covering_space(SpaceId id)
{
  // At this point, top is the value before GC, new_top() is the value that will
  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
  // should be marked above top.  The summary data is cleared to the larger of
  // top & new_top.
  MutableSpace* const space = _space_info[id].space();
  HeapWord* const bot = space->bottom();
  HeapWord* const top = space->top();
  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());

  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
  _mark_bitmap.clear_range(beg_bit, end_bit);

925 926 927 928
  const size_t beg_region = _summary_data.addr_to_region_idx(bot);
  const size_t end_region =
    _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
  _summary_data.clear_range(beg_region, end_region);
929 930 931 932 933 934 935

  // Clear the data used to 'split' regions.
  SplitInfo& split_info = _space_info[id].split_info();
  if (split_info.is_valid()) {
    split_info.clear();
  }
  DEBUG_ONLY(split_info.verify_clear();)
D
duke 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
}

void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
{
  // Update the from & to space pointers in space_info, since they are swapped
  // at each young gen gc.  Do the update unconditionally (even though a
  // promotion failure does not swap spaces) because an unknown number of minor
  // collections will have swapped the spaces an unknown number of times.
  TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
  ParallelScavengeHeap* heap = gc_heap();
  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
  _space_info[to_space_id].set_space(heap->young_gen()->to_space());

  pre_gc_values->fill(heap);

  NOT_PRODUCT(_mark_bitmap.reset_counters());
  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)

  // Increment the invocation count
956
  heap->increment_total_collections(true);
D
duke 已提交
957 958 959 960

  // We need to track unique mark sweep invocations as well.
  _total_invocations++;

961
  heap->print_heap_before_gc();
D
duke 已提交
962 963 964 965 966 967 968

  // Fill in TLABs
  heap->accumulate_statistics_all_tlabs();
  heap->ensure_parsability(true);  // retire TLABs

  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
969
    Universe::verify(" VerifyBeforeGC:");
D
duke 已提交
970 971 972 973 974 975 976 977 978 979
  }

  // Verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyBeforeGC) {
    heap->old_gen()->verify_object_start_array();
  }

  DEBUG_ONLY(mark_bitmap()->verify_clear();)
  DEBUG_ONLY(summary_data().verify_clear();)
J
jcoomes 已提交
980 981 982

  // Have worker threads release resources the next time they run a task.
  gc_task_manager()->release_all_resources();
D
duke 已提交
983 984 985 986 987 988
}

void PSParallelCompact::post_compact()
{
  TraceTime tm("post compact", print_phases(), true, gclog_or_tty);

989
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
990
    // Clear the marking bitmap, summary data and split info.
D
duke 已提交
991
    clear_data_covering_space(SpaceId(id));
992 993
    // Update top().  Must be done after clearing the bitmap and summary data.
    _space_info[id].publish_new_top();
D
duke 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
  }

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  MutableSpace* const to_space   = _space_info[to_space_id].space();

  ParallelScavengeHeap* heap = gc_heap();
  bool eden_empty = eden_space->is_empty();
  if (!eden_empty) {
    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
                                            heap->young_gen(), heap->old_gen());
  }

  // Update heap occupancy information which is used as input to the soft ref
  // clearing policy at the next gc.
  Universe::update_heap_info_at_gc();

  bool young_gen_empty = eden_empty && from_space->is_empty() &&
    to_space->is_empty();

  BarrierSet* bs = heap->barrier_set();
  if (bs->is_a(BarrierSet::ModRef)) {
    ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
    MemRegion old_mr = heap->old_gen()->reserved();

    if (young_gen_empty) {
1020
      modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
D
duke 已提交
1021
    } else {
1022
      modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
D
duke 已提交
1023 1024 1025
    }
  }

1026 1027
  // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  ClassLoaderDataGraph::purge();
1028
  MetaspaceAux::verify_metrics();
1029

D
duke 已提交
1030 1031
  Threads::gc_epilogue();
  CodeCache::gc_epilogue();
1032
  JvmtiExport::gc_epilogue();
D
duke 已提交
1033 1034 1035 1036 1037

  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

  ref_processor()->enqueue_discovered_references(NULL);

1038 1039 1040 1041
  if (ZapUnusedHeapArea) {
    heap->gen_mangle_unused_area();
  }

D
duke 已提交
1042 1043 1044 1045 1046 1047 1048 1049
  // Update time of last GC
  reset_millis_since_last_gc();
}

HeapWord*
PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
                                                    bool maximum_compaction)
{
1050
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1051 1052 1053
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
1054 1055 1056
  HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
1057

1058
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
1059 1060
  // of the dense prefix.
  size_t full_count = 0;
1061 1062
  const RegionData* cp;
  for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
D
duke 已提交
1063 1064 1065 1066 1067 1068 1069 1070
    ++full_count;
  }

  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  if (maximum_compaction || cp == end_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
1071
    return sd.region_to_addr(cp);
D
duke 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
  }

  HeapWord* const new_top = _space_info[id].new_top();
  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double cur_density = double(space_live) / space_capacity;
  const double deadwood_density =
    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
                  cur_density, deadwood_density, deadwood_goal);
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
  }

  // XXX - Use binary search?
1094 1095 1096
  HeapWord* dense_prefix = sd.region_to_addr(cp);
  const RegionData* full_cp = cp;
  const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
D
duke 已提交
1097
  while (cp < end_cp) {
1098 1099
    HeapWord* region_destination = cp->destination();
    const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
D
duke 已提交
1100
    if (TraceParallelOldGCDensePrefix && Verbose) {
1101 1102
      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
                    "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
1103
                    sd.region(cp), region_destination,
D
duke 已提交
1104 1105 1106 1107
                    dense_prefix, cur_deadwood);
    }

    if (cur_deadwood >= deadwood_goal) {
1108 1109 1110 1111 1112
      // Found the region that has the correct amount of deadwood to the left.
      // This typically occurs after crossing a fairly sparse set of regions, so
      // iterate backwards over those sparse regions, looking for the region
      // that has the lowest density of live objects 'to the right.'
      size_t space_to_left = sd.region(cp) * region_size;
D
duke 已提交
1113 1114 1115 1116 1117 1118
      size_t live_to_left = space_to_left - cur_deadwood;
      size_t space_to_right = space_capacity - space_to_left;
      size_t live_to_right = space_live - live_to_left;
      double density_to_right = double(live_to_right) / space_to_right;
      while (cp > full_cp) {
        --cp;
1119 1120 1121 1122 1123 1124
        const size_t prev_region_live_to_right = live_to_right -
          cp->data_size();
        const size_t prev_region_space_to_right = space_to_right + region_size;
        double prev_region_density_to_right =
          double(prev_region_live_to_right) / prev_region_space_to_right;
        if (density_to_right <= prev_region_density_to_right) {
D
duke 已提交
1125 1126 1127
          return dense_prefix;
        }
        if (TraceParallelOldGCDensePrefix && Verbose) {
1128
          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1129 1130
                        "pc_d2r=%10.8f", sd.region(cp), density_to_right,
                        prev_region_density_to_right);
D
duke 已提交
1131
        }
1132 1133 1134 1135
        dense_prefix -= region_size;
        live_to_right = prev_region_live_to_right;
        space_to_right = prev_region_space_to_right;
        density_to_right = prev_region_density_to_right;
D
duke 已提交
1136 1137 1138 1139
      }
      return dense_prefix;
    }

1140
    dense_prefix += region_size;
D
duke 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    ++cp;
  }

  return dense_prefix;
}

#ifndef PRODUCT
void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
                                                 const SpaceId id,
                                                 const bool maximum_compaction,
                                                 HeapWord* const addr)
{
1153 1154
  const size_t region_idx = summary_data().addr_to_region_idx(addr);
  RegionData* const cp = summary_data().region(region_idx);
D
duke 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const new_top = _space_info[id].new_top();

  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t dead_to_left = pointer_delta(addr, cp->destination());
  const size_t space_cap = space->capacity_in_words();
  const double dead_to_left_pct = double(dead_to_left) / space_cap;
  const size_t live_to_right = new_top - cp->destination();
  const size_t dead_to_right = space->top() - addr - live_to_right;

1165
  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
D
duke 已提交
1166 1167 1168 1169
                "spl=" SIZE_FORMAT " "
                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
                " ratio=%10.8f",
1170
                algorithm, addr, region_idx,
D
duke 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
                space_live,
                dead_to_left, dead_to_left_pct,
                dead_to_right, live_to_right,
                double(dead_to_right) / live_to_right);
}
#endif  // #ifndef PRODUCT

// Return a fraction indicating how much of the generation can be treated as
// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
// based on the density of live objects in the generation to determine a limit,
// which is then adjusted so the return value is min_percent when the density is
// 1.
//
// The following table shows some return values for a different values of the
// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
// min_percent is 1.
//
//                          fraction allowed as dead wood
//         -----------------------------------------------------------------
// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
// ------- ---------- ---------- ---------- ---------- ---------- ----------
// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000

double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
{
  assert(_dwl_initialized, "uninitialized");

  // The raw limit is the value of the normal distribution at x = density.
  const double raw_limit = normal_distribution(density);

  // Adjust the raw limit so it becomes the minimum when the density is 1.
  //
  // First subtract the adjustment value (which is simply the precomputed value
  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  // Then add the minimum value, so the minimum is returned when the density is
  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  const double min = double(min_percent) / 100.0;
  const double limit = raw_limit - _dwl_adjustment + min;
  return MAX2(limit, 0.0);
}

1232 1233 1234
ParallelCompactData::RegionData*
PSParallelCompact::first_dead_space_region(const RegionData* beg,
                                           const RegionData* end)
D
duke 已提交
1235
{
1236
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1237
  ParallelCompactData& sd = summary_data();
1238 1239
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1240 1241 1242 1243 1244

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1245
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1246
    HeapWord* const dest = middle_ptr->destination();
1247
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1248 1249 1250 1251 1252
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    if (middle > left && dest < addr) {
      right = middle - 1;
1253
    } else if (middle < right && middle_ptr->data_size() == region_size) {
D
duke 已提交
1254 1255 1256 1257 1258
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1259
  return sd.region(left);
D
duke 已提交
1260 1261
}

1262 1263 1264 1265
ParallelCompactData::RegionData*
PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
                                          const RegionData* end,
                                          size_t dead_words)
D
duke 已提交
1266 1267
{
  ParallelCompactData& sd = summary_data();
1268 1269
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1270 1271 1272 1273 1274

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1275
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1276
    HeapWord* const dest = middle_ptr->destination();
1277
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    const size_t dead_to_left = pointer_delta(addr, dest);
    if (middle > left && dead_to_left > dead_words) {
      right = middle - 1;
    } else if (middle < right && dead_to_left < dead_words) {
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1290
  return sd.region(left);
D
duke 已提交
1291 1292 1293 1294 1295
}

// The result is valid during the summary phase, after the initial summarization
// of each space into itself, and before final summarization.
inline double
1296
PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
D
duke 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
                                   HeapWord* const bottom,
                                   HeapWord* const top,
                                   HeapWord* const new_top)
{
  ParallelCompactData& sd = summary_data();

  assert(cp != NULL, "sanity");
  assert(bottom != NULL, "sanity");
  assert(top != NULL, "sanity");
  assert(new_top != NULL, "sanity");
  assert(top >= new_top, "summary data problem?");
  assert(new_top > bottom, "space is empty; should not be here");
  assert(new_top >= cp->destination(), "sanity");
1310
  assert(top >= sd.region_to_addr(cp), "sanity");
D
duke 已提交
1311 1312 1313 1314

  HeapWord* const destination = cp->destination();
  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  const size_t compacted_region_live = pointer_delta(new_top, destination);
1315 1316
  const size_t compacted_region_used = pointer_delta(top,
                                                     sd.region_to_addr(cp));
D
duke 已提交
1317 1318 1319 1320 1321 1322 1323
  const size_t reclaimable = compacted_region_used - compacted_region_live;

  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  return double(reclaimable) / divisor;
}

// Return the address of the end of the dense prefix, a.k.a. the start of the
1324
// compacted region.  The address is always on a region boundary.
D
duke 已提交
1325
//
1326 1327 1328 1329 1330 1331 1332
// Completely full regions at the left are skipped, since no compaction can
// occur in those regions.  Then the maximum amount of dead wood to allow is
// computed, based on the density (amount live / capacity) of the generation;
// the region with approximately that amount of dead space to the left is
// identified as the limit region.  Regions between the last completely full
// region and the limit region are scanned and the one that has the best
// (maximum) reclaimed_ratio() is selected.
D
duke 已提交
1333 1334 1335 1336
HeapWord*
PSParallelCompact::compute_dense_prefix(const SpaceId id,
                                        bool maximum_compaction)
{
1337 1338 1339 1340 1341 1342 1343
  if (ParallelOldGCSplitALot) {
    if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
      // The value was chosen to provoke splitting a young gen space; use it.
      return _space_info[id].dense_prefix();
    }
  }

1344
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1345 1346 1347 1348
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const top = space->top();
1349
  HeapWord* const top_aligned_up = sd.region_align_up(top);
D
duke 已提交
1350
  HeapWord* const new_top = _space_info[id].new_top();
1351
  HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
D
duke 已提交
1352
  HeapWord* const bottom = space->bottom();
1353 1354 1355 1356
  const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  const RegionData* const new_top_cp =
    sd.addr_to_region_ptr(new_top_aligned_up);
D
duke 已提交
1357

1358
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
1359
  // of the dense prefix.
1360 1361
  const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
D
duke 已提交
1362
         space->is_empty(), "no dead space allowed to the left");
1363 1364
  assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
         "region must have dead space");
D
duke 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

  // The gc number is saved whenever a maximum compaction is done, and used to
  // determine when the maximum compaction interval has expired.  This avoids
  // successive max compactions for different reasons.
  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
    total_invocations() == HeapFirstMaximumCompactionCount;
  if (maximum_compaction || full_cp == top_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
1375
    return sd.region_to_addr(full_cp);
D
duke 已提交
1376 1377 1378 1379 1380 1381 1382
  }

  const size_t space_live = pointer_delta(new_top, bottom);
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double density = double(space_live) / double(space_capacity);
1383
  const size_t min_percent_free = MarkSweepDeadRatio;
D
duke 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
  const double limiter = dead_wood_limiter(density, min_percent_free);
  const size_t dead_wood_max = space_used - space_live;
  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
                                      dead_wood_max);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
    tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
                  density, min_percent_free, limiter,
                  dead_wood_max, dead_wood_limit);
  }

1400 1401 1402
  // Locate the region with the desired amount of dead space to the left.
  const RegionData* const limit_cp =
    dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
D
duke 已提交
1403

1404
  // Scan from the first region with dead space to the limit region and find the
D
duke 已提交
1405 1406
  // one with the best (largest) reclaimed ratio.
  double best_ratio = 0.0;
1407 1408
  const RegionData* best_cp = full_cp;
  for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
D
duke 已提交
1409 1410 1411 1412 1413 1414 1415 1416
    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
    if (tmp_ratio > best_ratio) {
      best_cp = cp;
      best_ratio = tmp_ratio;
    }
  }

#if     0
1417 1418 1419
  // Something to consider:  if the region with the best ratio is 'close to' the
  // first region w/free space, choose the first region with free space
  // ("first-free").  The first-free region is usually near the start of the
D
duke 已提交
1420 1421
  // heap, which means we are copying most of the heap already, so copy a bit
  // more to get complete compaction.
1422
  if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
D
duke 已提交
1423 1424 1425 1426 1427
    _maximum_compaction_gc_num = total_invocations();
    best_cp = full_cp;
  }
#endif  // #if 0

1428
  return sd.region_to_addr(best_cp);
D
duke 已提交
1429 1430
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
#ifndef PRODUCT
void
PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
                                          size_t words)
{
  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
                  SIZE_FORMAT, start, start + words, words);
  }

  ObjectStartArray* const start_array = _space_info[id].start_array();
  CollectedHeap::fill_with_objects(start, words);
  for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
    _mark_bitmap.mark_obj(p, words);
    _summary_data.add_obj(p, words);
    start_array->allocate_block(p);
  }
}

void
PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
{
  ParallelCompactData& sd = summary_data();
  MutableSpace* space = _space_info[id].space();

  // Find the source and destination start addresses.
  HeapWord* const src_addr = sd.region_align_down(start);
  HeapWord* dst_addr;
  if (src_addr < start) {
    dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  } else if (src_addr > space->bottom()) {
    // The start (the original top() value) is aligned to a region boundary so
    // the associated region does not have a destination.  Compute the
    // destination from the previous region.
    RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
    dst_addr = cp->destination() + cp->data_size();
  } else {
    // Filling the entire space.
    dst_addr = space->bottom();
  }
  assert(dst_addr != NULL, "sanity");

  // Update the summary data.
  bool result = _summary_data.summarize(_space_info[id].split_info(),
                                        src_addr, space->top(), NULL,
                                        dst_addr, space->end(),
                                        _space_info[id].new_top_addr());
  assert(result, "should not fail:  bad filler object size");
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
void
PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
{
  if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
    return;
  }

  MutableSpace* const space = _space_info[id].space();
  if (space->is_empty()) {
    HeapWord* b = space->bottom();
    HeapWord* t = b + space->capacity_in_words() / 2;
    space->set_top(t);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }

1497 1498
    size_t min_size = CollectedHeap::min_fill_size();
    size_t obj_len = min_size;
1499 1500 1501 1502 1503
    while (b + obj_len <= t) {
      CollectedHeap::fill_with_object(b, obj_len);
      mark_bitmap()->mark_obj(b, obj_len);
      summary_data().add_obj(b, obj_len);
      b += obj_len;
1504
      obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
    }
    if (b < t) {
      // The loop didn't completely fill to t (top); adjust top downward.
      space->set_top(b);
      if (ZapUnusedHeapArea) {
        space->set_top_for_allocations();
      }
    }

    HeapWord** nta = _space_info[id].new_top_addr();
    bool result = summary_data().summarize(_space_info[id].split_info(),
                                           space->bottom(), space->top(), NULL,
                                           space->bottom(), space->end(), nta);
    assert(result, "space must fit into itself");
  }
}

1522 1523 1524
void
PSParallelCompact::provoke_split(bool & max_compaction)
{
1525 1526 1527 1528
  if (total_invocations() % ParallelOldGCSplitInterval != 0) {
    return;
  }

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
  const size_t region_size = ParallelCompactData::RegionSize;
  ParallelCompactData& sd = summary_data();

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  const size_t eden_live = pointer_delta(eden_space->top(),
                                         _space_info[eden_space_id].new_top());
  const size_t from_live = pointer_delta(from_space->top(),
                                         _space_info[from_space_id].new_top());

  const size_t min_fill_size = CollectedHeap::min_fill_size();
  const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;

  // Choose the space to split; need at least 2 regions live (or fillable).
  SpaceId id;
  MutableSpace* space;
  size_t live_words;
  size_t fill_words;
  if (eden_live + eden_fillable >= region_size * 2) {
    id = eden_space_id;
    space = eden_space;
    live_words = eden_live;
    fill_words = eden_fillable;
  } else if (from_live + from_fillable >= region_size * 2) {
    id = from_space_id;
    space = from_space;
    live_words = from_live;
    fill_words = from_fillable;
  } else {
    return; // Give up.
  }
  assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");

  if (live_words < region_size * 2) {
    // Fill from top() to end() w/live objects of mixed sizes.
    HeapWord* const fill_start = space->top();
    live_words += fill_words;

    space->set_top(fill_start + fill_words);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }

    HeapWord* cur_addr = fill_start;
    while (fill_words > 0) {
      const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
      size_t cur_size = MIN2(align_object_size_(r), fill_words);
      if (fill_words - cur_size < min_fill_size) {
        cur_size = fill_words; // Avoid leaving a fragment too small to fill.
      }

      CollectedHeap::fill_with_object(cur_addr, cur_size);
      mark_bitmap()->mark_obj(cur_addr, cur_size);
      sd.add_obj(cur_addr, cur_size);

      cur_addr += cur_size;
      fill_words -= cur_size;
    }

    summarize_new_objects(id, fill_start);
  }

  max_compaction = false;

  // Manipulate the old gen so that it has room for about half of the live data
  // in the target young gen space (live_words / 2).
  id = old_space_id;
  space = _space_info[id].space();
  const size_t free_at_end = space->free_in_words();
  const size_t free_target = align_object_size(live_words / 2);
  const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());

  if (free_at_end >= free_target + min_fill_size) {
    // Fill space above top() and set the dense prefix so everything survives.
    HeapWord* const fill_start = space->top();
    const size_t fill_size = free_at_end - free_target;
    space->set_top(space->top() + fill_size);
    if (ZapUnusedHeapArea) {
      space->set_top_for_allocations();
    }
    fill_with_live_objects(id, fill_start, fill_size);
    summarize_new_objects(id, fill_start);
    _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  } else if (dead + free_at_end > free_target) {
    // Find a dense prefix that makes the right amount of space available.
    HeapWord* cur = sd.region_align_down(space->top());
    HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
    size_t dead_to_right = pointer_delta(space->end(), cur_destination);
    while (dead_to_right < free_target) {
      cur -= region_size;
      cur_destination = sd.addr_to_region_ptr(cur)->destination();
      dead_to_right = pointer_delta(space->end(), cur_destination);
    }
    _space_info[id].set_dense_prefix(cur);
  }
}
#endif // #ifndef PRODUCT

D
duke 已提交
1630 1631 1632 1633
void PSParallelCompact::summarize_spaces_quick()
{
  for (unsigned int i = 0; i < last_space_id; ++i) {
    const MutableSpace* space = _space_info[i].space();
1634 1635 1636 1637 1638
    HeapWord** nta = _space_info[i].new_top_addr();
    bool result = _summary_data.summarize(_space_info[i].split_info(),
                                          space->bottom(), space->top(), NULL,
                                          space->bottom(), space->end(), nta);
    assert(result, "space must fit into itself");
D
duke 已提交
1639 1640
    _space_info[i].set_dense_prefix(space->bottom());
  }
1641 1642 1643 1644 1645 1646

#ifndef PRODUCT
  if (ParallelOldGCSplitALot) {
    provoke_split_fill_survivor(to_space_id);
  }
#endif // #ifndef PRODUCT
D
duke 已提交
1647 1648 1649 1650 1651
}

void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
{
  HeapWord* const dense_prefix_end = dense_prefix(id);
1652
  const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
D
duke 已提交
1653
  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1654
  if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
D
duke 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    // Only enough dead space is filled so that any remaining dead space to the
    // left is larger than the minimum filler object.  (The remainder is filled
    // during the copy/update phase.)
    //
    // The size of the dead space to the right of the boundary is not a
    // concern, since compaction will be able to use whatever space is
    // available.
    //
    // Here '||' is the boundary, 'x' represents a don't care bit and a box
    // surrounds the space to be filled with an object.
    //
    // In the 32-bit VM, each bit represents two 32-bit words:
    //                              +---+
    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //                              +---+
    //
    // In the 64-bit VM, each bit represents one 64-bit word:
    //                              +------------+
    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
    //                              +------------+
    //                          +-------+
    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
    //                          +-------+
    //                      +-----------+
    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
    //                      +-----------+
    //                          +-------+
    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //                          +-------+

    // Initially assume case a, c or e will apply.
1691
    size_t obj_len = CollectedHeap::min_fill_size();
D
duke 已提交
1692 1693 1694
    HeapWord* obj_beg = dense_prefix_end - obj_len;

#ifdef  _LP64
1695 1696 1697
    if (MinObjAlignment > 1) { // object alignment > heap word size
      // Cases a, c or e.
    } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
D
duke 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
      // Case b above.
      obj_beg = dense_prefix_end - 1;
    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
      // Case d above.
      obj_beg = dense_prefix_end - 3;
      obj_len = 3;
    }
#endif  // #ifdef _LP64

1708
    CollectedHeap::fill_with_object(obj_beg, obj_len);
D
duke 已提交
1709 1710 1711 1712 1713 1714 1715
    _mark_bitmap.mark_obj(obj_beg, obj_len);
    _summary_data.add_obj(obj_beg, obj_len);
    assert(start_array(id) != NULL, "sanity");
    start_array(id)->allocate_block(obj_beg);
  }
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
void
PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
{
  RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
    cur->set_source_region(0);
  }
}

D
duke 已提交
1727 1728 1729 1730
void
PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
{
  assert(id < last_space_id, "id out of range");
1731 1732 1733
  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
         ParallelOldGCSplitALot && id == old_space_id,
         "should have been reset in summarize_spaces_quick()");
D
duke 已提交
1734 1735

  const MutableSpace* space = _space_info[id].space();
1736 1737 1738
  if (_space_info[id].new_top() != space->bottom()) {
    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
    _space_info[id].set_dense_prefix(dense_prefix_end);
D
duke 已提交
1739 1740

#ifndef PRODUCT
1741 1742 1743 1744 1745 1746
    if (TraceParallelOldGCDensePrefix) {
      print_dense_prefix_stats("ratio", id, maximum_compaction,
                               dense_prefix_end);
      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
      print_dense_prefix_stats("density", id, maximum_compaction, addr);
    }
D
duke 已提交
1747 1748
#endif  // #ifndef PRODUCT

1749 1750 1751
    // Recompute the summary data, taking into account the dense prefix.  If
    // every last byte will be reclaimed, then the existing summary data which
    // compacts everything can be left in place.
1752
    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1753 1754 1755
      // If dead space crosses the dense prefix boundary, it is (at least
      // partially) filled with a dummy object, marked live and added to the
      // summary data.  This simplifies the copy/update phase and must be done
1756 1757
      // before the final locations of objects are determined, to prevent
      // leaving a fragment of dead space that is too small to fill.
1758
      fill_dense_prefix_end(id);
D
duke 已提交
1759

1760 1761 1762 1763 1764 1765 1766
      // Compute the destination of each Region, and thus each object.
      _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
      _summary_data.summarize(_space_info[id].split_info(),
                              dense_prefix_end, space->top(), NULL,
                              dense_prefix_end, space->end(),
                              _space_info[id].new_top_addr());
    }
1767
  }
D
duke 已提交
1768 1769

  if (TraceParallelOldGCSummaryPhase) {
1770
    const size_t region_size = ParallelCompactData::RegionSize;
1771
    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1772
    const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
D
duke 已提交
1773
    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1774
    HeapWord* const new_top = _space_info[id].new_top();
1775
    const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
D
duke 已提交
1776 1777
    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
    tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1778
                  "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
D
duke 已提交
1779 1780
                  "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
                  id, space->capacity_in_words(), dense_prefix_end,
1781 1782
                  dp_region, dp_words / region_size,
                  cr_words / region_size, new_top);
D
duke 已提交
1783 1784 1785
  }
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
#ifndef PRODUCT
void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
                                          HeapWord* dst_beg, HeapWord* dst_end,
                                          SpaceId src_space_id,
                                          HeapWord* src_beg, HeapWord* src_end)
{
  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summarizing %d [%s] into %d [%s]:  "
                  "src=" PTR_FORMAT "-" PTR_FORMAT " "
                  SIZE_FORMAT "-" SIZE_FORMAT " "
                  "dst=" PTR_FORMAT "-" PTR_FORMAT " "
                  SIZE_FORMAT "-" SIZE_FORMAT,
                  src_space_id, space_names[src_space_id],
                  dst_space_id, space_names[dst_space_id],
                  src_beg, src_end,
                  _summary_data.addr_to_region_idx(src_beg),
                  _summary_data.addr_to_region_idx(src_end),
                  dst_beg, dst_end,
                  _summary_data.addr_to_region_idx(dst_beg),
                  _summary_data.addr_to_region_idx(dst_end));
  }
}
#endif  // #ifndef PRODUCT

D
duke 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
void PSParallelCompact::summary_phase(ParCompactionManager* cm,
                                      bool maximum_compaction)
{
  TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  // trace("2");

#ifdef  ASSERT
  if (TraceParallelOldGCMarkingPhase) {
    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
                  "add_obj_bytes=" SIZE_FORMAT,
                  add_obj_count, add_obj_size * HeapWordSize);
    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
                  "mark_bitmap_bytes=" SIZE_FORMAT,
                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  }
#endif  // #ifdef ASSERT

  // Quick summarization of each space into itself, to see how much is live.
  summarize_spaces_quick();

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after summarizing each space to self");
    Universe::print();
1833
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1834 1835 1836 1837 1838 1839 1840
    if (Verbose) {
      NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
    }
  }

  // The amount of live data that will end up in old space (assuming it fits).
  size_t old_space_total_live = 0;
1841
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
D
duke 已提交
1842 1843 1844 1845
    old_space_total_live += pointer_delta(_space_info[id].new_top(),
                                          _space_info[id].space()->bottom());
  }

1846
  MutableSpace* const old_space = _space_info[old_space_id].space();
1847 1848
  const size_t old_capacity = old_space->capacity_in_words();
  if (old_space_total_live > old_capacity) {
D
duke 已提交
1849 1850 1851
    // XXX - should also try to expand
    maximum_compaction = true;
  }
1852 1853
#ifndef PRODUCT
  if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1854
    provoke_split(maximum_compaction);
1855 1856
  }
#endif // #ifndef PRODUCT
D
duke 已提交
1857

1858
  // Old generations.
D
duke 已提交
1859 1860
  summarize_space(old_space_id, maximum_compaction);

1861 1862 1863 1864 1865 1866 1867 1868
  // Summarize the remaining spaces in the young gen.  The initial target space
  // is the old gen.  If a space does not fit entirely into the target, then the
  // remainder is compacted into the space itself and that space becomes the new
  // target.
  SpaceId dst_space_id = old_space_id;
  HeapWord* dst_space_end = old_space->end();
  HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
D
duke 已提交
1869 1870 1871
    const MutableSpace* space = _space_info[id].space();
    const size_t live = pointer_delta(_space_info[id].new_top(),
                                      space->bottom());
1872 1873 1874 1875
    const size_t available = pointer_delta(dst_space_end, *new_top_addr);

    NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
                                  SpaceId(id), space->bottom(), space->top());)
1876
    if (live > 0 && live <= available) {
D
duke 已提交
1877
      // All the live data will fit.
1878 1879 1880 1881 1882 1883 1884
      bool done = _summary_data.summarize(_space_info[id].split_info(),
                                          space->bottom(), space->top(),
                                          NULL,
                                          *new_top_addr, dst_space_end,
                                          new_top_addr);
      assert(done, "space must fit into old gen");

1885 1886
      // Reset the new_top value for the space.
      _space_info[id].set_new_top(space->bottom());
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
    } else if (live > 0) {
      // Attempt to fit part of the source space into the target space.
      HeapWord* next_src_addr = NULL;
      bool done = _summary_data.summarize(_space_info[id].split_info(),
                                          space->bottom(), space->top(),
                                          &next_src_addr,
                                          *new_top_addr, dst_space_end,
                                          new_top_addr);
      assert(!done, "space should not fit into old gen");
      assert(next_src_addr != NULL, "sanity");

      // The source space becomes the new target, so the remainder is compacted
      // within the space itself.
      dst_space_id = SpaceId(id);
      dst_space_end = space->end();
      new_top_addr = _space_info[id].new_top_addr();
      NOT_PRODUCT(summary_phase_msg(dst_space_id,
                                    space->bottom(), dst_space_end,
                                    SpaceId(id), next_src_addr, space->top());)
      done = _summary_data.summarize(_space_info[id].split_info(),
                                     next_src_addr, space->top(),
                                     NULL,
                                     space->bottom(), dst_space_end,
                                     new_top_addr);
      assert(done, "space must fit when compacted into itself");
      assert(*new_top_addr <= space->top(), "usage should not grow");
D
duke 已提交
1913 1914 1915 1916 1917 1918
    }
  }

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after final summarization");
    Universe::print();
1919
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
    if (Verbose) {
      NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
    }
  }
}

// This method should contain all heap-specific policy for invoking a full
// collection.  invoke_no_policy() will only attempt to compact the heap; it
// will do nothing further.  If we need to bail out for policy reasons, scavenge
// before full gc, or any other specialized behavior, it needs to be added here.
//
// Note that this method should only be called from the vm_thread while at a
// safepoint.
1933 1934 1935 1936 1937
//
// Note that the all_soft_refs_clear flag in the collector policy
// may be true because this method can be called without intervening
// activity.  For example when the heap space is tight and full measure
// are being taken to free space.
D
duke 已提交
1938 1939 1940 1941
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
         "should be in vm thread");
1942

D
duke 已提交
1943 1944 1945 1946 1947
  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  assert(!heap->is_gc_active(), "not reentrant");

  PSAdaptiveSizePolicy* policy = heap->size_policy();
1948
  IsGCActiveMark mark;
D
duke 已提交
1949

1950 1951
  if (ScavengeBeforeFullGC) {
    PSScavenge::invoke_no_policy();
D
duke 已提交
1952
  }
1953 1954 1955 1956 1957 1958

  const bool clear_all_soft_refs =
    heap->collector_policy()->should_clear_all_soft_refs();

  PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
                                      maximum_heap_compaction);
D
duke 已提交
1959 1960
}

1961 1962 1963
bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  size_t addr_region_index = addr_to_region_idx(addr);
  return region_index == addr_region_index;
D
duke 已提交
1964 1965 1966 1967
}

// This method contains no policy. You should probably
// be calling invoke() instead.
1968
bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
D
duke 已提交
1969 1970 1971
  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  assert(ref_processor() != NULL, "Sanity");

1972
  if (GC_locker::check_active_before_gc()) {
1973
    return false;
D
duke 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
  }

  TimeStamp marking_start;
  TimeStamp compaction_start;
  TimeStamp collection_exit;

  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();
  PSAdaptiveSizePolicy* size_policy = heap->size_policy();

1986 1987 1988 1989 1990
  // The scope of casr should end after code that can change
  // CollectorPolicy::_should_clear_all_soft_refs.
  ClearedAllSoftRefs casr(maximum_heap_compaction,
                          heap->collector_policy());

1991 1992 1993 1994 1995
  if (ZapUnusedHeapArea) {
    // Save information needed to minimize mangling
    heap->record_gen_tops_before_GC();
  }

1996 1997
  heap->pre_full_gc_dump();

D
duke 已提交
1998 1999 2000 2001 2002 2003 2004
  _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;

  // Make sure data structures are sane, make the heap parsable, and do other
  // miscellaneous bookkeeping.
  PreGCValues pre_gc_values;
  pre_compact(&pre_gc_values);

J
jcoomes 已提交
2005 2006 2007 2008
  // Get the compaction manager reserved for the VM thread.
  ParCompactionManager* const vmthread_cm =
    ParCompactionManager::manager_array(gc_task_manager()->workers());

D
duke 已提交
2009 2010 2011 2012 2013 2014 2015
  // Place after pre_compact() where the number of invocations is incremented.
  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());

  {
    ResourceMark rm;
    HandleMark hm;

2016 2017 2018 2019 2020
    // Set the number of GC threads to be used in this collection
    gc_task_manager()->set_active_gang();
    gc_task_manager()->task_idle_workers();
    heap->set_par_threads(gc_task_manager()->active_workers());

D
duke 已提交
2021 2022
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2023
    TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
D
duke 已提交
2024
    TraceCollectorStats tcs(counters());
2025
    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
D
duke 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

    if (TraceGen1Time) accumulated_time()->start();

    // Let the size policy know we're starting
    size_policy->major_collection_begin();

    CodeCache::gc_prologue();
    Threads::gc_prologue();

    COMPILER2_PRESENT(DerivedPointerTable::clear());

2037
    ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
2038
    ref_processor()->setup_policy(maximum_heap_compaction);
D
duke 已提交
2039 2040 2041 2042

    bool marked_for_unloading = false;

    marking_start.update();
J
jcoomes 已提交
2043
    marking_phase(vmthread_cm, maximum_heap_compaction);
D
duke 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

#ifndef PRODUCT
    if (TraceParallelOldGCMarkingPhase) {
      gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
        "cas_by_another %d",
        mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
        mark_bitmap()->cas_by_another());
    }
#endif  // #ifndef PRODUCT

2054 2055
    bool max_on_system_gc = UseMaximumCompactionOnSystemGC
      && gc_cause == GCCause::_java_lang_system_gc;
J
jcoomes 已提交
2056
    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
D
duke 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065

    COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
    COMPILER2_PRESENT(DerivedPointerTable::set_active(false));

    // adjust_roots() updates Universe::_intArrayKlassObj which is
    // needed by the compaction for filling holes in the dense prefix.
    adjust_roots();

    compaction_start.update();
2066
    compact();
D
duke 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
    // done before resizing.
    post_compact();

    // Let the size policy know we're done
    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);

    if (UseAdaptiveSizePolicy) {
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print("AdaptiveSizeStart: ");
        gclog_or_tty->stamp();
        gclog_or_tty->print_cr(" collection: %d ",
                       heap->total_collections());
        if (Verbose) {
2082 2083
          gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
D
duke 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
        }
      }

      // Don't check if the size_policy is ready here.  Let
      // the size_policy check that internally.
      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
          ((gc_cause != GCCause::_java_lang_system_gc) ||
            UseAdaptiveSizePolicyWithSystemGC)) {
        // Calculate optimal free space amounts
        assert(young_gen->max_size() >
          young_gen->from_space()->capacity_in_bytes() +
          young_gen->to_space()->capacity_in_bytes(),
          "Sizes of space in young gen are out-of-bounds");
        size_t max_eden_size = young_gen->max_size() -
          young_gen->from_space()->capacity_in_bytes() -
          young_gen->to_space()->capacity_in_bytes();
2100 2101 2102 2103 2104 2105 2106 2107
        size_policy->compute_generation_free_space(
                              young_gen->used_in_bytes(),
                              young_gen->eden_space()->used_in_bytes(),
                              old_gen->used_in_bytes(),
                              young_gen->eden_space()->capacity_in_bytes(),
                              old_gen->max_gen_size(),
                              max_eden_size,
                              true /* full gc*/,
2108 2109
                              gc_cause,
                              heap->collector_policy());
2110 2111 2112

        heap->resize_old_gen(
          size_policy->calculated_old_free_size_in_bytes());
D
duke 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

        // Don't resize the young generation at an major collection.  A
        // desired young generation size may have been calculated but
        // resizing the young generation complicates the code because the
        // resizing of the old generation may have moved the boundary
        // between the young generation and the old generation.  Let the
        // young generation resizing happen at the minor collections.
      }
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
                       heap->total_collections());
      }
    }

    if (UsePerfData) {
      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
      counters->update_counters();
      counters->update_old_capacity(old_gen->capacity_in_bytes());
      counters->update_young_capacity(young_gen->capacity_in_bytes());
    }

    heap->resize_all_tlabs();

2136 2137
    // Resize the metaspace capactiy after a collection
    MetaspaceGC::compute_new_size();
D
duke 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146

    if (TraceGen1Time) accumulated_time()->stop();

    if (PrintGC) {
      if (PrintGCDetails) {
        // No GC timestamp here.  This is after GC so it would be confusing.
        young_gen->print_used_change(pre_gc_values.young_gen_used());
        old_gen->print_used_change(pre_gc_values.old_gen_used());
        heap->print_heap_change(pre_gc_values.heap_used());
2147
        MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
D
duke 已提交
2148 2149 2150 2151 2152 2153 2154 2155
      } else {
        heap->print_heap_change(pre_gc_values.heap_used());
      }
    }

    // Track memory usage and detect low memory
    MemoryService::track_memory_usage();
    heap->update_counters();
2156
    gc_task_manager()->release_idle_workers();
D
duke 已提交
2157 2158
  }

2159 2160 2161 2162 2163
#ifdef ASSERT
  for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
    ParCompactionManager* const cm =
      ParCompactionManager::manager_array(int(i));
    assert(cm->marking_stack()->is_empty(),       "should be empty");
2164
    assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2165 2166 2167
  }
#endif // ASSERT

D
duke 已提交
2168 2169
  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
2170
    Universe::verify(" VerifyAfterGC:");
D
duke 已提交
2171 2172 2173 2174 2175 2176 2177 2178
  }

  // Re-verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyAfterGC) {
    old_gen->verify_object_start_array();
  }

2179 2180 2181 2182
  if (ZapUnusedHeapArea) {
    old_gen->object_space()->check_mangled_unused_area_complete();
  }

D
duke 已提交
2183 2184 2185 2186
  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

  collection_exit.update();

2187
  heap->print_heap_after_gc();
D
duke 已提交
2188 2189 2190 2191 2192 2193 2194
  if (PrintGCTaskTimeStamps) {
    gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
                           INT64_FORMAT,
                           marking_start.ticks(), compaction_start.ticks(),
                           collection_exit.ticks());
    gc_task_manager()->print_task_time_stamps();
  }
2195

2196 2197
  heap->post_full_gc_dump();

2198 2199 2200
#ifdef TRACESPINNING
  ParallelTaskTerminator::print_termination_counts();
#endif
2201 2202

  return true;
D
duke 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
}

bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
                                             PSYoungGen* young_gen,
                                             PSOldGen* old_gen) {
  MutableSpace* const eden_space = young_gen->eden_space();
  assert(!eden_space->is_empty(), "eden must be non-empty");
  assert(young_gen->virtual_space()->alignment() ==
         old_gen->virtual_space()->alignment(), "alignments do not match");

  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
    return false;
  }

  // Both generations must be completely committed.
  if (young_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }
  if (old_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }

  // Figure out how much to take from eden.  Include the average amount promoted
  // in the total; otherwise the next young gen GC will simply bail out to a
  // full GC.
  const size_t alignment = old_gen->virtual_space()->alignment();
  const size_t eden_used = eden_space->used_in_bytes();
  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  const size_t eden_capacity = eden_space->capacity_in_bytes();

  if (absorb_size >= eden_capacity) {
    return false; // Must leave some space in eden.
  }

  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  if (new_young_size < young_gen->min_gen_size()) {
    return false; // Respect young gen minimum size.
  }

  if (TraceAdaptiveGCBoundary && Verbose) {
    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
                        absorb_size / K,
                        eden_capacity / K, (eden_capacity - absorb_size) / K,
                        young_gen->from_space()->used_in_bytes() / K,
                        young_gen->to_space()->used_in_bytes() / K,
                        young_gen->capacity_in_bytes() / K, new_young_size / K);
  }

  // Fill the unused part of the old gen.
  MutableSpace* const old_space = old_gen->object_space();
2257 2258 2259 2260 2261 2262 2263 2264
  HeapWord* const unused_start = old_space->top();
  size_t const unused_words = pointer_delta(old_space->end(), unused_start);

  if (unused_words > 0) {
    if (unused_words < CollectedHeap::min_fill_size()) {
      return false;  // If the old gen cannot be filled, must give up.
    }
    CollectedHeap::fill_with_objects(unused_start, unused_words);
D
duke 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
  }

  // Take the live data from eden and set both top and end in the old gen to
  // eden top.  (Need to set end because reset_after_change() mangles the region
  // from end to virtual_space->high() in debug builds).
  HeapWord* const new_top = eden_space->top();
  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
                                        absorb_size);
  young_gen->reset_after_change();
  old_space->set_top(new_top);
  old_space->set_end(new_top);
  old_gen->reset_after_change();

  // Update the object start array for the filler object and the data from eden.
  ObjectStartArray* const start_array = old_gen->start_array();
2280 2281
  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
    start_array->allocate_block(p);
D
duke 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
  }

  // Could update the promoted average here, but it is not typically updated at
  // full GCs and the value to use is unclear.  Something like
  //
  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.

  size_policy->set_bytes_absorbed_from_eden(absorb_size);
  return true;
}

GCTaskManager* const PSParallelCompact::gc_task_manager() {
  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
    "shouldn't return NULL");
  return ParallelScavengeHeap::gc_task_manager();
}

void PSParallelCompact::marking_phase(ParCompactionManager* cm,
                                      bool maximum_heap_compaction) {
  // Recursively traverse all live objects and mark them
  TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = gc_heap();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2306
  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2307
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2308
  ParallelTaskTerminator terminator(active_gc_threads, qset);
D
duke 已提交
2309 2310 2311 2312

  PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  PSParallelCompact::FollowStackClosure follow_stack_closure(cm);

2313 2314 2315
  // Need new claim bits before marking starts.
  ClassLoaderDataGraph::clear_claimed_marks();

D
duke 已提交
2316 2317
  {
    TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
2318
    ParallelScavengeHeap::ParStrongRootsScope psrs;
D
duke 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

    GCTaskQueue* q = GCTaskQueue::create();

    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
    // We scan the thread roots in parallel
    Threads::create_thread_roots_marking_tasks(q);
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2331
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
D
duke 已提交
2332

2333 2334
    if (active_gc_threads > 1) {
      for (uint j = 0; j < active_gc_threads; j++) {
D
duke 已提交
2335 2336 2337 2338
        q->enqueue(new StealMarkingTask(&terminator));
      }
    }

2339
    gc_task_manager()->execute_and_wait(q);
D
duke 已提交
2340 2341 2342 2343 2344 2345 2346 2347
  }

  // Process reference objects found during marking
  {
    TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
    if (ref_processor()->processing_is_mt()) {
      RefProcTaskExecutor task_executor;
      ref_processor()->process_discovered_references(
2348 2349
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
        &task_executor);
D
duke 已提交
2350 2351
    } else {
      ref_processor()->process_discovered_references(
2352
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
D
duke 已提交
2353 2354 2355 2356
    }
  }

  TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
2357 2358 2359 2360

  // This is the point where the entire marking should have completed.
  assert(cm->marking_stacks_empty(), "Marking should have completed");

D
duke 已提交
2361 2362 2363
  // Follow system dictionary roots and unload classes.
  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());

2364
  // Unload nmethods.
2365
  CodeCache::do_unloading(is_alive_closure(), purged_class);
D
duke 已提交
2366

2367
  // Prune dead klasses from subklass/sibling/implementor lists.
2368
  Klass::clean_weak_klass_links(is_alive_closure());
D
duke 已提交
2369

2370
  // Delete entries for dead interned strings.
D
duke 已提交
2371
  StringTable::unlink(is_alive_closure());
2372

2373 2374
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
D
duke 已提交
2375 2376
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
  ClassLoaderData* cld = klass->class_loader_data();
  // The actual processing of the klass is done when we
  // traverse the list of Klasses in the class loader data.
  PSParallelCompact::follow_class_loader(cm, cld);
}

void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
  ClassLoaderData* cld = klass->class_loader_data();
  // The actual processing of the klass is done when we
  // traverse the list of Klasses in the class loader data.
  PSParallelCompact::adjust_class_loader(cm, cld);
}

void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
                                            ClassLoaderData* cld) {
  PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);

  cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
}

void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
                                            ClassLoaderData* cld) {
2401
  cld->oops_do(PSParallelCompact::adjust_pointer_closure(),
2402 2403 2404 2405
               PSParallelCompact::adjust_klass_closure(),
               true);
}

D
duke 已提交
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
// This should be moved to the shared markSweep code!
class PSAlwaysTrueClosure: public BoolObjectClosure {
public:
  void do_object(oop p) { ShouldNotReachHere(); }
  bool do_object_b(oop p) { return true; }
};
static PSAlwaysTrueClosure always_true;

void PSParallelCompact::adjust_roots() {
  // Adjust the pointers to reflect the new locations
  TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);

2418 2419 2420
  // Need new claim bits when tracing through and adjusting pointers.
  ClassLoaderDataGraph::clear_claimed_marks();

D
duke 已提交
2421
  // General strong roots.
2422 2423 2424 2425 2426 2427 2428 2429
  Universe::oops_do(adjust_pointer_closure());
  JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
  CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
  Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
  ObjectSynchronizer::oops_do(adjust_pointer_closure());
  FlatProfiler::oops_do(adjust_pointer_closure());
  Management::oops_do(adjust_pointer_closure());
  JvmtiExport::oops_do(adjust_pointer_closure());
D
duke 已提交
2430
  // SO_AllClasses
2431 2432
  SystemDictionary::oops_do(adjust_pointer_closure());
  ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
D
duke 已提交
2433 2434 2435 2436

  // Now adjust pointers in remaining weak roots.  (All of which should
  // have been cleared if they pointed to non-surviving objects.)
  // Global (weak) JNI handles
2437
  JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
D
duke 已提交
2438 2439

  CodeCache::oops_do(adjust_pointer_closure());
2440 2441
  StringTable::oops_do(adjust_pointer_closure());
  ref_processor()->weak_oops_do(adjust_pointer_closure());
D
duke 已提交
2442 2443 2444 2445
  // Roots were visited so references into the young gen in roots
  // may have been scanned.  Process them also.
  // Should the reference processor have a span that excludes
  // young gen objects?
2446
  PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
D
duke 已提交
2447 2448
}

2449 2450 2451
void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
                                                      uint parallel_gc_threads)
{
D
duke 已提交
2452 2453
  TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);

2454 2455 2456 2457 2458
  // Find the threads that are active
  unsigned int which = 0;

  const uint task_count = MAX2(parallel_gc_threads, 1U);
  for (uint j = 0; j < task_count; j++) {
2459
    q->enqueue(new DrainStacksCompactionTask(j));
2460 2461 2462 2463 2464 2465 2466 2467
    ParCompactionManager::verify_region_list_empty(j);
    // Set the region stacks variables to "no" region stack values
    // so that they will be recognized and needing a region stack
    // in the stealing tasks if they do not get one by executing
    // a draining stack.
    ParCompactionManager* cm = ParCompactionManager::manager_array(j);
    cm->set_region_stack(NULL);
    cm->set_region_stack_index((uint)max_uintx);
D
duke 已提交
2468
  }
2469
  ParCompactionManager::reset_recycled_stack_index();
D
duke 已提交
2470

2471
  // Find all regions that are available (can be filled immediately) and
D
duke 已提交
2472
  // distribute them to the thread stacks.  The iteration is done in reverse
2473
  // order (high to low) so the regions will be removed in ascending order.
D
duke 已提交
2474 2475 2476

  const ParallelCompactData& sd = PSParallelCompact::summary_data();

2477
  size_t fillable_regions = 0;   // A count for diagnostic purposes.
2478 2479
  // A region index which corresponds to the tasks created above.
  // "which" must be 0 <= which < task_count
D
duke 已提交
2480

2481
  which = 0;
2482 2483 2484
  // id + 1 is used to test termination so unsigned  can
  // be used with an old_space_id == 0.
  for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
D
duke 已提交
2485 2486 2487 2488
    SpaceInfo* const space_info = _space_info + id;
    MutableSpace* const space = space_info->space();
    HeapWord* const new_top = space_info->new_top();

2489 2490 2491
    const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
    const size_t end_region =
      sd.addr_to_region_idx(sd.region_align_up(new_top));
D
duke 已提交
2492

2493
    for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2494
      if (sd.region(cur)->claim_unsafe()) {
2495
        ParCompactionManager::region_list_push(which, cur);
D
duke 已提交
2496 2497

        if (TraceParallelOldGCCompactionPhase && Verbose) {
2498
          const size_t count_mod_8 = fillable_regions & 7;
D
duke 已提交
2499
          if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2500
          gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
D
duke 已提交
2501 2502 2503
          if (count_mod_8 == 7) gclog_or_tty->cr();
        }

2504
        NOT_PRODUCT(++fillable_regions;)
D
duke 已提交
2505

2506
        // Assign regions to tasks in round-robin fashion.
D
duke 已提交
2507
        if (++which == task_count) {
2508 2509
          assert(which <= parallel_gc_threads,
            "Inconsistent number of workers");
D
duke 已提交
2510 2511 2512 2513 2514 2515 2516
          which = 0;
        }
      }
    }
  }

  if (TraceParallelOldGCCompactionPhase) {
2517 2518
    if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
    gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
D
duke 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
  }
}

#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4

void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
                                                    uint parallel_gc_threads) {
  TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);

  ParallelCompactData& sd = PSParallelCompact::summary_data();

  // Iterate over all the spaces adding tasks for updating
2531
  // regions in the dense prefix.  Assume that 1 gc thread
D
duke 已提交
2532 2533
  // will work on opening the gaps and the remaining gc threads
  // will work on the dense prefix.
2534 2535
  unsigned int space_id;
  for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
D
duke 已提交
2536 2537 2538 2539 2540 2541 2542 2543
    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
    const MutableSpace* const space = _space_info[space_id].space();

    if (dense_prefix_end == space->bottom()) {
      // There is no dense prefix for this space.
      continue;
    }

2544 2545 2546 2547 2548
    // The dense prefix is before this region.
    size_t region_index_end_dense_prefix =
        sd.addr_to_region_idx(dense_prefix_end);
    RegionData* const dense_prefix_cp =
      sd.region(region_index_end_dense_prefix);
D
duke 已提交
2549 2550 2551
    assert(dense_prefix_end == space->end() ||
           dense_prefix_cp->available() ||
           dense_prefix_cp->claimed(),
2552
           "The region after the dense prefix should always be ready to fill");
D
duke 已提交
2553

2554
    size_t region_index_start = sd.addr_to_region_idx(space->bottom());
D
duke 已提交
2555 2556

    // Is there dense prefix work?
2557 2558 2559
    size_t total_dense_prefix_regions =
      region_index_end_dense_prefix - region_index_start;
    // How many regions of the dense prefix should be given to
D
duke 已提交
2560
    // each thread?
2561
    if (total_dense_prefix_regions > 0) {
D
duke 已提交
2562
      uint tasks_for_dense_prefix = 1;
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
      if (total_dense_prefix_regions <=
          (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
        // Don't over partition.  This assumes that
        // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
        // so there are not many regions to process.
        tasks_for_dense_prefix = parallel_gc_threads;
      } else {
        // Over partition
        tasks_for_dense_prefix = parallel_gc_threads *
          PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
D
duke 已提交
2573
      }
2574
      size_t regions_per_thread = total_dense_prefix_regions /
D
duke 已提交
2575
        tasks_for_dense_prefix;
2576 2577 2578
      // Give each thread at least 1 region.
      if (regions_per_thread == 0) {
        regions_per_thread = 1;
D
duke 已提交
2579 2580 2581
      }

      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2582
        if (region_index_start >= region_index_end_dense_prefix) {
D
duke 已提交
2583 2584
          break;
        }
2585 2586 2587
        // region_index_end is not processed
        size_t region_index_end = MIN2(region_index_start + regions_per_thread,
                                       region_index_end_dense_prefix);
2588 2589 2590
        q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
                                             region_index_start,
                                             region_index_end));
2591
        region_index_start = region_index_end;
D
duke 已提交
2592 2593 2594 2595
      }
    }
    // This gets any part of the dense prefix that did not
    // fit evenly.
2596
    if (region_index_start < region_index_end_dense_prefix) {
2597 2598 2599
      q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
                                           region_index_start,
                                           region_index_end_dense_prefix));
D
duke 已提交
2600
    }
2601
  }
D
duke 已提交
2602 2603
}

2604
void PSParallelCompact::enqueue_region_stealing_tasks(
D
duke 已提交
2605 2606 2607 2608 2609
                                     GCTaskQueue* q,
                                     ParallelTaskTerminator* terminator_ptr,
                                     uint parallel_gc_threads) {
  TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);

2610
  // Once a thread has drained it's stack, it should try to steal regions from
D
duke 已提交
2611 2612 2613
  // other threads.
  if (parallel_gc_threads > 1) {
    for (uint j = 0; j < parallel_gc_threads; j++) {
2614
      q->enqueue(new StealRegionCompactionTask(terminator_ptr));
D
duke 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    }
  }
}

void PSParallelCompact::compact() {
  // trace("5");
  TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  PSOldGen* old_gen = heap->old_gen();
  old_gen->start_array()->reset();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2628
  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2629
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2630
  ParallelTaskTerminator terminator(active_gc_threads, qset);
D
duke 已提交
2631 2632

  GCTaskQueue* q = GCTaskQueue::create();
2633 2634 2635
  enqueue_region_draining_tasks(q, active_gc_threads);
  enqueue_dense_prefix_tasks(q, active_gc_threads);
  enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
D
duke 已提交
2636 2637 2638 2639

  {
    TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);

2640
    gc_task_manager()->execute_and_wait(q);
D
duke 已提交
2641 2642

#ifdef  ASSERT
2643
    // Verify that all regions have been processed before the deferred updates.
D
duke 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      verify_complete(SpaceId(id));
    }
#endif
  }

  {
    // Update the deferred objects, if any.  Any compaction manager can be used.
    TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      update_deferred_objects(cm, SpaceId(id));
    }
  }
}

#ifdef  ASSERT
void PSParallelCompact::verify_complete(SpaceId space_id) {
2662 2663
  // All Regions between space bottom() to new_top() should be marked as filled
  // and all Regions between new_top() and top() should be available (i.e.,
D
duke 已提交
2664 2665 2666
  // should have been emptied).
  ParallelCompactData& sd = summary_data();
  SpaceInfo si = _space_info[space_id];
2667 2668 2669 2670 2671
  HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
D
duke 已提交
2672 2673 2674

  bool issued_a_warning = false;

2675 2676 2677
  size_t cur_region;
  for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2678
    if (!c->completed()) {
2679
      warning("region " SIZE_FORMAT " not filled:  "
D
duke 已提交
2680
              "destination_count=" SIZE_FORMAT,
2681
              cur_region, c->destination_count());
D
duke 已提交
2682 2683 2684 2685
      issued_a_warning = true;
    }
  }

2686 2687
  for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2688
    if (!c->available()) {
2689
      warning("region " SIZE_FORMAT " not empty:   "
D
duke 已提交
2690
              "destination_count=" SIZE_FORMAT,
2691
              cur_region, c->destination_count());
D
duke 已提交
2692 2693 2694 2695 2696
      issued_a_warning = true;
    }
  }

  if (issued_a_warning) {
2697
    print_region_ranges();
D
duke 已提交
2698 2699 2700 2701
  }
}
#endif  // #ifdef ASSERT

2702
// Update interior oops in the ranges of regions [beg_region, end_region).
D
duke 已提交
2703 2704 2705
void
PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
                                                       SpaceId space_id,
2706 2707
                                                       size_t beg_region,
                                                       size_t end_region) {
D
duke 已提交
2708 2709 2710
  ParallelCompactData& sd = summary_data();
  ParMarkBitMap* const mbm = mark_bitmap();

2711 2712 2713
  HeapWord* beg_addr = sd.region_to_addr(beg_region);
  HeapWord* const end_addr = sd.region_to_addr(end_region);
  assert(beg_region <= end_region, "bad region range");
D
duke 已提交
2714 2715 2716
  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");

#ifdef  ASSERT
2717
  // Claim the regions to avoid triggering an assert when they are marked as
D
duke 已提交
2718
  // filled.
2719 2720
  for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
    assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
D
duke 已提交
2721 2722 2723 2724 2725
  }
#endif  // #ifdef ASSERT

  if (beg_addr != space(space_id)->bottom()) {
    // Find the first live object or block of dead space that *starts* in this
2726 2727 2728 2729 2730 2731
    // range of regions.  If a partial object crosses onto the region, skip it;
    // it will be marked for 'deferred update' when the object head is
    // processed.  If dead space crosses onto the region, it is also skipped; it
    // will be filled when the prior region is processed.  If neither of those
    // apply, the first word in the region is the start of a live object or dead
    // space.
D
duke 已提交
2732
    assert(beg_addr > space(space_id)->bottom(), "sanity");
2733
    const RegionData* const cp = sd.region(beg_region);
D
duke 已提交
2734
    if (cp->partial_obj_size() != 0) {
2735
      beg_addr = sd.partial_obj_end(beg_region);
D
duke 已提交
2736 2737 2738 2739 2740 2741
    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
    }
  }

  if (beg_addr < end_addr) {
2742
    // A live object or block of dead space starts in this range of Regions.
D
duke 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
     HeapWord* const dense_prefix_end = dense_prefix(space_id);

    // Create closures and iterate.
    UpdateOnlyClosure update_closure(mbm, cm, space_id);
    FillClosure fill_closure(cm, space_id);
    ParMarkBitMap::IterationStatus status;
    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
                          dense_prefix_end);
    if (status == ParMarkBitMap::incomplete) {
      update_closure.do_addr(update_closure.source());
    }
  }

2756 2757 2758 2759
  // Mark the regions as filled.
  RegionData* const beg_cp = sd.region(beg_region);
  RegionData* const end_cp = sd.region(end_region);
  for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
D
duke 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
    cp->set_completed();
  }
}

// Return the SpaceId for the space containing addr.  If addr is not in the
// heap, last_space_id is returned.  In debug mode it expects the address to be
// in the heap and asserts such.
PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");

2770
  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
D
duke 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
    if (_space_info[id].space()->contains(addr)) {
      return SpaceId(id);
    }
  }

  assert(false, "no space contains the addr");
  return last_space_id;
}

void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
                                                SpaceId id) {
  assert(id < last_space_id, "bad space id");

  ParallelCompactData& sd = summary_data();
  const SpaceInfo* const space_info = _space_info + id;
  ObjectStartArray* const start_array = space_info->start_array();

  const MutableSpace* const space = space_info->space();
  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  HeapWord* const beg_addr = space_info->dense_prefix();
2791
  HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
D
duke 已提交
2792

2793 2794 2795 2796 2797
  const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  const RegionData* cur_region;
  for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
    HeapWord* const addr = cur_region->deferred_obj_addr();
D
duke 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
    if (addr != NULL) {
      if (start_array != NULL) {
        start_array->allocate_block(addr);
      }
      oop(addr)->update_contents(cm);
      assert(oop(addr)->is_oop_or_null(), "should be an oop now");
    }
  }
}

// Skip over count live words starting from beg, and return the address of the
// next live word.  Unless marked, the word corresponding to beg is assumed to
// be dead.  Callers must either ensure beg does not correspond to the middle of
// an object, or account for those live words in some other way.  Callers must
// also ensure that there are enough live words in the range [beg, end) to skip.
HeapWord*
PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
{
  assert(count > 0, "sanity");

  ParMarkBitMap* m = mark_bitmap();
  idx_t bits_to_skip = m->words_to_bits(count);
  idx_t cur_beg = m->addr_to_bit(beg);
  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));

  do {
    cur_beg = m->find_obj_beg(cur_beg, search_end);
    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
    const size_t obj_bits = cur_end - cur_beg + 1;
    if (obj_bits > bits_to_skip) {
      return m->bit_to_addr(cur_beg + bits_to_skip);
    }
    bits_to_skip -= obj_bits;
    cur_beg = cur_end + 1;
  } while (bits_to_skip > 0);

  // Skipping the desired number of words landed just past the end of an object.
  // Find the start of the next object.
  cur_beg = m->find_obj_beg(cur_beg, search_end);
  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  return m->bit_to_addr(cur_beg);
}

2841 2842 2843
HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
                                            SpaceId src_space_id,
                                            size_t src_region_idx)
D
duke 已提交
2844
{
2845 2846 2847 2848 2849 2850 2851 2852 2853
  assert(summary_data().is_region_aligned(dest_addr), "not aligned");

  const SplitInfo& split_info = _space_info[src_space_id].split_info();
  if (split_info.dest_region_addr() == dest_addr) {
    // The partial object ending at the split point contains the first word to
    // be copied to dest_addr.
    return split_info.first_src_addr();
  }

D
duke 已提交
2854
  const ParallelCompactData& sd = summary_data();
2855
  ParMarkBitMap* const bitmap = mark_bitmap();
2856
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
2857

2858 2859 2860 2861
  assert(sd.is_region_aligned(dest_addr), "not aligned");
  const RegionData* const src_region_ptr = sd.region(src_region_idx);
  const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  HeapWord* const src_region_destination = src_region_ptr->destination();
D
duke 已提交
2862

2863 2864
  assert(dest_addr >= src_region_destination, "wrong src region");
  assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
D
duke 已提交
2865

2866 2867
  HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  HeapWord* const src_region_end = src_region_beg + RegionSize;
D
duke 已提交
2868

2869 2870 2871
  HeapWord* addr = src_region_beg;
  if (dest_addr == src_region_destination) {
    // Return the first live word in the source region.
D
duke 已提交
2872
    if (partial_obj_size == 0) {
2873 2874
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "no objects start in src region");
D
duke 已提交
2875 2876 2877 2878 2879
    }
    return addr;
  }

  // Must skip some live data.
2880 2881
  size_t words_to_skip = dest_addr - src_region_destination;
  assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
D
duke 已提交
2882 2883 2884 2885 2886 2887

  if (partial_obj_size >= words_to_skip) {
    // All the live words to skip are part of the partial object.
    addr += words_to_skip;
    if (partial_obj_size == words_to_skip) {
      // Find the first live word past the partial object.
2888 2889
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "wrong src region");
D
duke 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
    }
    return addr;
  }

  // Skip over the partial object (if any).
  if (partial_obj_size != 0) {
    words_to_skip -= partial_obj_size;
    addr += partial_obj_size;
  }

2900 2901 2902
  // Skip over live words due to objects that start in the region.
  addr = skip_live_words(addr, src_region_end, words_to_skip);
  assert(addr < src_region_end, "wrong src region");
D
duke 已提交
2903 2904 2905 2906
  return addr;
}

void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2907
                                                     SpaceId src_space_id,
2908
                                                     size_t beg_region,
D
duke 已提交
2909 2910 2911
                                                     HeapWord* end_addr)
{
  ParallelCompactData& sd = summary_data();
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

#ifdef ASSERT
  MutableSpace* const src_space = _space_info[src_space_id].space();
  HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
         "src_space_id does not match beg_addr");
  assert(src_space->contains(end_addr) || end_addr == src_space->end(),
         "src_space_id does not match end_addr");
#endif // #ifdef ASSERT

2922
  RegionData* const beg = sd.region(beg_region);
2923 2924 2925 2926 2927 2928 2929 2930
  RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));

  // Regions up to new_top() are enqueued if they become available.
  HeapWord* const new_top = _space_info[src_space_id].new_top();
  RegionData* const enqueue_end =
    sd.addr_to_region_ptr(sd.region_align_up(new_top));

  for (RegionData* cur = beg; cur < end; ++cur) {
2931
    assert(cur->data_size() > 0, "region must have live data");
D
duke 已提交
2932
    cur->decrement_destination_count();
2933
    if (cur < enqueue_end && cur->available() && cur->claim()) {
2934
      cm->push_region(sd.region(cur));
D
duke 已提交
2935 2936 2937 2938
    }
  }
}

2939 2940 2941 2942
size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
                                          SpaceId& src_space_id,
                                          HeapWord*& src_space_top,
                                          HeapWord* end_addr)
D
duke 已提交
2943
{
2944
  typedef ParallelCompactData::RegionData RegionData;
D
duke 已提交
2945 2946

  ParallelCompactData& sd = PSParallelCompact::summary_data();
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
  const size_t region_size = ParallelCompactData::RegionSize;

  size_t src_region_idx = 0;

  // Skip empty regions (if any) up to the top of the space.
  HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  const RegionData* const top_region_ptr =
    sd.addr_to_region_ptr(top_aligned_up);
  while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
    ++src_region_ptr;
  }

  if (src_region_ptr < top_region_ptr) {
    // The next source region is in the current space.  Update src_region_idx
    // and the source address to match src_region_ptr.
    src_region_idx = sd.region(src_region_ptr);
    HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
    if (src_region_addr > closure.source()) {
      closure.set_source(src_region_addr);
D
duke 已提交
2968
    }
2969
    return src_region_idx;
D
duke 已提交
2970 2971
  }

2972
  // Switch to a new source space and find the first non-empty region.
D
duke 已提交
2973 2974 2975 2976 2977 2978 2979 2980
  unsigned int space_id = src_space_id + 1;
  assert(space_id < last_space_id, "not enough spaces");

  HeapWord* const destination = closure.destination();

  do {
    MutableSpace* space = _space_info[space_id].space();
    HeapWord* const bottom = space->bottom();
2981
    const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
D
duke 已提交
2982 2983 2984

    // Iterate over the spaces that do not compact into themselves.
    if (bottom_cp->destination() != bottom) {
2985 2986
      HeapWord* const top_aligned_up = sd.region_align_up(space->top());
      const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
2987

2988
      for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
D
duke 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997
        if (src_cp->live_obj_size() > 0) {
          // Found it.
          assert(src_cp->destination() == destination,
                 "first live obj in the space must match the destination");
          assert(src_cp->partial_obj_size() == 0,
                 "a space cannot begin with a partial obj");

          src_space_id = SpaceId(space_id);
          src_space_top = space->top();
2998 2999 3000
          const size_t src_region_idx = sd.region(src_cp);
          closure.set_source(sd.region_to_addr(src_region_idx));
          return src_region_idx;
D
duke 已提交
3001 3002 3003 3004 3005 3006 3007
        } else {
          assert(src_cp->data_size() == 0, "sanity");
        }
      }
    }
  } while (++space_id < last_space_id);

3008
  assert(false, "no source region was found");
D
duke 已提交
3009 3010 3011
  return 0;
}

3012
void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
D
duke 已提交
3013 3014
{
  typedef ParMarkBitMap::IterationStatus IterationStatus;
3015
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
3016 3017
  ParMarkBitMap* const bitmap = mark_bitmap();
  ParallelCompactData& sd = summary_data();
3018
  RegionData* const region_ptr = sd.region(region_idx);
D
duke 已提交
3019 3020

  // Get the items needed to construct the closure.
3021
  HeapWord* dest_addr = sd.region_to_addr(region_idx);
D
duke 已提交
3022 3023 3024 3025
  SpaceId dest_space_id = space_id(dest_addr);
  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  HeapWord* new_top = _space_info[dest_space_id].new_top();
  assert(dest_addr < new_top, "sanity");
3026
  const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
D
duke 已提交
3027

3028 3029 3030
  // Get the source region and related info.
  size_t src_region_idx = region_ptr->source_region();
  SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
D
duke 已提交
3031 3032 3033
  HeapWord* src_space_top = _space_info[src_space_id].space()->top();

  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3034
  closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
D
duke 已提交
3035

3036 3037 3038 3039
  // Adjust src_region_idx to prepare for decrementing destination counts (the
  // destination count is not decremented when a region is copied to itself).
  if (src_region_idx == region_idx) {
    src_region_idx += 1;
D
duke 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048
  }

  if (bitmap->is_unmarked(closure.source())) {
    // The first source word is in the middle of an object; copy the remainder
    // of the object or as much as will fit.  The fact that pointer updates were
    // deferred will be noted when the object header is processed.
    HeapWord* const old_src_addr = closure.source();
    closure.copy_partial_obj();
    if (closure.is_full()) {
3049 3050
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3051 3052
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
3053 3054 3055
      return;
    }

3056 3057 3058
    HeapWord* const end_addr = sd.region_align_down(closure.source());
    if (sd.region_align_down(old_src_addr) != end_addr) {
      // The partial object was copied from more than one source region.
3059
      decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
D
duke 已提交
3060

3061
      // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
3062
      // args except end_addr may be modified.
3063 3064
      src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                       end_addr);
D
duke 已提交
3065 3066 3067 3068 3069
    }
  }

  do {
    HeapWord* const cur_addr = closure.source();
3070
    HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
D
duke 已提交
3071 3072 3073 3074
                                    src_space_top);
    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);

    if (status == ParMarkBitMap::incomplete) {
3075 3076
      // The last obj that starts in the source region does not end in the
      // region.
3077
      assert(closure.source() < end_addr, "sanity");
D
duke 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
      HeapWord* const obj_beg = closure.source();
      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
                                       src_space_top);
      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
      if (obj_end < range_end) {
        // The end was found; the entire object will fit.
        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
        assert(status != ParMarkBitMap::would_overflow, "sanity");
      } else {
        // The end was not found; the object will not fit.
        assert(range_end < src_space_top, "obj cannot cross space boundary");
        status = ParMarkBitMap::would_overflow;
      }
    }

    if (status == ParMarkBitMap::would_overflow) {
      // The last object did not fit.  Note that interior oop updates were
3095 3096
      // deferred, then copy enough of the object to fill the region.
      region_ptr->set_deferred_obj_addr(closure.destination());
D
duke 已提交
3097 3098
      status = closure.copy_until_full(); // copies from closure.source()

3099 3100
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3101
      region_ptr->set_completed();
D
duke 已提交
3102 3103 3104 3105
      return;
    }

    if (status == ParMarkBitMap::full) {
3106 3107
      decrement_destination_counts(cm, src_space_id, src_region_idx,
                                   closure.source());
3108 3109
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
3110 3111 3112
      return;
    }

3113
    decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
D
duke 已提交
3114

3115
    // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
3116
    // args except end_addr may be modified.
3117 3118
    src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                     end_addr);
D
duke 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
  } while (true);
}

void
PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  const MutableSpace* sp = space(space_id);
  if (sp->is_empty()) {
    return;
  }

  ParallelCompactData& sd = PSParallelCompact::summary_data();
  ParMarkBitMap* const bitmap = mark_bitmap();
  HeapWord* const dp_addr = dense_prefix(space_id);
  HeapWord* beg_addr = sp->bottom();
  HeapWord* end_addr = sp->top();

  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");

3137 3138 3139 3140
  const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  if (beg_region < dp_region) {
    update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
D
duke 已提交
3141 3142
  }

3143 3144 3145
  // The destination of the first live object that starts in the region is one
  // past the end of the partial object entering the region (if any).
  HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
D
duke 已提交
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
  HeapWord* const new_top = _space_info[space_id].new_top();
  assert(new_top >= dest_addr, "bad new_top value");
  const size_t words = pointer_delta(new_top, dest_addr);

  if (words > 0) {
    ObjectStartArray* start_array = _space_info[space_id].start_array();
    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);

    ParMarkBitMap::IterationStatus status;
    status = bitmap->iterate(&closure, dest_addr, end_addr);
    assert(status == ParMarkBitMap::full, "iteration not complete");
    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
           "live objects skipped because closure is full");
  }
}

jlong PSParallelCompact::millis_since_last_gc() {
3163 3164 3165 3166
  // We need a monotonically non-deccreasing time in ms but
  // os::javaTimeMillis() does not guarantee monotonicity.
  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  jlong ret_val = now - _time_of_last_gc;
D
duke 已提交
3167 3168
  // XXX See note in genCollectedHeap::millis_since_last_gc().
  if (ret_val < 0) {
3169
    NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
D
duke 已提交
3170 3171 3172 3173 3174 3175
    return 0;
  }
  return ret_val;
}

void PSParallelCompact::reset_millis_since_last_gc() {
3176 3177 3178
  // We need a monotonically non-deccreasing time in ms but
  // os::javaTimeMillis() does not guarantee monotonicity.
  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
D
duke 已提交
3179 3180 3181 3182 3183
}

ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
{
  if (source() != destination()) {
3184
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  }
  update_state(words_remaining());
  assert(is_full(), "sanity");
  return ParMarkBitMap::full;
}

void MoveAndUpdateClosure::copy_partial_obj()
{
  size_t words = words_remaining();

  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  if (end_addr < range_end) {
    words = bitmap()->obj_size(source(), end_addr);
  }

  // This test is necessary; if omitted, the pointer updates to a partial object
  // that crosses the dense prefix boundary could be overwritten.
  if (source() != destination()) {
3205
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
    Copy::aligned_conjoint_words(source(), destination(), words);
  }
  update_state(words);
}

ParMarkBitMapClosure::IterationStatus
MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  assert(destination() != NULL, "sanity");
  assert(bitmap()->obj_size(addr) == words, "bad size");

  _source = addr;
  assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
         destination(), "wrong destination");

  if (words > words_remaining()) {
    return ParMarkBitMap::would_overflow;
  }

  // The start_array must be updated even if the object is not moving.
  if (_start_array != NULL) {
    _start_array->allocate_block(destination());
  }

  if (destination() != source()) {
3230
    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
D
duke 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
    Copy::aligned_conjoint_words(source(), destination(), words);
  }

  oop moved_oop = (oop) destination();
  moved_oop->update_contents(compaction_manager());
  assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");

  update_state(words);
  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
}

UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
                                     ParCompactionManager* cm,
                                     PSParallelCompact::SpaceId space_id) :
  ParMarkBitMapClosure(mbm, cm),
  _space_id(space_id),
  _start_array(PSParallelCompact::start_array(space_id))
{
}

// Updates the references in the object to their new values.
ParMarkBitMapClosure::IterationStatus
UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  do_addr(addr);
  return ParMarkBitMap::incomplete;
}